
THE POLYLITH SOFTWARE BUSJames M. PurtiloComputer Science Department and Institute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742ABSTRACTWe describe a system called Polylith that helps programmers prepare and interconnect mixed-languagesoftware components for execution in heterogeneous environments. Polylith's principal bene�t is thatprogrammers are free to implement functional requirements separately from their treatment of interfacingrequirements; this means that once an application has been developed for use in one execution environment(such as a distributed network) it can be adapted for reuse in other environments (such as a shared-memorymultiprocessor) by automatic techniques. This
exibility is provided without loss of performance.We accomplish this by creating a new run-time organization for software. An abstract decoupling agent,called the software bus, is introduced between the system components. Heterogeneity in language andarchitecture is accommodated since program units are prepared to interface directly to the bus, not toother program units. Programmers specify application structure in terms of a module interconnectionlanguage (MIL); Polylith uses this speci�cation to guide packaging (static interfacing activities such asstub generation, source program adaptation, compilation and linking). At run time, an implementationof the bus abstraction may assist in message delivery, name service or system recon�guration.
Classi�cation: D.2.2, D.3.3.

1 INTRODUCTIONSoftware for distributed systems is often more complex and less portable than other software. Developersof such software should reasonably expect to cope with some additional complexity when their applicationnecessarily employs multiple threads of control. But the cost of developing distributed programs remainshigh even when the application is fundamentally serial in nature (for instance, when the programmer onlyneeds to make a remote procedure call to access a non-local resource.) Moreover, once a program has beendeveloped for one type of network, then it is not easily ported for use in other execution environments.Higher development costs result from programmers implementing many diverse requirements simultane-ously in the same program unit. Not only must the programmer achieve the desired functionality, but hemust also anticipate the program unit context of use: system calls must be installed for communicatingwith other program units, parameters must be marshaled for transmission, data representations may needto be coerced, and so on. Considering these issues simultaneously is a complex task that is expensive toperform.Once a programmer pays the expense of constructing a distributed program unit, it is not widely reusable.To introduce network interfacing code is to introduce dependencies upon an environment that subsequentlynarrow the range of applications able to employ that program. Later use of that software, even within thesame general application, requires adaptation | the system calls must be changed, the data structuresmay need to be marshaled di�erently, and name con
icts may need to be resolved. In other words, thecost (as measured in programmer time, testing obligations, and con�guration management complexity) isincreased.The problem is clear: current software development techniques for diverse execution environments result inprograms that are intricately coupled with their environment, containing components that are not cohesive(they must contain code to serve many di�erent functional and non-functional requirements at the sametime.)Our research has produced a new software organization that encapsulates communication and data trans-formation activity, so that treatment of interfacing requirements is decoupled from that of functionalrequirements. As a result, programmers are able to code without having to pay constant attention toconstraints imposed by the underlying architectures, language processors or communication media. Suchconstraints cannot be completely ignored, but they can be isolated for independent treatment. Further,once the application has been devised for one execution environment, then tailoring the interface needsfor execution in other environments should be a separate and automated activity.Section 2 contains a concrete example to highlight the interfacing problems we intend to solve; this exampleis used throughout the paper for illustration. Our approach to the problem, as implemented in a systemcalled Polylith, is described in Section 3, after which we discuss experiences with use of our system andrelated work.2 MOTIVATIONIn order to study the types of coupling that arise in diverse systems, consider the simple `phonebook'example shown in Figures 1 and 3 (respectively, a user interface and a table lookup function.) One waythese two C routines could be integrated is to compile them separately, then link the object codes into anexecutable binary. The function names, types, and data representations must match for program to run.1

To run these routines as distinct processes on diverse architectures, separated by a network, many imple-mentation obligations must be discharged:� An additional main() program must be generated for the implementation of lookup() to functionas a separate process. Similarly, local's call to lookup() must be replaced by IO system calls.� The user must ensure that the parameters are marshaled correctly. This entails transforming thedata structure in such a way that it can be transmitted in a stream to the other task. In local,little would need to be done with the transmission of one string (the variable called key); however,the response from remote requires dereferencing the pointer to the desired record, and extractingeach of the two �elds to be packed into a stream response.� In conjunction with the data marshaling, one of the two tasks must coerce the low-level representationof primitive data types to match the representation of the other task's underlying architecture.� Now that more than one process is involved, the user needs to decide how all processes would bestarted up on the appropriate machines, and likewise must decide how synchronization between thethreads of control would be handled.The simple routine from Figure 1 could easily grow to the more complex routine shown in Figure 2.Unfortunately, once a programmer has manually adapted the programs for use in a network, then theycease to function back in the original (single process) context of use. Similarly, manual adaptation wouldbe needed to execute in other environments, such as running as separate threads on a shared memorymultiprocessor; with one of the processes implemented in a di�erent language than C; or with one of theprocesses replaced by a high level simulator (to help capture of requirements early in a development lifecycle.)Fabricating the desired application out of existing components might be even more di�cult, however, inthe case that alternate languages are used. For example, the remote module might equally well have beenimplemented by either the Lisp code shown in Figure 4 or the Ada program shown in Figure 5, neither ofwhich has control behavior that directly matches the C counterpart.Good programmers will minimize the amount of manual adaptation that would be required for subsequentporting of their programs. For instance, the network startup code from the example could be isolatedinto a single initialization procedure, returning an IO descriptor for use in subsequent communicationwith the other task. Further, the OS-speci�c calls could be relocated into a user-de�ned network stub.However, such adaptation activity is awkward at best, is prone to error when performed manually, andstill does not result in an application component that is transparent to the context of use. Furthermore,these conventions are of little use for programs written in di�erent languages or running across a networkof hosts with di�erent operating systems.This example motivates a development environment where programmers may completely avoid manualintroduction of elaborate interfacing codes into their applications. Moreover, they should have a capabilityto quickly specify the geometry of their application (that is, the mapping of their program structure ontothe available system architecture) separately from the implementation of their individual program units.These capabilities are what the Polylith software interconnection system provides.2

