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The Polynomial Connection between Morphological
Dilation and Discrete Convolution

Vivek Sridhar, Keyvan Shahin, Michael Breuß and Marc Reichenbach

Abstract—In this paper we consider the fundamental opera-
tions dilation and erosion of mathematical morphology. Many
powerful image filtering operations are based on their combi-
nations. We establish homomorphism between max-plus semi-
ring of integers and subset of polynomials over the field of real
numbers. This enables to reformulate the task of computing
morphological dilation to that of computing sums and products
of polynomials. Therefore, dilation and its dual operation erosion
can be computed by convolution of discrete linear signals,
which is efficiently accomplished using a Fast Fourier Transform
technique. The novel method may deal with non-flat filters and
incorporates no restrictions on shape or size of the structuring
element, unlike many other fast methods in the field. In contrast
to previous fast Fourier techniques it gives exact results and is
not an approximation. The new method is in practice particularly
suitable for filtering images with small tonal range or when
employing large filter sizes. We explore the benefits by investigat-
ing an implementation on FPGA hardware. Several experiments
demonstrate the exactness and efficiency of the proposed method.

Index Terms—morphological dilation, morphological erosion,
max-plus semi-ring, fast Fourier transform, polynomials, FPGA
hardware

I. INTRODUCTION

MATHEMATICAL morphology is a highly successful
field in image processing. It is concerned with the

analysis of shapes and structures in images, see for instance
[10]–[12] for an account of theory and applications. The basic
building blocks of many of its processes are dilation and
erosion. These operations are dual, so that it is convenient to
focus on dilation for the construction of algorithms. Modeling
images via grey values on a discrete grid, computing dilation
means that a pixel value is set to the maximum of the grey
values within a filter mask centered upon it. This mask is called
structuring element (SE), and it can be either flat or non-flat
[18]. A flat SE describes the shape of the mask, while a non-
flat SE may additionally contain additive grey value offsets.

An important property of morphological filters is the high
efficiency that can be achieved in their implementation. Let
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us briefly review some efficient algorithms along the lines of
their possible classification described in [27]. A first family of
schemes aims to reduce the size of the SE or to decompose
it, thus reducing the number of comparison operations for
evaluation of the maximum respectively minimum over an SE.
In a second family of methods a given image is analysed so
that redundant operations that may arise in some image parts
could be reduced. However, most of these methods are limited
in terms of shape, size or flatness of SE, or specific hardware
that is needed, cf. [12], [14]–[17], [24].

There are just few fast methods that allow an SE to be of
arbitrary shape and size. A very popular example is the classic
scheme from [26] that relies on histogram updates. However,
as also for [26], the algorithmic complexity of most methods
relies inherently on size of the SE, and often also on its shape.
Since the SE is moved over an image in implementations
relying on sliding window technique, the computational effort
also relates to image size.

An alternative construction of fast algorithms relies on the
possibility to formulate operations over an SE as convolutions,
which may be realized via a fast transform. In a first work
[6], binary dilation respectively erosion are represented by
convolution of characteristic functions of underlying sets. In
[13] this approach was extended in a straightforward way to
grey scale images. This was done by decomposing an image
into its level sets, and each level set was processed like a
binary image. By construction, the method is limited to flat
filters of particular shape. A different extension of [6] has been
proposed in [7], making use of an analytical approximation
of morphological operations. The resulting method is suitable
for flat and non-flat SE, without restriction on shape or size.
However, as analyzed in [7], [8], this comes at the expense of
a shift and smoothing effect in the tonal histogram. In order to
address this issue, a novel fast and exact method has recently
been proposed [31] which considers the umbra of image and
filter as the computational setting for the convolution.

Our Contributions: In this paper we extend the work in [31]
to analytically prove the exactness of the proposed method.
In particular, we construct a homomorphism between semi-
rings of polynomials and max-plus semi-ring of non-negative
integers. This allows us to represent computations in the max-
plus semi-ring as sums and products of polynomials. We
also establish how our constructions and convolution precisely
relate to morphological dilation, thus allowing us to utilize
the above-mentioned theory. Furthermore we provide extensive
additional experiments that demonstrate the exactness of the
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proposed method. In particular, this includes a novel, detailed
study of an implementation of our method on FPGA hardware.
The results confirm the beneficial theoretical and computa-
tional properties of our scheme.

II. THEORETICAL BACKGROUND

A. Morphological Operations

An N -dimensional grey-value image is a function f : F →
L. Thereby F ⊆ ZN is the set of the (in general, N -
dimensional) indices of pixels in the image, also known as
domain of the image. Furthermore, L = {0, 1, · · · l}, l > 0,
is the tonal range of the image. In case of the common 8-bit
grey-value image, L is the set of integers in the range [0, 255].
Similarly, a morphological grey-value filter, flat or non-flat,
can be defined as b : B → L, B ⊆ ZN . Let us note that
b(·) ≥ 0 (which affects some formula). The mask domain B
denotes the domain of the structuring element.

The dilation of image f by structuring elements b is denoted
by f ⊕ b and is computed for each x in its domain F ⊕B as

(f⊕b)(x) = max{f(x−y)+b(y) | (x−y) ∈ F ∧y ∈ B} (1)

Here, F ⊕B = {xF + xB |xF ∈ F ∧ xB ∈ B}. F ⊕B is the
Minkowski addition of set of indices. This also corresponds
to dilation of F by B considering them as binary images
(see, [18]). In practice, we are only interested in the indices
contained the original image, therefore, for each x ∈ F , we
use, with f ⊕ b := (f ⊕ b)(x):

f ⊕ b =


0 if x 6∈ F ⊕B

max{f(x− y) + b(y) | (x− y) ∈ F ∧ y ∈ B}
otherwise

(2)

Example 1. (Adopted from [31].) Consider a 1-dimensional
image f =

[
3 0 7 6 2 7

]
and filter b =[

1 2 X 0
]
. Here, a denotes that a is exactly the entry

that is located at the index 0, i.e. at the spatial origin. The
symbol X is used for indices not in the domain.

From (2), we have (f ⊕ b)(0) = max{f(0) + b(0), f(1) +
b(−1)} = max{3 + 2, 1 + 0} = 5. Similarly, (f ⊕ b)(2) =
max{f(0) + b(2), f(2) + b(0), f(3) + b(−1)} = max{3, 9, 7}
= 9 and so on.

