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Abstract. For any set A of n points in R2, we define a (3n − 3)-dimensional simple
polyhedron whose face poset is isomorphic to the poset of “non-crossing marked graphs”
with vertex set A, where a marked graph is defined as a geometric graph together with a
subset of its vertices. The poset of non-crossing graphs onA appears as the complement of
the star of a face in that polyhedron. The polyhedron has a unique maximal bounded face,
of dimension 2ni + n− 3 where ni is the number of points ofA in the interior of conv(A).
The vertices of this polytope are all the pseudo-triangulations ofA, and the edges are flips
of two types: the traditional diagonal flips (in pseudo-triangulations) and the removal or
insertion of a single edge.

As a by-product of our construction we prove that all pseudo-triangulations are infinites-
imally rigid graphs.

1. Introduction and Statement of Results

The Polyhedron of Non-Crossing Graphs. The set of (straight-line or geometric) non-
crossing graphs with a given vertex set A in the plane is of interest in Computational
Geometry, Geometric Combinatorics and related areas. In particular, much effort has
been directed towards enumeration, counting and optimization on the set of maximal
such graphs, that is to say, triangulations of A.

∗ This research was partially supported by project BMF2001-1153 of the Spanish Dirección General de
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The poset structure of the family of non-crossing graphs, however, is only well un-
derstood if the points are in convex position: The non-crossing graphs containing all the
hull edges are the same as the polygonal subdivisions of the convex n-gon and, as is well
known, they form the face poset of the (n − 3)-associahedron [14], [22].

In this paper we generalize this situation and construct fromA a polytope whose face
poset contains the poset of non-crossing graphs on A embedded in a very nice way. In
the following statement we call interior points of A the points of A in the interior of
conv(A) and we distinguish between vertices of conv(A) (extremal points) and other
points of A in the boundary of conv(A) (semi-interior points).

Theorem 1.1. Let A be a set of n points in the plane, not all on a line. Let ni , ns

and nv be the numbers of interior, semi-interior and extremal points of A. There is a
simple polytope Y (A) of dimension 2ni + n − 3, and a face F of Y (A) (of dimension
2ni + nv− 3) such that the complement of the star of F in the face-poset of Y (A) equals
the poset of non-crossing graphs on A that use all the convex hull edges.

This statement deserves some words of explanation:

– Our equality of posets reverses inclusions. Maximal non-crossing graphs (triangu-
lations of A) correspond to minimal faces (vertices of Y (A)).

– We remind the reader that the star of a face F in a polytope is the subposet of
facets that contain F , and all their faces. In the complement of the star of F we
must include the polytope Y (A) itself as an element, which corresponds to the
graph with only the boundary edges of conv(A).

– If A is in convex position, then Y (A) is the associahedron [14], [22]. The face F
is the whole polytope, whose star we must interpret as being empty.

– Our results are valid for point sets in non-general position. Our definition of non-
crossing in this case is that if q is between p and r , then the edge pr cannot appear
in a non-crossing graph G, regardless of whether q is incident to an edge in G.
This definition has the slight drawback that a graph which is non-crossing in a
point set A may become crossing in A ∪ {p}, but it makes maximal crossing-free
graphs coincide with the triangulations of A (with the convention, standard in
Computational Geometry, that triangulations ofA are required to use all the points
ofA as vertices). To be consistent with this, a convex hull edge is an edge between
two consecutive points of A in the boundary of conv(A). Since convex hull edges
are irrelevant to crossingness, the poset of all non-crossing graphs onA is the direct
product of the poset in Theorem 1.1 and a Boolean poset of rank nv + ns .

Our method provides a fully explicit facet description of Y (A). It lives in R3n and is
defined by the three linear equalities (1) and the

(n
2

)+ n linear inequalities (4) and (5) of
Section 3, with some of them turned into equalities. (With one exception: for technical
reasons, if A contains three collinear boundary points we need to add extra points to
its exterior and obtain Y (A) as a face of the polytope Y (A′) of the extended point set
A′.) The fi j ’s in (4) and (5) denote a vector in R(

n+1
2 ). Our construction starts with a

linear cone Y0(A) (Definition 3.1) whose facets are then translated using the entries of
f to produce a polyhedron Yf (A), of which the polytope Y (A) = Yf (A) is the unique
maximal bounded face. The proof of Theorem 1.1 goes by analyzing the necessary
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and sufficient conditions for f to produce a polytope with the desired properties and
then proving the existence of valid choices of f . In particular, Theorem 3.8 shows one
specific valid choice. This is essentially the same approach used in [19] for the polytope
of pointed non-crossing graphs constructed there. We come back to the relation between
[19] and the present paper later in this Introduction.