#include <stdio.h> #include <stdio.h>struct table f struct table fchar *key; char *key;int value; int value;g; g;main() main()f fchar key[256]; char key[256], buffer[1024];struct table *retval; struct table *retval;int fd, i, ip;if ((fd = RENDEVOUS("remote.lookup")) < 0)exit(1);printf("Name? "); printf("Name? ");while(gets(key) != NULL) f while(gets(key) != NULL) fif(retval = lookup(key)) if (SEND(fd, key) < 0) exit(2);if (RECEIVE(fd, buffer) < 0) exit(3);if(buffer[0] != (char)0) fip = &(buffer[strlen(buffer)+2]);i = BYTESWAP(*ip);printf("%s at ext. %d", printf("%s at ext. %d",key, retval->value); key,i);else g else fprintf("%s not found.",key); printf("%s not found.",key);gprintf("Name? "); printf("Name? ");g gg gFigure 1: (Left) Simple local program unit.Figure 2: (Right) Adapted local program unit.The text on the left in Figure 1 illustrates a simple C program which repeatedly accepts astring entered by the user, passes the string to a lookup command (assumed to be bound toa \phone book" routine, to look up the string `name'), and accepts back from that call aninteger value (taken to be the phone number associated with the input string, or, if a zerovalue, indication that no entry exists for the name.) In contrast, the text on the right inFigure 2 illustrates what can become of the trivial user interface when it must be adapted inorder to meet non-functional requirements imposed by the underlying interconnection system,say, for remote procedure call to a host of di�erent architecture elsewhere in a network.
3

#include <stdio.h>struct table fchar *key;int value;g;static struct table db[] = f ...f "Jack", 1732 g,f "Christine", 1566 g,f "Jim", 1832 g, ...f "Elizabeth", 1566 g,NULLg;struct table *lookup(key)char *key; fint i=0;while(db[i].key != NULL)fif(strcmp(key,db[i].key) == 0) return (&db[i]);i++;greturn NULL;g Figure 3: Simple remote program unit.This is a simple implementation of the lookup operation, as called from the components inFigures 1 and 2. The C function simply performs a linear search in the data structure (probablythe world's worst way to implement a phonebook program, but adequate for our illustration.)Once an entry matching the parameter is found, the record is passed back to the caller; if nomatch is found, a NULL value is returned to signal as such.
4

(setq mynames '((Jack 1732)(Christine 1566)(Jim 1832)(Elizabeth 1566)))(defun lookup (name)(let((x (assoc name mynames)))(cond((null x) 0)(t (cadr x))))) Figure 4: An alternative implementation for remote.Package Phonebook isMAX: constant integer:= 5; Subtype keyarray is string(1..12);Type TableEntry is record key : keyarray; value: integer; end record;Type Table is array (0..MAX) of TableEntry;Procedure lookup(key: in keyarray; f : out boolean; e: out TableEntry);end Phonebook;Package body Phonebook isdb: Table := Table'(0 => (key => "dummy entry ", value => 0),1 => (key => "Jack ", value => 1732),2 => (key => "Christine ", value => 1566),3 => (key => "Jim ", value => 1832),4 => (key => "Elizabeth ", value => 15660),5 => (key => " ", value =>0));Procedure lookup(key: in keyarray; f : out boolean; e: out TableEntry) isfound : boolean; i : integer;beginfound := false; i := 0;while (db(i).key /= " ") and (not found) loopif key = db(i).key thenfound := true;else i := i + 1;end if;end loop;if not found then e := db(0); else e := db(i); end if;end lookup;end Phonebook; Figure 5: Yet another alternative implementation for remote.5

3 POLYLITH ARCHITECTURESection 2 exposes a number of di�cult interfacing problems for individual program units. These problemsgeneralize, and we now raise the discussion to interfacing issues of modules, collections of individualprogram units and data declarations. Project Polylith has sought to overcome the di�cult problems thatarise when modules implemented in di�erent languages are to execute on heterogeneous architectures,supported by varying communication media.In order to address these problems, we have sought to meet the following requirements:1. Speci�cation of an application's structure (i.e., its \design") and the implementation of individualcomponents should be independent from each other. Programmers should be free to declare whichmodules should appear in a design without regard to any constraints placed on the modules' imple-mentation; conversely, the implementation of functionally-correct modules should be independent ofinterfacing considerations particular to any context of their use.2. Similarly, the application's geometry should be strongly separated from the implementation of indi-vidual modules. Programmers should be able to specify where modules execute without having toadapt any module source code.3. Programmers should be able to specify how components communicate without having to adaptprograms at the source level. This requirement includes coercion and marshaling of data that istransmitted between components.These requirements are clearly a synthesis of systems and software engineering concerns. Distributed pro-gramming environments have been constructed to hide some interfacing concerns from programmers, andsimilarly module interconnection languages are available to separate application design from implementa-tion in a homogeneous execution environment (c.f., Section 4.3). But none of the previous approaches meetall three major requirements simultaneously; each approach still contains some form of coupling betweenthe design and implementation levels or to a particular environment.Our approach has been implemented and tested in a system called Polylith. To address the �rst majorrequirement, Polylith provides a module interconnection language (MIL) for expressing an application'sstructure. This MIL is declarative, and independent of any particular application language | the choiceof language for implementing individual software components is left to the designer. The MIL is basedon a simple graph model of interconnection, where nodes in a program graph correspond to modules, andarcs in the graph represent bindings between module interfaces. It is described in Section 3.1.To control application geometry, the Polylith MIL allows attributes to be associated with nodes in thegraph structure. These attributes allow designers to abstractly declare a desired locality for execution ofthe named program unit. If the user elects to give no guidance to Polylith concerning geometry, thenthe system constructs binaries for components according to default guidelines. Regardless, for both thisand the previous requirement, the graph approach ensures that structure is exposed to the designer formanipulation and analysis. This activity is described in Section 3.3.The programmer's decisions concerning placement of modules onto processors still leaves
exibility in howthe modules are to interoperate. For instance, an RPC between two interoperating processes can be madeby a variety of communication channels or protocols. Our third major requirement is that programmersmust be able to alter these interfacing mechanisms without adapting source programs or the structuralspeci�cation | this is accomplished in Polylith by varying the choice of software bus. A software bus is6

