The polyanalytic Ginibre ensembles

Haakan Hedenmalm (joint with Antti Haimi)

Royal Institute of Technology, Stockholm

haakanh@kth.se

June 30, 2011

Let

$$\triangle(\lambda_1,\ldots,\lambda_n)=\prod_{i,j:1\leq i< j\leq n}(\lambda_j-\lambda_i)$$

be the vandermondian. Let $Q: \mathbb{C} \to \mathbb{R}$ be a (smooth) confining potential, with a certain minimal growth at infinity. We put

$$\mathrm{d}\mathbb{P}(\lambda_1,\ldots,\lambda_n)=\frac{1}{Z}|\triangle(\lambda_1,\ldots,\lambda_n)|^2\mathrm{e}^{-m[Q(\lambda_1)+\ldots+Q(\lambda_n)]}$$

where Z is a normalizing constant to get a probability measure. This models a fermionic cloud under a confining potential. The model is also known as *Coulomb gas*. We should think of m = n and that we look for asymptotics as n goes to infinity.

By adjusting the methods of K. Johansson (DMJ 1997) for ensembles on the real line to the complex case, we obtained the following.

Theorem

(Hedenmalm-Makarov, 2004) With probability 1, the sum of point masses $\sum_{i=1}^{n} d\delta_{\lambda_i}$ tends to $1_{S} \Delta Q dA$ as $n \to +\infty$. Here, S is the support of the equilibrium measure, which may be obtained from an obstacle problem.

Let f be a smooth compactly supported real-valued test function on the interior of S. Let $\operatorname{fluct}_n f := f(\lambda_1) + \ldots + f(\lambda_n) - n \int_S f \Delta Q dA$.

Theorem

(Ameur-Hedenmalm-Makarov, 2009) As n tends to infinity, the variable fluct_nf tends to a Gaussian normal $N(e_f, v_f)$ with mean $e_f = (2\pi)^{-1} \int_S f \Delta \log \Delta Q dA$ and variance $v_f = (4\pi)^{-1} \int_S |\nabla f|^2 dA$.

Let $K_n(z, w)$ denote the reproducing kernel of the space of polynomials in z of degree $\leq n-1$ with respect to the inner product of $L^2(\mathbb{C}, e^{-nQ} dA)$. Then the *k*-intensity of the Coulomb gas process is given by $(k \leq n \text{ here})$

$$\det[K_n(z_i, z_j)e^{-n[Q(z_i)+Q(z_j)]/2}]_{i,j=1}^k;$$

the *n*-intensity is up to proportionality constant the original density of states. The *k*-intensity describes the likelihood density of finding a *k*-tuple of points in position (z_1, \ldots, z_k) . Here, we just need the 1-point intensity $K_n(z_1, z_1)e^{-nQ(z_1)}$ and the 2-point density $[K_n(z_1, z_1)K_n(z_2, z_2) - |K_n(z_1, z_2)|^2]e^{-n[Q(z_1)+Q(z_2)]}$.

The Berezin density

The reproducing kernel K_n is associated with the orthogonal projection onto a the space of polynomials of degree $\leq n-1$. In a sense, the polynomial space is the quantized model and the weighted L^2 -space is the classical analogue. In an effort to produce a more robust model of quantization, F. A. Berezin suggested to replace the kernel $K_n(z, w)$ by

$$B_n^{\langle z \rangle}(w) = \frac{|K_n(z,w)|^2}{K_n(z,z)} e^{-nQ(w)}$$

which defines a probability density, and acts boundedly on $L^{\infty}(\mathbb{C})$.

Theorem

(Ameur, Hedenmalm, Makarov) For bulk point z_0 , the dilated probability density $\xi \mapsto n^{-1}B_n^{\langle z \rangle}(z_0 + m^{-1/2}\xi)$ converges as n tends to infinity to the Gaussian $\Delta Q(z_0)e^{-|\xi|^2\Delta Q(z_0)}$.

