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SUMMARY 
The pole-pole 3-D DC-resistivity inverse problem is solved by converting the 
inverse problem into an objective-function optimization problem, using the adjoint 
equation to compute the gradient of the objective function, and using a conjugate- 
gradient minimization. Two examples of the application of the resulting inversion 
algorithm are given. First, a large synthetic data set is inverted, and second, the 
inversion algorithm is used to invert E-SCAN field data of relevance to mineral 
exploration. 
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1 INTRODUCTION 

The DC-resistivity experiment is one of the oldest and 
simplest geophysical exploration techniques. From the 
pioneering work of the early 1900’s (e.g. Slichter 1933) 
through to the present day there has been a steady evolution 
in DC resistivity in the areas of acquisition, inversion and 
interpretation. In the evolution of any process improve- 
ments in one area stimulate research efforts in other areas. 
In particular, in the DC-resistivity method there have been 
recent improvements in data acquisition that, combined with 
the development of powerful computer workstations, have 
stimulated the development of more sophisticated inversion 
algorithms. In this paper we present such an algorithm: a 
fully 3-D DC-resistivity inversion algorithm capable of 
producing minimum-structure conductivity models. 

The first DC-resistivity experiments were restricted to 
sounding and profiling and intrinsically were restricted to 1- 
and 2-D environments. For example the familiar Schlum- 
berger, Wenner, dipole-dipole, etc., arrays usually have 
colinear electrodes and do not provide sufficient information 
for a full 3-D interpretation of the area under investigation. 
This is not meant to imply that they cannot be used in 3-D 
environments, indeed, they frequently are used in such 
environments. However making a reliable 3-D interpreta- 
tion based on a set of intrinsically 2-D profiles is not 
optimal. More satisfactory electrode geometries for 3-D 
environments can be constructed by allowing the potential 
electrodes to be moved off-line with respect to the current 
electrodes. One such generalization is the E-SCAN 
electrode configuration: in simple terms it is a pole-pole 
experiment in which a 2-D grid of electrodes is deployed 
and as each electrode in turn becomes the current electrode 
then the potential is measured at the remaining electrodes. 
It is not our purpose to discuss the details or merits of the 
E-SCAN acquisition technique and we refer the interested 

reader to the technical literature (Shore 1992). It is sufficient 
to note that E-SCAN data are truly 3-D and require a full 
3-D inversion algorithm. 

Any 3-D inversion algorithm designed for the solution of 
realistic geophysical inverse problems is going to burden 
today’s computing facilities to their limit, primarily because 
the number of parameters in the model must be large 
enough to allow a minimum-structure model to simulate the 
real earth and because the number of data associated with a 
3-D experiment is usually quite large. The inversion 
algorithm we present for the E-SCAN DC-resistivity 
experiment is no exception. However, the intrinsic simplicity 
of Poisson’s equation makes this inverse problem tractable. 
Specifically after converting the inverse problem into an 
objective-function optimization problem, we use the adjoint 
equation to compute the gradient of the objective function, 
we map the gradient into a search direction in model space, 
and use a conjugate-gradients minimization. The large 
amount of data collected in an E-SCAN experiment 
prohibits the use of existing algorithms, e.g. methods that 
compute a sensitivity matrix (Park zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Van 1991) would 
require the inversion of a matrix of - l O I 3  elements for the 
problems considered in this paper. A full description of the 
inverse problem and our inversion algorithm is given in 
Section 2.  In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 the algorithm is applied to a large 
problem using synthetic data, and in Section 5 E-SCAN field 
data, collected over an area of epithermal mineralization, 
are inverted. 

