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Abstract. Long-term survival models have historically been considered for
analyzing time-to-event data with long-term survivors fraction. However, sit-
uations in which a fraction (1 − p) of systems is subject to failure from in-
dependent competing causes of failure, while the remaining proportion p is
cured or has not presented the event of interest during the time period of the
study, have not been fully considered in the literature. In order to accommo-
date such situations, we present in this paper a new long-term survival model.
Maximum likelihood estimation procedure is discussed as well as interval es-
timation and hypothesis tests. A real dataset illustrates the methodology.

1 Introduction

Mixture models for long-term survivors have been widely used for fitting data
where some individuals may never suffer the cause of failure under study (Maller
and Zhou, 1996). In this type of modelling, it is assumed that, due to some unob-
served prognostic factors, a certain fraction p of the population is immune to the
cause of failure under study or a long-term survivor. The survivor function for the
entire population can be written as

S(t) = p + (1 − p)S0(t), (1.1)

where S0(t) denotes the survival function for the noncured group in the popula-
tion. The long-term survivors cannot be identified but we can infer their presence
in a data set if many of the largest times are censored. Common choices for S0(t)

are the Gompertz, exponential and Weibull distributions. Yamaguchi (1992) con-
sidered the generalized log-gamma distribution for the cure rate in the context of
accelerated failure-time regression models. Peng, Dear and Denham (1998) pro-
posed a generalized F mixture model for the cure rate, which includes the most
popular survival models as particular cases.

A problem however is that we can find in practice datasets where the fraction
(1−p) of units are subject to failure from k ≥ 2 competing causes. Besides, the ex-
act cause of failure can be unknown, leading to the latent competing risk problem

Key words and phrases. Bootstrap, maximum likelihood, long-term survivors, hypothesis tests,
survival analysis.

Received March 2009; accepted January 2011.

313

http://imstat.org/bjps/
http://dx.doi.org/10.1214/11-BJPS138
http://www.redeabe.org.br/


314 J. Mazucheli, F. Louzada and J. A. Achcar

(Louzada-Neto, 1999). According to Louzada-Neto (1998), in the classical com-
peting risk scenarios the lifetime associated with a particular risk is not observable,
rather we observe only the minimum (or maximum) lifetime value among all risks
and which risk was responsible for the failure. A difficulty arises if the risks are
latent in the sense that there is no information about which factor was responsible
for the component failure (individual death). We call these latent competing risk
data. For instance, in survival studies, patients are missing in follow-up, they die
without autopsy, death is attributed to multiple causes, forms are not fully com-
pleted and only their death status is reported. In reliability, the components can
be totally destroyed in the experiment. Further, the true cause of failure can be
masked from our view. In modular systems, the need to keep a system running
means that a module that contains many components can be replaced without the
identification of the exact failing component.

As a simple illustration, consider data from a field trial of 4,992 circuit boards
extracted from Chan and Meeker (1998, 1999). The data consists on the lifetimes
of the circuit boards observed during a period of 10,000 hours of operation. There
were 4,897 censored lifetimes. For the circuit boards that fail before the end of
the experiment, engineering judgment indicates that failure can occur due to infant
failure or wearout, but the exact cause of failure is unknown. There exists a large
amount of censoring in the data, giving evidence of a possible presence of long-
term survivors. Figure 1 shows the cumulative hazard plot for the data (Lawless,
1982). The curvature may indicate that another cause of failure becomes dominant
as time progresses, corroborating the initial judgment. Two related models in the
case of possible immunity for some systems were considered by Larson and Dinse
(1985), which is based on a semi-Markov formulation of Lagakos, Sommer and

Figure 1 Cumulative hazard plot.
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Zelen (1978), and by David and Moeschberger (1978). Both fully discussed in
Maller and Zhou (1996).

In the present paper, we propose a general survival model for analyzing latent
competing risk data with long-term survivals. The model is defined in Section 2
where we point out some of its particular cases and discuss the estimation proce-
dure and computational aspects. Interval estimation is presented in Section 3. In
Section 4, we discuss hypothesis tests. A brief discussion in Section 5 concludes
the paper.