any agent that encapsulates, and hence isolates, all run-time interfacing concerns for an application. Anabstract software bus establishes the domain of discourse for programmers seeking to interconnect diversesoftware components; an implementation of that bus lets programmers leverage their decisions aboutinterconnection abstractions. To change interfacing properties, one changes the bus, not the applicationmodules. The bus abstract interface is described in Section 3.2.3.1 A MODULE INTERCONNECTION LANGUAGESince modules will ultimately be implemented in other existing languages, the sole requirement forPolylith's MIL is to express and organize system structure. The basic language construct is there-fore of the form module name f declarations gwhere name gives a name for the module being de�ned, and declarations represents a sequence of declara-tions of the structural properties of this module: interfaces, nesting of additional modules, and bindingsbetween interfaces within the scope. The name is optional, since there are many situations where we willneed to build a module but never reference it externally.In the declarations of a module, interfaces on that module are declared by eitheruse interface nameor define interface nameThe define key word declares the interface name is an available resource; use declares that a non-localresource is required by this module.The C programs used for motivation in Section 2 would have generic descriptions as shown in Figure 6.In order to create and run an application, a complete design must be created: from the set of all modulesde�ned in a given scope, those that the programmer wants for the application must be selected, thenthe bindings between interfaces must be established. The tool and bind constructs shown in Figure 7perform this instantiation and interconnection respectively1. While there are many external interfaces inthe implementation of these modules (printf, main and so on), only the lookup interface is of interest tothe designer, therefore it is the only name to appear at the design level. Omission of other names fromthe module signature allows the packager system (responsible for creating executables, Section 3.3) widelatitude in how those names should be bound, typically from a library.The Polylith graph model is attributed; symbols with values can be associated with each element ofan application graph. Attributes are expressed using the syntax \symbol=value". Any number of suchde�nitions can appear after a module declarations statement (and hence associate a valued-symbol withthat interface), or can appear after the module de�nition itself (hence associating attributes with theentire module.) Attributes are used in several ways, for instance, to organize interface patterns | typeinformation concerning data or a procedure's parameters | a PATTERN attribute is associated with aninterface, as in Figure 6. The combination of module declarations with PATTERN attributes is directlyanalogous to the de�nition of an abstract data type's signature and sorts, respectively.The text in Figure 7 represents only the most basic composition of an application program graph. Ingeneral, the Polylith MIL provides several features to simplify a binding task that can often be a tediousmanual activity. For example, our demonstration problem de�nes and uses the desired interface underthe same name, lookup; hence, the programmer could include a \bind $all" directive inside a given1\Instantiation" is indeed the appropriate term, as in general many copies of the generically-de�ned object may beincorporated within an application system. 7

module main fuse interface lookup : PATTERN=stringgmodule demo fdefine interface lookup : PATTERN=string: RETURNS="f string ; integer ggFigure 6: MIL de�nitions for example modules.module ftool maintool demobind main.lookup demo.lookupgFigure 7: Sample use of the abstract modules.scope, which would declare that all such obvious interface matches should be bound, provided there arenot multiple de�nitions or type mismatches.3.2 THE SOFTWARE BUSA bus is any agent that encapsulates interfacing details for a software application. Programmers �rstmake decisions about how to implement an application's functional requirements, then select desirableinterfacing mechanisms by their choice of bus. Subsequent changes in interfacing behavior are obtainedby changing busses, not the application.When someone de�nes an abstract software bus, he or she establishes the domain of discourse for developersto reason about the compatibility of components they want to integrate. The criteria for establishing whatis a module, the range of valid data types on module interfaces, and the control mechanisms available formodules to interoperate must all be de�ned. When that abstract bus is implemented, the developer hasa basis for relating each new language and platform to the abstraction operationally. For the purposes ofclarity, we will present the remainder of this section as if there is only one abstract bus, but in fact themethodology by which various abstract busses are established is the topic of a separate work [PuSW91].An abstract bus can be implemented in many ways. Fundamentally, implementation of a bus entailsmaking two types of decisions:� Dynamic: How do processes started by this bus communicate?� Static: How do requests for non-local processing (e.g., procedure calls) for a given language (on agiven architecture) correspond to accessors in the bus abstraction?Decisions concerning dynamic interfacing properties are embodied in \the bus," which, in all but the mosttrivial scenarios, is present in the form of an additional process (or processes) within the execution environ-ment. Decisions concerning preparation of binaries for use by a given bus are embodied in a corresponding8

packaging system (by which we refer to all tools needed to adapt, translate and link an application pro-gram into an executable unit.) Clearly, a bus and its packager must work in concert. These decisions aregenerally made once by a site manager, who must be knowledgeable about the available languages andarchitectures2 . Ordinary programmers do not normally implement their own bus mechanisms, though thesystem is distributed with all the resources necessary for them to do so if they wish. The bus accessors toa simple Polylith bus is described in Appendix A, for illustration.Information concerning an application's overall structure cannot appear within source programs withoutviolating our requirement for minimal coupling between components. Yet many interfacing scenarios |notably parallel and distributed programs | require that structure and geometry be known absolutely atthe time the application is started. Therefore it is inescapable that any bus, as agent responsible for startingtasks, must have some MIL-like notation to guide its actions. This is exactly the relationship betweenthe Polylith MIL and each bus: the MIL speci�cation is read by the bus, which then is able to invoketasks, acquire communication channels and initiate interoperation between application objects. Duringexecution, the bus may assist in communication, instrumentation or recon�guration of the application.Details concerning how an application's binaries are generated for a particular bus are deferred until Sec-tion 3.3, so that we may now examine concrete bus execution scenarios. In terms of the problem fromSection 2, a sequence of such scenarios is traced in Figure 8. The �rst two, all modules are packagedfor execution in the same process space. In scenario (a) the binary prepared by the packager is indistin-guishable from the binaries created by existing compiler tools. On the other hand, if the application isimplemented in di�erent languages, then some parameters' representation may need to be coerced, and acon�guration like scenario (b) would be created by the packager. Either way, the bus simply spawns thesingle process and terminates.Scenario (c) is representative of applications having multiple processes that must be managed. In thecase that processes reside on di�erent processors in a distributed network, then | as guided by the MILspeci�cation | the bus must start processes on the appropriate hosts (e.g., our network busses currentlyuse generic rexec resources for Unix sites), and establish communication links among these tasks. Theseare typically implemented by available underlying protocols, such as TCP/IP and XNS.If each task is to execute on a di�erent processor in a multiprocessor environment, then the bus has thesame responsibilities, but ful�lls them di�erently. For example, on the multiprocessors currently availableto us (which all run Unix) the packager will have prepared a single binary, which when invoked will spawnall additional processes via fork() calls; this is necessary since the principal method of communicationsupported by the multiprocessor bus is shared memory, which is not preserved between Unix processesseparated by a call to exec(). The bus is simply another task started up to synchronize the multiplethreads. Nonetheless, this is a typical interfacing scenario that no programmer would wish to implementmanually, yet which is useful for a variety of applications.Even for a �xed architectural con�guration and interconnection medium, there are still good reasons tohave variety in the available busses | users still need variety in their interfacing properties. Focusing onnetwork-based con�gurations, one of our bus implementations is built for performance: once all distributedprocesses have been invoked, each task is set up to establish its own IP ports for network tra�c, then sendthis information back to the bus. Once all modules have been `registered' in this fashion, the bus passes theinformation to the appropriate tools so they can initiate direct connections. In short, the bus introducesall tasks to one another, then steps out of the way. The resulting use of ports in the IP domain is thenindistinguishable from hand-crafted programs, except that no tasks's source program contains absolute2We will continue to use the title `site manager' to describe anyone who is in charge of maintaining interfaces in anorganization. Someone has to know about a new language in order for it to be incorporated into a polylithic system.9