Thus, we get, (f ⊕ b) =
[
5 8 9 8 8 9

]
.

The other fundamental morphological operation is erosion.
Erosion of image f by structuring element b is denoted as
f 	 b and is computed for each x in its domain F 	B as

(f 	 b)(x) = min{f(x+ y)− b(y) |x+ y ∈ F ∧ y ∈ B} (3)

Grey-value dilation and erosion are dual operations, i.e.
f ⊕ b = −((−f)	 b̆). Here, b̆ is the reflection of structuring
element about origin (of ZN ) and (−f) denotes the negative
of image, i.e. (−f)(x) = l − f(x), ∀x ∈ F (see, [20]). Due
to the duality, the task of computing grey-value erosion can
be reduced to that of computing grey-value dilation in linear
time. Thus, in this paper, we focus on computing dilation.

Figure 1. : Left Sample image of size 99 × 99. Centre: Dilation. Right:
Erosion, with a 5× 5 flat filter.

B. Polynomials and Max-plus semi-ring

The connection between grey-value morphological dilation
and the tropical semi-ring (Rmax,max,+), here Rmax = R∪
{−∞}, has been previously explored in [21]. In particular, the
computation at each pixel of dilation for grey-value images
using a non-flat structuring element, is of form max{a1 +
b1, a2 + b2 · · · am + bm} (see Example 1). This computation
takes place in the semi-ring (Z+ve

max,max,+), as L ⊂ Z+ve
max

= N∪{0}∪ {−∞}. Note, that the pixel not in the domain of
image or SE can be assumed to have the value −∞.

The theory that we develop in this section allows us to re-
duce the problem of computation in semi-ring (Z+ve

max,max,+)
to problem of computing sums and products of polynomials
over the real field (R,+, ·). Our construction in the next
section (Section III), allows us to compute sums and products
of polynomials as convolution of real numbers (or integers).
Thus, we are able to utilize Fast Fourier Transforms (or Fast
Number Theoretic Transforms) to speed up the computations.

We begin by recalling the definition of the algebraic struc-
ture semi-ring, which is ring without an additive inverse (see,
Chapter 1 of [22]).

Definition 1. Semi-ring A semi-ring (R,+, ·) is a non-empty
set R, equipped with two binary operators + and · such that
they satisfy the following properties:

i. Closure of addition: a+ b ∈ R, ∀a, b ∈ R.
ii. Associativity of addition: (a + b) + c = a + (b + c),
∀a, b, c ∈ R

iii. Existence of additive identity: ∃0 ∈ R such that a+ 0 =
0 + a = a, ∀a ∈ R.

iv. Commutativity of addition: a+ b = b+ a, ∀a, b ∈ R.
v. Closure of multiplication: a · b ∈ R, ∀a, b ∈ R.

vi. Associativity of multiplication: a(bc) = (ab)c, ∀a, b, c ∈
R.

vii. Existence of multiplicative identity: ∃1 ∈ R such that
a1 = 1a = a, ∀a ∈ R

viii. Distributive laws: Multiplication left and right distributes
over addition, i.e. for all a, b, c,∈ R, we have,

a) Left distribution a(b+ c) = ab+ ac.
b) Right distribution (a+ b)c = ac+ bc.

ix. a · 0 = 0 · a = 0, ∀a ∈ R.
In addition to the above properties, if ab = ba, ∀a, b ∈ R,
then the semi-ring is said to be commutative.

We now establish that (Z+ve
max,max,+) is a semi-ring.

Proposition II.1. (Z+ve
max,max,+) is a commutative semi-ring.
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Proof. We know that (Rmax,max,+) forms a semi-ring
known as tropical semi-ring [21].

Clearly, Z+ve
max = N ∪ {0} ∪ {−∞} ⊂ Rmax = R ∪ {−∞}.

To establish that Z+ve
max is a semi-ring (i.e. sub-semiring of

(Rmax,max,+)), we show the closure of operators and exis-
tence of identities in Z+ve

max (see, Chapter 1 of [22]).
i. By definition of Z+ve

max, the identity of operator ’+’, is 0 ∈
Z+ve

max and the identity of operator ’max’, is −∞ ∈ Z+ve
max.

ii. We prove the closure of operators.
As for the whole numbers, N ∪ {0} is closed under
operator ’+’. Therefore, for any a, b ∈ N ∪ {0}, a+ b ∈
N ∪ {0} ⊂ Z+ve

max.
If a = −∞ or b = −∞, then a+b = −∞ ∈ Z+ve

max. Thus,
Z+ve

max is closed under ’+’.
Similarly, for any a, b ∈ N ∪ {0}, max{a, b} ∈ N ∪ {0}.
If a = −∞, then max{a, b} = b and if b = −∞, then
max{a, b} = a. Thus, Z+ve

max is closed under ’max’.
Since (Rmax,max,+) is commutative semi-ring,

(Z+ve
max,max,+) is also commutative.

Consider the ring of polynomials, (R[x],+, ·), over the field
of real numbers, (R,+, ·). R[x] consists of all polynomials, in
a single variable x ∈ R, with real coefficients and non-negative
integers as powers. Let P ⊂ R[x], be the set of polynomials
with non-negative real coefficients, e.g. 0, 3x2 + 2, x, 1.5,
7.3x+ 9 etc.

Proposition II.2. (P,+, ·) is a commutative semi-ring.

Proof. (R[x],+, ·) is a commutative ring [23]. To prove the
proposition, we show that (P,+, ·) is a sub-semiring of
(R[x],+, ·). We need the closure of operators and existence
of identities in P (see, Chapter 1 of [22]).

i. The additive and multiplicative identity of (R[x],+, ·) are
0 and 1, respectively. By definition of P, 0 ∈ P and 1 ∈ P.

ii. The set of non-negative real numbers, {x|x ∈ R, x ≥ 0} is
closed under addition and multiplication. The set of non-
negative integers, N∪{0} is closed under addition. Thus,
for any p1, p2 ∈ P , p1 +p2 ∈ P, as coefficients of p1 +p2

are non-negative real numbers. Similarly, p1 · p2 ∈ P, as
coefficients of p1 · p2 are non-negative and powers are
non-negative integers.