Next, we fix $Q(z) = |z|^2$ so that we are in the Ginibre setting. Then the spectral droplet *S* is the closed unit disk, and the bulk is the open unit disk \mathbb{D} . We let $K_{n,q}$ be the reproducing kernel for the subspace of polynomials in *z* and \overline{z} , where the degree in *z* is $\leq n - 1$ and the degree in \overline{z} is $\leq q - 1$. We consider the point process with *k*-point intensity given by

 $\det[K_{n,q}(z_i,z_j)]_{i,j=1}^k$

and call it the *q-polyanalytic Ginibre ensemble*. The *nq*-point density the joint probability distribution for the process (after rescaling). A typical sample from this process with q = 3 and n = m = 61 is supplied in the figure below.

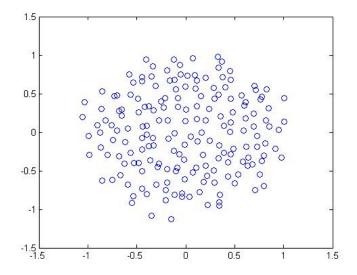


Figure: Polyanalytic Ginibre process with q = 3 and m = n = 61

Lemma

For $q \le n$, the kernel $K_{n,q}$ is given by $K_{n,q}(z, w) = K_{n,q}^{I}(z, w) + K_{n,q}^{II}(z, w)$, where

$$K_{n,q}^{i}(z,w) = n \sum_{r=0}^{q-1} \sum_{i=0}^{n-r-1} \frac{r!}{(r+i)!} (nz\bar{w})^{i} L_{r}^{i}(n|z|^{2}) L_{r}^{i}(n|w|^{2})$$

and

$$K_{n,q}^{II}(z,w) = n \sum_{j=0}^{q-2} \sum_{k=1}^{q-j-1} \frac{j!}{(k+j)!} (\bar{z}w)^k L_j^k(n|z|^2) L_j^k(n|w|^2).$$

Definition

If $(\lambda_1, \ldots, \lambda_{nq})$ have joint probability density from the *q*-polyanalytic Ginibre ensemble, and $z_0 \in \mathbb{C}$, the process $(\xi_1, \ldots, \xi_{nq})$ given by $\lambda_j = z_0 + n^{-1/2} \xi_j$ is called the local blow-up process at z_0 tol scale $n^{-1/2}$.

Theorem

(Haimi-Hedenmalm) For bulk points $z_0 \in \mathbb{D}$, the local blow-up process at z_0 to scalen^{-1/2} is for large n approximately given by the intensities with correlation kernel $L^1_{q-1}(|\xi - \eta|^2)e^{\xi \bar{\eta}}e^{-(|\xi|^2 + |\eta|^2)/2}$.

Corollary

(Haimi-Hedenmalm) At bulk points $z_0 \in \mathbb{D}$, the local blow-up process at z_0 to scale $(qn)^{-1/2}$ for large q and much bigger n is approximately given by the intensities with correlation kernel $|\xi|^{-1}J_1(2|\xi|)$.

Remark: The above correlation kernel is the analogue of the sine kernel in the 1D setting.

Theorem

At boundary points $z_0 \in \mathbb{T} = \partial \mathbb{D}$, WLOG $z_0 = 1$, the local blow-up process to scale $(q/n)^{1/2}$ has, for big q and much larger n, the 1-point function approximately given by $(-1 \leq \operatorname{Re} \xi \leq 1 \text{ here})$

$$\frac{2}{\pi}\int_{-1}^{-\operatorname{Re}\xi}\sqrt{1-t^2}\mathrm{d}t.$$

Remark: So the density of particles is nontrivial in the annulus

$$1-(q/m)^{1/2} \leq |z| \leq 1+(q/m)^{1/2};$$

inside the annulus the density is approximately a positive constant, and outside it approximately vanishes.

A. Haimi, H. Hedenmalm, (2011)

The polyanalytic Ginibre ensembles. *Preprint*.

Y. Ameur, H. Hedenmalm, N. Makarov, (2010) Berezin transform in polynomial Bergman spaces. *Comm. Pure Appl. Math.* 63(12), 1533-1584.

The End