2 THE FORWARD PROBLEM 

The DC-resistivity forward problem may be considered as a 
mapping from a space of conductivity models A to a space 
of potential data 9. The mapping from A to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is defined in 
terms of the self-adjoint linear-differential operator, L given 
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by 

L[rn]u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= V . (rnvu) u E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, rn E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. (1) 

the space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA will be taken to be the space of functions 
defined on a volume 7fc R3 satisfying the boundary 
conditions 

The space 9 is taken to be the space of functions defined on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7f and satisfying prescribed boundary conditions on a"V: The 
boundary conditions associated with the DC-resistivity 
problem can be chosen in several different forms: various 
combinations of Dirichlet, Neumann, or mixed boundary 
conditions may be used. Since we must ultimately revert to 
numerical techniques we choose the mixed boundary 
conditions (see Fig. 1) which are well suited to numerical 
simulation (Dey & Morrison 1979), 

(3) 

With the same boundary conditions for the adjoint 
operator L* = L it can be shown that L is symmetric with 
respect to functions u, v E 9, i.e. 

l ; ( x )Lu(x )  dx' = u ( x ) L u ( x )  dx3 I,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

The DC-resistivity forward problem, with current sources, 
requires the solution of the inhomogeneous equation, 

L[ rn ]u=-#(x )  ~ € 9 ,  rn € A ,  x € R 3  (5) 

Generic 3d model 

Figure 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA representation of the volume Ydefining the domain for 
the DC-resistivity forward modelling. Within this domain the 
conductivity is denoted by u ( x ,  y, z). From the centre of the surface 
a vector r can be drawn to any point on the boundary dY, i3 is the 
normal to the surface d7f and 4 is the angle between i3 and r. 
Current and potential electrodes may be placed on the surface 
z = 0, usually in a rectangular grid, or at boreholes in Y. 

where 4 is a generalized function usually representing point 
current sources by Dirac 6 functions. Consequently, we 
introduce the Green's function G[rn](x,; x2) such that, 

L[rn]G[rn](x; xo) = -6(x  - xo). (6) 

The Green's function is required to satisfy the boundary 
conditions eq. (3). 

Using the Green's function the solution of eq. (5) is given 

by, 

4 x 1 )  = jvG[ml(x,: x2)#(x2) dx3. (7) 

We note that a self-adjoint differential operator has a 
symmetric Green's function, i.e. 

U r n ] =  L*[ml.$ G[ml (x l ;  x2) = G[rnl(x2; xl>. ( 8 )  

3 THE INVERSE PROBLEM 

The DC-resistivity inverse problem may be considered as a 
mapping from the space of the potential data 9 to the space 
of conductivity models A. For example, the inverse problem 
may be stated as, given u E 9 find rn E A such that eqs 
(5,3) are satisfied. More realistically, in a DC-resistivity 
experiment a set of N potential measurements and 
associated errors are acquired. Let us denote the 
measurement locations by xpbs, i = 1 , .  . . , N and the 
associated potentials and errors by dphs, i = 1, . . . , N and 
6dPbs, i = 1,. . . , N .  The practical inverse problem then 
becomes, given N potential measurements dphs with errors 
6dpb" find an rn E A such that eqs (5,3) are satisfied. This 
inverse problem is clearly ill-posed (Tikhonov & Arsenin 
1977). 

One approach to ill-posed inverse problems is to recast 
the original problem in the form of a regularized 
optimization problem. For example the preceding inverse 
problem may be written in terms of an objective function 
S[rn] with two contributions; a data-misfit measure and a 
model character measure i.e. 

where 

dy' [ rn]  = 1 S(xYhs - x)u[rn](x)  dx3 u E 9 rn E A. (10) 

p is a regularization parameter, and W is any operator 
opzrating on rn. The first term in eq. (9) is a measure of the 
misfit between the predicted data and the observed data 
while the second term is a measure of model character. For 
example if W was the Laplacian operator the second term in 
eq. (9) would be a measure of the 'smoothness' of the 
model. Note that the regularization parameter p functions 
as a trade-off parameter between the two terms in S[rn]. 

The solution rn* to this practical inverse problem is simply 
given by, 

Find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn* such that S[rn*] is a minimum. 

In this form the problem is well posed and can be solved by 
the techniques of conventional optimization theory. 