Since, (R[x],+, ·) is commutative, (P,+, ·) is a commutative
semi-ring.

Let δ : R[x]→ Z+ve
max be the degree function, i.e.

δ(p) =


−∞ if p = 0

highest power with
non-zero coefficient otherwise.

(4)

We know that (see, Chapter 3 of [23]):
i. δ(p1 · p2) = δ(p1) + δ(p2), ∀p1, p2 ∈ R[x].

ii. δ(p1 + p2) ≤ max{δ(p1), δ(p2)}, ∀p1, p2 ∈ R[x].
We now show that δ(.) is a homomorphism from P onto

Z+ve
max.

Proposition II.3. δ(.) : P → Z+ve
max is a homomorphism from

semi-ring (P,+, ·) onto semi-ring (Z+ve
max,max,+).

Proof. We first show that δ(.) : P→ Z+ve
max is a surjection.

For −∞ ∈ Z+ve
max , we have 0 ∈ P such that δ(0) = −∞.

Similarly, for 0 ∈ Z+ve
max, we have 1 ∈ P, such that δ(1) = 0.

For any a ∈ N, we have xa ∈ P, such that δ(xa) = a.
For δ(.) to be a homomorphism between the semi-rings, it

needs to map the identities and preserve the operations (see,
Chapter 9 of [22]).

i. We have δ(0) = −∞ and δ(1) = 0. Therefore, δ(.) maps
the additive and multiplicative identities of (P,+, ·) to the
corresponding identities of (Z+ve

max,max,+).
ii. We already have established δ(p1 · p2) = δ(p1) + δ(p2),
∀p1, p2 ∈ P.
We also know δ(p1 + p2) ≤ max{δ(p1) + δ(p2)},
∀p1, p2 ∈ P. We prove equality. If p1 = 0, then δ(p1 +
p2) = δ(p2) = max{δ(p1), δ(p2)}, as δ(p1) = −∞. The
case p2 = 0 works analogously.
Let p1 6= 0 and p2 6= 0. Then, δ(p1) = a and δ(p2) =
b, for some a, b ∈ N ∪ {0}. Since we are dealing with
commutative semi-rings, without loss of generality, we
can assume a ≥ b. Since coefficients of p1 and p2 are
non-negative, coefficient of xa is non-zero in p1 + p2.
Therefore, δ(p1 + p2) ≥ a = max{δ(p1), δ(p2)}. This
means δ(p1 + p2) = max{δ(p1), δ(p2)}
∴ δ(p1 + p2) = max{δ(p1), δ(p2)}, ∀p1, p2 ∈ P.

We define an injection, δ′(.) : Z+ve
max → P, which computes

an inverse of δ(.) : P→ Z+ve
max

δ′(a) =


0 if a = −∞
1 if a = 0

xa , ∀a ∈ N
(5)

Clearly, one can observe that:

δ(δ′(a)) = a, ∀a ∈ Z+ve
max. (6)

Proposition II.4. δ′(.) : Z+ve
max → P is an injection.

Proof. Let δ′(a1) = δ′(a2), for any a1, a2 ∈ Z+ve
max.

If δ′(a1) = δ′(a2) = 0, then a1 = a2 = −∞, by definition.
If δ′(a1) = δ′(a2) = 1, then a1 = a2 = 0, by definition.
Otherwise, δ′(a1) = δ′(a2) ⇒ xa1 = xa2 ⇒ a1 = a2.

The next theorem is the main result of this section, which
allows us to describe computations in (Z+ve

max,max,+) semi-
rings in terms of sums and products of polynomials.

Theorem II.5. The following equality is true:

max{a1 + b1, a2 + b2 · · · ak + bk} = δ(

m∑
i=i

pai · pbi) (7)

where,
i. m ∈ N and m ≥ 2

ii. ai, bi ∈ Z+ve
max, and

iii. pa = δ′(a), for a ∈ Z+ve
max

Proof. We prove the theorem using the principle of mathe-
matical induction. We make use of the semi-ring structures
of (Z+ve

max,max,+) and (P,+, ·) (see, Proposition II.1 and
Proposition II.2), especially the associativity of operators (see,
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Definition 1) and the homomorphism, δ(.), between the semi-
rings (Proposition II.3).

For m = 2, we have,

max{a1 + b1, a2 + b2}
= max{δ(δ′(a1)) + δ(δ′(b1)), δ(δ′(a2)) + δ(δ′(b2))}
= max{δ(pa1) + δ(pb1), δ(pa2) + δ(pb2)}
= max{δ(pa1 · pb1), δ(pa2 · pb2)}
= δ((pa1 · pb1) + (pa2 · pb2))

Thus, Equation (7) holds for m = 2.
Let the statement in Equation (7) hold for m = k, k ∈

N, k ≥ 2.
We have,

max{a1 + b1, a2 + b2, · · · , ak + bk} = δ(

k∑
i=1

pai · pbi)

Let a0 = max{a1 + b1, a2 + b2, · · · , ak + bk}. Similarly,
let p0 =

∑k
i=1 pai · pbi . Clearly, due to closure of operators

in semi-rings, a0 ∈ Z+ve
max and p0 ∈ P.

We now show that Equation (7) holds for m = k + 1. For
any ak+1, bk+1 ∈ Z+ve

max, we have

max{a1 + b1, a2 + b2, · · · , ak + bk, ak+1 + bk+1}
= max{max{a1 + b1, a2 + b2, · · · , ak + bk}, ak+1 + bk+1}
= max{a0, ak+1 + bk+1}
= max{δ(δ′(a0)), δ(δ′(ak+1)) + δ(δ′(bk+1))}, by (6)
= δ(pa0 + (pak+1

· pbk+1
))

We have δ(p0) = a0 = δ(δ′(a0)) = δ(pa0). Thus, we get:

δ(pa0 + (pak+1
· pbk+1

))

= max{δ(pa0), δ(pak+1
· pbk+1

)}
= max{δ(p0), δ(pak+1

· pbk+1
)}

= max{δ(
k∑
i=1

pai · pbi), δ(pak+1
· pbk+1

)}

= δ((

k∑
i=1

pai · pbi) + (pak+1
· pbk+1

))

= δ(
k+1∑
i=1

pai · pbi)

i.e.
max{a1 + b1, a2 + b2, · · · , ak + bk, ak+1 + bk+1}

= δ(

k+1∑
i=1

pai · pbi)

Here, we have shown that, Equation (7) holds for m = k+1,
if it holds for m = k. Thus, Equation (7) holds for m ∈ N,
m ≥ 2.

