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INTRODUCTION

The polymerase chain reaction (PCR) provides a simple, ingenious method

to exponentially amplify specific DNA sequences by in vitro DNA synthesis.

Three essential steps to PCR (Figure 1) include (a) melting of the target 
(b) annealing of two oligonucleotide primers to the denatured DNA strands,

and (c) primer extension by a thermostable DNA polymerase (123). Newly

synthesized DNA strands serve as targets for subsequent DNA synthesis as

the three steps are repeated up to 50 times. The specificity of the method
derives from the synthetic oligonucleotide primers, which base-pair to and

define each end of the target sequence to be amplified. The use of PCR grew

rapidly in plant pathology, as in other disciplines, with the introduction in

1988 of Thermus aquaticus (Taq) DNA polymerase. This enzyme exhibits

relative stability at DNA-melting temperatures, which eliminates the need for

enzyme replenishment after each cycle of synthesis, reduces PCR costs and

allows automated thermal cycling.

PCR offers several advantages compared to more traditional methods of

diagnosis: organisms need not be cultured prior to their detection by PCR;
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Figure 1 The stages of PCR and the resultant amplification of DNA copies of the target region.
(Reprinted from Ref. 137 with permission.)

the technique possesses exquisite sensitivity, with the theoretical potential to

detect a single target molecule in a complex mixture without using radioactive

probes; and it is rapid and versatile. Similar to serology, both narrow and

broad selectivities are possible and, depending on the choice of primers, the

method facilitates the detection of a single pathogen or many members of a

group of related pathogens. Unlike serology, the development of reagents

with narrow or broad specificities is accomplished almost at will with lower

cost. Synthesis of hundreds of different PCR primers generates costs compa-

rable to those of developing only a few monoclonal antibodies.

Molecular genetic protocols in a variety of other disciplines employ PCR.

Several reviews on its use and methodology in fields other than plant pathology

have been published recently (4, 10, I1, 46, 46a, 91, 137). This review

therefore focuses on the use of PCR for diagnosis of plant diseases and other

applications in plant pathology.
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DETECTION OF PHYTOPATHOGENS OR

PLANT-COLONIZING MICROORGANISMS

The composition of a PCR mixture is quite simple--it consists of sample,

water, buffer, salts, deoxyribonucleotide triphosphates (dNTPs), primers, and
DNA polymerase. Despite this simplicity, the dynamics and physical chem-

istry of the PCR reaction itself are complex and not well understood. The

major research emphasis to date has been development of new PCR applica-

tions rather than examination of PCR as a process. Many factors affect the

specificity and efficiency of DNA amplification by PCR. As a result,

optimization of reaction mixture composition and temperature cycling regime

necessitates an empirical process. One often begins by designing a set of

primers and then adjusting primer and buffer salt concentrations, as well as

thermal cycle times and temperatures, until reaching the desired sensitivity

and selectivity. Nevertheless, a wide range of plant pathogens in various hosts

or environmental samples are detected using PCR (Table 1). In this section

we review approaches to developing new diagnostic PCR procedures. It should

be emphasized, however, that while there are many rules of thumb in the

PCR literature, they should only be taken as initial guidelines.

Primer Selection

Although DNA or RNA fingerprinting is accomplished by several methods,

random amplified polymorphic DNA (RAPD) analysis is appealing because

it does not require genome sequence information or radiolabeling, and it
distinguishes between organisms or even between different strains or isolates

of the same organism (22, 22a, 31, 57, 127a, 131,. 135a, 149, 159). RAPD

fingerprinting uses PCR and a set of short, random-sequence oligonucleotide

primers that produce characteristic profiles of amplified products for each
organism. However, because DNA sequences of plants and other organisms

are also amplified with random primers (22, 39), plant pathogens must first

be purified or cultured from their hosts or reservoirs to obtain fingerprints.
Hence, RAPD analysis is not useful for direct detection of plant pathogens

in complex environmental samples, or for organisms that are difficult or

impossible to culture. In contrast, with longer, more pathogen-specific

primers, PCR allows detection of target sequences in crude specimens, without

culturing.

