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through the thresholds associated with the different quarks and leptons is described.
relation with the first moment of gf more subtle. The behaviour of gf as ::2 is increased
chiral limit, where the occurrence of singularities in the invariant amplitudes makes the
chiral symmetry on the AVV correlation function with special emphasis on the delicate
in the AVV function. A careful account is given of the effect of different realizations of
momentum nz of the target photon is a. direct probe of the way chiral symmetry is realized
by the anomalous 3·current AVV correlation function. Its dependence on the oif·shell
The first moment of the polarized photon structure function g¥(y, Q2; ::2) is determined
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where the amplitudes AE") are analytic functions of p2 = (kl + k2)2, kr? and kg, and are OCR Output

<·z.2>_ ,2,.,, = Z AE"<p’. kt. si 1,:,.,,.
as follows:

where r is a flavour index, can be decomposed into six independent invariant amplitudes

FLM, = dx, dx; e‘U"""H""’) (0|T"' .I,:5(0) J,\(z:;) J,(z2)|O), (2.1)

It is well-known that the AVV correlation function

2. Chiral symmetry realizations and the AVV correlation function

associated with the different quarks and leptons are encountered.
of g;'(y,Q2; nz) on the off-shell target photon momentum mz (E -}::2) as the thresholds

Finally, we summarise our results, describing the dependence of the first moment
realization independent.
naive expectation that in this limit it is determined entirely by the anomaly and hence
between different realizations of chiral symmetry even in the chiral limit, contrary to the
taken to zero. Furthermore, we show that the first moment of gf does indeed distinguish
amplitudes, all physical quantities are smooth and continuous as the quark masses are
the AVV amplitudes in the chiral limit and show how, despite the discontinuities in these

We then explain carefully the precise relation between the first moment of gil and
realization except for the special case of on·shell photons.
six independent amplitudes specifying the Green function, are absent in the perturbative
axial channel due to the Na.inbu—Goldstone bosons, which lead to discontinuities in the
structure is quite different in the two realizations. In particular, the massless poles in the
of QCD. We focus especially on the very delicate chiral limit and show that the singularity
expectations based on the Nambu-Goldstone realization, relevant for the light quark sector
leptons, heavy quarks or with the Wigner realization of unbroken chiral symmetry, with the
correlation function, contrasting the perturbative predictions, which would be relevant for

In this paper, we extend the analysis of ref.[1] to give a detailed description of the AVV
a correlation function sensitive to some of the most subtle aspects of QCD dynamics.
of chiral symmetry. The sum rule therefore opens up the possibility of measuring directly
U (1) anomalies and exhibits qualitatively different behaviour according to the realization
AVV 3-point function is interesting since it involves both the strong and electromagnetic
two-photon process (Fig.1) in deep-inelastic, polarized e'*’e" scattering. Theoretically, the
vector) 3-current correlation function in QCD. Experimentally, gf can be measured in a
ton structure function g;'(y, Q2; nz) to form factors characterizing the AVV (axial-vector

OCR OutputIn ref.[1], we proposed a new sum rule relating the first moment of the polarized pho



justify later, is equivalent to the Wigner realization, i.e. unbroken chiral symmetry). OCR Output
in the chiral symmetry breaking phase of QCD, then in perturbation theory (which, as we

We now consider some aspects of the singularity structure of the amplitudes Al, firstf)
further notation, see ref.[1].)
anomaly are given by al") = tr éz A", where E is the numerical quark charge matrix. (For
_ with Q = §j,·trG“"G,,,,. The coefficients al") determined by the electromagnetic U (1)

(2-8)

2Np Idxldxz s‘("¤·“”*+"=·‘=) (0|T* Q(0) J;((z,) J,(x2)|0) = B(p’,k§,k§) e,.,,,,,,~,k;"kf,

with gb; = i1[)7_;.\"1[>, and
(2.7)

2m I dm-=k ¤*‘*)·*·+*=·*=’ war kim) wk) Jkc¤k))¤) = ¤‘*><p’,k%,k%) ekkkkksrkkék

where the amplitudes D(") and B are defined from

, 41r
(2.6)Ai') » Ag") = -.1.)*) — B6") + Qaw

The anomalous chiral Ward identities give

(2.5)Ag') = Airlk- A§"k+ k- 2f ,é(i g p).