C. Discrete Linear Convolutions
In this section we briefly discuss some basic notions and

properties of linear discrete convolution which are utilized in
our proposed method. The content of this section is extracted
from part of [31], focusing on the techniques that are relevant
for the extensions in the current paper.

One-Dimensional Discrete Linear Convolution: Consider
two 1-dimensional discrete signals f : F → R and g : G→ R,
where F,G ⊆ Z. The convolution of f and g, denoted by
f ~ g, results in a 1-dimensional discrete signal h : Z → R,
computed by:

h[k] = (f ~ g)[k] = (g ~ f)[k]

=

∞∑
i=−∞

f [i]g[k − i] , ∀k ∈ Z (8)

In (8), f and g are sufficiently padded with 0s, i.e, f [i] = 0,
if i 6∈ F , and g[i] = 0, if i 6∈ G.

If F and G are finite sub-intervals of Z, we might be
interested in the output h = (f ~ g), only over a finite subset
H ⊆ Z. This subset is determined by the mode of convolution
[9]. In this work, we utilize the full mode of convolution, in
which the output hfull = (f ~full g) omits all the elements
of the linear discrete convolution whose computation only
involves padded parts of the inputs:

hfull[k] = (f ~full g)[k]

=
∑

i : i∈F∧(k−i)∈G

f [i]g[k − i] (9)

Example 2. Let us clarify the meaning of the notions from
above by giving explicit formulae for corresponding convolu-
tions of two signals of finite lengths n1 +1 respectively n2 +1.
Consider two signals f : [0, n1] → R and g : [0, n2] → R.
The linear discrete convolution of the two signals is given by

h[k] = (f ~ g)[k] =



min{n1,k}∑
i=max{0,k−n2}

f [i]g[k − i]

if 0 ≤ k ≤ n1 + n2

0 otherwise

(10)

The full mode of convolution is given by

(f ~full g)[k] =

min{n1,k}∑
i=max{0,k−n2}

f [i]g[k − i],

∀k ∈ [0, n1 + n2]

(11)

Example 3. Let us consider another example of full convo-
lution, involving discrete 1-dimensional signals with negative
indices. Let f1 : [−1, 7]→ R and g1 : [−3, 5]→ R.

(f1 ~full g1)[k] =

min{7,k+3}∑
i=max{−1,k−5}

f1[i]g1[k − i],

∀k ∈ [−4, 12]

(12)

Multi-Dimensional Linear Discrete Convolution: Multi-
dimensional linear discrete convolution is a straightforward
extension of 1-dimensional convolution. Let f̃ : F̃ → R
and g̃ : G̃ → R be N -dimensional discrete signals, i.e.
F̃ , G̃ ⊆ ZN . Setting θj := kj − ij , the convolution (f̃ ~ g̃) =
h̃ : ZN → R is defined as:
h̃[k1, k2, . . . , kN ] = (f̃ ~ g̃)[k1, k2, . . . , kN ]

=

∞∑
i1=−∞

. . .

∞∑
iN=−∞

f̃ [i1, . . . , iN ]g̃[θ1, . . . , θN ]
(13)
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valid for all k1, k2, . . . kN ∈ Z within all the θj , and where f̃
and g̃ are sufficiently padded.

If F̃ and G̃ are finite and N -dimensional rectangles, i.e.
F̃ = F1 × F2 × . . . FN , G̃ = G1 × G2 × . . . GN , where all
the F1, . . . , FN , G1, . . . , GN are sub-intervals of Z, the finite
domain of interest of output H̃ ⊆ ZN is specified by the mode
of convolution along each dimension, similar to 1-dimensional
case.

III. PROPOSED METHOD

Let us first sketch the general proceeding of our novel
method. We consider in a general setting an N -dimensional
grey-value image f : F → L and filter (flat or non-flat) b :
B → L, F,B ⊆ ZN . First we construct (N + 1)-dimensional
arrays, fUm and bUm, for f and b respectively, such that, we
have a 1-dimensional vector which represents the coefficients
of the polynomial (δ′(f(x)) or δ′(b(x))) corresponding to each
pixel (x). The constructions fUm and bUm are similar to the
classic notion of the umbra of an image, cf. [18], to which we
make a reference with the subscript.

By Theorem II.5 (and Equation (7)), the constructed arrays
allow us to transfer the problem of morphological dilation
(computing maxima of sum) in N dimensions to that of
convolution in (N + 1) dimensions. There we can use an
efficient method such as the FFT to compute the convolution,
(f⊕b)Um, of fUm and bUm. The dilated image, (f⊕b), can be
obtained by appropriately projecting the (N + 1)-dimensional
array (f ⊕ b)Um on N -dimensions, i.e. by computing δ(px)
at each x ∈ F , where px is the polynomial whose coefficients
constitute (f ⊕ b)Um(x).

The detailed description of our proposed method is given
as follows.

Step 1: Let lR = maxx∈F {f(x)} + maxx∈B{b(x)}. Con-
struct two (N + 1)-dimensional arrays fUm and bUm. The
first N dimensions, referred to as the domain-dimensions, of
fUm and bUm consists of all (N -dimensional) indices of F
and B, respectively. The last dimension, referred to as the
range-dimension consists of indices {0, 1, . . . lR}.

The range-dimension, fUm(x) (or bUm(x)), represents the
coefficients of polynomial px = δ′(f(x)) (or px = δ′(b(x)))
corresponding to the pixel value of image (or filter) at position
x. The values in fUm and bUm are determined by the following
two equations:

fUm(x, y) =

{
1 if x ∈ F and f(x) = y

0 otherwise.
(14)

bUm(x, y) =

{
1 if x ∈ B and b(x) = y

0 otherwise.
(15)

Note that the indices of range-dimension start from 0. The
above construction makes it possible to have image and filter
of any shape and including gaps in the domain.