Specific primers are derived from sequences of either amplified or cloned

DNA (cDNA) or RNA from the microorganism to be detected. Several factors

affect primer specificity for the target sequences, including primer length,

annealing temperature, magnesium concentration, and secondary structure of
target and primer sequences (114, 132; reviewed in 4, 10, 11, 46, 137).
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PCR AND PLANT DISEASE DIAGNOSIS 89

Specific oligonucleotide primers are typically 18-30 nucleotides in length,

about 50% in G+C content, and without complementary 3’ ends or inverted
repeats. However, PCR can be effectively executed with specific primers as

short as 14 and 15 nucleotides in length (115) or of only 25% G+C content

(R. French & N. L. Robertson, unpublished observations). Primer "melting"
or "annealing" represents a bimolecular association/disassociation of oligonu-

cleotide and target DNA so that Tm (melting temperature) depends on both

primer and target concentration, which change during amplification. Rychlik

et al (122) considered the thermodynamic nature of primer melting to develop

a formula to predict optimum annealing temperatures that agree with experi-

mental results over a variety of primer/template combinations. Other formulae

or computer programs that help in selecting appropriate primer sequences are

also available (64, 97, 121).
There are several useful controls to use when first developing a PCR

detection method. Besides known positive and negative controls, it is helpful

to set up parallel reactions containing each primer individually to determine

if PCR amplification is truly dependent on the presence of both primers. This

is particularly important if the size of the PCR product is larger or smaller

than expected. If PCR yields little or no product, one can test the reaction

and thermal cycle conditions with a known set of reagents, primers, and
template that are available commercially in kits. Adding aliquots of test

samples to such reactions is also an easy method to detect inhibitors in

samples. Lack of specificity can often be corrected by raising annealing

temperature or reducing the initial concentration of template or primers.
PCR amplifies DNA sequences up to 10 kilobase pairs in length (73), but

shorter sequences on the order of 100 to 1000 base pairs (bp) are most

efficiently amplified and easily resolved by agarose electrophoresis. Hence,
DNA sequences within a few hundred base pairs are usually chosen as primer

annealing sites. Single-stranded oligonucleotides are routinely used to prime

amplification reactions. However, Sarkar & Sommer (127) recently used

"megaprimers," i.e. double-stranded DNA sequences up to several hundred

bp in length, to amplify human gene sequences. Megaprimers, which are PCR

products themselves, could also add specificity to PCR tests because of their
additional length.

While almost any nucleic acid may be amplified by PCR, amplification of

mRNA and single- or double-stranded viral RNA requires modification of the

procedure shown in Figure 1 (135,141). RNA is typically reverse-transcribed
into cDNA before amplification by Taq polymerase, but more direct RNA

amplification is also possible using the manganese-dependent reverse trans-

criptase activity of Thermus thermophilus (Tth) polymerase (41, 46). Because
of extensive genetic heterogeneity with many RNA viruses, the use of highly

conserved sequences for primer design is recommended for detecting all
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individuals of a particular vires (20, 117). Alternatively, all members of 

group of viruses may be detected using degenerate primers derived from

conserved, reverse-translated viral amino acid sequences (80, 103, 115).

Any DNA or RNA sequence that is specific for a particular organism can

be used for PCR detection of that organism. For example, sequence data from

a cloned mitochondrial (mt) DNA fragment specific to Gaeumannomyces

graminis facilitated primer design for fungal DNA amplification in infected

wheat or bermudagrass (63). Primers have also been based on pathogen-spe-

cific plasmid sequences, such as those used to develop PCR diagnostic assays
for Agrobacterium tumefaciens (40), Erwinia amylovora (12), and Xantho-

monas campestris pv. citri (61). Other potential targets for specific amplifi-

cation include the short, interspersed repetitive elements present in bacteria

(35, 94), and the species-specific tandem DNA repeats in many eukaryotes,

including potato cyst nematodes (139). A strain or isolate can also be marked,

or transformed, with a known gene and primers specific for the reporter gene

used to detect the isolate. For instance, primers specific for the npt gene of

bacterial transposon Tn5 detect npt sequences in soil and root nodules

inoculated with a Tn5-marked strain of Rhizobium legurninosarurn (110).

DNA fragments specific for Pseudomonas solanacearum have recently been

cloned by subtractive hybridization (128). This technique enriches for nucleic

acid sequences specific for a particular organism or strain by hybridization
and subsequent removal of sequences that are in common with other

organisms. In this study for example, DNA sequences from P. solanacearum

in common with sequences from Xanthomonas campestris pv. vesicatoria

were removed by hybridization with excess, sheared DNA of X. campestris,

and the remaining fragments, enriched for sequences specific to P.

solanacearum, were cloned. Primers derived from these cloned fragments

specifically amplify DNA from all except three of the 85 strains of P.

solanacearum tested, and from field potatoes infected with P. solanacearum.