(a) The call to lookup from main is bound directly to the object code in the same process space. No additionaldata coercion or relocation is incorporated. - lookup()main()(b) If di�erent implementation languages are used, then the initial call is bound to a translation �lter, whichperforms the coercion and then makes the actual call. -- coercion stublookup()main()(c) In this scenario, the non-local reference from the user's main requires both translation and relocation of pa-rameters. The initial call goes to the coercion stub, which then requests that the bus transmit the parameters tothe non-local resource. Since the remote resource may also be on a di�erent architecture, the bus provides theparameters to another stub appropriate for that host, which in turn �nally makes the actual call.- 6?? stubremotestublocal SOFTWARE BUS
process "remote"process "local" lookup()main()

Figure 8: Three execution scenarios.10

network or host identi�ers (names that limit its range of application.)Alternately, a network-based bus may retain control of all communication ports, forcing processes tocontact the bus to route all tra�c. While serializing messages in this way degrades performance, it has theadvantage of exposing all network tra�c to debugging or visualization tools. Again, this is transparentto any application source program. Regardless of how the bus is implemented, the resulting scenario isthe same. The bus abstraction removes interfacing obligations from both the program structure and theindividual module implementations.The ultimate
exibility of this approach is apparent when a new host and its operating system mustbe incorporated. The site manager must only make decisions about how to implement a bus that cancommunicate with the new host. Thereafter programmers are free to construct programs that span theenhanced system architecture, without ever having to adapt application source code.3.3 PACKAGING OF EXECUTABLESEach bus must have a packager to prepare appropriate binaries for it. In general, the task of adaptingprograms so they can interact directly with other software is di�cult. However, the idea in Polylithorganization is to introduce a �xed target | the bus abstraction | as an intermediary. Therefore, if thedeveloper can defer packaging until the MIL speci�cation has been created, then all that is left to do withthe source code is to map the internal procedure into one of a small set of known bus accessors | a mucheasier task.There are four major aspects to packaging:1. Control of the packaging process itself.2. Control of how a language domain maps non-local references into the Polylith bus abstraction. Thisincludes stub generation and linkage decisions.3. Control of the correspondence between the Polylith representation of data and that found in aparticular implementation language and architecture.4. Control of how modules in the logical program structure are assigned to execute in particular pro-cesses (i.e., control of the geometry.)The �rst aspect re
ects a traditional need: packaging requires many compiler and linker steps that no userwants to perform manually. The Polylith packaging process is straightforward adaptation of such toolsas the makefile system [Feld78]. Its only embellishment is that it is parameterized to accept the name ofthe bus for the target execution environment.The second aspect of packaging pertains to the correspondence between the bus abstraction and an im-plementation language's mechanisms for requesting nonlocal service (such as procedure or function calls,message transmission and so on). Among all language constructs that request some form of non-localprocessing, a site manager must decide which to expose to the bus, and then how to map them into thebus interfaces. Often a packager is set up to produce procedure call semantics. However, there are manyalternatives to procedure call semantics, and MIL attributes provide developers with additional variety.For example, an attribute called MESSAGE can be associated with interfaces in the design, which directs thepackager to implement message passing semantics in the stub; bindings on such interfaces are directional,with the de�nition of the interface viewed as the `source' of the message, and the use of the interface viewed11

module main fuse interface lookup : PATTERN=stringg : SOURCE=local.cmodule demo fdefine interface lookup : PATTERN=string: RETURNS="f string ; integer gg : SOURCE=remote.cmodule ftool main : LOCATION=brillig.cs.umd.edutool demo : LOCATION=slithy.cs.umd.edubind main.lookup demo.lookupgFigure 9: Sample design illustrating use of attributes for geometric guidance.as the message `destination.' Other attributes can direct whether the communication is to be synchronous,whether queuing of messages is to be supported, and so on. Users direct the initiation of multiple controlthreads by assigning appropriate values to attributes at the design level [PuRG88].The third major aspect to packaging is for site managers to decide how data correspond between Polylith'sstandard representation and that of a particular language and architecture. Our approach here is quitepragmatic: we ask the manager to provide an operational speci�cation of the correspondence between typesin their new language and the types supported by Polylith. For each primitive type and combinator ofinterest, managers should implement a representation map (and its inverse) between a datum in the newlanguage and how it would appear in Polylith standard representation. This representation map is calledby the bus protocol (as guided by high level type information from the MIL speci�cation), and is typicallylinked into the application component stubs. Examples of such decisions made by managers (decisions thatare made once, not requiring extensive consideration by application developers later on) are illustratedfrom our example in Section 2. The manager here has decided that the C type de�nition int correspondsto the Polylith type integer, and the method of transforming an int into Polylith integer mightrequire the byte swapping shown in Figure 2.Coercion in Polylith currently employs simple notation to describe the structure of interface parameters.A `regular expression' over the language of primitive data types supported by the given bus de�nes the rangeof values that PATTERN attributes can attain, such as shown in Figure 6. This is not nearly as expressiveas other languages that are devoted to de�nition of interface structures, as discussed in Section 4.3.Nonetheless, our experience has been that this is a surprisingly useful notation. In general, the way thiscoercion activity is guided by the MIL declarations is described in detail in [Purt86].The �nal aspect of packaging is to determine how modules are assigned to processes. In the absenceof any other guidance, this assignment is largely up to each packager, which will build executables bystraightforward techniques. This activity is directed by the MIL speci�cation, and each tool declarationis interpreted by the packager as being a potential process assignment. For packagers targeting single-process con�gurations, tool is ignored; packagers for distributed architectures generate stubs for networkaccess based on tool declarations; packagers for multi-processor architectures establish a binary thatimmediately spawns a separate thread for each tool; and so on. To over-ride the default packagingconventions, users may vary attributes in the design to suggest which modules should be co-located in agiven process. 12