We pad or fill the domain appropriately so that F and B
are (hyper-) rectangles. For example, if x0 6∈ B, then, we
can define b(x0) = −∞, i.e. δ′(b(x0)) = δ′(0) = 0, thus,
bUm(x0, y) = 0, ∀y ∈ {0, 1, . . . lR}. Thus, the constructed
arrays fUm and bUm will always be (N + 1)-dimensional

(hyper-) rectangles in shape, regardless of the shape of image
domain F and filter domain B.

Example 4. (Adopted from [31].) Consider the image f and
filter b in Example 1. Then fUm and bUm are 2-dimensional
arrays (meaning that we have matrices here), with the column
(range dimension) having indices 0, 1, . . . 9, since f has the
range of values in [0, 7] and b in [0, 2]. Since the image f in
Example 1 has six pixels, fUm has six corresponding columns.

fUm =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 1 0 0 0 0


bUm =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1


Let us note that we write the column entries having in mind
the umbra notion, which means that numbering is from left to
right (as in f ) and from bottom to top (so that row number
k from the bottom corresponds to the grey value k, with the
added range for holding the possible filtering results when
using a non-flat structuring element as by b in the example).

Step 2: We calculate (f ⊕ b)Um by taking the linear
convolution of fUm and bUm, by using full mode on the
domain dimensions and the range dimension. The working
of convolution of umbras is explained in the next subsection
(see, Subsection III-A)

Within our implementation, this step is sped up using Fast
Fourier Transform (FFT).

Example 5. Continuing Example 4, we demonstrate the com-
putation of (f ⊕ b)Um(2). We have, from Equation (19):

(f ⊕ b)Um(2)

= fUm(0) ~full bUm(2) + fUm(1) ~full bUm(1) +

fUm(2) ~full bUm(0) + fUm(3) ~full bUm(−1)

so that

(f ⊕ b)Um(2) =



0
0
0
0
0
0
1
0
0
0


+



0
0
0
0
0
0
0
0
0
0


+



1
0
0
0
0
0
0
0
0
0


+



0
0
1
0
0
0
0
0
0
0


=



1
0
1
0
0
0
1
0
0
0


Step 3: (f ⊕ b) is determined from (f ⊕ b)Um for each

x ∈ F , using the following equation

(f⊕b)(x) =

{
max{y | (f ⊕ b)Um(x, y) ≥ 1} if x ∈ F ⊕B
0 otherwise

(16)
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where, clearly,

x 6∈ F ⊕B = {x |x− xb ∈ F for some xb ∈ B}
⇔6 ∃y : (f ⊕ b)Um(x, y) ≥ 1

Equation (16), in essence, computes δ(px), for each x ∈ F
where px is the polynomial whose coefficients constitute the
range dimension (f ⊕ b)Um(x).

Thus (f ⊕ b) calculated by (16) is the same as defined in
(2).

Example 6. Continuing Example 5, after Step 2, we have,

(f ⊕ b)Um =



0 0 1 0 0 1
0 1 0 1 1 0
0 0 1 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0


(where we consequently find (f⊕b)Um(2) in the third column).
Using (16), we easily obtain (f ⊕ b) from the matrix above
by taking the highest row index in which the value 1 appears
in each column, starting from bottom row equivalent to grey
value zero. Thus we get (f ⊕ b) =

[
5 8 9 8 8 9

]
,

compare Example 1.
This demonstrates how the proposed method can be used to

compute the exact dilation of an image by a non-flat filter.

A. Convolution of Umbras

In this subsection, we justify why the convolution performed
in Step 2 of our method produces the desired result.

i. Products of polynomials corresponds to full mode of
convolution of it’s coefficients [19].
Let p, q ∈ P, p(x) =

∑n
j=0 fjx

j , q(x) =
∑m
j=0 gjx

j .
Let f and g be 1-dimensional signals on [0, n] and [0,m]
respectively, with f [j] = fj , ∀j ∈ [0, n] and g[j] = gj ,
∀j ∈ [o,m]. Then, we get

c(x) = p(x)q(x) =

m+n∑
j=0

hjx
j

where, hj =

min{n,j}∑
k=max{0,j−m}

f [k]g[j − k]

(17)

That is, coefficients of c are given by the 1-dimensional
signal h, defined on [0,m + n], where h = f ~full g
(compare, Equations (17) and (11)).

ii. We now focus on the convolution of umbras, fUm and
bUm. Note that, by construction (in Step 1), F and B are
finite N -dimensional (hyper-)rectangles and L is the finite
set {0, 1, · · · lR}. Therefore, the set of indices, F ×L and
B ×L are finite (N + 1)-dimensional (hyper-)rectangles.
Thus, we can write

(fUm ~ bUm)[k1, k2 · · · kN+1]

=

∞∑
i1=−∞

· · ·
∞∑

iN+1=−∞
fUm[i1, i2 · · · iN+1]

bUm[θ1, θ2 · · · θN+1]

=

∞∑
i1=−∞

· · ·
∞∑

iN=−∞

{ ∞∑
iN+1=−∞

fUm[i1, · · · iN+1]

bUm[θ1, · · · θN+1]
}

=

∞∑
i1=−∞

· · ·
∞∑

iN=−∞

{
(fUm[i1, · · · iN , :]~

bUm[θ1, · · · θN , :])(kN+1)
}

(18)

Here, θj = kj − ij and fUm[k1, . . . , kN , :] and
bUm[θ1, . . . , θN , :] = bUm[k1 − i1, . . . , kN − iN , :] are
1-dimensional signals, with index of every dimension,
except the last, fixed.
Computing (18) for all indices of the last dimension
(range dimension) we obtain,

(fUm ~ bUm)[k1, · · · , kN , :]

=

∞∑
i1=−∞

· · ·
∞∑

iN=−∞

{
(fUm[i1, · · · iN , :] ~ bUm[θ1, · · · θN , :])

}
(19)

iii. Taking full mode of convolution along each dimension in
Equation (19), we obtain

(fUm ~full bUm)[k1, · · · , kN , :]

=
∑

i1∈F1∧θ1∈B1

· · ·
∑

iN∈FN∧θN∈BN

{
(fUm[i1, · · · iN , :]~full

bUm[θ1, · · · θN , :])
}

(20)