Subtractive hybridization has also expedited isolation of strain-specific DNA

from Rhizobium leguminosarum bv. trifolii. DNA fragments recovered from

a strain of R. leguminosarum following substractive hybridization failed to

hybridize with genomic DNA from seven closely related strains of R.

leguminosarurn bv. trifolii (15). Sequences derived from these strain-specific

fragments could be used to design primers for detection of this particular

strain.

Ribosomal genes and the spacers between them provide attractive targets

for molecular detection and phylogenetic studies because they occur in high

copy numbers, possess conserved as well as variable sequences, and can be
amplified and sequenced with universal primers based on their conserved

sequences (7, 19, 83, 136, 157). Genes for 5.8S, 17S (18S), and 26S (28S)

fungal nuclear ribosomal RNA genes (rDNA) are usually organized 
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head-to-tail tandem, identical repeats with 60-200 copies per haploid genome

(discussed in 19,166). Despite conservation of fungal rRNA genes, sufficient

sequence variation can exist to allow their use as targets for differential

amplification. Simon et al (133) describe the use of primers based on 18S

rRNA gene sequences to specifically amplify vesicular-arbuscular en-

domycorrhizal (VAM) fungal DNA from complex samples that included other

fungal and plant DNAs.

Considerably greater sequence variation is found in the internal transcribed

spacer (ITS) regions between the rRNA genes within a rRNA repeat unit

(rDNA; 70, 102, 106, 164, 166). Even more sequence differences are in the

nontranscribed spacer (NTS) regions between the rDNA repeat units and still

more in the intergenic spacer (IGS or IGR) regions, or noncoding sequences

that occur within the rDNA repeat unit of some fungi (75). In principle, any

organism or even different strains or isolates of one organism that has rDNA

repeats may be specifically detected by selecting primer sequences based on

variable spacer regions. Nazar et al (102), for example, found adequate

sequence differences in the ITS regions of the wilt fungi, Verticillium dahliae

and V. albo-atrum, to design primers that specifically amplify the DNA of

each species (Figure 2). Primers based on differences in ITS 1 sequences 

Leptosphaeria maculans allow specific amplification of either weakly or

highly virulent isolates of this fungal pathogen, the latter being detectable in

infected canola leaves even before symptom development (164).

Less specific, or even degenerate primers often amplify similar-sized DNA

18S 5.8 28S rRNA

:’Eco .--Eco--. Eco--.

b113 mp18 ~d13 mp,e Id13 mpl~
I

_- __~ --. ..~---_

ITS 1 ITS 2

Figure 2 Sequence differences in the intervening transcribed sequences of rDNA from
Verticillium albo-atrum and V. dahliae. Genomic libraries of EcoRI-digested fungal DNA were
prepared and inserts complementary to the 5.8S rRNA were subeloned in M13 mpl8 for DNA
sequencing. Shaded regions indicate DNA corresponding to the mature rRNA sequences and
arrows indicate the direction and extent of DNA sequencing. Regions of sequence difference that
were subsequently used for hybridization probes and PCR primers are indicated below each
subclone; the nucleotide differences are enclosed in boxes. (Reprinted from Ref. 102, with
permission.)
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fragments of related organisms that are distinguished by restriction enzyme 

analysis or fragment length polymorphisms (RFLPs; 9, 32, 35, 75, 90, 100, 

158, 160). For example, related plant viroids or viruses have sequences in 

common that are exploited to amplify group-specific sequences subsequently 

differentiated by RFLP analyses (58, 80, 103, 115, 120,165). For PCR 

products greater than 500 bp, restriction endonucleases with four-base 

recognition sites are usually adequate, since any particular four-base sequence 

occurs an average of once per 256 bases. However, amplified DNAs of less 

than 500 bp in length are unlikely to contain sufficient recognition sites to 

allow differentiation between particular isolates. Recently, a number of 

restriction endonucleases have been isolated from virus-infected eukaryotic 

green algae (151). One of these, CviJI, has the recognition sequence 

purine-A-G-pyrimidine, statistically equivalent to a three-base recognition 

site, which should occur an average of once per 64 nucleotides. CviJI allowed 

distinction between the PCR products of barley yellow dwarf virus (BYDV) 
field isolates (Figure 3; R. French & N. L. Robertson, unpublished data). By zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 RFLP mapping of PCR products of barley yellow dwarf virus (BYDV) with CviJI. 
Luteovirus-specific primers (1 15) were used to amplify BYDV cDNAs from one sample from 

wheat and three from oats. The rightmost lane contains CviJI-digested PCR products of the type 
isolate of BYDV-PAV and the leftmost lane contains the 123-base pair ladder (BRL) DNA size 

markers. 
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hybridization analysis, these isolates are indistinguishable from the PAV strain

of BYDV (115), but CviJI digestion readily differentiated an oat isolate from

the others (Figure 3).