Av) = Alrlk— Ak*’k%+k2 -2i g<p)

constraints

The Ward identities for vector current conservation immediately imply the two CVC

(2.4)
r> *.4g(p¤, kg, kg) = -.4;;(p=, kg, kg).

’r’ *’A£<p*. kt ks) = —A£<p’. ki, ki). "A3f<p’. ki ké) = ——-»4&<p’» ki kt),

symmetry,

In all cases of interest to us, the two vector currents are identical, so that by crossing

(2-3)Iikk = ¤k¤~¤¤ki'k5'k¤k Iii,. = ¤kk»¤¤ki'k€kz¤~
flip = ékxunkikikzp Ib, = ¢»p¤¤ki"k€k1¤

Iililp = €#•\P¤kl: Ijlp = €#XP¤kg

free of kinematical singularities. A convenient ba.sis[2] for the tensors I M (i = 1, . . . ,6) is



_ I; + I3 ·· I5 + k§I1 — k:;.k;Iq = 0. OCR Output
and

[7 — I4 + I5 + k]_.kgI]_ — [ff]; = 0

then we derive the identities

IZA, = ¢·¤»¤¤'=i"'=€’=¤¤·Ill,. = ‘Xp¤¤§ki¤ki>Jk1u

Specifically, if we define I-; and I; by

r
(2.12)( ) ( ) L HC (Af - A; )"g + g-;-F,,g,,.,..,. = gsm,

piece, we can use eqs.(2.11) to write the chiral Ward identity in the form
the CVC Ward identities (2.5). Separating the form factors into a "regula.r” plus pion

We can immediately check that these expressions by themselves are consistent with
the substitution 1/pz for the poles 1/(pz —
Away from the chiral limit, the pion contribution is of exactly the same form except for

Sym P2 _m2
(2.11)#1* = A" = -A·* = m 4 5 s F'¤·9,.·.,..,.

,P ——-m2I 2

r
J; F U t • Q wm *9* ·¤ ~ ,,2 _m$(P2 —k¥+k§)

in fact be expressed in this basis with the result
contracted once with kfkfkg and once with k.§k§'k§ shows" that the expression (2.9) can

(2.10)6,,(,,e;,,,,,,g) + cyclic perms. of . = 0,

remarkable identity
This Lorentz structure does not appear in the Adler basis (2.3) of ILM. Nonetheless, the

(2-9)FIM = §F¤r91r·y‘·y'%€»\p¤,Bk?kg·

In the chiral limit, the pion contribution to FLM, is clearly of the form
chiral limit due to the massless Nambu-Goldstone bosons (hereafter referred to as "pions").

T)singularities at k2 = 0. However, poles at pi = 0 in the form factors AScan arise in the
Since there is a coninement mass gap in the vector channels, we do not expect any

absent from the chiral Ward identity (2.6).
Consider first the flavour non—sing1ct case, where the strong U (1) anomaly term B is

(i) NAMBU-GOLDSTONE REALIZATION



r) r)part ofthe form factors, (Ai— Ag)"g (0,:c2, ::2) (see eq.(2.14)). OCR Output
Notice that the same large nz behaviour is shown in the chiral limit by the regular (pion-subtracted)

43* .. 4;* = -.-.¤(4§,> - .4;* - .4;* .2 .4;*4, y .4;* - .4;*;) g(). (2.19)

The CVC Ward identities (2.5) give (for Ic? = kg = —m2)
anomaly is a typical hadronic mass of O(mf,).
The mass scale 161r2F,§/NC controlling the approach to the asymptotic value set by the

(2.18)<r><r> N Us w E(A, - A2 )(O,:c2, nz) a 1 —EZ KLMO 4n_2(NC K; .

This implies the large nz behaviour"

Hm8m
(2.17)F,,g,,.,·,,·(24“) i4a(") if

For large nz = -k2, it is shown in refs.[3,1] that gn-.,-(::2) falls off as 1 /14:2. Precisely,

"’ ')(.4§- Ag)(0, 122, 122) ascu.