Triangulations as a Polytope. Mapping the instances of a combinatorial object to the
vertices of a certain polytope is useful for optimization and enumeration purposes. In the
case of triangulations of a (not necessarily two-dimensional) point set, two such polytopes
have been used in the past; the “secondary polytope” [5] and the “universal polytope” [8]
of the point set. Our construction adds to these two, but it has one advantage: We have an
explicit facet description of the polytope. In the secondary polytope, facets correspond
to the coarse polygonal subdivisions of A, which have no easy characterization. In the
universal polytope, the facet description in [8] gives only a linear programming relaxation
of the polytope, which makes integer programming necessary in order to optimize linear
functionals on it. It has to be noted, also, that the secondary polytope does not contain
all the triangulations of a point set as vertices. Only the so-called regular or generalized
Delaunay triangulations.

That the poset we are interested in is not the whole poset of faces of the polytope
Y (A) may seem a serious drawback for using it as a tool for enumeration of all the
triangulations of a planar point set. However, the subposet we are interested in is not just
a subposet. Being the complement of the star of a face F has theoretical and practical
implications. On the one hand, it implies that the poset is a shellable ball of dimension
2ni + n − 4, since there is a shelling order ending in the facets that contain F . On the
other hand, the part of the boundary of Y (A) that we are interested in becomes the (strict)
lower envelope of a convex polyhedron via any projective transformation that sends a
supporting hyperplane of F to infinity.

The Polytope of Pseudo-Triangulations. Actually, the set of all the vertices of the
polytope Y (A) is interesting in its own merits:

Theorem 1.2. The vertex set of the polytope Y (A) of Theorem 1.1 is in bijection to
the set of all pseudo-triangulations of A. The 1-skeleton of Y (A) is the graph of flips
between them.

A pseudo-triangulation ofA is a subdivision of conv(A) into pseudo-triangles using
A as the vertex set, and a pseudo-triangle is a perhaps non-convex polygon with three
corners (non-reflex vertices). As an example, Fig. 1 shows the pseudo-triangulations
of a set of four extremal points and one interior point, with the graph of flips between
them embedded as (a Schlëgel diagram of) a four-dimensional polytope. The face F
of Theorem 1.1 is the three-dimensional facet on which the Schlëgel diagram has been
performed. Why the interior point is “unmarked” in the three triangulations of the point
set and “marked” in the other eight pseudo-triangulations is explained in Section 2.

Pseudo-triangulations, first introduced by Pocchiola and Vegter around 1995 (see
[17]), have by now been used in many Computational Geometry applications, among
them visibility [16]–[18], [20], ray shooting [10] and kinetic data structures [1], [13].
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Fig. 1. The pseudo-triangulations of a point set form a polytope.

Streinu [21] introduced the minimum or pointed pseudo-triangulations (p.p.t.’s for short),
discovered certain surprising relations of them to structural rigidity of non-crossing
graphs and used them to prove Carpenter’s Rule Theorem (the first proof of which
was given shortly before by Connelly et al. [6], [7]). P.p.t.’s can also be described
as the maximal non-crossing and pointed graphs. See all the relevant definitions in
Section 2.

Relation to the Previous Paper [19]. Rote et al. in [19], using these rigid theoretic
properties of p.p.t.’s, constructed a polytope X (A) whose vertex set is precisely the set
of p.p.t.’s of a given point set. The present paper can be considered a sequel to that paper.
The steps in our construction are essentially the same as there and the polytope X (A)
of [19] equals the face F of Y (A) that appears in the statement of Theorem 1.1. The
two novelties in our results are that we extend that construction to cover all pseudo-
triangulations and all non-crossing graphs instead of only pointed ones, and also that
we show how the method can be adapted to point sets in non-general position, with a
suitable definition of pseudo-triangulation for such point sets (Definition 5.1).