A number of particularly efficient optimization algorithms 
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for large-scale problems are based on finding a search 
direction in the space of models and performing a univariate 
minimization of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS along that search direction. When a 
minimum is found a new search direction is chosen. 
Frequently the gradient of the objective function is used in 
the generation of a search direction: for example, in the 
steepest-descent algorithm only the gradient of the objective 
function at the current model estimate is used in forming the 
search direction; alternatively, in the conjugate-gradient 
algorithm the search direction is chosen to be the 
component of the gradient of the objective function at the 
current model estimate conjugate to the preceding search 
directions. Consequently an efficient method of computing 
the gradient of the objective function is required. 

The derivation of the gradient of S[m] is particularly 
straightforward in the case where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL is self-adjoint. To 
simplify the derivation we split the objective function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS[m] 
into two parts, 

Substituting eq. (17) into eq. (16) and manipulating yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X IvG[m](xi; x)6L[m]dcal(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd x 3  (19) 

using the symmetry of the Green’s function this can be 
rewritten, 

dx3 (20) 

where 

For L defined in eq. (1) we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* (6m(x)VdCal(x)) dx3. (22) 

SM[m] = I>Wm(x))’ dx. 
This expression relates a change in the model 6m to a 
change in the objective function SS,. 

At this stage it is particularly convenient to further restrict 
the space of models to the Wilbert space described by the 
algebraic span of a set of orthogonal basis functions $ , ( x ) ,  

i = 1, . . . , M defined on 2’, i.e. 

Let us first consider the variation in the data-misfit 
contribution S,[m] under perturbations of the model and 
define 6S,[m] by, 

S,[m + 6m] = S,[m] + 6S,[m]. (12) 

Substituting for S,[m] yields 

with the model perturbations being, 
Next substituting for d?’ using the projection eq. (10) and 
the Green’s funttion eq. (7) yields M 

6m(x) = 2 6m,$;(x). 
i = l  N r  

With this form of model perturbation we have 

M 

6S,[m] = 2 6mi * ($i(x)Vdcal(x)) dx3, (25) 
i = l  

X (d:”” - I,G’[m + 6m](xi; x ) + ( x )  dx3)2 

Writing 

G[m + am] = G [ m ]  + 6G[m]  

and substituting yields, 

and it follows that the gradient of the objective function S, 
with respect to the parametrized model space is 

-- - 2 I g[m](x)V - ($;(x)Vdcal(x)) dr3. 
ami v 

N dobs - dcal 

6S,[m] = 2 (6dpb’); ‘ SG[m](x,; x ) + ( x )  dx3. (16) 

Now let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus consider the variation in the model character 
contribution SM to the objective function, eq. (11) under 
perturbations of the model. We define 6SM[m] by, 

Using the relationship between the Green’s function and the 
differential operator, eq. (6) it can be shown to first order 
that, 

6G[ml(x,; x 2 )  

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI G[m](x , ;  x3)GL[mlG[ml(x3; X Z )  dx: (17) 

where 

L[m + sm]  = L[m] + 6L[m]. 
Substituting for SM[m] we consider the special case where W 
is given by the Sobolov-Laplacian (e.g. Naylor Br Sell 1982) 
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operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S,, [m 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= j (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE)' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjVV2m/' +2€(1 - E )  jVm12 

= j((1 - e)V2rn - Em)'dx'. 

+ E 2  lmI2 dx3 0 < E 5 1 

(28) 

This apparently cumbersome operator is in fact particularly 
easy to implement numerically and has the mathematically 
necessary property, ensured by the non-zero parameter E ,  

that it defines a proper norm (the Laplacian is a semi-norm). 
In more physical terms, the parameter E controls the type of 
model that will be produced in the inversion: if E is small the 
final model will be a 'smooth' model; if E - 1 the final model 
will be a 'small' model. The numerical implementation is as 
follows. A functional perturbation of the conductivity yields 

S,[m + sm] 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj>(1- E ) ~ 2 ( m  + sm) - E(m + 6m))' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx3 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,[rn] + 2 8m((l - €)V2 - E)((1 - €)V2 - €)m dx', 1" 
(29) 

where we have used the boundary conditions eq. (2) and 
made use of Green's theorem. This expression relates a 
change in the model 6m to a change in the objective 
function contribution as,. After parametrizing the model 
via eq. (23) we have 

a&4[4 
ami 

= 2 t ,bi(x)((l - e)V2 - ~ ) ( ( 1  - E)V' - e)m(x)  dx'. (30) 

The gradient of the total objective function S[m],  which we 
denote by 7, with respect to changes in the model 
parameters is given by the sum of eq. (26) and eq. (30). 