"’ "’to (.4§·- .4§) at pz = 0, 20 that eq.(2.14) holds {O2 either (.4§’”’ - Ag'))m(0, JJ, 122) O2
(up to corrections of O(m/ Also notice that for mi qt 0, the pion does not contribute
Rearranging terms, we see that eq.(2.12) actually holds also away from the chiral limit

Prp

MM- .1. L - ;. L<> (A, A2 )m8 + 87mF,,g,,,,..,· z H mg ... 81mF,,g,,.,,..,. 2 _’;n?-|- 47rza " , (2.16)2 &

the chiral Ward identity is saturated as follows:
Away from the chiral limit, the divergence term D(') in eq.(2.6) also contributes, and

which holds exactly in the chiral limit for all k2

(2.15)($)c.. > ;,j2.rv 4$" — 4”’¤k’r=’= ¤<*>

r) riThis should be contrasted with the result for (Ai— Ag) itself, viz.

(2.14)<·~> _ (ra 2 2 - {YS. ( 1 _ an-2·(k’) .4.40k 12 - 2 * 1(, , )re8(,,) W (gmm)

we can re-express eq.(2.12) for pz = 0 in the form

(2.13)F,,g,,,., = 2NC 2<·"> 2,
decay amplitude, viz.
in the chiral limit. Using the standard current algebra formula for the on-shell vr -»»y·y



For simplicity, we take the light quarks to be degenerate with common mass m.

4·rr
(2-24) OCR Output"’ = -2 ii'? ¤""’ m2In,o, 2

Also,

IW, = [dor dB 9(1 -0:-,8) cr’,B“ [05;;:2 +cx(1—¢1—B)k§+}5’(1—-oz—B)kf—m2] -1. (2.23)

where"‘

(2.22)Ag') = 2 gg qw r,_,

(2.21)§"’ = -2 %» av) (1,,,, - 1,,,,)

(r gé 0) sector,
by the crossing relations (2.4). This leaves the independent amplitudes, for the non—singlet

) ") ") ?)CVC relations (2.5), while AYand Agcan be expressed in terms of Agand Agresp.

r) )over two Feynman para.meters[2]. Aiand Agare given in terms of Ag'-), . . . , Ag) by the
In perturbation theory, the invariant amplitudes are given in closed form as integrals

(ii) PERTURBATIVE REALIZATION

current due to the strong U (1) anomaly (see ref.[1]).
now being logarithmic in ::2 as a result of the anomalous dimension of the singlet axial
section 4 of ref. The approach to the large ::2 limit is modified, the leading corrections
as the non-singlet form factors for mi, sé 0. A more extensive discussion can be found in

O) °)limit. The form factors (AS— Ag)(O, ::2,::2) therefore show the same ::2 dependence
Finally, in the singlet channel there is again no massless pseudoscalar even in the chiral

zero to infinity.
limit shows the same gradual rise from zero to the anomaly value as ::2 is increased from

r) ”)chiral limit of the massless pion. The regular piece, (Ai- Ag)mt(0, ::2, ::2), in the chiral
estimate from eq.(2.19) to be of O(m§). The discrepancy is due to the contribution in the
from zero at ::2 = 0 to the anomaly value as ::2 —> oo with a “turnover” scale which we
value %%a(") for all ::2. On the other hand, away from the chiral limit, it rises smoothly

r) r)ous as we go to the chiral limit. For mi, = 0, (Ai—Ag)(0, ::2, ::2) is equal to the anomaly

r) nIt follows from this discussion that the form factor (Ai— Ag) is actually discontinu

") ?)fails because of the 1/pz poles in Agand Agdue to the pion.
We emphasise that this is only true for mz, gé 0. In the chiral limit, the demonstration

(2.20)(mi. ¢ 0)." ')<-4§- Al)(0»~’»~”) = Ow)

immediately that for small ::2

I)Since for mi. qé 0 there are no poles in the ASat either ::2 = 0 or pz = 0, we can conclude



perturbation theory. OCR Output

This makes clear the symmetry in the singularity structures in the vector and axial channels in
again using 1],;),,;:0 :1/'ZP2

¤ _A_A00 (A1 —A2 )(1¤.0.0) — ;1¤( 5 6 )(1¤. . ) - 4_K,¤(r) (T) 1¤(·->(··> :-&(··)

'”’ ') ') "so um k¤(A§,- AQ- AgA- Ag) -· 0 rar p= se 0. The cvc identity as realized as

_ N __ (A; AS)(p’k ,k) O2 log 2( 1 ( >¤ 2 ¤ 1 2 }L it-*0 (PP)
k2 —• 0, i.e.