2 Model formulation

Suppose that a system is subject to k ≥ 2 different causes of failure (or that it is
composed of k different components). Let the lifetime related to the j th cause
(or the lifetime of the j th element), Xj , have a survival function Sj (x). Only
T = min(X1, . . . ,Xk) is observed for each individual and the Xj ’s are assumed
independent. Thus, the overall survival function for t is S0(t) = ∏k

j=1 Sj (t). Be-
sides, assume that the system may never experience the type of failure under study.
Then, following (1.1), T is said to have a polysurvival model with long-term sur-
vivor if its overall survival function is given by:

S(t) = p + (1 − p)

k∏
j=1

Sj (t), (2.1)

where Sj (t) denotes the survivor function for the noncured group due to the j th
cause of failure. Similarly to the standard long-term survivor model (1.1), we can
choose Sj (t) in (2.1) to be a product of usual survival functions, such as Weibull,
log-normal and log-logistic ones, even of different families.

An advantage of model (2.1) is that for p = 0, implying in an absence of im-
munes in the population, model (2.1) results in a standard competing risk model
(David and Moeschberger, 1978), while for k = 1 we have the standard long-term
survival model (1.1).

Consider a sample of independent random variables T1, . . . , Tn denoting the
lifetimes of n units. Assume that Ti has associated an indicator variable defined by
δi = 1 if Ti = ti is an observed failure time and δi = 0 if it is a right-censored obser-
vation. The maximum likelihood estimates (MLE) of the parameters are obtained
by direct maximization of the likelihood function L = ∏n

i=1[pf (ti)]δi [S(ti)]1−δi ,
where f (ti) is the probability density function obtained from (2.1), see, for ex-
ample, Maller and Zhou (1996). The advantage of this procedure is that it runs
immediately using existing statistical packages such as the R (Ihaka and Gentle-
man, 1996), or SAS/NLP (SAS, 2010). Interested readers can access the codes
used by email to the authors. An important aspect of implementing the estimation
procedure concerns parametrization. In our numerical examples and simulation



316 J. Mazucheli, F. Louzada and J. A. Achcar

studies, we have not faced numerical problems, such as evidence of failure of con-
vergence or end on multiple maximums, from parameters with unbounded ranges.
The results however are all reported in the original scale.

A problem that appears is that the parameters in (2.1) are fundamentally not
identifiable, since the likelihood function is unchanged by permutation of the
component labels 1, . . . , k. To enforce parameter uniqueness, we have success-
fully used an order constraint on the shape parameters. For instance, consider
the bi-Weibull long-term survival particular case, that is (2.1) with j = 2 and
S0(t) = ∏2

j=1 Sj (t) = ∏2
j=1 exp[−(t/μj )]βj . By considering β1 < β2 we avoid

the identifiability problem. The rationality behind such enforcement relies on fol-
lowing idea. Considering the bi-Weibull long-term survival particular case, we may
obtain two equivalent models renumbering the components 1 and 2 by a permuta-
tion. In this case, the likelihood function is bimodal, and its values do not change
whatever the component order we consider. Then, letting us to assume that there is
an order criterion that can be used when numbering the components. For instance,
with β1 < β2, the parameters are obtained in a unique way. The idea of considering
a restriction for solving the nonidentifiability problem is not new and have been
considered for other authors. For instance, interested readers can refer to Jasra,
Holmes and Stephens (2005) for a review of different approaches for solving the
nonidentifiability problem.

To illustrate the methodology described above, we consider the Weibull model.
This is however qualitatively similar to other particular cases of (2.1). Recall the
circuit board data discussed in Section 1. For instance, we fitted a bi-Weibull long-
term survival model to the data. The MLEs of μ1, β1, μ2, β2 and p are equal to
13208.20, 0.27, 8530.47, 8.39 and 0.981, respectively.

3 Interval estimation

Large sample inference for the parameters can be based, in principle, on the MLEs
and their estimated standard errors. Considering the bi-Weibull long-term sur-
vival particular case fitted to the circuit board data discussed in Section 1 we
obtain the usual asymptotic 90% confidence intervals for μ1, β1, μ2, β2 and
p given, respectively, by (5140.34;33935.83), (0.22;0.34), (8195.95;8877.97),
(6.25;11.25) and (0.977;0.984).