We have

{ij |ij ∈ Fj ∧ θj ∈ Bj}
= {ij |ij ∈ Fj ∧ kj − ij ∈ Bj}
= {kj − ij |kj − ij ∈ Fj ∧ ij ∈ Bj}
= {θj |θj ∈ Fj ∧ ij ∈ Bj}

Thus, we can rewrite the Equation (20) as

(fUm ~full bUm)[k1, · · · , kN , :]

=
∑

θ1∈F1∧i1∈B1

· · ·
∑

θN∈FN∧iN∈BN

{
(fUm[θ1, · · · θN , :]

~full bUm[i1, · · · iN , :])
}

(21)

Fj and Bj are closed sub-intervals of Z, let Fj = [a1, a2]
and Bj = [b1, b2]. We show that the set of indices ij , and
thus set of indices θj = kj − ij , satisfying θj ∈ Fj ∧ ij ∈
Bj form a closed sub-interval of Z.
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ij ∈ Bj ⇒ b1 ≤ ij ≤ b2
kj − ij ∈ Fj ⇒ a1 ≤ kj − ij ≤ a2

⇒ kj − a2 ≤ ij ≤ kj − a1

∴ max{kj − a2, b1} ≤ij ≤ min{kj − a1, b2}

Consider a fixed x = (k1, k2 · · · kN ) ∈ ZN . Let Ij =
{ij |θj ∈ Fj∧ij ∈ Bj} and Θj = {θj |θj ∈ Fj∧ij ∈ Bj},
for j = 1, 2, · · ·N . Ijs and Θjs are closed sub-intervals
of Z and thus,

∏N
j=1 Ij and

∏N
j=1 Θj are N -dimensional

(hyper-)rectangles.
Moreover, if y = (i1, i2, · · · , iN ) ∈

∏N
j=1 Ij , then,

clearly,
x− y = (k1 − i1, k2 − i2, · · · , kN − iN ) ∈

∏N
j=1 Θj

Since, F =
∏N
j=i Fj and B =

∏N
j=iBj , we get

{(x− y, y)|(x− y) ∈ F ∧ y ∈ B}

= {(x− y, y)|(x− y) ∈
N∏
j=1

Θj ∧ y ∈
N∏
j=1

Ij}
(22)

From Equations (21) and (22), we get

(fUm ~full bUm)(x)

= (fUm ~full bUm)[k1, · · · , kN , :]

=
∑

θ1∈F1∧i1∈B1

· · ·
∑

θN∈FN∧iN∈BN

{
(fUm[θ1, · · · θN , :]~full

bUm[i1, · · · iN , :])
}

=
∑

(x−y)∈
∏N

j=1 Θj∧y∈
∏N

j=1 Ij

fUm(x− y) ~full bUm(y)

=
∑

(x−y)∈F∧y∈B

fUm(x− y) ~full bUm(y)

(23)

Clearly, the above equation holds for every x ∈ ZN such that
x − y ∈ F for some y ∈ B, i.e. for every x ∈ F ⊕ B.
Compare Equation (23) and the formula for dilation, Equation
(1). In (23), to compute (fUm~full bUm) at x, we take sum of
product of polynomials (fUm(x− y)~full bUm(y)) at exactly
those pair of indices ({(x − y, y)|(x − y) ∈ F ∧ y ∈ B}) on
which the maximum of sum of pixel values f(x − y) + b(y)
is computed for finding value of dilated image (f ⊕ b) at x.

Thus, our constructions in Step 1 and convolution in Step 2
allows us to effectively apply Theorem II.5 to compute dilation
of images.

B. Time Complexity

Let ni be the size of the image and nf be the size of the
filter and the range of the grey-values be [0, nr − 1]. Step
1 takes O(2ninr + 2nfnr). For convolution using FFT in
Step 2, it takes O(2ninr log(2ninr)) +O2ninf log(2ninf )).
Step 3 takes O(2ninr). In total, the time complexity is
O(2ninr log(2ninr) + 2ninf log(2ninf )).

In practice, we have nf ≤ ni and nr is a small constant, say
c (c = 256 and c = 16, in case of 8-bit and 4-bit grey-value

images, respectively). Therefore, the overall time complexity
is O(4cni log(cni)) = O(ni log(ni)).

For the classical dilation, when we use non-flat filter with
no restrictions, the time complexity is O(nfni). As nf → ni,
we get O(nfni) → O(n2

i ). Therefore, for large images with
relatively large filter size (w.r.t. image size) or small range
of pixel values (e.g., [0, 15] in 4-bit image or [0, 255] in
8-bit image), our proposed method is more suitable. The
experiments in the following sections confirm this.

IV. EXPERIMENTAL EVALUATION

In this section we first discuss the computational perfor-
mance of the proposed method in comparison to several
alternative methods for dilation/erosion. After that we demon-
strate the qualitative properties of our new exact method in
comparison with the computationally related approach based
on analytic fast approximation introduced in [7].

A. Quantitative Performance Evaluation

For our discussion, let the image be of size ni and filter of
size nf , given again in terms of the number of corresponding
pixels, with nf ≤ ni. Let us briefly describe all the algorithms
that we compare.

We consider the Proposed method (capitalized here for
better identification) for 4-bit and 8-bit tonal range, where
the latter corresponds to standard grey value range. Though
the asymptotic time complexity, O(ni log ni), remains the
same for higher rates, the tonal range of image and filter
has a significant effect on the run time of our method. For
computations within our scheme, we have used fft.fftn() and
fft.ifftn() from NumPy package [2], for FFT and inverse FFT
respectively. All computations are performed on a modern
workstation (Intel® Xeon ® W-2125 Processor, Fedora Linux
36 (64-bit), 64GB RAM).

The first method for comparison is a naive implementation
of classical dilation (denoted here as Classical), i.e. computing
by sliding the filter over each pixel. Furthermore, we employ
SciPy routine ndimage.grey dilation() from SciPy package
[25] for comparison. This is a highly efficient implementation
of the histogram sliding window described in [26], using the
approach described in [5] to compute the min and max.
The run-time of naive implementation and SciPy method is
independent of the tonal range of the image. Therefore, we
only test the run-time for 8-bit tonal range.