Technically speaking, the three new ingredients here, not present in [19], are:

• We use a generalized definition of flip between pseudo-triangulations that allows
us to increase or decrease the number of edges (see Definition 2.5 for point sets in
general position and Definition 5.5 and Figs. 9 and 10 for point sets with collinear-
ities). In the case of general position, the same definition has been independently
considered in [2], where flips between pseudo-triangulations are related to locally
convex functions and geometric flips between polyhedral terrains.

For p.p.t.’s, our flips restrict to the traditional “edge-flips” introduced in [21] and
used in [19]. Our flips are also related to the flips between “pseudo-triangulations
of convex bodies” [17] as follows: Pocchiola (personal communication) has shown
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that taking a sufficiently small convex body around each point of a point set
A, our graph of flips is obtained from the one in [17] by contraction of certain
edges.
• Suggested by the properties of the graph of flips (it is regular of degree equal to the

number of “edges plus pointed vertices” of any given pseudo-triangulation of A),
we introduce a formalism in which the “pointedness” of any particular vertex ofA
in a graph G plays the same role as the presence of an edge. This led to the concept
of a “marked non-crossing graph” which is a non-crossing graph with some of its
pointed vertices “marked”.
• In order to extend the results of [19] we needed a way to make “marks” enter into

the rigidity theoretic picture used there: to be precise, we needed to work with
“infinitesimal motions” in which each vertex has a three-dimensional “velocity
vector” attached to it. More importantly, we needed to define expansiveness and
equilibrium for these “motions”, in such a way as to produce exactly the signs
given in Lemma 4.3 for the unique equilibrium stress on the complete marked
graph on four points. It took us some time to find the right notion of expansiveness.
As sometimes happens, the final solution (given in (2) and (3)) turned out to be
simpler than other approaches we tried before.

Constrained Pseudo-Triangulations. It is sometimes convenient to study pseudo-tri-
angulations or non-crossing graphs on A that contain a specified subset of edges. For
example, the pseudo-triangulations of a non-convex polygon P are in bijection with
pseudo-triangulations of the point set A = vertices(P) which use all the boundary
edges of P and any (arbitrarily chosen) triangulation of conv(P)\P . We can even allow
for additional interior points of P to be used as vertices (a situation called an “augmented
polygon” in [2]).

We want to emphasize that our results apply to these and other cases: since each facet
of Y (A) contains the graphs that use a certain edge, the graphs that extend a certain
given graph G correspond to a certain face of Y (A). We can even prescribe vertices to be
pointed since, as said above, “pointedness of a vertex plays the same role as the presence
of an edge”.

Corollary 1.3. Let G be a non-crossing graph onAwith k non-boundary edges (edges
not in the boundary of conv(A)). Then the set of pseudo-triangulations ofA that contain
G as a subgraph is the vertex set of a simple polytope of dimension 2ni+n−3−k, whose
1-skeleton is the graph of flips between them. In particular, the pseudo-triangulations
of a non-convex polygon P with n vertices are the vertex set of a polytope of dimension
n − 3.

This result was left as an open question in [2], where the case of a simple polygon with
no interior vertices was proved. As an example, Fig. 2 shows the (three-dimensional)
polytope of pseudo-triangulations of a certain non-convex hexagon.

Pseudo-Triangulations Are Rigid. Our construction also has rigid-theoretic conse-
quences. A generically rigid graph (for dimension 2) is a graph which becomes rigid in
almost all its straight-line embeddings in the plane. Generically rigid graphs need at least
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Fig. 2. The pseudo-triangulations of a (perhaps non-convex) polygon form a polytope too.

2n − 3 edges, because that is the number of degrees of freedom of n points in the plane
(after neglecting rigid motions). Generically rigid graphs with exactly 2n − 3 edges are
called isostatic and they admit the following characterization, due to Laman (see, for
example, [11]): they are the graphs with 2n − 3 edges and with the property that any
subset of k ≤ n − 2 vertices is incident to at least 2k edges. Using this characterization,
Streinu [21] proved that every pointed pseudo-triangulation is an isostatic graph. We
have the following generalization:

Theorem 1.4. Let T be a pseudo-triangulation of a planar point set A in general
position. Let G be its underlying graph. Then:

(1) G is infinitesimally rigid, hence rigid and generically rigid.
(2) There are at least 2k + 3l edges of T incident to any subset of k pointed plus l

non-pointed vertices of T (assuming k + l ≤ n − 2).