Before the gradient can be used to define a steepest- 
descent direction in the model space A it is necessary to 
define a norm on A (Gill, Murray & Wright 1981). The 
steepest-descent direction depends on the choice of norm 
and it is natural to choose the W-weighted /,-norm 
associated with the model measure in the objective function. 
The steepest-ascent direction, y, and the gradient direction 
are related by 

I, 

W"W[Yll= 9. (31) 

Assuming that it is possible to define, or at least to 
approximate numerically, the inverse operator (W'W)-' by, 

y = (w 'W)- ly  (32) 

then the steepest-descent direction under the W-weighted 
I,-norm can be computed and used to construct a search 

direction p ( x )  along which a univariate minimization can be 
performed. 

In our applications the search direction p ( x )  is formed as 
given in the method of conjugate gradients for non- 
quadratic functionals (Hestenes 1980). We use the following 
algorithm (Polyak & Ribiere 1969), 

Terminate at the jth step if lr('+')l is sufficiently small. 

In theory, the algorithm is reset every n iterations, where n 
is the number of parameters in the model. However, in 
practice the algorithm usually converges before the nth 
iteration. 

4 NUMERICAL CONSIDERATIONS 

A minimum-structure inversion algorithm should produce 
inversion results that are not dependent on the model 
parametrization. Consequently such algorithms must be 
based on finely discretized models which, in three 
dimensions, leads to models with a large number of 
parameters. This translates into memory and disk storage, 
and CPU (central processing unit) implications for the 
numerical implementation. 

The more important constraint from a numerical 
viewpoint is the CPU time required for the inversion. By far 
the most CPU-intensive part of a conjugate-gradient 
algorithm is forward modelling that is necessary to compute 
the data for a given model, the value of the objective 
function, and as implied in eq. (26), the gradient of the 
objective function. Further, a univariate minimization must 
be performed at each iteration of the conjugate gradient 
algorithm. These considerations indicate the need for an 
optimum univariate minimization algorithm and an optimum 
forward-modelling algorithm. 

A number of different univariate-minimization algorithms 
were tested with the optimum algorithm based on cubic 
interpolation (Acton 1970) and requiring on average four 
implementations of the forward-modelling program per 
conjugate-gradient iterations. 

The forward modelling was performed with a finite- 
difference approximation to the physical equations. The 
numerical implementation used the Dey & Morrison (1979) 
capacitance matrix and an iterative sparse matrix solver 
developed at the University of Waterloo (D' Azevedo, 
Knightley, & Forsyth 1991). An iterative solver is well suited 
to the inverse problem because a similar forward problem 
has,to be solved many times. Using an iterative method the 
solution from a past forward modelling can be used as the 
starting point for the next forward modelling. This simple 
re-use of solutions can substantially reduce CPU time. 

The appropriate choice of data and model are important 
considerations in any inverse problem. In this work the data 



The 3-131 DC-resistivity inverse problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA191 

were taken to be In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV and the model to be In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. With these 
choices the large dynamic range in both V and u are 
reduced, giving a more stable and more convergent 
algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 A SIMPLE FIVE PRISM M O D E L  

In this section we apply the conjugate-gradient algorithm 
described above to invert synthetic data from a test model 
consisting of five prisms as shown in Fig. 2. This model was 
originally proposed by Li zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Oldenburg (1994) as a test 
model for 3-D DC-resistivity inversion. It consists of three 
surface prisms (Sl, S2, S3) of resistivities 100, 200 and 
2000 Rm and two buried prisms (Bl, B2) of resistivities of 
2000 and 100Rm all in a 1OOOQm background half-space. 
The surface prisms are designed to simulate near 
surface-conductivity variations and the buried prisms are the 
survey targets. The model was discretized into n, X ny X 