Sensitivity and Quantitation

The sensitivity of detection by PCR varies, and for diagnostic tests of prevalent

phytopathogens, reduced sensitivity may be desirable. Target sequences and

sample treatments should be chosen accordingly. That is, multi-copy target

sequences allow greater sensitivity than single- or low-copy target sequences.

PCR reaction conditions also affect sensitivity. For example, target sequences

of X. campestris pv. citri, which have a high G+C (61%) content, are

amplified in a buffer with pH 9.0 and 1% Triton X-100 (61) but not in standard

buffer (98).

PCR sensitivity can be increased with the use of labeled probes or primers

(48, 61, 72, 153), but single-copy detection is sometimes achieved without

their use (28). Additional rounds of amplification add sensitivity (10, 11, 110,
137; R. Warren & J. M. Henson, unpublished observations); however, this

is costly and increases the risk of contaminating reactions. It is also possible

to achieve greater sensitivity with more thermostable polymerases, such as

the Stoffel fragment of Taq or the DNA polymerase of Sulfolobus

acidocaldarius. These enzymes have longer half-lives at denaturation temper-

atures and therefore withstand more DNA amplification cycles than Taq

polymerase (reviewed in 4, 10, 11).

Sample complexity also influences detection sensitivity. For instance, as

few as five cells (from 1 p,1 of broth culture) of P. solanacearum produced
positive PCR reactions, even with a 20- or 200-fold excess of cells of Erwinia

herbicola or Xanthomonas campestris pv. campestris; however, 2,000 and

20,000-fold excesses of other bacteria decreased detection by tenfold (128).

PCR is capable of quantifying relative differences as well as absolute

amounts of scarce target RNA or DNA sequences, and is often more sensitive

than traditional methods for nucleic acid quantitation (reviewed in 17, 50).
One of the most facile quantitative methods is the inclusion of known amounts

of reporter or internal control sequences in PCR reactions (17, 39a, 66, 67,

76, 134, 142), and there are simple procedures for generating these competitor
DNA fragments (39a, 53, 148). The internal control sequence is usually

amplified with the same primers and is identical to the target sequence except
for its slightly different size that distinguishes it from target DNA amplification

product on gels (39a, 53, 148). However, use of a heterologous internal

control sequence that is amplified with the same primer pair as the target

sequence can avoid the generation of artifactual PCR products caused by

heteroduplex formation between the target sequences and the internal control

sequences during amplification (66). It is assumed that the amplification
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efficiency of control sequence is the same as that of the target sequence; the

amount of target sequence in the initial sample is calculated from the amount

of initial concentration of control sequence and comparison of the ratio of the

quantities of amplified target and control amplified products.

The number of target sequences in samples are also quantitated with limiting

dilutions and Poisson statistics (140). That is, at the limit of dilution of 

specific sequence, some PCR reactions will be negative and some positive.

The number of targets present in the undiluted sample is calculated by the

Poisson distribution. Although it requires several replicate reactions for each

sample, this method is simple and quantitates the number of sequences initially

present in samples instead of calculating initial amounts based on amounts of

amplified product.

Quantitation of phytopathogens in diseased plants is desirable, especially

with ubiquitous phytopathogens that are present on healthy plants or in healthy
soils, and disease is a matter of degree of infection or infestation. Changes

in pathogen inoculum levels (e.g. in soil) could also be monitored 

quantitative PCR. For example, it would be helpful to predict the probability
and severity of take-all disease of wheat caused by the soilborne fungus G.

grarninis, based on PCR-determined estimates of the amount of G. graminis

in field soil.

Robb and colleagues (66) have recently monitored the spread of Verti-

cillium dahliae and V. albo-atrum in individual, infected host plants by

PCR quantitation of fungal biomass. Although the traditional plating method
for detecting this fungus generally correlates with PCR detection, PCR is

more sensitive. Target sequences were detected by PCR immediately after

host inoculation (spore infusion) in top stem segments of host plants, but

the pathogen was undetected by the traditional assay until 24 hr after

inoculation. In addition, fungal quantitation by plating methods requires 3-4

days, with up to six weeks for positive fungal identification, whereas PCR

detection requires only one day. Quantitative PCR analyses of resistant and

susceptible host cultivars also suggests that V. albo-atrum-resistant alfalfa

limits initial fungal colonization, whereas V. dahliae-resistant sunflower

rapidly eliminates the fungus after initial colonization (66). Quantitative

PCR will likely be helpful for determining what stage of pathogenesis is

inhibited in other resistant host cultivars. Recently, quantitative PCR has

also been used to measure the resistance of human immunodeficiency virus

to antiviral drugs (47), and similar drug susceptibility testing of phy-
topathogens is feasible.