In this statement, “general position” can actually be weakened to “no three boundary
points ofA are collinear”. In the presence of boundary collinearities, non-rigid pseudo-
triangulations (for our definition) exist. For example, only six of the fourteen pseudo-
triangulations of the point set of Fig. 10 are rigid.

If we recall that a pseudo-triangulation with k non-pointed vertices has exactly 2n −
3+ k edges (see Proposition 2.2), then Theorem 1.4 has the consequence that the space
of equilibrium stresses on a pseudo-triangulation has exactly dimension k. This fact also
follows from the results of [2].

The property in part (2) of Theorem 1.4 also has some interest. It is a natural gener-
alization of the Laman property of pointed pseudo-triangulations, and it has been used
in [15] to prove the following statement. The “isostatic” case of it was proved in [12]:
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Theorem 1.5 [15]. A planar graph is generically rigid if and only if it can be embedded
as a pseudo-triangulation.

Two Open Questions.

• It is proved in [3] that the graph of flips between pseudo-triangulations of a point set
A (that is, the 1-skeleton of our polytope) has diameter bounded by O(n log(n)).
The same bound for the graph of pointed pseudo-triangulations (the 1-skeleton of
the face F) has been obtained in [4]. Is there a general upper bound of the form
O(d log d) for the diameter of the graph of any face of Y (A), where d denotes the
dimension of that face? Even more, is there an O(d) upper bound? (This is open
even for the whole polytope, or for the polytope of pointed pseudo-triangulations.)

Essentially, we are asking for an upper bound on the diameter of the graph of
flips between pseudo-triangulations constrained by any given graph G on A, and
expect the bound to depend only on the number of edges needed to complete G to
a pseudo-triangulation.
• Are non-crossing graphs onA the face poset of a polyhedron? A naive answer would

be that such a polyhedron is obtained by just deleting from the facet definition of
Y (A) those facets containing F . However, this does not work even in the point
set with a single point in general position in the interior of a quadrilateral (the one
in Fig. 1). Using the equations that define the polytope it can be checked that the
removal of the facet F in this example gives a polyhedron with two extra vertices,
not present in Yf (A).

2. The Graph of All Pseudo-Triangulations of A

Throughout this section, A denotes a set of n points in general position in the plane,
ni of them in the interior of conv(A) and nv in the boundary. Point sets in non-general
position are studied in Section 5.

Definition 2.1. A pseudo-triangle is a simple polygon with only three convex vertices
(called corners) joined by three inward convex polygonal chains (called pseudo-edges
of the pseudo-triangle).

A pseudo-triangulation ofA is a geometric non-crossing graph with vertex setA and
which partitions conv(A) into pseudo-triangles.

Part (a) of Fig. 3 shows a pseudo-triangle. Parts (b) and (c) show two pseudo-
triangulations.

Since the maximal non-crossing graphs onA (the triangulations ofA) are a particular
case of pseudo-triangulations, they are the maximal pseudo-triangulations. As is well
known, they all have 2nv+3ni −3 edges. It turns out that the pseudo-triangulations with
the minimum possible number of edges are also very interesting from different points
of view. We recall that a vertex of a geometric graph is called pointed if all its incident
edges span an angle smaller than π from that vertex. The graph itself is called pointed
if all its vertices are pointed. The following statement comes originally from [21] and a
proof can also be found in [19].
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(a) (b) (c)

Fig. 3. (a) A pseudo-triangle. (b) A pointed pseudo-triangulation. (c) The dashed edge in (b) is flipped, giving
another pointed pseudo-triangulation.

Proposition 2.2 [21]. Let A be a planar point set as above. Then:

1. Every pseudo-triangulation of A with nγ non-pointed vertices and nε pointed
vertices has 2n − 3+ nγ = 3n − 3− nε edges.

2. Every pointed and planar graph onA has at most 2n − 3 edges, and is contained
in some pointed pseudo-triangulation of A.