A problem however is that, in lifetime studies, it is common to find datasets
with a small or moderate quantity of observed lifetimes. Also, in the circuit board
data, we can observe the presence of a large amount of censoring. In order to check
the behavior of the asymptotic theory for small and moderate sized samples when
censoring is observed, we performed a small-scale simulation study for examining
the coverage probabilities of the confidence intervals for the parameters.

Samples were generated according to a bi-Weibull survival model with long-
term survivor with p = 0.50 and 0.90 and μ1 = 30, β1 = 0.5, μ2 = 100 and
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Table 1 Coverage probabilities of nominal 90% asymptotic confidence
intervals. In each cell the left result corresponds to p = 0.50 while the
right result corresponds to p = 0.90

n p μ1 β1 μ2 β2

75 0.62 0.56 0.59 0.55 0.60 0.57 0.77 0.72 0.68 0.61
100 0.69 0.65 0.82 0.79 0.65 0.61 0.81 0.76 0.72 0.68
200 0.71 0.67 0.88 0.84 0.82 0.77 0.91 0.86 0.87 0.83

β2 = 3. The censoring times were generated independently of the survival times
according to a uniform distribution given by U(a, b), where a is equal to the
biggest noncensored observation and b = 10a. We further fixed the amount of cen-
soring at 50% and 90%, coinciding with the same amount of log-term survivals.
A thousand samples were generated for each case for sample sizes of n = 75,100
and 200. Table 1 shows the variation in coverage of nominal 90% asymptotic con-
fidence intervals according to the sample size and the two percentages of long-term
survivals. The 90% asymptotic confidence interval for the nominal coverage prob-
ability of 0.90 based on a sample of size equal to a thousand observations is given
by (0.884,0.916). If a confidence interval has exact coverage of 0.90, roughly
90% of the observed coverages should be inside these bounds. There clearly is
under coverage of the confidence intervals for small and moderate sized samples,
particularly when the percentage of long-term survivals are heavy. Such findings
are evidences for the need of more adequate procedures for small or moderate
sized samples.

An alternative direct approach is the Bootstrap procedure, which is a simula-
tion procedure that aims to obtain empirical interval estimations by re-sampling
the original data set. There are two basic Bootstrap types: the parametric Boot-
strap, where the simulating datasets are drawn by generating observations, in our
case, from model (2.1) with the parameters replaced by their MLEs, and the
nonparametric Bootstrap, where the simulating datasets are drawn with replace-
ment directly from the original sample. More details about the Bootstrap technique
may be seen in Davison and Hinkley (1997).

Consider μ1 the parameter we have interest in and suppose that we are inter-
ested in constructing a confidence interval for it. For each resample, obtained by
a parametric or a nonparametric way, we calculate the MLEs for μ1 and we have
at the end of R resamples μ̂1,1 < · · · < μ̂1,R ordered MLEs values. Then, we use
μ̂1,(R+1)(a/2) and μ̂1,(R+1)(1−a/2) as the lower and upper bounds of the Bootstrap
percentile confidence interval 100(1 − a)% for μ1, respectively, and a is the sig-
nificance level. The Bootstrap percentile intervals 100(1−a)% for the other model
parameters can be analogously obtained.

In order to check the adequacy of the Bootstrap procedure for small and mod-
erate sized samples when censoring is observed, we ran the simulation study de-
scribed above again, with the same thousand samples generated for each case. We
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Table 2 Coverage probabilities of nominal 90% Bootstrap confidence intervals. In each cell the
left result corresponds to p = 0.50 while the right result corresponds to p = 0.90

n Bootstrap p μ1 β1 μ2 β2

75 Parametric 0.86 0.83 0.86 0.84 0.87 0.83 0.90 0.87 0.87 0.85
Nonparametric 0.84 0.82 0.85 0.82 0.85 0.84 0.89 0.86 0.86 0.86

100 Parametric 0.88 0.87 0.88 0.88 0.88 0.87 0.89 0.88 0.89 0.88
Nonparametric 0.88 0.88 0.89 0.88 0.89 0.88 0.89 0.88 0.88 0.88

200 Parametric 0.90 0.89 0.91 0.89 0.91 0.88 0.90 0.90 0.91 0.89
Nonparametric 0.92 0.90 0.90 0.89 0.91 0.91 0.90 0.90 0.92 0.90

further fixed R equals to 999. Table 2 shows the variation in coverage of nominal
90% Bootstrap confidence intervals according to the sample size and two censor-
ing percentages. Based on the same criteria for indicating whether a confidence
interval has exact coverage of 90%, that is, based on the 90% asymptotic con-
fidence interval for the nominal coverage probability of 0.90 which is given by
(0.88,0.92), there are evidences for the adequacy of the both Bootstrap proce-
dures.