Quantitating target sequences is especially useful for estimating the biomass

or number of cells of unculturable microorganisms or obligate biotrophs, such

as the endomycorrhizal fungi, which are difficult to enumerate in colonized
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plants. For example, in competitive PCR reactions with internal rDNA

sequences, Simon et al (134) determined the number of vesicular-arbuscular
mycorrhizal 18S rRNA genes (an indicator of VAM biomass) in leek roots

colonized by Glomus vesiculiferum.

It is difficult to confirm the presence of viable pathogens in diseased plants

that produce positive PCR reactions but from which the pathogen cannot be

cultured. For example, plasmid DNA sequences from X. campestris pv. citri

were detected in 7-month old dried lesions on inoculated grapefruit leaves,

but viable organisms were not recovered (61). Even free-living bacteria that
are typically culturable can exist in viable but unculturable states (30, 163a).

G. graminis is also difficult to culture from soil known to be infested with

the fungus based on wheat infection assays (33). Atlas and colleagues (95)

used quantitative PCR to observe an increase in giardin mRNA after

excystation induction in viable, but not killed, Giardia cysts. Similarly,

viability of plant pathogens detected by PCR could be confirmed by measuring

induction of pathogen-specific mRNA.

Microbial detection methods that combine antibody binding and PCR are

especially sensitive, and they detect microbial antigens in addition to, or

instead of, their nucleic acids. Hence, these methods are possibly better

indicators of microbial viability. For instance, Wetzel et al (161) used specific

antibody to concentrate plum pox potyvirus from diseased trees before

amplifying a specific RNA sequence of the "captured" viral particles.

Antibody-coated magnetic particles were recently used to extract Salmonella

bacteria from samples prior to PCR amplification (162). Immuno-PCR 

another extremely sensitive antigen detection technique (125). In this method

a DNA fragment is molecularly linked to antigen-antibody complexes. Protein

A and streptavidin portions of the linker molecule bind antibody and DNA,
respectively. Antigen present in a sample binds specific antibody, which, in

turn, binds the linker molecule. The latter is bound to a nonspecific,

biotin-labeled DNA sequence that is subsequently amplified by PCR.

In each of these studies the sensitivity of detection was improved dramat-

ically. For example, immunocapture PCR was 250 times more sensitive than

direct PCR for detection of plum pox potyvirus (161). Immuno-PCR detected
580 antigen molecules, or was 105 times as sensitive as the enzyme-linked

immunosorbent assay for detection of antigen. In principle, it would allow

detection of a single antigen molecule (125). Immuno-PCR requires only

antigen-specific antibody, whereas immunocapture requires antigen-specific

antibody and nucleic acid sequence information from the microbe being

detected. Soon it may be feasible to combine immunocapture and RAPD
fingerprinting, which would also require specific antibody but not specific

primers.
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Other Considerations

Viability of an organism is not required for detection or amplification of target

nucleic acid sequences, making PCR an extremely powerful tool for the

analysis of ancient DNA (77), or for the identification or fingerprinting 
hazardous, infectious microorganisms. Even autoclaved material containing

target sequences can produce specific amplified PCR products (8, 43)!

However, because it is possible for a single copy of contaminating target

sequence to produce a positive PCR result, contamination problems occur

easily. Thus, diagnostic PCR assays require numerous negative controls.

False-positive reactions result from contamination introduced by aerosols,

hair, skin, gloves that have touched a surface with target sequences, or

contaminated reagents, including commercial preparations of Taq DNA

polymerase (28, 116, 124). Some PCR operators apparently become target
DNA "carriers" or "shedders" and frequently contaminate reactions (28).

Methods to reduce or eliminate contamination include ultraviolet irradiation

of reagents (43, 49) and treatment of reagents or PCR reactions with
exonucleases (99, 116). Also, dUTP may be substituted for dTTP in PCR

reactions. When amplification is followed by uracil DNA glycosylase

treatment, reaction products cannot serve as templates for further amplifica-

tion, thereby reducing contamination due to carryover of PCR products (143).