n, = 17,496 cells, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ax,  ny ,  n,) = (27,27, 24). 
We consider the inversion of a data set produced from 

this model. The starting model was chosen to be a uniform 
half-space of 1OOOQm. The data consist of high-density 
surface data collected on a uniform square array of 21 X 21 
electrodes placed on a 50m grid. The electrode array was 
centred on the model space shown in Figs 2 and 3. Each 
electrode was taken as a current electrode and potentials 
were recorded from all electrodes in the electrode array 
within a radius of 500 m. This yields a total 87,688 potential 
data. Unbiased Gaussian noise of 1 per cent was added to 
the potentials before inversion. Data collected from a single 
current electrode, before noise was added, is shown in Fig. 
3. 

The result of applying the conjugate-gradient algorithm 
described above to the synthetic data with noise added 
produced the following inversion results. We chose to fit the 
potential data to an rms misfit of 1.0 per cent. The results of 
the inversion are shown in Fig. 4 where we display three 
slices through the true model and the inversion result. Fig. 4 
consists of six panels; the three on the right correspond to 
slices through the true model, the three on the left 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. A perspective view of the five-prism model. The model 
consists of three surface prisms (Sl,  S2, S3) with resistivities of 100, 
200, and 2000Rm and two buried prisms (Bl, B2) of resistivities of 
2000 and 100Rm. The surface prisms extend from surface to a 
depth of 40m, the buried prism B1 extends from depth 50-250m 
and the buried prism B2 extends from 95-275 m. 

Figure 3. A plan view of the five-prism model (Fig. 2) showing the 
outline of the anomalous prisms, the current and potential electrode 
locations (+), and the electrodes at which the data is collected (*) 
for a single current source. Also shown are contours of constant 
log v. 

correspond to the inversion result. The upper images are 
vertical slices at X = 475 m, the middle images are near 
surface horizontal slices with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = 20 m, and the lower 
images are deeper horizontal slices through the targets at 
2 = 500 m. The inversion took 39 iterations, and in total, 
including objective function gradient modelling, 97 applica- 
tions of the forward-modelling algorithm. Fig. 5 shows the 
total objective function as a function of iteration and 
illustrates a practical aspect of the inversion algorithm: the 
choice of trade-off parameter p. Since the appropriate value 
of p, which corresponds to a particular data misfit and 
model roughness, is not known at the beginning of the 
inversion, some estimate must be made. In practice, an 
initial value p1 is chosen and several iterations performed. If 
the convergence plot, Fig. 5, begins to plateau at an 
excessive rms misfit, then a smaller value, p2,  of the 
trade-off parameter is chosen. This trial and error method of 
finding a desired trade-off parameter quickly results in 
suitable data misfit. In this example three different values of 
p were used to reach a rms data misfit of 1.0 per cent rms. 

Several features of the inversion result are worth special 
attention. First, the model is generally well resolved. The 
large conductive buried target prism is clearly visible in the 
vertical sections Fig. 4 (upper panels) and the deep 
horizontal sections Fig. 4 (lower panels). Less obvious but 
still clearly visible, in the same panels, is the buried resistive 
target prism. The two conductive surface prisms are very 
clearly seen in Fig. 4 (middle panels), however, the resistive 
surface prism is partially obscured by a general high- 
resistivity zone over the top of the conductive prism. This 
lack of resolution is due primarily to the implementation of 
a globally smoothest model, and the usual observation that 
resistive bodies are harder to detect than conductive bodies 
by electrical methods. 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1*2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1*3 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 15 20 25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 35 40 
Iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5. The convergecce plot for the inversion resulting in the 
model shown in Fig. 4. The total objective function, S, is shown (A) 
as a function of iteration. The plot is divided into three regions each 
corresponding to a different value of trade-off parameter p. The 
data misfit converges to an rms = 1.0 per cent. 

6 INVERSION OF FIELD DATA 

While synthetic data are necessary for testing anb measuring 
the performance of inversion algorithms they are frequently 
much better behaved than geophysical field measurements. 
We have tested the conjugate-gradient inversion algorithm 
described above on a field data set. The data were collected 
with the E-SCAN acquisition system yielding high-density 
coverage with surface e!ectrodes over a region associated 
with epithermal mineralization, but covered with eluvium. 