Another confidence interval comparison criteria is based on the confidence in-
terval average amplitudes, which are only reported here. Although, in comparing
average amplitudes of confidence intervals it is preferred to compare intervals with
nearly the same coverage probability (Jeng and Meeker, 1999), which is not our
case, we notice that the average amplitudes of the confidence intervals increase
when the sample size decreases. We also observe that the asymptotic confidence
intervals have the smallest average amplitudes compared with the confidence inter-
vals obtained by resampling. This is in full agreement with Davison and Hinkley
(1997), which pointed out that first order likelihood procedures generally under es-
timate the variance. The nonparametric percentile confidence intervals have similar
average amplitudes when compared with the parametric percentile ones.

Then, we prefer the nonparametric Bootstrap procedure since it has smaller
computational cost in comparison with the parametric Bootstrap version. To illus-
trate the methodology described above, we consider bi-Weibull long-term survival
fitted to the circuit board data discussed in Section 1. The 90% nonparametric per-
centile confidence intervals for μ1, β1, μ2, β2 and p are given by (6697.918,

29130.992), (0.242,0.310), (8275.010,8798.596), (6.892,10.571) and (0.978,

0.983).

4 Hypothesis tests

There are two major problems that should be addressed from the hypothesis tests
point of view related to the polysurvival model with long term survivor (2.1).
The first problem is related to the test of a particular polysurvival function with a
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number k of components. The second problem is related to the test for presence of
long-term survivors, that is, to test the hypothesis H0 :p = 0.

4.1 Testing a particular polysurvival function

For testing the adequacy of a particular polysurvival function, we can consider
the likelihood ratio statistics (LRS), w = 2(l2 − l1), where l1 and l2 are the log-
likelihood functions for models 1 and 2, respectively. Large positive values of w

give favourable evidence to model 2. A difficulty with the present setting is that the
tests can be non nested, since the components of Sj (t) in (2.1) can be a product
of usual survival functions, but even of different families and even with differ-
ent number k of components. So, the regularity conditions, on which the stan-
dard asymptotic theory is based (Cox and Hinkley, 1974), will not hold. Then
we cannot assume that w is asymptoticaly distributed like a chi-square distribu-
tion with one degree of freedom. For instance, we present the results of a small
scale simulation study ran in order to check the asymptotic behavior of w for
testing a single-Weibull long-term survival model, that is (2.1) with j = 1 and
S0(t) = exp−(t/μ)β , against a bi-Weibull long-term survival model, that is (2.1)

with j = 2 and S0(t) = ∏2
j=1 Sj (t) = ∏2

j=1 exp(−(t/μj )
βj ). Samples were gen-

erated under the null hypothesis according to a single-Weibull survival model with
long-term survivor with p = 0.50 and 0.90 and μ = 30 and β = 0.5 and 3. The
censoring times were generated independently of the survival times according to
a uniform distribution given by U(a, b), where a is equal to the biggest noncen-
sored observation and b = 10a. We further assumed that the amount of censoring
are fixed at 50% and 90%, coinciding with the amount of long-term survivals.
A thousand samples were generated for each case for sample sizes of n = 75,100
and 200. We then verified whether the null hypothesis was rejected at the 5% level
or not. Table 3 shows the empirical significance levels (in percentage) according to
the sample size, β value and two percentages of long-term survivals. As discussed
before, the empirical significance levels indicate that the LRS, w, is not distributed
as a chi-squared distribution for small and moderate size samples.