However, each of these treatments has associated problems or expense, and

the best defense against false-positive reactions is meticulous laboratory

technique and clean-room standards (28, 11 l).

Another potential problem with PCR reactions is the amplification of

products other than those predicted. Background amplification not only

confuses test results, it interferes with amplification of predicted products by

consuming reaction reagents. Additional products include single-stranded

DNA (150), or result from mis-priming or amplification of primer artifacts

("primer dimerization"). Background is reduced or eliminated by using "hot

start" (28) or "heat-soaked" (119) PCR--procedures that ensure initiation 

reactions at denaturation temperature. Mis-priming, or annealing of primers
to alternative sequences is also influenced by reaction conditions such as

magnesium concentration or unknown factors in samples containing target

sequences. For example, expected products were amplified in G. graminis

PCR reactions if hyphae were picked from Luria or potato dextrose agar

medias, but not if they were picked from SM7 agar, a selective medium for

G. graminis that contains L-DOPA and several antibiotics (45).
Increasing primer annealing specificity reduces background amplification

(114, 126, 132; reviewed in 4, 11, 46, 137). The use of nested primers 

PCR diagnostic tests also improves specificity (2, 63, 168). For example,

PCR detection of G. graminis DNA using one set of outside primers amplified

b
y
 G

re
at

er
 W

es
te

rn
 L

ib
ra

ry
 A

ll
ia

n
ce

 o
n
 0

6
/1

3
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


PCR AND PLANT DISEASE DIAGNOSIS 97

a mitochondrial fragment of approximately 450 bp. Reaction products were

subsequently diluted into a second reaction with nested primers that specific-

ally amplified sequences within the 450-bp sequence. Reactions with only the
outside or inside primers were less specific, and they amplified products from

other fungi as well as G. graminis (63, and references therein). Unfortunately,

diagnostic tests that use nested primers and two rounds of amplification

increase expense as well as specificity. Twice as much DNA polymerase,

primers, and thermal cycling time are required for nested primer tests. In

addition, reactions are more easily contaminated because of additional reaction
tube handling, although recently a method has been described in which nested

primers are used in a single reaction tube (168). Finally, first-round primers
can interfere with second-round amplification, necessitating their removal.

Exonuclease VII efficiently eliminates oligonucleotide primers without inter-

fering with subsequent amplification (86), but this treatment increases costs.

A related method, hybrid-selected template amplification, has been used

to increase specificity and allow detection and cloning of an influenza viral

DNA sequence that was previously difficult to detect after PCR amplification

due to high background (93). First-round amplification products are diluted

into a second reaction with a set of nested primers to amplify a smaller product.

Second-round product is then used to select by hybridization the larger, desired

product of the first round of amplification. Hybrid-selected first-round

products are finally amplified in a third reaction to produce the initial

amplification product of larger size without background amplification.

The expense of Taq polymerase, primers, high quality agarose, and thermal
cyclers is prohibitive for routine diagnostic testing of some phytopathogens,

especially those easily cultured and identified. However, because of the speed
and relative simplicity of PCR assays, a comparative reduction in labor costs

offsets some of these expenses. As additional diagnostic procedures are

developed, it should be possible to assay for several pathogens simultaneously

using multiple sets of pathogen-specific primer pairs, or "multiplexing"

(reviewed in 10, 11), which would further reduce costs per assay. Also, other

polymerases are now commercially available and offer additional advantages;

for example, Thermococcus litoralis polymerase has a lower error rate during
DNA synthesis than Taq polymerase, Thermus thermophilus (Tth) polymerase

has both DNA- and RNA-dependent DNA synthetic activities, and Sulfolobus

acidocaldarius DNA polymerase is more thermostable than Taq (reviewed in

4, 10, 11).

Sample Preparation

Target DNA or RNA has been amplified from seemingly intractable material,
including autoclaved bacterial culture slants (8), patient stools (2), mummies

and ancient sediments (reviewed in 77), insects or their saliva or hemolymph
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(52, 92, 101, 107), insects fossilized in amber (23, 38), paraffin-embedded

tissue (138), fixed cells on microscopic glass slides (167), sorted chromosomes

(25), agarose gels (14), soil (18, 68, 109-110, 130, 147), sewage/sludge

(147a), large volumes of water (10, 144, 157), fungal hyphae or spores 

63,133), and either healthy or diseased plant tissue (36, 81; Table 1). Target

sequences are usually purified or treated to remove DNA polymerase

inhibitors, such as polysaccharides (36) or phenolic compounds or humic

substances (24, 68). Some purification or treatment is probably required for

maximum sensitivity of target sequence detection in most environmental

samples. However, if the sample contains many copies of the target sequence,

simply boiling the sample for a few minutes is often adequate preamplification
treatment for qualitative detection of the target sequence. Target sequences

