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Abstract We present an overview of the design and status of the Polarbear-2 and
the Simons Array experiments. Polarbear-2 is a cosmic microwave background
polarimetry experiment which aims to characterize the arc-minute angular scale
B-mode signal from weak gravitational lensing and search for the degree angular
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scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm
diameter focal plane cooled to 270 mK. The focal plane is filled with 7588 dichroic
lenslet–antenna-coupled polarization sensitive transition edge sensor (TES) bolomet-
ric pixels that are sensitive to 95 and 150 GHz bands simultaneously. The TES
bolometers are read-out by SQUIDs with 40 channel frequency domain multiplex-
ing. Refractive optical elements are made with high-purity alumina to achieve high
optical throughput. The receiver is designed to achieve noise equivalent temperature
of 5.8 μKCMB

√
s in each frequency band. Polarbear-2 will deploy in 2016 in the

Atacama desert in Chile. The Simons Array is a project to further increase sensitivity
by deploying three Polarbear-2 type receivers. The Simons Array will cover 95,
150, and 220 GHz frequency bands for foreground control. The Simons Array will be
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able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6×10−3

at r = 0.1 and
∑

mν(σ = 1) to 40 meV.

Keywords Cosmic microwave background · Inflation · Gravitational weak lensing ·
Polarization · B-mode

1 Introduction

Measurements of the cosmic microwave background (CMB) temperature anisotropy
successfully constrained many cosmological parameters. The CMB is also weakly,
linearly polarized. The CMB polarization could give tighter constrains on cosmolog-
ical parameters and open windows for studying fundamental physics. Measurements
of even parity polarization pattern, E-mode, of the CMB agree with temperature
anisotropy measurements [1]. Recently, initial measurements of the odd parity polar-
ization pattern, B-mode, of the CMB were also reported. [2–8].

The B-mode polarization has two primary sources. Primordial gravitational waves,
if present, would polarize the CMB at degree angular scale [9]. Tighter upper limits or
detection of the primordial B-mode signal will put constraints on the inflation model
and energy level of the inflation potential. Weak gravitational lensing from large-scale
structures distorts the E-mode pattern to produce small amounts of B-mode polariza-
tion pattern [10]. The B-mode signal from weak gravitational lensing peak around
ten arcmin angular scales. Characterization of gravitationally lensed B-mode signal
could constrain parameters such as the sum of neutrino masses, evolution of the dark
energy equation of state, primordial magnetic fields, and cosmic birefringence. Precise
characterization of the gravitational lensing B-mode will be important to decouple the
lensing signal from the primordial inflationary signal.

Planck’s report on the CMB foregrounds suggests that polarized foregrounds such
as synchrotron radiation and dust emission need to be carefully subtracted for accu-
rate CMB polarization measurements [11,12]. The Polarbear-2 receiver is a highly
sensitive receiver with broad frequency coverage for foreground mitigation.

2 Project Overview

The Polarbear-2 receiver will observe from the James Ax observatory at 5200meter
altitude in the Chilean Atacama Desert. The site has access to 80% of the sky. This
allows cross-correlation with other experiments. The Polarbear-2 receiver will be
mounted on a telescope with same design as the Huan Tran Telescope (HTT) that
is currently observing with the Polarbear-1 receiver. The HTT features an offset
Gregorian design obeying the Mizuguchi-Dragone condition to minimize instrumen-
tal cross-polarization. The HTT has co-moving baffles to minimize sidelobes. 3.5
meters primary mirror produces a 3.5-arcmin (5.2-arcmin) FWHM beam at 150 GHz
(95 GHz). The Polarbear-2 receiver will have instantaneous array sensitivity of
5.8 μKCMB

√
s in each frequency band.