Table 3 Empirical significance levels for testing a single-Weibull
long term survival model against a bi-Weibull long-term survival
model according to the sample size, β value and two censoring
percentages. In each cell the left result corresponds to p = 0.50
while the right result corresponds to p = 0.90

n β = 0.5 β = 1 β = 3

75 15.6 17.7 11.7 12.9 13.2 15.5
100 13.3 15.8 9.2 10.1 11.6 13.4
200 8.1 11.3 5.8 7.4 6.9 9.5
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An alternative direct approach is to Bootstrap the LRS w in order to obtain
its empirical distribution (Davison and Hinkley, 1997). This can be done para-
metrically or nonparametrically. The parametric Bootstrap technique consists of
generating R datasets from the model under the null hypothesis (model 1) with the
parameters substituted by their MLEs obtained by using the procedure discussed
in Section 2, record w∗

1 < · · · < w∗
R , and use w∗

(R+1)(1−a) as the critical point to
test the null hypothesis with size a. We consider here for safe R equals to 999,
according to Hall (1986) however this number is bigger than the the number of
replications required to get a critical level of 0.10 from the 0.90 percentile of the
empirical distribution of the LRS. The nonparametric Bootstrap technique operates
in much the same way, but instead of generating datasets from the model under
the null hypothesis (model 1), with the parameters substituted by their MLEs, we
draw R samples with replacement of n observations each from the original dataset
t1, . . . , tn. The same thousand samples considered above were considered here for
each case for sample sizes of n = 75,100 and 200. We then applied the suggested
parametric and nonparametric Bootstrap procedures and verified whether the null
hypothesis was rejected at the 5% level or not. Table 4 shows the bootstrap empir-
ical significance levels (in percentage) according to the sample size, β value and
two percentages of long-term survivals. The suggested bootstrap procedures (para-
metric and nonparametric) can properly address the anti-conservative behavior of
the empirical significance levels based on the asymptotic theory.

For instance, recall the circuit board data discussed in Section 1. The LRS w

for testing a single-Weibull long-term survival model, that is (2.1) with j = 1 and
S0(t) = exp−(t/μ)β , against a bi-Weibull long-term survival model, that is (2.1)

with j = 2 and S0(t) = ∏2
j=1 Sj (t) = ∏2

j=1 exp(−(t/μj )
βj ), is equal to 21.86.

The empirical p-values equal to 0.003 and 0.014 according to the parametric and
non parametric Bootstrap scheme described above, respectively, which gives a
strong evidence in favor of the full model. This is corroborated by the compari-
son of the Kaplan–Meier estimate and the fitted models in Figure 2.

Table 4 Bootstrap empirical significance levels for testing a
single-Weibull long term survival model against a bi-Weibull long-
term survival model according to the sample size, β value and two
censoring percentages. In each cell the left result corresponds to
p = 0.50 while the right result corresponds to p = 0.90

n Bootstrap β = 0.5 β = 1 β = 3

75 Parametric 10.0 10.1 8.9 9.7 9.2 10.0
Nonparametric 10.9 10.7 8.2 9.1 9.2 10.5

100 Parametric 8.2 8.3 6.8 7.1 7.6 8.2
Nonparametric 8.6 8.4 7.1 7.9 7.7 8.9

200 Parametric 5.3 6.2 4.9 5.6 5.1 6.0
Nonparametric 5.3 6.1 5.3 5.9 5.3 6.2



The polysurvival model with long-term survivors 321

Figure 2 Kaplan–Meier estimate and the fitted models of the circuit boards data. (—): bi-Weibull
long-term survival model fit, (· · ·): single-Weibull long-term survival model fit.

4.2 Testing the presence of long-term survivals

For testing for the presence of long-term survivors, we should perform the hy-
pothesis tests H0 :p = 0 versus H1 :p > 0. Let u = 2(lunres − lres) be the LRS
for testing for the presence of long-term survivors, where lres and lunres are the
log-likelihoods for the model under the restricted hypothesis H0 and under the un-
restricted hypothesis H1. Large positive values of u give favourable evidence to the
full model. Following Ghitany and Maller (1992), it can be shown that, under the
polysurvival model with long term survivor (2.1), u is asymptotically distributed
like a symmetric mixture of a chi-squared distribution with one degree of free-
dom and a point-mass at zero. Then, limn→∞ P(un ≤ c) = 1/2 + 1/2 P(χ2

1 ≤ c),
where P(χ2

1 ≤ c) denotes a random variable with a chi-square distribution with
one degree of freedom.