from as few as five boiled, bacterial cells of P. solanacearum from pure

culture are amplified sufficiently to generate products visible on agarose gels

(128). Rollo et al (118) used boiled mycelium collected from infected lemon

trees to detect the fungal pathogen Phoma tracheiphila, and boiling infected

barley leaf tissue was sufficient to detect specific DNA sequences of

Pyrenophora teres (B. Baltazar, A. Scharen, V. Raboy, unpublished data).
Boiled wheat roots or crowns infected with G. graminis, infested oat seeds

used as field inoculum, or even a single, boiled ascospore (containing

100-1200 copies of mitochondrial DNA target molecules) apparently released

enough target mtDNA to produce visible amplified products on agarose gels

(63).

This PCR test for G. grarninis uses two rounds of amplification and

nested primers, and it is possible that any DNA polymerase inhibitors present

in the first round of amplification are removed or reduced by dilution during

the subsequent second round of amplification. However, inhibition of DNA
polymerization by soil is not completely overcome by such dilution.

Amplified products are not produced from samples containing up to 40

ascospores when 1 gm of soil is added. Yet samples with entire perithecia
containing up to 100 ascospores are positive, indicating that even soil

inhibition is overcome if large numbers of target molecules are present in

the sample (63).

Removal of PCR inhibitors from samples is frequently accomplished by

simple procedures, including treatment with cation-exchange resins (68, 133,

138) or polyvinyl pyrrolidone (PVP), which binds polyphenolic compounds
(24, 71). PVP treatment also removes inhibitors from yeast, insect, and

nematode samples (M. E. John, personal communication). Detection of 

graminis in soil was improved by grinding samples with insoluble PVP before

boiling, but detection was most sensitive with samples that were boiled in

buffer and centrifuged through Sephadex G200 columns (147; T. Goins & J.
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M. Henson, unpublished observations); five boiled ascospores in 1 gm soil

are detectable using the latter method. Borja & Ponz (16) find that simply

diluting crude walnut bark extracts with reverse transcriptase buffer containing

dilute ionic and nonionic detergents allows efficient cDNA synthesis and

subsequent PCR detection of cherry leafroll virus. Sample dilution alone

permits amplification of previously inhibited reactions from host plants

infected by but resistant to V. dahliae (66).

Additional Amplification Procedures

Besides their expense, thermal cyclers present other problems in the devel-

opment of PCR diagnostic tests. Their designs vary and can affect product

yields and sizes, background, and well-to-well reproducibility (65, 74).

Recently developed alternative amplification techniques are isothermal, and

these techniques could reduce overall costs as well as variable amplification

results (11, 13, 56, 91, 156). One of these, called self-sustained sequence

replication, or 3SR, mimics the replication of retroviruses (13, 56). It is similar

to PCR in that two primers are used, but in addition to gene-specific sequences,

primers also incorporate promoter sequences for a phage RNA polymerase.

Using a combination of reverse transcriptase, RNA polymerase, and RNase

H, target-specific cDNAs and RNAs are continually produced. Another
approach uses cis-acting RNA phage sequences coupled to a target-specific

RNA probe (13,91). After hybridization, unbound probe is washed off and

any bound probe is amplified to detectable concentrations by adding phage

replicase. Although most of the isothermal amplification techniques detect

RNA sequences, one called strand displacement amplification targets specific

DNA sequences (156). The ligase chain reaction (LCR; reviewed in 11, 

163) still employs the alternating melting and annealing cycles of PCR, but

may be less sensitive to variation in heating and cooling times. LCR detects
single base-pair differences in target DNA sequences; for example, an LCR

assay based on single base-pair differences in their 16S rRNA genes
distinguishes closely related Listeria species (163). However, LCR requires

four synthetic oligonucleotides per reaction.