Figure 9 speci�es a con�guration having the same logical structure as shown in Figures 6 and 7, except weassign attributes that give extra directions. A network-based packager would use this guidance to establishan application that would run on exactly these two hosts at our site. More realistically, a programmerwould place another variable name as the value of each LOCATION attribute; the bus would prompt theuser for desired locality upon invocation of the system.

13

4 CONSIDERATIONSPolylith was �rst implemented in 1985, and has been used in a variety of applications and experiments.Initially, most users to date were drawn to Polylith for help in scienti�c computing applications: they usethe MIL as a language for coarse-grained parallel programming, such as originally described in [PuRG88].But the system serves software engineering activities as well [LuHa86].Flexibility in how the MIL itself can be manipulated is demonstrated in [PuJa90]. This project makessimple extensions to the MIL in order to support software fault tolerance. An application's structure isdecorated with information concerning multiple implementations, voting programs and recovery blocks;the speci�cation is then transformed into a standard Polylith interconnection graph for execution in anetwork environment.Whereas our initial implementation of the bus focussed on binding transparency at the source code level,an experimental use of a di�erent presentation | one exposing the network in ways that are intended tobe useful to C programmers in distributed applications | is described in [PuJa89]. This project createda di�erent map of control and data representations between C and the abstract bus.The most novel bus implementation to date is Minion, a visual bus [Purt89]. At run-time, this bus exposesthe communication protocol to outside display and debugging tools. As with any bus, these interfacingdetails are encapsulated, and hence transparent to the application program, except for timing constraints.We are using this framework to control recon�guration of running applications.Most recently, the heaviest use of Polylith is found within the DARPA prototyping community; thesimplicity of interconnecting diverse program units expands the range of existing programs from whichdevelopers can draw easily and quickly when fabricating a prototype for experiments [PuLC91].Based upon these experiences such as these, the remainder of this section addresses issues raised mostfrequently concerning Polylith.4.1 PERFORMANCEThe
exibility of polylithic organization can be obtained without loss of execution performance. Trans-parency is at the source program level, so for a given program unit, our packaging system does not producejust one binary for use in all circumstances, but rather produces one of many possible executables as guidedby the structure, declarations of geometry and target bus. As a result, our di�erences from other systemsare not so much in what executables are produced and executed, but rather in how those executables werederived.Consequently, what is of more interest is the extent to which use of novel interfacing properties might a�ectperformance. Consider the problem used for motivation in Section 2. For purposes of benchmarking, weprovided a long stream of lookup requests as the \standard input" to the main program; this applicationwas packaged exactly as described in Section 3, targeted for execution on a pair of Decstation 3100workstations at our site. No special precautions were taken to limit outside network tra�c. The basic unitof measure is the number of procedure calls per second that can be sustained to lookup from main. Thetwo-node program graph runs at approximately 400 calls per second when initiated by a TCP/IP-based bus,with an interoperation protocol optimized for performance. This also corresponds to the performance of anon-Polylith-based version of the program that we hand-crafted for comparison. (When both processesare executed on the same Decstation, the performance approaches 1000 calls per second. We attribute this14

gain to loopback in the Unix kernel's network device driver | this is a great property for prototyping.)When executed with a di�erent network bus, one designed to log all tra�c for inspection or debugging,the application runs with just over 200 calls per second. Since there is a bus agent `between' the twoapplication tasks, each logical procedure call requires twice the number of actual network operations.(The �gure reported is not exactly half the earlier value, due to opportunity for some overlap in processingprovided by the interconnection protocol.)4.2 TRANSPARENCYAlthough Polylith-managed interfaces yield performance comparable to hand-generated interfacing forthe same application structure, there is a broader question, which is whether programmers who buildinterfaces manually would be basing their activity on the same application structure. Many applicationstructures cannot remain transparent to the architecture and still achieve high performance requirements.There are many opportunities for programmers to implement their own software caches and communicationprotocols | they may take advantage of knowledge concerning the application's behavior (in particular itsuse of the communication system) to improve overall performance. Polylith does not attempt to discoverany of these opportunities for improving performance; polylithic organization does give a framework forincorporating any application-speci�c interfacing code that programmers develop for themselves.This issue has many manifestations. Our experience with Polylith in distributed con�gurations is thatusers can become very distant from the underlying architecture | they rely upon a packager to distributethe components. However, automatic packaging tools can separate modules that might reasonably havebeen assigned to execute in the same process, and, depending upon use, the resulting communicationcosts can be high. The intent of our research has never been to blind the programmer to the architecture,only to let the programmer to deal with interfacing separately from functionality. Knowledgeable guidancein packaging is always preferred. Polylithic organization provides a framework for user's to express thatguidance, and within which communication costs can be exposed; once default packaging decisions areshown to be undesirable, the application can repackaged, easily and transparently. Programs that havebeen hand-crafted do not have the luxury of such inexpensive recon�guration, should users discover usagepatterns are di�erent than they expected.A related experience is that programmers of heterogeneous systems will occasionally assign a moduleto execute on a host for which it is unsuitable. For example, assigning our example's lookup functionto execute on our Connection Machine, as we are able to do, does not yield a signi�cant increase inperformance. Programmers in Polylith can forget that while their code can port between machines,the algorithms to best exploit some architecture might not relocate so easily. Again, the purpose of ourresearch is not to enforce homogeneity, as to do so would eliminate the best use of hardware available tous. We wish instead to indulge in heterogeneity without the high costs of interfacing.Finally, in any multi-tasking environment, there is a question of whether referencing semantics are trans-parent in the case of pointer data. Ideally, behavior of the centralized and distributed con�gurations of anapplication would correspond exactly. This is not currently the case in Polylith. As with many systems,by-reference parameters are typically implemented as value-result parameters instead. (How this is doneprecisely is a decision made within each packager.) However, we are currently working on a source-to-source transformation approach to address this problem; we hypothesize that programs containing pointerdata can be conditioned at a high level to contain appropriate bus interfaces so that the intended nonlocalvalue can be accessed. Preliminary experiments in this approach are promising.15