Recall the circuit board data discussed in Section 1. The LRS u for testing
H0 :p = 0 versus H1 :p > 0 is equal to 17.59 with p-value equal to 0.000027
according to the limiting distribution of u, which is a strong evidence in favor of
the model with long-term survivors.

As stated before, a problem however is that in survival and reliability studies
we can have samples with small or moderate amount of observed lifetimes and
with a huge amount of censoring. In these settings, the asymptotic approach may
not be adequate. For instance, we present the results of a small scale simulation
study ran in order to check the asymptotic behavior of u for testing H0 :p = 0.

Samples were generated according to a bi-Weibull survival model with long-term
survivor with p = 0.50 and 0.90 and μ1 = 30, β1 = 0.5, μ2 = 100 and β2 = 3.
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Table 5 Empirical significance levels for testing H0 :p = 0 ac-
cording to the sample size and two censoring percentages. In each
cell the left result corresponds to the asymptotic approach while the
middle and right results corresponds to the parametric and non-
parametric approaches, respectively

n p = 0.50 p = 0.90

75 22.4 12.3 13.0 24.3 12.7 14.6
100 18.6 9.1 10.3 21.1 9.9 10.7
200 10.9 6.3 6.9 14.2 6.8 7.2

The censoring times were generated independently of the survival times according
to a uniform distribution given by U(a, b), where a is equal to the biggest non-
censored observation and b = 10a. We also assumed that the amount of censoring
are fixed at 50% and 90%. A thousand samples were generated for each case for
sample sizes of n = 75,100 and 200. We then verified whether the null hypothesis
was rejected at the 5% level. Table 5 shows the empirical significance levels (in
percentage) according to the sample size, β value and two percentages of long-
term survivals. The left results in each cell motivate to a Bootstrap approach for
this kind of hypothesis tests. As stated in Section 4.1, the idea is to obtain the em-
pirical distribution of u. The parametric Bootstrap version consists of generating
R datasets from the model under the null hypothesis (model without long-term
survivors) with the parameters substituted by their MLEs obtained by using the
procedure discussed in Section 2, record u∗

1 < · · · < u∗
R , and use u∗

(R+1)(1−a) as
the critical point to test the null hypothesis with size a. We consider here R equal
to 999. The nonparametric Bootstrap version of the procedure operates in the same
way, but instead of generating datasets from the model under the null hypothesis,
with the parameters substituted by their MLEs, we draw R samples with replace-
ment of n observations each from the original dataset t1, . . . , tn. The same thousand
samples considered above were considered here for each case for sample sizes of
n = 75,100 and 200. We then applied the suggested parametric and nonparametric
Bootstrap procedures and verified whether the null hypothesis was rejected at the
5% level or not. According to the middle and right results in each cell of Table 5,
the suggested bootstrap procedures (parametric and nonparametric) can properly
address the anti-conservative behavior of the empirical significance levels based
on the asymptotic theory.

Recall again the circuit board data discussed in Section 1. The LRS u for test-
ing H0 :p = 0 versus H1 :p > 0 is equal to 17.59 with empirical p-values equal
to 0.042 and 0.075, which are evidences in favor of the model with long-term
survivors, at least at a 10% significance level.
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5 Discussion

The poly-survival model with long-term survivors proposed in this paper allows
a broad class of survival models. The model provides a reasonable physical inter-
pretation of the phenomenon underlying latent competing risk data with long-term
survivors. Maximum likelihood inference can be implemented straightforwardly
and parametric and nonparametric simulation can be successfully used for hypoth-
esis testing and generating precise confidence intervals for the parameters.

In the paper, following Louzada-Neto (1999), we assume independent compet-
ing causes of failure. However, as pointed out by a referee, assuming indepen-
dent competing causes of failure is a rather strong assumption, which should be
more investigated in the context of our modeling in future. For instance, Maller
and Zhou (1996) mention that the David and Moeschberger formulation (David
and Moeschberger, 1978), can be generalized to cases when the competing causes
are not independent. Besides, the mixture model approach proposed Larson and
Dinse (1985) avoids the independence assumption. The finite mixture model ap-
proach presented by Chao (1998) do not assumes independent cause-specific fail-
ure times. And, finally, a common way to model dependent competing causes is
to consider the so called frailty models (Gordon, 2002 and Box-Steffensmeier and
Jones, 2004).
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