A typical model for epithermal mineralization is one in 
which a high-level hydrothermal fluid ascending toward the 
surface, undergoes cooling and chemical changes with 
resulting mineralization that takes place in a near-surface to 
surface hot-spring environment. Usually zones of minerali- 
zation form along a dominant subvertical fracture system. 
‘These extend from a depth of about 500 m up to the surface 
where they split into a number of subsidiary structures. This 
gives rise to a mushroom-shaped propylitic envelope that in 
turn gives the deposit its characteristic signature: a resistive 
mushroom-shaped anomaly. 

In an attempt to identify epithermal mineralization 
beneath the eluvium, data were acquired over a flat-square 
region, approximately 2 km by 2 km, known as Site A. The 
electrodes were spaced in a square grid with spacing 91.4 m. 
The E-SCAN data were acquired in a manner such that, 
after some use of reciprocity, a total of 10,000 measurements 
of the potential were collected from a total of 121 current 
electrodes. The potential measurement sites relative to a 
typical current electrode are shown in Fig. 6. The real 
acquisition electrode layout is related to the details of the 
E-SCAN method which is not the focus of our work, and 
hence will not be discussed in this paper. For the purposes 
of inversion it is sufficient to know that the effective 
experiment consisted of current electrodes located at every 
second electrode site i.e. on a square grid with spacing 
182.88 m, and that potentials electrodes were located at sites 
on the 91.4m grid in the vicinity of the activated current 
electrode, Fig. 6. 

The first procedure in analysing the field data was to make 
some assessment of data quality, i.e. estimate the total error 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Plan view of Site A, a topographically flat region 
1924111 X 19241~  in extent. Current electrodes were placed on a 
square grid with grid spacing 182.88m, shown as dashed lines. 
Potential electrodes were placed surrounding the current electrode 
in a configuration typified by the * symbol surrounding the current 
located at I. The potential electrodes all lie on a square grid with 
grid spacing 91.44m. Contours are of -1O*log,,, ( r *  V )  where V is 
the measure potential in Volts and r is the distance between the 
potential electrode and the current electrode. 

associated with each measurement. A partial estimate of the 
error can be made by statistical analysis of the voltage stack, 
however errors from other sources cannot be estimated 
during acquisition. Consequently, in order to get a working 
estimate of the errors, we applied a generalized-cross- 
validation (GCV) 2-D thin-plate smoothing spline (Craven 
& Wahba 1979) to the raw data ( r * V )  to generate 
smoothed data. A comparison between typical raw data and 
smoothed data can be made by comparing Figs 6 and 7. We 
then assumed that the smoothed data approximately 
represented noise-free data and that the difference between 
the smoothed data and the raw data could be taken as a 
relative measure of the standard deviation of the error 
associated with each raw datum. With this assumption we 
have an estimate for in eq. (11). This method for 
estimating the data error is rather ad hoc, however, we have 
found that the final model produced by the inversion 
algorithm is rather insensitive to the assignment of errors 
due to redundancy in the data. 

Inverting the field data we produced a model that fit the 
data to -6 per cent in 30 iterations. The starting model was 
a uniform half-space of resistivity 18 Rm. The character 
of the final model can be seen in Fig. 8 (upper panel) which 
shbw a 10 Qm and a 50 Rm isosurface (lower panel). In Fig. 
8 (upper panel) all resistivities less than 10Qm are 
contained within the isosurface, and in Fig. 8 (lower panel) 
all resistivities greater than 50 Qm are contained in the 
isosurface. Fig. 8 (lower panel) shows several resistive zones 



Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThree slices through the five-prism conductivity model (right) and the corresponding slices for the inversion result (left). The upper 
panel is a vertical section through the model at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 475 m, the middle panel is a horizontal section at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 20 m and the lower panel is a 
horizontal section at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = 150m. The colour bar shows log,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and applies to all panels, the vertical and horizontal axes are in metres. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. The layout and contour plot analogous to Fig. 6, for the 
GCV thin-plate smoothing splined data. 