Part 1 implies that, among pseudo-triangulations ofA, pointed ones have the minimum
possible number of edges. For this reason they are sometimes called minimum pseudo-
triangulations. Part 2 says that pointed pseudo-triangulations coincide with maximal
non-crossing and pointed graphs.

Another crucial property of pseudo-triangulations is the existence of a natural notion
of flip. Let e be an interior edge in a pseudo-triangulation T ofA and let σ be the union of
the two pseudo-triangles incident to e. We regard σ as a graph, one of whose edges is e.
We can consider σ\e to be a (perhaps degenerate) polygon, with a well-defined boundary
cycle; in degenerate cases some edges and vertices may appear twice in the cycle. See
an example of what we mean in Fig. 4, in which the cycle of vertices is pqrstsu and
the cycle of edges is pq, qr, rs, st, ts, su, up. As in any polygon, each (appearance of
a) vertex in the boundary cycle of σ\e is either concave or convex. In the figure there are
four convex vertices (corners), namely r , the second appearance of s, u and q. Then:

Lemma 2.3.

1. σ\e has either three or four corners.
2. It has three corners if and only if exactly one of the two endpoints of e is pointed

in σ . In this case T \e is still a pseudo-triangulation.

r

p

s

te

u

q

Fig. 4. The region σ\e is a degenerate polygon with four corners.
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3. It has four corners if and only if both endpoints of e are pointed in σ . In this case
T \e is not a pseudo-triangulation and there is a unique way to insert an edge in
T \e to obtain another pseudo-triangulation.

Proof. Let v1 and v2 be the two endpoints of e. For each vi , one of the following three
things occur: (a) vi is not-pointed in σ , in which case it is a corner of the two pseudo-
triangles incident to e and is not a corner of σ\e; (b) vi is pointed in σ with the big angle
exterior to σ , in which case it is a corner of both pseudo-triangles and of σ\e as well, or
(c) vi is pointed with its big angle interior, in which case it is a corner in only one of the
two pseudo-triangles and not a corner in σ\e.

In case (a), vi contributes two more corners to the two pseudo-triangles than to σ\e.
In the other two cases, it contributes one more corner to the pseudo-triangles than to
σ\e. Since the two pseudo-triangles have six corners in total, σ\e has four, three or two
corners depending on whether both, one or none of v1 and v2 are pointed in σ . The case
of two corners is clearly impossible, which finishes the proof of part 1. Part 2 only says
that “degenerate pseudo-triangles” cannot appear.

Part 3 is equivalent to saying that a pseudo-quadrangle (even a degenerate one) can
be divided into two pseudo-triangles in exactly two ways. Indeed, these two partitions
are obtained drawing the geodesic arcs between two opposite corners. Such a geodesic
path consists of a unique interior edge and (perhaps) some boundary edges.

Parts 2 and 3 of the above lemma will define two different types of flips in a pseudo-
triangulation. The inverse of the first one is the insertion of an edge, in case this produces
a pseudo-triangulation. It is easy to describe exactly when this happens:

Lemma 2.4. Let T be a pseudo-triangle with k non-corners. Then every interior edge
dividing T into two pseudo-triangles makes non-pointed exactly one non-corner. More-
over, there are exactly k such interior edges, each making non-pointed a different non-
corner.

Proof. The first sentence follows from Lemma 2.3, which says that exactly one of the
two endpoints of the edge inserted is pointed (after the insertion). For each non-corner,
pointedness at the other end of the edge implies that the edge is the one that arises in the
geodesic arc that joins that non-corner to the opposite corner. This proves uniqueness
and existence.

Definition 2.5 (Flips in Pseudo-Triangulations). Let T be a pseudo-triangulation. We
call flips in T the following three types of operations, all producing pseudo-triangulations.
See examples in Fig. 5:

- (Deletion flip.) The removal of an edge e ∈ T , if T \e is a pseudo-triangulation.
- (Insertion flip.) The insertion of an edge e 
∈ T , if T ∪ e is a pseudo-triangulation.
- (Diagonal flip.) The exchange of an edge e ∈ T , if T \e is not a pseudo-triangulation,

for the unique edge e′ such that (T \e) ∪ e′ is a pseudo-triangulation.