4.3 RELATED WORKThis work is a synthesis of results from many research areas, and there are correspondingly many otherprojects to which we must be compared. The contributing areas range from data representation anddistributed languages to con�guration management systems.Much work has been done in primitive data representation in the presence of heterogeneity. The Polylithapproach bene�ted from review of previous experiences with Courier [Xero81]. Sun Microsystem's XDR[SunM88] is a similar approach, as is UTS, a `universal type system' internal to the MLP (Mixed LanguageProgramming) system [HaMS88].More abstractly, transmission of abstract data types (ADTs) is presented in [HeLi82]. Two new interfaceaccessors, transmit and receive, are added to the ADT's signature, and the developer provides a suitableimplementation of these routines for each host. When the ADT is to be transmitted, these new accessorsare used by the system to relocate the essential state information in a suitable form. While developedindependently, Polylith's algorithm for marshaling parameters for transmission bears a strong similarity.The essential di�erence is that Polylith's algorithm focuses on primitive types and simple aggregates forwhich the transformation can be generated automatically, based on knowledge of the interface provided bythe MIL speci�cation. Though Herlihy's ADT method requires the developer to create additional routines,it certainly applies to a much wider class of parameters; it would be very reasonable to consider installingthis capability within Polylith packagers in the future.Another alternative for strengthing Polylith's interface type system is IDL, the interface de�nition lan-guage. IDL provides a rich method for expressing the semantics of shared data structures [Lamb87,Snod89]; the code for accessing data on common interfaces is then generated automatically, thereby guar-anteeing consistent treatment by all parts of the system. Recently, a mapping activity involving IDL (andvery similar to the decisions given a site manager as discussed in Section 3.3) was presented in [ShSn89].It would be natural to encapsulate IDL-generated source into a standard Polylith module, and then usethe MIL to bind interfaces appropriately. The systems are quite complementary | code generated by theIDL system could be made available to the packager system, as an additional con�guration item managedby the MIL.Polylith's focus to date has been on simple data structures for interfaces. This stems from a designprinciple established early in the project, that any instance of a su�ciently rich data type deserves to begiven its own module (and hence can be packaged in its own process space in appropriate environments);the MIL would bind the instance's accessors into those modules using it, and thereafter those moduleswould transact capability to that instance (rather than `
attening' it for transmission.) This approach isvery similar to that shown in [JLHB88], where a call by object-reference method is described in detail.Early work on MILs was performed by DeRemer and Kron [DeKr75]. Shortly after, project Gandalf fo-cused on the software development environment itself [HaNo86, Notk85], implementing a MIL known asIntercol for describing the structure of an application [Tich80], and permitting mixed language program-ming (subject to the restriction that the language processors be created to conform to Gandalf interfacingstructures.) Most recently, environments and languages such as Inscape and SLI are appearing [Perr89,WWRT91], in which developers can express not only the desired structure, but also assertions to guideuse and interconnection of the con�guration items. Inscape addresses many of the same sorts of packagingissues as Polylith. The AdaPIC tool set also focuses on stronger analysis of how interfaces are used, anactivity blended with support for other development activities [WoCW89]. Our approach to simple stubgeneration is very similar to that of Gibbons [Gibb87], although we can generate stubs from automati-cally extracted interface information, whereas Gibbons' Horus system requires users to explicitly declareinterface structure. 16

Structure-oriented languages (containing some MIL features) were used to control a distributed program-ming environment in several earlier projects, notably CLU [LiAt81] and MESA [Swee85]. Both supportdistributed programming by coupling their notation with their supporting systems (Argus [Lisk88] andPilot, respectively). Each of these systems represent a signi�cant step forward in the area's ability torealize the vast potential of distributing a computation. Subsequently, Matchmaker [JoRT85] provided atransformational approach to the problem of integrating distributed components: an application wouldbe written in a synthesis of, say, Pascal and a higher-level `speci�cation language.' This source wouldbe transformed into ordinary Pascal code having accessors to the host communication system insertedexplicitly.Especially appropriate for multiprocessor con�gurations are Camelot [Bloc89] (a transaction facility builton top of Mach) and Avalon (a language resource constructed using Camelot.) The V Kernel [Cher88]implements a distributed- and parallel-programming resource appropriate for a homogeneous set of hosts.The HCS project [NoBL88] shows one way for providing a heterogeneous RPC capability in a distributedenvironment; more recently, a `lightweight' remote procedure call was demonstrated [BALL90]. Concert[YGSW89] and Marionette [SuAn89] are more variations on a theme. Several early projects emphasizeda network �lesystem approach (such as Locus [PWCE81].) An interesting approach to cross-architectureprocedure call using a common backing-store is given by Essick [Essi87]. The ISO OSI framework fornetwork interconnections appears similar to our approach [OSI81], but is more oriented to encapsulatingdecisions related to network concerns, as opposed to our focus on data and control integration.Most recently, there appears to be a trend towards even stronger use of MIL-like languages for control ofdistributed applications, with the emergence of Conic's environment and toolset [MaKS89], and of Durra[BDWW89]. The Mercury system supports heterogeneity in applications by managing a networked objectrepository [LiSh88]. All of these systems focus only on distributed execution environments.