') nHere, by inspection of the integral ILO — I1';) + IL; we find a logarithmic singularity in (Ag—· Ag) as
(d)p’;é0, k2-—»0:

using the same calculation giving eq.(2.27).

k0k0
- (r) (r) ._- () () () ()-“C gT(A, - A, )(o, k°,k°) .. gTk’(A,' _- Af - A,’ + A8' ) - mai')

") ?)Clearly, there is no pole in 1/p2 in Agor Ag. The CVC identity reads simply
(c)p2 =0, k2—•0:

limits:
Although not so relevant for the subsequent discussion, it is interesting to consider also the following

contracted with transverse polarization tensors, i.e. e"(kq)I:,`p = 0, etc.
ical quantities, since for on-shell photons the corresponding basis tensors vanish when

?) )Agand AYare infra-red singular in this limit. However, they do not occur in phys

P -*9 41rp—•0 2

). , rvg hm (AY- Ag'))(p2,0,0) = lim -p(A§— A§,")(p“,0,0) = Tal'). (2.25) *1 ’"

in this limit with k2 = 0 We then have
fact, in contrast to the Nambu-Goldstone realization just discussed, such a pole arises only

') )In this case, I,_1]k,=0 = 1/2p2, so the amplitudes Agand Aghave a pole at pz = 0. In

(a)k2=0, p2—>0

section 3. Va.rious limits are of interest"

Achisov{4]. Here, we shall consider some particular limits relevant to the discussion in
The integrals (2.23) have been evaluated in several special cases in a. recent paper by

anomaly term B to ensure the consistency of the Ward identity.
further contributions of higher order in 04,, which are compensated by the strong U(1)
and the chiral Ward identity (2.16) is readily checked. In the singlet channel, there are



discontinuous jump as in the Nambu-Goldstone realization. OCR Output

") r)(Al— A;)(0,»c2,»:2) smoothly approaches its limiting value for m = 0. There is no
characteristic mass scale is O(m2) rather than O(m?,), so as we go to the chiral limit
rise from zero at rc2 = 0 to the anomaly value %%a(") as A2 —» oo. However, here the

T) r)(AS-— Ag)(O, nz, 2:2) as in the Nambu-Goldstone realization for mg. 75 0, viz. a gradual
For non—zero m, therefore, we recover the same type of rc2 dependence of the amplitude

(2.30)(mz se 0).) "(AY- A§)(0,A°,A’) = 0(A*)

m in the form factors, the CVC Ward identity again implies
As for the small rc2 behaviour, since there are no poles at k2 = 0 or p = O for non-zero

O(m2), i.e. a light quark mass scale rather than the hadronic mass O(m;,).
r) orealization. The turnover mass scale characterizing the evolution of (Ai—- Ag) is now

which should be compared with the corresponding result (2.18) in the Nambu·Goldstone

num Km
; K,)(rl - (’") 2 2 N gg (") - Ei E T, A, )(0,2 ,A) wa (1 2 , log z A- o( (2.29)

where ,0 = (/ 1 + 4m2/n2. This implies the large ::2 behaviour,

A___022=__(r) ______ I (1 A2 )(,»c,»<) ,a 1 21og——, (228)(··)(r) Ng 1112 I p + I 47rx2 pp_1

(k2 E n2 $ 0),

r) na simple expression for (Ai- Ag) for pz = O. We find, for spacelike photon momenta
Away from the chiral limit, we can still perform the integrals analytically to obtain

as can be checked directly from eqs.(2.23), which give (Im - Im + I1,;)|D,=,, = -1/4k2

(Ai') — Al'))(0»k°»k°) = ’¤2(Ai·.`”) ·· Al') · Air) + Agri) = %“(r)· (2-27§;,)

zrlso in particular pzlg—-—> O for kg =,£ 0. The CVC identity (2.20) is realized this time by

(2.26)
(r) 2 2 2N A, (P ,k ,k ) 0log 2),1 {2; pm (F k

integral I 1,1, we can see by inspection that the pz --+ U singularity is only logarithmic, i.e.