Site A 

Figure 8. Isoresistivity contours showing a lORm and S0Rm 
isosurface. In the upper image all resistivities less than lORm are 
contained within the isosurface, and in lower image all resistivities 
greater than SO Rm are contained in the isosurface. 

extending from depth to near surface, which have the 
potential of being epithermal deposits. 

7 CONCLUSION 

Recent advances in DC-resistivity data acquisition, for 
example the E-SCAN system, and the development of 
high-power workstations have made the inversion of 3-D 
DC-resistivity data necessary and feasible. The need for 
such an inversion inspired the development of the 
conjugate-gradient DC-resistivity inversion described and 
tested in this paper. 

3-D inverse problems usually involve large numbers of 
model parameters and large amounts of data. Hence, 
inverse methods that depend on Frechet derivative matrices 
are of limited utility. Instead the inverse problem may be 
converted to an optimization problem that can then be 
solved via the method of conjugate gradients, provided an 
efficient method of computing the gradient of the objective 
function can be found. We have shown how that gradient 
can be computed by using the Green's function method with 
the same cost as single forward modelling. 

The conjugate-gradient inversion has been tested on 
synthetic data and on field data and has been found to be 
reliable and efficient. The models that are produced not only 
fit the data but also have minimum structure. This is an 
important consideration since the 3-D DC-resistivity inverse 
problem is non-unique and any inversion algorithm will 
produce only one of many possible models that fit the data 
to a given misfit level. However, if the model has a 
minimum model norm, then we may expect that anomalies 
in the final model are required by the data. This is a 
significant point for mineral exploration. 

ACKNOWLEDGMENTS 

The authors would like to thank Y. Li for useful discussions 
and to acknowledge FMC Gold Company and Premier 
Geophysics for financial assistance and for providing the 
field data. This work was supported by NSERC/Industry 
C R D  grant 5-80141. 

REFERENCES 

Acton, F.S., 1970. Numerical methods zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthnt Work, Harper & Row, 
New York. 

Craven, P. & Wahba, G., 1979. Smoothing noisy data with spllne 
functions: estimating the correct degree of smoothing by the 
method of generalized cross-validation, Numer. Math.. 31, 
377-403. 

D'Azevedo, E.F., Knightly, J.R. & Forsyth, P.A., 1991. MATf 
Iterative Sparse Matrix Solver: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUser's Guide. Department of 
Computer Science, University of Waterloo, Ontario. 

Dey, A. & Morrison, H.F., 1979. Resistivity modelling for arbitrary 
shaped three-dimensional structures, Geophysics, 44, 753-780. 

Gill, P.E., Murray, W. & Wright, M.H., 1981. Practicul 

Optimization, Academic Press, New York. 
Hestenes, M.R., 1980. Conjugate Ditections Methods In 

Optimization, Springer-Verlag, New York. 
Li, Y. & Oldenburg, D.W., 1994. Inversion of 3-D DC resistivity 

data using an approximate inverse mapping, Geophys. J .  Int., 

116,527-537. 



194 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.  G. Ellis and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. W. Oldenburg 

Naylor, A.W. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sell, G.R., 1982. Linear Operator Theory in Shore, G., 1992. E-SCAN Resource Mapping: Multidirectional 

Engineering and Science, Springer-Verlag, New York. ELectrical Surueys, Premier Geophysics Inc., Richmond, B.C., 
Park, S.K. & Van, G.P., 1991. Inversion of pole-pole data for 3D Canada. 

resistivity structure beneath arrays of electrodes, Geophysics, Slichter, L.B., 1933. The interpretation of the resistivity prospecting 
56,951-960. method for horizontal structures, Physics, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 307-322. 

Polyak, E. & Ribiere, G., 1969. Note zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsur la convergences des Tikhonov, A.N. & Arsenin, V.Y., 1977. Solutions of Ill-posed 
methodes conjuges, Rev. Fr. Inr. Rech. Oper., 16, 35-43. Problems, ed. Fritz, J., John Wiley & Sons, New York. 