17

5 CONCLUSIONA fundamental `divide and conquer' principle in software is that an application's structure can be designedseparately from the construction of its components. Designers are free to manipulate the abstract struc-tural speci�cation, while programmers have freedom in how they implement the modules. Our bus-basedapproach introduces a third degree of freedom by encapsulating properties of the execution environment:location of data, distribution of programs, and media for interoperation. These details are hidden fromthe implementor of a module in just the same way that implementation decisions are separated fromspeci�cations.This new freedom to vary separately the structural speci�cations, functional implementations, and inter-facing properties provides many bene�ts. An obvious by-product is a facility for mixed-language program-ming: our approach encapsulates the choice of source language within a packager, and hence programmersare free to access other procedures without regard to possible con
icts in data representation or callingconventions. A farther-reaching implication is that we can now design our application structures indepen-dent of how they are mapped onto host con�gurations, then have a formal basis for re�ning the designsto meet performance demands on speci�c architectures.There are more steps to producing an executable using bus organization, but a greater proportion of thepackaging activities can be performed automatically, rather than with programmer intervention. Hencethere is a net savings in e�ort invested by the programmer, with greater
exibility in how the applicationcan subsequently be executed. Our research on software interconnection is continuing, using the Polylithmodel as a basis. Currently we are focusing on two related activities, techniques to control dynamicprogram recon�guration and process migration in heterogeneous environments.
Acknowledgement: The author wishes to thank John Gannon, Udaya Shankar, Marvin Zelkowitz, RalphWachter, Bill Gear, Paul Saylor, Jack Callahan, Christine Hofmeister and Elizabeth White for their manyhelpful comments and suggestions concerning this research and document. We are grateful to the O�ceof Naval Research for their continuing support. 18

REFERENCES[BDWW89] Barbacci, M., D. Doubleday, C. Weinstock and J. Wing. Developing applications for heterogeneous machinenetworks: The Durra environment. Usenix Computing Systems, vol. 2, (1989), pp. 7-35.[BALL88] Bershad, B., T. Anderson, E. Lazowska and H. Levy. Lightweight remote procedure call. ACM Transactions onComputer Systems, vol. 8, no. 1, (February 1990), pp. 37-55.[Bloc89] Bloch, J. The Camelot library: C language extension for programming general purpose distributed transactionsystem. Proc of 9th Conf on Distributed Computing Systems, (June 1989), pp. 172-180.[Cher88] Cheriton, D. The V distributed system. CACM, vol. 31, (1988), pp. 314-333.[DeKr76] DeRemer, F. and H. Kron. Programming-in-the-Large Versus Programming-in-the-Small. IEEE Transactionson Software Engineering, vol. 2, no. 2, (June 1976), pp. 80-86.[Essi87] Essick, R. The cross-architecture procedure call. Doctoral dissertation. UIUC Dept of Computer Science UIUC-R-87-1340, (1987).[Feld78] Feldman, S. I. Make { A program for maintaining computer programs. Bell LaboratoriesReport, (August 1978).[FSAC89] Finkel, R., M. Scott, et al. Experience with Charlotte: simplicity and function in a distributed operating system.IEEE Trans Software Engineering, vol. 15, (June 1989), pp. 676-685.[Gibb87] Gibbons, P. A stub generator for multilanguage RPC in heterogeneous environments. IEEE Transactions onSoftware Engineering, vol. 13, no. 1, (January 1987), pp.77-87.[HaMS88] Hayes, R., S. Manweiler, and R. Schlichting. A simple system for constructing distributed, mixed-languageprograms. Software Practice and Experience, vol. 18, no. 7, (July 1988), pp. 641-600.[HaNo86] Habermann, N., D. Notkin. Gandalf: Software Development Environments. IEEE Transactions on SoftwareEngineering, vol. 12, no. 12, (December 1986), pp. 1117-1127.[HeLi82] Herlihy, M., and B. Liskov. A value transmission method for abstract data types. ACM Transactions onProgramming Languages and Systems, vol. 2, no. 4, (October 1982), pp. 527-551.[JLHB88] Jul, E., H. Levy, N. Hutchinson and A. Black. Fine-grained mobility in the Emerald system. Transactions onComputer Systems, vol. 6, no. 1, (February 1988), pp. 109-133.[JoRT85] Jones, M., R. Rashid and M. Thompson. Matchmaker: An Interface Speci�cation Language for DistributedProcessing. Proce of 12th ACM Symposium of Principles of Programming Languages, (1985).[Lamb87] Lamb, D. A. IDL: Sharing intermediate representations. ACM Transactions on Programming Languages andSystems, vol. 9, no. 3, (July 1987), pp. 297-318.[LiAt81] Liskov, B. and R. Atkinson. CLU Reference Manual. Springer-Verlag LNCS 114, (1981).[LiSh88] Liskov, B., and L. Shira. Promises: linguistic support for e�cient asynchronous procedure calls in distributedsystems. Proc of SIGPLAN Language Design and Implementation, (June 1988).[Lisk88] Liskov, B. Distributed programming in Argus. CACM, vol. 31, (1988), pp. 300-313.[LuHa86] Lubars, M. and M. Harandi. Intelligent support for software speci�cation and design. IEEE Expert, vol. 1, no. 4,(1986), pp. 33-41.[MaKS89] Magee, J., J. Kramer and M. Sloman. Constructing distributed systems in Conic. IEEE Transactions onSoftware Engineering, vol. 15, (June 1989), pp. 663-675.[NoBL88] Notkin, D., A. Black, E. Lazowska, et al. Interconnecting heterogeneous computer systems. CACM, vol. 31,(1988), pp. 258-273.[Notk85] Notkin, David. The GANDALF Project. Journal of Systems and Software, vol. 5, no. 2, (May 1985), pp. 91-104.19