The graph of pseudo-triangulations ofA has as vertices all the pseudo-triangulations of
A and as edges all flips of any of the types.
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Fig. 5. (Top) A diagonal flip. (Bottom) An insertion–deletion flip.

A proof of the following can also be found in [2]:

Proposition 2.6. The graph of pseudo-triangulations ofA is connected and regular of
degree 3ni + nv − 3 = 3n − 2nv − 3.

Proof. There is one diagonal or deletion flip for each interior edge, giving a total of
3n−3−nε−nv by Proposition 2.2. There are as many insertion flips as pointed interior
vertices by Lemma 2.4, giving nε − nv .

To establish connectivity, let p be a point on the convex hull of A. By induction, we
can assume that the pseudo-triangulations ofA with no interior edge at p are connected
by flips (they coincide with the pseudo-triangulations of A\{p} together with the two
tangents from p to A\{p}). In a pseudo-triangulation with interior edges at p, interior
edges incident to e can be flipped out one by one.

Remark 2.7. It is an immediate consequence of Lemma 2.3 that every interior edge
in a pointed pseudo-triangulation is flippable. This shows that the graph of diagonal
flips between pointed pseudo-triangulations of A is regular of degree 2ni + nv − 3,
a crucial fact in [19]. The diameters of the graphs of all pseudo-triangulations and of
pointed pseudo-triangulations are studied in [3]and [4], respectively. They are both in
O(n log n).

As another remark, observe that if a pseudo-triangulation T ′ is obtained from another
one T by a deletion flip followed by an insertion flip, then T and T ′ differ by a single
edge and we do not consider them joined by a flip.

Marked Non-Crossing Graphs onA. As happened with pointed pseudo-triangulations,
Proposition 2.6 suggests that the graph of pseudo-triangulations ofAmay be the skeleton
of a simple polytope of dimension 3ni + nv − 3. As a step towards this result we first
look at what the face poset of such a polytope should be. The polytope being simple
means that we want to regard each pseudo-triangulation T as the upper bound element
in a Boolean poset of order 3n − 3− 2nv . This number equals, by Proposition 2.2, the
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number of interior edges plus interior pointed vertices in T . This suggests the following
definitions:

Definition 2.8. A marked graph on A is a geometric graph with vertex set A together
with a subset of its vertices, that we call “marked”. We call a marked graph non-crossing
if it is non-crossing as a graph and marks arise only in pointed vertices. We call a non-
crossing marked graph fully marked if it is marked at all pointed vertices. If, in addition, it
is a pseudo-triangulation, then we call it a fully marked pseudo-triangulation, abbreviated
as f.m.p.t.

Marked graphs form a poset by inclusion of both the sets of edges and of marked
vertices. We say that a marked graph contains the boundary of A if it contains all the
convex hull edges and convex hull marks.

Observe that there is a natural bijection between pseudo-triangulations (graphs) and
f.m.p.t.’s (which turn out to be the maximal non-crossing marked graphs). In other words,
the face poset of our polytope should be the poset of non-crossing marked graphs on
A that contain the boundary. Indeed, this poset has the right “1-skeleton” and the right
lower ideal below every f.m.p.t. (a Boolean lattice of order 3n − 3− 2nv).

The graph of pseudo-triangulations ofA of Definition 2.5 has a natural interpretation
as a graph of “flips between fully marked pseudo-triangulations”: a diagonal flip ex-
changes one edge to another one, keeping pointedness (and hence marks) of every vertex.
The edge-deletion and edge-insertion flips exchange an edge for a mark, and vice versa
(Fig. 6). Figures 1 and 2 were drawn with this interpretation in mind.

The following results are mere rephrasings of the corresponding statements for non-
crossing graphs and pseudo-triangulations, and are stated here for future reference:

Proposition 2.9. With the previous definitions:

1. Every marked pseudo-triangulation ofA with nγ non-pointed vertices, nε pointed
vertices and nm marked vertices, has 2n−3+nγ +nm = 3n−3−nε+nm edges
plus marks. In particular, all f.m.p.t.’s have 3n−3 edges plus marks, 3n−3−2nv
of them interior.