")Here, the 1/pz pole in Agis absent. Although there is no simple expression for the

(b) kg #0.1* -*0



To compare with the notation of ref.[1], EU') = gs-a(") f("}. OCR Output

mass is taken to zero.

in the Nambu-Goldstone realization, there is a discontinuous jump in Eas the quarkU')
Goldstone and perturbative realizations are indistinguishable in the chiral limit and that,

--l")g§a, independent of the realization. At Hrst sight, therefore, it appears that the Nambu

r) r)In the chiral limit, however, (Ai— Ag)(0, nz, nz) is fixed at its anomaly value of
moment of gg in the range 0 $ rc? $ 1GeV
clearly distinguished in a measurement of El") by following the mz dependence of the first
and perturbative (Wigner) realizations of chiral symmetry, it follows that these can be

r) riSince the sz dependence of (Ai— Ag) is quite different in the Nambu-Goldstone
which only the singlet form factors have a non-trivial dependence.)
provided we are away from the chiral limit. (Here, Q2 is the renormalisation scale, on

(m at U) (3-2)
") r)E(”)(»=°,Q2) = (Al- Ag)(0,r¢°n¤2: Q2)

shown that the form factors" El'} are given in terms of the amplitudes Air) by
matics is such that the target photon momentum is spacelilce, mz = —k°. In ref.[1], it was
arising from the Wilson coefficients in the OPE leading to eq.(3.1). The scattering kine
where cl') = 2tr EU" (r 56 0), cw) = Ngltr éz, and L(o¢_,(Q2)) are correction factors

(3-1)dy s{’(y.Q°:~”) = L(¤¤.·(Q°)) 4M Z¤"’E""(»~=°»Q2),

function. The following sum rule was presented in ref.[1]:
in deep-inelastic, polarized e'*'e” scattering, is intimately related to the AVV correlation

The first moment of the polarized photon structure function gil , which can be measured

3. Polarized photon structure function sum rule in the chiral limit

this asymptotic value with a turnover scale set by the mass of the light composite fermions.
takes the value set by the anomaly for all nz, while away from the chiral limit it approaches
the same way as in the perturbative realization just described. That is, in the chiral limit it

') r)In this realization, therefore, (Ag—Ag) will behave for small rc2 and pz in essentially
scale.
coupling minimally to the external currents for momenta small compared to the confining
anomaly matching[5] requires the existence of massless spin 1 /2 composite fermions[5,6]

In confining theories with unbroken chiral symmetry (i.e. realized in the Wigner mode),



conditions k1_ieg,\(k;) = 0, etc. OCR Output

) ')the contribution to g;. The amplitudes Agand Agdo not contribute because of the transversality
antisymmetric tensor e“° (a, b = 1, 2) ensures the appropriate combination of transverse polarizations for
where li, (2 k“) is the photon momentum with the sign of the spacelike components reversed, and the

a,b=1,2

e°°e;‘(k)cf(—k) = -!£c‘\‘°°'6k·y}-t5
by the quantity

The proof of eq.(3.6) follows that explained in (iii) below. The role of the leptonic tensor is played

a P ¥¢
(3.6)1 z<*>(~°) = (.4§" - Ag"))(0,»c2, R2) - lim-ép’(A§"’ - A§,")

We find"

a,b=1,2 a,b=l,2
gg rpt, Z e¤°¤:<kr>¤:ck2> = >¤°**c~’>¤n.t.¤=¤ ij ¢*°¤2ck>¤:<—r=>. (3-5)

being off-shell with nz <{ Q2, then the physical Ei") can be extracted from
(i) If we assume that the target photons are essentially transversely polarized despite

singular. We can argue in different ways:
The question is how to identify the physically measurable El") when the AE?) may be

+ + Ais)€uAB¤PpkpP° + + *4*%)€.I·$.P.3GPAkBpc{3°4)1 , ) r) 1 ,-)

" "’+ (A3— A§>W¤kpk”p° -— (Af:— A£>¢..,.ak»¢=*’p.." "

,__,

") '). 0, }g¤g1`,2i,,(p, kh ke) = (Al- A£)¤»»»¤k - ;(Al+ ·4$)¤»¤~»¤2>°1 " "

However, from eqs.(2.3),

?) ”)(Ag— Ag)(0, itz, rc2) is clear.
l")")that m st 0, so that there are no 1/ pz poles in the AE, the identification of Ewith