[OSI81] ISO Open Systems interconnection { Basic Reference Model. ISO/TC 97/SC 16 N 719, International Organiza-tion for Standardization, (August 1981).[Perr89] Perry, Dewayne. The Inscape Environment. Proceedings of 11th International Conference on Software Engi-neering, (1989), pp. 2-12.[PuJa90] Purtilo, J., and P. Jalote. An environment for developing fault tolerant software. IEEE Transactions on SoftwareEngineering, vol. 17, (1991), pp. 153-159.[PuJa89] Purtilo, J., and P. Jalote. An environment for prototyping distributed applications. Proceedings of the NinthInternational Conference on Distributed Computing Systems, (June 1989), pp. 588-594.[PuLC91] Purtilo, J., A. Larson and J. Clark. A methodology for prototyping in the large. IEEE 13th InternationalConference on Software Engineering, (May 1991), pp. 2-12.[PuRG88] Purtilo, J., D. Reed and D. Grunwald. Environments for prototyping parallel algorithms. Journal of Paralleland Distributed Computing, vol. 5, (1988), pp. 421-437.[Purt86] Purtilo, J. A software interconnection technology to support speci�cation of computational environments. Doc-toral dissertation. UIUC Dept of Computer Science UIUC-R-86-1269, (1986).[PuSW91] Purtilo, J., R. Snodgrass and A. Wolf. Software bus organization: reference model and comparison of existingsystems. MIFWG Technical Report 8, University of Arizona Computer Science Department, (1991).[Purt89] Purtilo, J. MINION: An environment to organize mathematical problem solving. Proceedings of the 1989 Inter-national Symposium on Symbolic and Algebraic Computation, (July 1989), pp. 147-154.[PWCE81] Popek, G., B. Walker, J. Chow, et al. LOCUS: A network transparent, high reliability distributed system. Procof 9th Symp on Operating Systems Principles, (December 1981), pp. 169-177.[ShSn89] Shannon, K., and R. Snodgrass. Mapping the Interface Description Language Type Model into C. IEEE Trans-actions on Software Engineering, vol. 16, no. 11, (November 1989), pp. 1333-1346.[Snod89] Snodgrass, R. The Interface Description Language: De�nition and Use. Computer Science Press, (1989).[SuAn89] Sullivan, M., and D. Anderson. Marionette: A system for parallel distributed programming using a master/slavemodel. Proc of 9th Conf on Distributed Computing Systems, (June 1989), pp. 181-189.[SunM88] XDR: External Data Representation Standard. Sun Microsystems Reference Manual, (1988).[Swee85] Sweet, Richard E. The Mesa Programming Environment. Proceedings of the ACM SIGPLAN Symposium onProgramming Issues in Programming Environments, (June 1985), pp. 216-229.[Tich80] Tichy, Walter F. Software Development Control Based on System Structure Description. Carnegie-MellonUniversity Dept. of Computer Science Report CMU-CS-80-120, (January 1980).[WoCW89] Wolf, A., L. Clark and J. Wileden. The AdaPIC Tool Set: Supporting InterfaceControl and Analysis Throughoutthe Software Development Process. IEEE TSE, vol. 15, (1989), pp. 250-263.[WWRT91] Wileden, J., A. Wolf, W. Rosenblatt and P. Tarr. Speci�cation Level Interoperability, CACM, (May 1991),pp. 72-87.[Xero81] Courier: the remote procedure call protocol. Xerox Corporation Xerox System Integration Standard XSIS038112, (December 1981).[YGSW89] Yemini, S., G. Goldszmidt, et al. CONCERT: A high-level language approach to heterogeneous distributedsystems, Proc of 9th Conf on Distributed Computing Systems, (June 1989), pp. 162-171.20

APPENDIX A | BUS INTERFACEThis appendix describes some of the interface accessors to a simple Polylith bus prototype. All interfaceparameters in the discussion below name an external port from the current module's point of view; it doesnot directly name another component, but rather the name will be bound to other components later on bythe MIL. The tape parameters are to specify the type structure of other parameters in the interface; it isgiven in terms of a simple `regular expression' notation, and, if needed, is typically available by queryingthe bus with mh query * operations.mh read(interface , tape , param1 , param2 , ...)This performs a read operation on the named interface. Values, placed into the named param-eters, will already be transformed into a representation suitable for the current process andapplication language to use. This is a blocking operation.mh write(interface , tape , param1 , param2 , ...)The given parameters are written to the named interface. This is a blocking operation.mh readany(bu�er)mh readback(tape , packet , param1 , param2 , ...)A read is performed on any interface to this process which has a pending message. If more thanone is ready, then one is selected non-deterministically. This call will block until at least oneinterface has a message to be returned. No type or actual parameters are provided to receivethe unwound data | the data are received in Polylith standard representation with the nameof the successful interface packed into the data structure. A subsequent call to mh readbackcan unwind the representation into the actual parameters once the interface is known. Themh readback behaves likemh read except the data are taken from a bu�er rather than an actualIO operation.mh identity(bu�er)The absolute name by which the current bus knows this module is packed into the given bu�er.This is useful in applications having many tasks instantiated from the same abstract module,where each may need to identify itself uniquely in logging or error messages.mh shutdown()Any tool in the application can request that the bus be shut down. All tasks started by thebus are tracked down in an orderly fashion and terminated.mh query ifattr(interface ,attribute , value)mh query ifmsgs(interface)mh query objattr(attribute , value)mh query objmsgs()mh query objnames(value)The bus protocol requires that it function as a repository for information speci�c to a runningapplication. These mh query * interfaces are the means to request information from the repos-itory. Tasks can request the number of pending messages on a given interface, or the totalnumber of pending messages across all of its registered interfaces. It can request the value foran attribute associated with either a speci�c interface or the entire module instance. Finally,it can ask the bus to divulge just which interface names it believes the module has | this isexcellent for implementing tools that may need to simulate some module, for which it otherwisehas no information until run-time.mh initialize(parameter list)The bus protocol may require that separate processes have their own communication ports(in the case that the application may wish to have processes directly communicate with one21

another for reasons of performance.) This call allows such resources to be acquired, after whichthe contact information is passed back to the bus for transmission to other processes.As discussed in the body of this paper, each implementation of the above abstract interface constitutesa new bus. Similarly, a site manager would need to implement how each language (and its architecture)maps into the above abstraction. These obligations are easy to ful�ll for procedural languages such asPascal, Ada, C and Fortran. They are more challenging to ful�ll for interactive languages such as Lisp:the language environment also includes user interface support which must be handled. This gives the sitemanager additional
exibility in the types of bus maps that can be constructed. In the case that userswish to utilize Lisp's \read, eval and print" evaluator as their interactive front-end, then construction of abus interface entails adding a straightforward implementation of the operations listed above; if, however,the user wishes to make calls from across the bus to a Lisp in the back end, then the normal Lisp evaluatormust be replaced by an internal \listen on the bus, eval and return to the bus" loop, that is, the modulemust perform its own internal dispatching. This has been successful approach for incorporating severalLisp and Prolog implementations into the Polylith environment.

22