The Simons Array is a project to further increase sensitivity by deploying three
Polarbear-2 type receivers including the Polarbear-2 receiver. The first receiver
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will deploy at 95 and 150 GHz frequencies in 2016. The second receiver will cover 95
and 150 GHz, and the third receiver will cover 150 and 220 GHz bands. The second
and third receivers will deploy in 2017. Sensitivity of the Simons Array in its final
configuration is 4.1 μKCMB

√
s in the 95 GHz band, 3.4 μKCMB

√
s in the 150 GHz

band, and 11.5 μKCMB
√
s in the 220 GHz band. The Simons Array will be able to

constrain the tensor-to-scalar ratio r to σ(r) = 4× 10−3 when considering statistical
noise alone, and σ(r) = 6× 10−3 at r = 0.1 when foregrounds are cleaned [13]. The
Simons Array will also be able to constrain the sum of neutrinomasses to 19meV (1σ )
when considering statistical noise alone, and 40 meV (1σ ) when foreground effect is
considered with foreground cleaning by cross-correlation with spectroscopic galaxy
surveys.

3 Instrument

A cross-sectional view of the Polarbear-2 receiver is shown in Fig. 1. Two Cry-
omech PT415 pulse-tube coolers provide cooling power to the receiver. Annealed 6-N
aluminum strips are epoxied to receiver shells to increase thermal conductivity of
the receiver. A Chase Cryogenics three-stage helium sorption refrigerator provide the
focal plane tower with 2 K, 350, and 270 mK stages.

Three reimaging lenses and an infrared filter are fabricated from Nihon Ceratec’s
99.9% purity alumina. The high optical index of alumina (n = 3.1) minimizes abber-
ation in optics. The alumina has low loss tangent (tan δ ≈ 1 × 10−4), and this keeps
receiver efficiency high. High thermal conductivity of the alumina helps with overall
cryogenic performance [14]. Alumina lenses are anti-reflection coated with two-layer
epoxy coating, thermal-sprayed ceramic coating, and expanded kapton coating [14–
16]. The optical design achieves a strehl ratio greater than 0.90 over entire 365 mm
diameter focal plane. The field of view of the Polarbear-2 instrument is 4.8◦. Optical
efficiency of the entire system is 24% at 95 GHz and 31 % at 150 GHz.

The focal plane is shown in Fig. 1. A 365 mm diameter focal plane tower houses
seven detector array modules. Each module has 271 dual linear polarized pixels that
simultaneously detect CMB radiation in the 95 and 150 GHz bands. Each pixel has
a silicon lens-coupled broadband sinuous antenna that couples optical signal onto a
RF circuit on a wafer. Bandpass filters on the wafer split the signal into two separate
bands, then transition edge sensor (TES) bolometers detect the signal [17]. Silicon
lenslet array is anti-reflection coated with two layers of epoxy-based coating [15,18].
Readout electronics are assembled behind the detector array for a modular design.

TES bolometers are read-out by frequency multiplexed superconducting quan-
tum interference device (SQUID) amplifiers [19,20]. Forty channels are frequency
multiplexed between 1.6 and 4.2MHzwith logarithmically increasing frequency spac-
ing. Digital active nulling technology corrects for phase delay and reduces parasitic
inductance from circuit elements between the bias resistor and the SQUID [21]. Super-
conducting resonators for frequency multiplexing are lithographed on silicon wafers
for low loss, high-frequency precision and kilo-channel scalability [22].We developed
superconducting niobium-titaniumparallel plate transmission lines forwiring between
the milli-Kelvin and 4 K stages. The low thermal conductivity of niobium–titanium
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Fig. 1 CADdrawing of the Polarbear-2 receiver (upper right) and CAD drawing of the focal plane tower
(upper left). Three temperature stages (250, 350 mK, and 2 K) are separated by vespel support structures.
Photograph of a detector module (bottom left), which consists of a detector wafer, lenslet wafer, Invar
holder, and cryogenic readout electronics. Automated wirebonds have 100 μm pitch (bottom right). The
Sinusoidal circular structure is a broadband antenna. Large rectangular structures are TES bolometers. The
RF diplexer filter is visible between the antenna and the bolometers (bottom right) (Colour figure online)

provides thermal isolation, while the high width-to-height ratio of the parallel plate
transmission line provides low inductance per length (≈1 nH/cm) that allows stiff
voltage biases of TES bolometers.

4 Conclusion

The Polarbear-2 and the Simons Array experiment will measure polarization of the
CMB with high sensitivity. The Polarbear-2 will deploy in 2016, and the Simons
Array will fully deploy in 2017.
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