0). (The chiral limit in the singlet channel is discussed already in ref.[l].) Provided
where kl = k - p/2, kg = -—k — p/2, and we consider just the non—sing1et channel (r yé

T`,'ii,,(p, knkz) = E(~)¢pip¤k“, (33)('")°
defined by
current and consider the limit pz —» 0. From ref.[1], away from the chiral limit Ei") is then

To study the chiral limit, we keep a small regularizing momentum p for the axial

Ai".
continuous as we approach the chiral limit, despite the discontinuities in the amplitudes
(b) physical quantities such as E, and hence the first moment of gi', are smooth andU')

chiral limit, and
(a) the Nambu-Goldstone and perturbative realizations are clearly distinguishable in the

indeed:

In fact, this is not true and in the remainder of this section we will demonstrate that
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d= si(==.Q°) = ----5- dy sY(y.Q2;~2)VL 3 °° ds: 5;;r L} ;A

In fact, in the notation of ret`.[1],

eqs.(3.6) or (3.10) do not contribute. For rc2 = 0, where eq.(3.6) is applicable, we have

?)AEnever have a singularity as strong as 1/pz in the pz —> 0 limit, the extra terms in
In perturbation theory, since away from the exceptional point ::2 = O the amplitudes

0
E(r)(K2) = (Ag?) __ Ag¤‘})(0’K2’K·2) _ $313ipz (Agar) _ AE:) + Agr) _ Agr))’ (3.10)

with

(ss)<··ig 1*;,,,,, ALM = .—>:>(..;¤*) e,,;_,,,,,k° ALM,

") r)p.k are of O(p2), and with the assumption that Agand Agare non·singular, we find
the momentum of the target electron. Contracting with FLM, using the fact that p.p2 and
contributes to the physical Ei'}. The leptonic tensor is ALM, = Ziqwgpg ka, where pz is
it into the leptonic tensor[1] arising in the e+e‘ scattering amplitude, to see which piece
(iii) Finally, we can explicitly take the regularised expression (3.4) for FLM and multiply

(3.8)) ()m(,, ).z<*>(»2= AQ') - Ag")0»t2.3

f) nthat El') is given by (Al— Ag) with the pion contribution subtracted, i.e.
and therefore decouples from the first moment of gf (and hence gg We may thus conclude

)(in the Nambu-Goldstone realization), clearly contributes only to the pseudoscalar GSI,

)and is independent of the pseudoscalar form factor Gg(0). On the other hand, the pion

(3-7))° *)2(<·=lJ,1`5(1>•)|<~=) = Gl{(1¤)¤»\"nrr¤¤ + Gl$(1¤)P»f=»\"rr·¤»

in the forward matrix element (e|J,f5(0)|e), i.e.
the familiar case of the proton, gf is determined by the pseudovector form factor GT(0)
“electron structure function” gf defined[1] in deep-inelastic e+e“' scattering." Just as for
(ii) The polarized photon structure function gf is directly related to the corresponding

?)Aghave poles in 1/ pz due to the massless pion.
The additional term is non-trivial in the Nambu-Goldstone realization, where Ag") and



11 OCR Output

to E(')(a·c2) does not distinguish between the Narnbu-Goldstone and Wigner realizations,
ization is relevant for the light (u, d, s) quarks. The total magnitude of the contribution

Since chiral symmetry is spontaneously broken in QCD, the Nambu-Goldstone real

(ii) Light quarks :

past the perturbative turnover scales at mg, mi and mg.
each lepton is a constant fixed by the electromagnetic U(1) anomaly as itz is increased

Clearly the perturbative realization is appropriate. The contribution to E(")(»c2) from

(i) Leptona

fermion.
we discuss which realization of the AVV correlation function is relevant for each type of
increased through the thresholds associated with the different quarks and leptons. First,

We are now ready to trace the behaviour of the first moment of g;'(y, Q2; rc2) as mz is

4. Thresholds and nz dependence of the gf sum rule

correlation function.