2. (Flips in marked pseudo-triangulations) In an f.m.p.t. T of A, every interior
edge or interior mark can be flipped; that is to say, once an interior edge or mark
is removed from T there is a unique edge or mark (different from the removed one)
that can be added in order to get another f.m.p.t. of A. In particular, the graph of
flips between f.m.p.t.’s of A is connected and regular of degree 3n − 3− 2nv .

Fig. 6. Two marked pseudo-triangulations (with marks represented by dots) related by a flip. An edge from
the left is switched to a mark on the right.
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3. The Polyhedron of Marked Non-Crossing Graphs on A

Here we construct the polytope and polyhedron referred to in the Introduction. In the first
part of this section we do not assume A to be in general position. Only after Definition
3.7 do we need general position, among other reasons because we have not yet defined
marked non-crossing graphs or pseudo-triangulations for point sets in special position.
That is done in Section 5.

The setting for our construction is close to the rigid-theoretic one used in [19]. There
the polytope to be constructed is embedded in the spaceR2n−3 of all infinitesimal motions
of the n points p1, . . . , pn . The space has dimension 2n − 3 because the infinitesimal
motion of each point produces two coordinates (an infinitesimal velocity vi ∈ R2) but
global translations and rotations produce a three-dimensional subspace of trivial motions
which are neglected. Formally, this can be done by a quotient R2n/M0, where M0 is the
three-dimensional subspace of trivial motions, or it can be done by fixing three of the
2n coordinates to be zero. For example, if the points p1 and p2 do not lie in the same
horizontal line, one can take

v1
1 = v2

1 = v1
2 = 0.

In our approach, we consider a third coordinate ti for each point, related to the “marks”
discussed in the previous paragraphs, or to pointedness of the vertices.

That is to say, given a set of n points A = {p1, . . . , pn} in R2, we consider the
following (3n − 3)-dimensional space of “infinitesimal motions”:

S := {(v1, . . . , vn, t1, . . . , tn) ∈
(
R

2
)n × Rn: v1

1 = v2
1 = v1

2 = 0} ⊂ R3n. (1)

In it we consider the following
(n

2

)+ n linear inequalities:

H+i j := {(v, t) ∈ S : 〈pi − pj , vi − vj 〉 − |pi − pj |(ti + tj ) ≥ 0} (2)

and

H+0 j := {(v, t) ∈ S : tj ≥ 0}. (3)

We denote their boundary hyperplanes by Hi, j and H0, j .

Definition 3.1. We call the positive region of the above hyperplane arrangement the
expansion cone of A and denote it Y0(A):

Y0(A) :=
⋂

i, j∈{0,1,...,n}
H+i j .

When clear from the context we omit the point set A and use just Y0.

Remark 3.2. Observe that the equations defining Y0 imply that for every i, j ,

〈pi − pj , vi − vj 〉 ≥ |pi − pj |(ti + tj ) ≥ 0.

In particular, in order for (v1, . . . , vn, t1, . . . , tn) to be expansive in our sense, the vector
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(v1, . . . , vn) must be an expansive infinitesimal motion of the point set, in the standard
sense.

Lemma 3.3. The polyhedron Y0(A) has full dimension 3n − 3 in S ⊂ R
3n and it

is a pointed polyhedral linear cone. (Here, “pointed” means “having a vertex” or,
equivalently, “containing no whole line”.)

Proof. The vector (v, t) with vi := pi , ti := mink,l{|pk − pl |}/4 satisfies all the
inequalities (2) and (3) strictly. In order to obtain a point in S we add to it a suitable
infinitesimal trivial motion.

To prove that the cone is pointed, suppose that it contains two opposite vectors (v, t)
and −(v, t). Equivalently, that (v, t) lies in all the hyperplanes Hi, j and H0,i . That is to
say, ti = 0 for every i and

〈vj − vi , pj − pi 〉 = 0

for all i, j . These last equations say that (v1, . . . , vn) is an infinitesimal flex of the
complete graph on A. Since the complete graph on every full-dimensional point set is
infinitesimally rigid, (v1, . . . , vn) is a trivial motion and (1) implies that the motion is
zero.

An edge pi pj or a point pi are called tight for a certain vector (v, t) ∈ Y0 if (v, t)
lies in the corresponding hyperplane Hi, j or H0,i . For any (v, t), we denote by T (v, t)
the marked graph of tight edges for (v, t) with marks at tight points for (v, t). We call it
the supporting graph of (v, t).