OTHER APPLICATIONS AND CONCLUSIONS

PCR is often employed in phylogenetic studies to amplify genetic material,

usually ribosomal or transfer RNAs or the spacers between them. Amplified

sequences are compared and used to discern evolutionary relationships of
organisms, including plant pathogens or soil microorganisms (7, 77, 96,

107, 129, 136, 157). For example, Lee & Taylor (85) use the internal

transcribed spacers of the rDNA region to infer a phylogenetic tree of several
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Phytophthora species. Recently, analysis of sequences of ribosomal-protein

genes demonstrated that aster yellows-type mycoplasmalike organisms

(MLOs), which are pathogenic for members of the genus Oenothera, are

more closely related to Acholeplasma laidlawii (a nonsterol-requiring

acholeplasma) than they are to sterol-requiring animal mycoplasmas (88).

Phylogenetic studies facilitated by PCR are also used to measure biodiversity

in particular ecosystems; reviewed in 21, 157). In addition, denaturing

gradient gel electrophoresis of amplified 16S ribosomal RNAs from complex

ecosystems has recently been employed to profile microbial communities

(99a).

Classification of pathogen isolates may also be simplified using a combi-

nation of morphological and molecular characteristics. For instance, obtaining

the sexual stage of G. graminis var. graminis takes weeks in the laboratory,
and it would be faster to identify this fungus based on its morphologically

characteristic adhesive cells (hyphopodia) and a positive PCR test (45).

PCR is already being used to advance studies of host-pathogen interactions.

Cloning or gene-synthesis strategies for pathogen or pathogen-induced host

genes or cDNAs often include PCR procedures (5, 27, 62, 69). PCR could
also be used to construct pathogen genomic or cDNA libraries (169), or 

could be used to construct libraries of host or pathogen genes that are
differentially expressed during the infection process (42, 59). In addition,

genetic mapping is facilitated by PCR-generated markers used in linkage

studies (96, 145, 152) that will likely assist in mapping and cloning disease

resistance loci of host plants.

Studies of gene expression during plant infection will be advanced with

techniques that use PCR. Expression of a gene is detectable by PCR even
when only a few cells among thousands are actively transcribing it (44, 146),

and the onset of expression of a particular gene can be determined more

precisely (55). Differentially expressed mRNAs, such as those synthesized

during infection, can now be specifically amplified by PCR and displayed on

gels (87). In addition, chromatin structure, DNA-protein interactions, or DNA

methylation patterns, all of which affect gene expression, can be analyzed by
a recently developed PCR method called ligation-mediated PCR (LMPCR;

51, 108).
More sensitive monitoring of microbial infection or colonization of indi-

vidual plants can be accomplished with PCR, especially since it is now

possible to amplify target sequences in situ in tissue or individual cells (26,
105). Natural microbial populations or genetically engineered organisms or

their nucleic acids can be sensitively monitored in soil, insect vectors, water,

or air by PCR. Observing the movement of genetic elements through plants

or microbial populations will also be facilitated by PCR. For example, PCR
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could be used to follow fungal dsRNAs or linear dsDNA plasmid migration

during hyphal anastomosis. Some fungal dsRNA elements are possible

determinants of virulence (6), while others confer hypovirulence to their host

fungi. For instance, one viral dsRNA confers hypovirulence to its host, the
chestnut blight fungus, Cryphonectria parasitica, and rapid and sensitive

monitoring of this genetic element will facilitate its use as a biological control

agent of chestnut blight (27).
Because of its sensitivity, PCR will continue to be used diagnostically to

detect genomes or antigens of microorganisms that are scarce, difficult to
culture, or difficult to identify once cultured. Pathogen screening of seeds,

stored grain, micropropagated tissue culture, or vegetatively propagated plants

will be assisted by PCR or related techniques. PCR or immuno-PCR may

prove to be more sensitive and reliable methods for detection of toxins,

pesticides, or other undesirable chemicals, microorganisms, or ingredients in
our food. For example, PCR was used to detect wheat contamination

(wheat-specific DNA) in dietary nonwheat products (3), and it was used 

detect the human pathogen, Listeria monocytogenes, in naturally contaminated

food samples (104).

The sensitivity, speed, and versatility of PCR are primary factors in its

wide acceptance in plant pathology as well as many other fields of biology.

In its impact on both basic and applied research, PCR is unsurpassed. It is

adaptable to many experimental objectives, and it is used with a wide range

of starting material, including purified nucleic acids, intact cells or tissues,

or complex environmental samples. Research to date has just begun to develop

specific applications, and it is likely that the implementation of PCR-based

diagnostic tests will grow rapidly in the near future. Central questions in plant
pathology can be addressed at a level of precision that was impossible just a

few years ago. As PCR methods for detection of pathogens become available,

more research will focus on using these as tools to study pathogen populations,

biology, ecology, variability, and host-pathogen interactions.
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