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Background

Let
4(λ1, . . . , λn) =

∏
i ,j :1≤i<j≤n

(λj − λi )

be the vandermondian. Let Q : C→ R be a (smooth) confining potential,
with a certain minimal growth at infinity. We put

dP(λ1, . . . , λn) =
1

Z
|4(λ1, . . . , λn)|2e−m[Q(λ1)+...+Q(λn)]

where Z is a normalizing constant to get a probability measure. This
models a fermionic cloud under a confining potential. The model is also
known as Coulomb gas. We should think of m = n and that we look for
asymptotics as n goes to infinity.
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Results for analytic ensembles

By adjusting the methods of K. Johansson (DMJ 1997) for ensembles on
the real line to the complex case, we obtained the following.

Theorem

(Hedenmalm-Makarov, 2004) With probability 1, the sum of point masses∑n
i=1 dδλi tends to 1S∆QdA as n→ +∞. Here, S is the support of the

equilibrium measure, which may be obtained from an obstacle problem.

Let f be a smooth compactly supported real-valued test function on the
interior of S . Let fluctnf := f (λ1) + . . .+ f (λn)− n

∫
S f ∆QdA.

Theorem

(Ameur-Hedenmalm-Makarov, 2009) As n tends to infinity, the variable
fluctnf tends to a Gaussian normal N(ef , vf ) with mean
ef = (2π)−1

∫
S f ∆ log ∆QdA and variance vf = (4π)−1

∫
S |∇f |2dA.
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The reproducing kernel connection

Let Kn(z ,w) denote the reproducing kernel of the space of polynomials in
z of degree ≤ n − 1 with respect to the inner product of L2(C, e−nQdA).
Then the k-intensity of the Coulomb gas process is given by (k ≤ n here)

det[Kn(zi , zj)e−n[Q(zi )+Q(zj )]/2]ki ,j=1;

the n-intensity is up to proportionality constant the original density of
states. The k-intensity describes the likelihood density of finding a k-tuple
of points in position (z1, . . . , zk). Here, we just need the 1-point intensity
Kn(z1, z1)e−nQ(z1) and the 2-point density
[Kn(z1, z1)Kn(z2, z2)− |Kn(z1, z2)|2]e−n[Q(z1)+Q(z2)].
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The Berezin density

The reproducing kernel Kn is associated with the orthogonal projection
onto a the space of polynomials of degree ≤ n − 1. In a sense, the
polynomial space is the quantized model and the weighted L2-space is the
classical analogue. In an effort to produce a more robust model of
quantization, F. A. Berezin suggested to replace the kernel Kn(z ,w) by

B
〈z〉
n (w) =

|Kn(z ,w)|2

Kn(z , z)
e−nQ(w)

which defines a probability density, and acts boundedly on L∞(C).

Theorem

(Ameur, Hedenmalm, Makarov) For bulk point z0, the dilated probability

density ξ 7→ n−1B
〈z〉
n (z0 + m−1/2ξ) converges as n tends to infinity to the

Gaussian ∆Q(z0)e−|ξ|
2∆Q(z0).
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Next, we fix Q(z) = |z |2 so that we are in the Ginibre setting. Then the
spectral droplet S is the closed unit disk, and the bulk is the open unit disk
D. We let Kn,q be the reproducing kernel for the subspace of polynomials
in z and z̄ , where the degree in z is ≤ n − 1 and the degree in z̄ is
≤ q − 1. We consider the point process with k-point intensity given by

det[Kn,q(zi , zj)]ki ,j=1

and call it the q-polyanalytic Ginibre ensemble. The nq-point density the
joint probability distribution for the process (after rescaling). A typical
sample from this process with q = 3 and n = m = 61 is supplied in the
figure below.
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Figure: Polyanalytic Ginibre process with q = 3 and m = n = 61
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Lemma

For q ≤ n, the kernel Kn,q is given by
Kn,q(z ,w) = K I

n,q(z ,w) + K II
n,q(z ,w), where

K I
n,q(z ,w) = n

q−1∑
r=0

n−r−1∑
i=0

r !

(r + i)!
(nzw̄)iLi

r (n|z |2)Li
r (n|w |2)

and

K II
n,q(z ,w) = n

q−2∑
j=0

q−j−1∑
k=1

j!

(k + j)!
(z̄w)kLk

j (n|z |2)Lk
j (n|w |2).
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Definition

If (λ1, . . . , λnq) have joint probability density from the q-polyanalytic
Ginibre ensemble, and z0 ∈ C, the process (ξ1, . . . , ξnq) given by
λj = z0 + n−1/2ξj is called the local blow-up process at z0 tol scale n−1/2.

Theorem

(Haimi-Hedenmalm) For bulk points z0 ∈ D, the local blow-up process at
z0 to scalen−1/2 is for large n approximately given by the intensities with
correlation kernel L1

q−1(|ξ − η|2)eξη̄e−(|ξ|2+|η|2)/2.

Corollary

(Haimi-Hedenmalm) At bulk points z0 ∈ D, the local blow-up process at
z0 to scale (qn)−1/2 for large q and much bigger n is approximately given
by the intensities with correlation kernel |ξ|−1J1(2|ξ|).

Remark: The above correlation kernel is the analogue of the sine kernel in
the 1D setting.
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Theorem

At boundary points z0 ∈ T = ∂D, WLOG z0 = 1, the local blow-up
process to scale (q/n)1/2 has, for big q and much larger n, the 1-point
function approximately given by (−1 ≤ Re ξ ≤ 1 here)

2

π

∫ −Re ξ

−1

√
1− t2dt.

Remark: So the density of particles is nontrivial in the annulus

1− (q/m)1/2 ≤ |z | ≤ 1 + (q/m)1/2;

inside the annulus the density is approximately a positive constant, and
outside it approximately vanishes.
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The End
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