does indeed distinguish the perturbative and Nambu·Goldstone realizations of the AVV

r) nunlike (Ai— Ag), is therefore not simply given by the anomaly and its mz dependence
l')to Efrom the singular amplitudes Ag"), . . . , Ag?) in the chiral limit. The form factor El"),

r) '.)and the discontinuity in (Ai·— Ag) is precisely compensated by the extra contributions

r) riremains smooth and continuous."I`he naive identification of Ei") with (Ai— Ag) fails,
The conclusion is that as we approach the chiral limit the physical form factor E(")(»c2)

(3.14)= ') .. ')(Ag,4_g)mg((), K2_ R2),

(3.13)
") r)E(")(»c2) = (Ag— Ag)(0, mz, nz) —§i;F,,g,,.,,..,·,

Eqs.(3.6) or (3.10) become
(3.6), (3.8) and (3.10) follows from the result (2.11) for the pion contribution to the AY)

1/pz poles in the chiral limit due to the massless pion. The consistency of the expressions

'-))However, in the Nambu—Goldstone realization, the amplitudes Ag, . . . ,.46;do have

= 0 (nag = 0)

(3-11)(*2 # 0))lp.T. ()(·»)E(r)(*°2= Air) ··1i')0~°~°

conclude,

r) ,-)?) r)lim,,:..0 épz (Ag— Ai,)(p°, 0, D) = lim,:...0 (Ai— Ag)(p°,0, 0) from eq.(2.25). So we
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contributions means that they overlap extensively, and the individual rises associated with
function of rc2, is plotted in Fig. 4. Unfortunately, the width of the various perturbative
non-perturbative result. The sum, giving the total result for the first moment of gf as a
contribution very roughly by the expression 2/ 3(x2 / (az + m§)) to give an idea of the final
sion (from eq.(2.28)) for the leptons and heavy quarks and approximating the light quark

These contributions are sketched individually in Figs. 2 and 3, using the exact expres
and 1/ 27(cx /1r) resp.) due to the production of heavy lepton and heavy quark pairs.
at ::2 around mg (with magnitude cz/rr) and itz 2 mg,m§ (with magnitudes 16/27(oe/rr)
factor and the usual leading QCD corrections of O(cx Finally, there are further rises
log mz and log Q2 arising from the effect of the strong U (1) anomaly on the singlet form
is approximately 2/ 3(cx/ ir), with small corrections (for details, see ref.[1]) depending on
in QCD. The total contribution from the u, d and s quarks to the first moment of gi"
as a. consequence of the Nambu—Goldstone realization of the AVV correlation function
next rise does not occur until rc2 = O(m?,), not at the light quark masses m3,,m§,m3,
processes and are described by perturbative Feynman diagrams. As discussed above, the
mf,. These contributions are due of course to the electron and muon pair production
The first rise occurs around sz = mf with magnitude a/rr, followed by another at mz =
(just outside the physical region for polarized e"'e" scattering), fol dy gi'(y,Q2; x2) = 0.

The rc2 dependence of the first moment of gg is therefore as follows. At az = 0

quark mass. The turnover scale is therefore simply the quark mass.
given by perturbation theory, since the running coupling oe,(m2) is small at the heavy
neous chiral symmetry breaking are negligeable. The contribution to E(')(:c2) is reliably
term dominates in the chiral Ward identity (2.6) and the characteristic effects of sponta

Since chiral symmetry is badly broken at these scales (mg, mg), the explicit breaking

(iii) Heavy quarks :

realization.
O(mf,) for the Nambu-Goldstone realization in contrast to O(m§, mg, mf) for the Wigner
but these are clearly distinguished by the scale at which the rise in E(")(i·r2) occurs, viz.
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A sketch of the First moment of gil (y, Q2; rs:2) in the range 0 $ mz $ 10GeV

FIGURE 4

a typical hadronic scale of O(m,,).
O(mC) and O(mb) resp. The light quarks give a total contribution of magnitude 2/ 3 with
The c and b quark contributions have magnitudes 16/ 27 and 1/27 with turnover scales of

As Fig. 2, for the heavy quarks c and b and the sum of the light quark contributions.

FIGURE 3

resp. The magnitude of the contributions, in units of oe/rr, is 1 in each case.
#:2 is increased through the thresholds with turnover scales of O(m,,), O(m,,) and O(m,)

The contributions to the first moment of gil (y, Q2; nz) from the leptons e, p and ·r as

FIGURE 2

The two—photon reaction e+e" —> e+e‘X.

FIGURE 1

Figure Captions