Note that the worst case time complexity of naive im-
plementation and SciPy method with non-flat filter, even if
optimised in implementation, is theoretically still O(nf ×ni).

In the first experiment, see Figure 2 top, we evaluate the
average time taken by varying the filter size on a fixed size
of image. The filters and images are filters generated using
numpy.random.randint(), with range of values from 0 to 255
for 8-bit Proposed, Classical and SciPy method and with range
of values from 0 to 15 for 4-bit Proposed method. The size
of images are 512 × 512. It is clearly visible that the SciPy
method and the Classical dilation behave linearly with respect
to size of filter. For filter size 32 × 32 they take about 0.24
and 0.42 seconds absolute computation time on our computer,
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Table I
FPGA RESOURCE UTILIZATION

Tonal Range FFT Size BRAM DSP FF LUT URAM

2-bit tonal range
32 112 (5%) 10 ( 0%) 29636 (1%) 29366 (3%) 2 ( 0%)
64 68 (3%) 10 ( 0%) 33900 (1%) 33246 (3%) 50 (10%)

128 116 (5%) 10 ( 0%) 38736 (2%) 44075 (4%) 50 (10%)
256 392 (20%) 10 ( 0%) 39772 (2%) 42415 (4%) 50 (10%)
512 650 (33%) 10 ( 0%) 43572 (2%) 50655 (5%) 50 (10%)
1024 1194 (61%) 10 ( 0%) 47382 (2%) 61894 (6%) 50 (10%)

3-bit tonal range
32 208 (10%) 10 ( 0%) 31817 (1%) 35821 (3%) 2 ( 0%)
64 116 (5%) 10 ( 0%) 36137 (2%) 38645 (4%) 98 (21%)

128 212 (10%) 10 ( 0%) 41077 (2%) 49928 (5%) 98 (21%)
256 488 (25%) 10 ( 0%) 42217 (2%) 48324 (5%) 98 (21%)
512 746 (38%) 10 ( 0%) 46121 (2%) 57126 (6%) 98 (21%)
1024 1290 (66%) 10 ( 0%) 50050 (2%) 68711 (7%) 98 (21%)

4-bit tonal range
32 400 (20%) 10 ( 0%) 39752 (2%) 52866 (5%) 2 ( 0%)
64 212 (10%) 10 ( 0%) 44195 (2%) 53578 (5%) 194 (41%)

128 404 (20%) 10 ( 0%) 49332 (2%) 65769 (7%) 194 (41%)
256 680 (35%) 10 ( 0%) 50693 (2%) 64845 (7%) 194 (41%)
512 938 (48%) 10 ( 0%) 54806 (3%) 74219 (8%) 194 (41%)
1024 1482 (76%) 10 ( 0%) 58929 (3%) 86470 (9%) 194 (41%)

5-bit tonal range
32 788 (40%) 10 ( 0%) 51967 (2%) 82938 (9%) 2 ( 0%)
64 408 (21%) 10 ( 0%) 56623 (3%) 79420 (8%) 386(83%)

128 792 (40%) 10 ( 0%) 62187 (3%) 93431 (10%) 386(83%)
256 1068 (55%) 10 ( 0%) 63964 (3%) 93857 (10%) 386(83%)
512 1326 (68%) 10 ( 0%) 68493 (3%) 104387 (11%) 386(83%)
1024 1870 (96%) 10 ( 0%) 73032 (4%) 117996 (13%) 386(83%)

respectively, up to around 25 seconds for filter size 256×256.
The time taken for Proposed method remains constant with
the size of the filter, taking on average about 0.76 seconds in
4-bit settings and about 12.5 in 8-bit setting.

In the second experiment, Figure 2 bottom, we evaluate the
time taken for dilation on varying sizes of images. The image
sizesni = n×n increases from 128×128 to 4096×4096. The
corresponding filter sizes are nf = b n10c × b

n
10c. The images

and the filters are generated using numpy.random.randint(),
with range of values from 0 to 255, except for 4-bit Proposed
method, where the range of values is 0 to 15. As expected,
the Proposed method in 4-bit and 8-bit settings perform in
O(ni log ni) time. In 4-bit setting, the Proposed method takes
0.42 seconds for dilation of 128 × 128 image by 12 × 12
filter, and 15 seconds for dilation of 2048× 2048 image by a
200× 200 filter. In 8-bit settings, the Proposed method takes
0.7 and 261.2 seconds, respectively. We have, in the second ex-
periment, nf = b n10c×b

n
10c ≈

ni

100 . Thus the time complexity
of SciPy method and naive method is O(ninf ) = O(n2

i ). This
is also reflected by their run-times in the second experiment.

We observe from the above experiments that our Proposed
method is significantly faster than the other methods in the
narrow tonal range, as e.g. in the 4-bit setting. The Proposed
method is faster than SciPy method and Classical method, also
in the usual 8-bit setting, if the ratio of filter size to image
size is in the larger range, as seen in first experiment or when
working on larger images, even keeping the ratio of filter size
to image size constant, as in second experiment.

Let us note that we have not employed GPUs in the above
experiments. It is surely worth pointing out that attempts to use
GPUs to compute grey value morphology usually incorporates
restrictions on symmetry and/or flatness of the filter, see
discussions in [15], [24]. However, there are several efficient
implementations of FFT and inverse FFT on the GPU, see e.g.

[28]. Therefore, our method could be sped up utilising the
GPUs, without any restrictions on the filter, making it even
more competitive in the large tonal range.

B. Quantitative Results of the Hardware Implementation

In this work, we accelerated the proposed method by
implementing it on hardware and observing the results. We
used a modern Xilinx FPGA board, the Versal VCK190
Evaluation Board, which houses an XCVC1902-2M FPGA
device, to implement a hardware representation of our method.
The IP core designed for this method was written in C++
and synthesized using Xilinx Vitis HLS 2022.2. The results
from the hardware implementation were compared to the
Python code to ensure the functionality of the design. For our
hardware tests, we chose images and filters as squares with
sizes of each edge in a manner, to form padded images and
filters with edge sizes that are powers of 2 to fit the FFT cores
optimally. We used Xilinx FFT IP core for 1-dimensional FFTs
(forward and inverse) to eventually implement 3-dimensional
FFTs.

We tested our method for tonal ranges of 2-bit, 3-bit, 4-
bit, and 5-bit, with the filter size set to 5 × 5, and changed
the image size from 28 × 28 up to 1020 × 1020. The FPGA
resource utilization summary is shown in Table I for these
scenarios. It can be seen that the highest resource utilization
is in memory blocks, which are used to store the contents of
2-dimensional and 3-dimensional arrays at different points of
the procedure. Choosing a higher tonal range limits the largest
image size that can be processed, considering the BRAM and
URAM resources available on the FPGA.

Figure 3 shows the execution time for the four tonal range
scenarios and different FFT sizes. The FFT size addresses the
size of the 1-D FFTs processing the x-axis and y-axis of the
padded image and filter. The execution time data shows that, in
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Figure 2. Evaluation of algorithmic time complexity of our method. Top:
Varying filter sizes on an image of size 512×512. Let us note that the lower
axis is given in factors of 104. Bottom: Varying image sizes ni = n × n,
with filter size nf = b n
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each scenario, when the FFT size doubles, the execution time
almost doubles as well, which is consistent with the results
from the Python implementation of this method.

C. Qualitative Comparison to Previous Fourier Approach

The significant advantage of our method is the fact that we
are able to compute the exact dilation of an image of size ni
by any non-flat filter of size nf ≤ ni in O(ni log ni) time.
The Fast Analytical Approximation proposed in [7], is also
asymptotically O(ni log ni) as the new Proposed method and,
in fact, has faster run-times in practice. The downside of Fast
Approximation method is the non-trivial grey-value shift, that
has been studied in detail in [8], which comes along with a
smoothing effect in the tonal histogram.

To demonstrate the exactness of the Proposed method and
its difference from Fast Approximation, we use a non-flat filter.
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FPGA Implementation Execution Time
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Figure 3. Execution time of the proposed method with different tonal ranges
and for different image sizes

Figure 4. : Left The base shape of filter. Right: Umbra of the filter of
image.

The shape of the filter and its umbra (again after [18]) is shown
in Figure 4.

We perform the demonstration of dilation quality on a 512×
512 image of Peppers, see Figure 5 (left). The Figure 5 (right)
shows the dilation of the Pepper image with non-flat filter in
the classical way, i.e. as described in (2).

Figure 5. : Left: Pepper image of size 512× 512 Right: Classical Dilation
with the non-flat filter (as described in Figure 4.
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Figure 6. Dilation of Pepper image of size 512×512 with the non-flat filter
Left: Fast Approximation. Right: Proposed Method.

Figure 7. Negative of absolute difference (pixel-wise) with Classical Dilation
of Pepper image with the non-flat filter Left: Fast Approximation. Right:
Proposed Method.

We compare the Proposed method (in 8-bit settings) and
Fast Approximation, see Figure 6, with the classical exact
dilation.

The exactness of the Proposed method is confirmed visually
by looking at the images Figure 5 (right) and Figure 6 (right).
This is quantitatively confirmed, in Figure 7, by taking the
absolute difference, pixel-by-pixel, of the result of classical
dilation with that of fast approximation and proposed method.
It is also evident by overlaying the histograms of the images,
see Figure 8, that there are no artefacts or dilation accuracy
degradation by the boundary treatment inside the FFT.

The positive grey-value shift in Fast Approximation is as
expected apparent in Figure 8. Moreover, our proposed method
is also successful in preserving the minute details which are
lost in Fast Approximation, compare images in Figure 6.

To demonstrate the exactness the proposed method, we
perform two experiments, see Figure 9, in 8-bit settings. We
measure the average absolute difference in pixel value with
classical dilation with fast approximation and the proposed
method. In the first experiment, we generate, 100 pair of
random 99× 99 images and filter, for each filter sizes 3× 3,
5×5 · · · 17×17, using numpy.random.randint(), with range
of values from 0 to 255.Similarly, in the second experiment,
we generate, 100 pair of random 5× 5 filters and images, for
each image sizes 100 × 100, 200 × 200 · · · 600 × 600. As
expected the Proposed method has 0 average absolute error,
i.e. it exactly equates with classical dilation. We can also
observe that the absolute error in Fast Approximation increases
logarithmically with respect to filter size.

Figure 8. Histogram of dilated images.

V. CONCLUSION

We have proposed a novel method to exactly compute
morphological dilation of an image, of size ni, with any
arbitrary non-flat filter, of size nf ≤ ni, in O(ni log ni) time.
As erosion is dual to dilation, it is straightforward to compute
erosion analogously.

Because our novel scheme is exact, any useful morphologi-
cal filter combinations like opening, closing, Beucher gradient,
and so on, can be easily combined in a novel and fast way.
We conjecture that this may make our algorithm a novel and
useful basis for many practical applications.

We have established homomorphism between the max-
plus semi-ring of non-negative integers and a semi-ring of
polynomials set in the real field. This theory could serve as
a foundation to future research relating max-plus semi-rings
and plus-prod semi-rings (see e.g. [35], [21]).

Our proposed method allows us to explore some of well-
engineered techniques developed for computing convolution in
future work. For example, heading for real time applications in
very large images, say ni ≥ 109, some partitioned convolution
algorithm [4] can be implemented. We may improve the run-
time of our implementation by employing GPUs to calculate
FFT and inverse FFT, see e.g. [28], and thus speeding up Step
2 of our method.

The (N + 1)-dimensional arrays fUm and bUm constructed
in Step 1,see (15) and (16), satisfy the sparsity conditions
mentioned in [3]. Therefore, the performance, especially for
broader tonal ranges, may also be improved by using Sparse-
FFT to compute the convolution in Step 2, see [3].

As we have shown, the new method appears to be partic-
ularly useful for narrow tonal ranges, but at the same time
it is evident that the method may be highly efficient for
standard tonal ranges when exploring advanced computational
techniques and hardware as mentioned. By the presented
FPGA implementation we highlight the potential usefulness
of the new method for many possible applications.
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Figure 9. Average absolute difference in pixel value with Classical Top:
Varying filter sizes nf = n1 × n1, on an image of size 99 × 99. Bottom:
Varying image sizes ni = n× n, with filter size 5× 5.
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