Lemma 3.4. Let (v, t) ∈ Y0. If T (v, t) contains the boundary edges and vertices of a
convex polygon, then vl = 0 and tl = 0 for every point pl in the interior of the polygon.
Therefore, T (v, t) contains the complete marked graph on the set of vertices and interior
points of the polygon.

Observe that this statement says nothing about points in the relative interior of a
boundary edge, if the polygon has collinear points in its boundary. Indeed, such points
may have a non-zero vl , namely, the exterior normal to the boundary edge containing
the point.

Proof. The hypotheses are equivalent to ti = 0 and 〈pi − pj , vi − vj 〉 = 0 for all the
boundary vertices pi and boundary edges pi pj of the convex polygon.

Then the infinitesimal expansive motion v = (v1, . . . , vn) also preserves distances
between non-consecutive polygon vertices, because otherwise it would decrease the
interior angle at some polygon vertex pi and it would make its adjacent boundary vertices
get closer, in contradiction with (2). Hence, v is a translation or rotation of the polygon
boundary which, by (1), is zero.

In these conditions, if vk 
= 0 for some pk interior to the polygon, then pk gets closer
to some boundary vertex, that using tk ≥ 0 contradicts (2) again. Therefore, vl = 0 for
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every point pl enclosed in the polygon. Then (2) taking pj = pl and pi in the boundary
of the polygon implies that tl ≤ 0. Together with (3) taking again pj = pl this implies
tl = 0.

Obviously, Y0 is not the polyhedron we are looking for, since its face poset does not
have the desired combinatorial structure; it has a unique vertex whileA may have more
than only one f.m.p.t. The right polyhedron for our purposes is going to be a convenient
perturbation of Y0 obtained by translation of its facets.

Definition 3.5. For each f ∈ R(n+1
2 ) (with entries indexed fi, j , for i, j ∈ {0, . . . , n})

we denote by Yf (A) the polyhedron defined by the
(n

2

)
equations

〈pi − pj , vi − vj 〉 − |pi − pj |(ti + tj ) ≥ fi j (4)

for every pi , pj ∈ A and the n equations

tj ≥ f0 j , ∀pi ∈ A. (5)

We call it the polyhedron of expansions constrained by f .

From Lemma 3.3, we conclude that:

Corollary 3.6. Yf (A) is a (3n − 3)-dimensional unbounded polyhedron with at least
one vertex, for any f .

In the rest of this section and in Section 4 we assume A to be in general position. As
before, to each feasible point (v, t) ∈ Yf we associate the marked graph consisting of
edges and vertices for which (4) and (5) are tight on (v, t). Similarly, to a face F of Yf

we associate the tight marked graph of any of its relative interior points. This gives an
(order-reversing) embedding of the face poset of Yf into the poset of all marked graphs
ofA. Our goal is to show that for certain choices of the constraint parameters f , the face
poset of Yf coincides with that of non-crossing marked graphs on A.

Definition 3.7. We define a choice of the constants f to be valid if the tight marked
graph T (F) of every face F of Yf is non-crossing.

The proof that valid choices exist for any point set is postponed to Section 4, in order
not to interrupt the current flow of ideas. In particular, Corollary 4.5 implies that the
following explicit choice is valid:

Theorem 3.8. The choice fi j := det(O, pi , pj )
2, f0 j := 0 is valid.

The main statement in the paper is then:

Theorem 3.9 (The Polyhedron of Marked Non-Crossing Graphs). If f is a valid
choice of parameters, then Yf is a simple polyhedron of dimension 3n−3 whose face poset
equals (the opposite of) the poset of non-crossing marked graphs on A. In particular:
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(a) Vertices of the polyhedron are in 1-to-1 correspondence with f.m.p.t.’s of A.
(b) Bounded edges correspond to flips of interior edges or marks in f.m.p.t.’s, i.e., to

f.m.p.t.’s with one interior edge or mark removed.
(c) Extreme rays correspond to f.m.p.t.’s with one convex hull edge or mark removed.

Proof. By Corollary 3.6, every vertex (v, t) of Yf has at least 3n − 3 incident facets.
By Proposition 2.9, if f is valid, then the marked graph of any vertex of Yf has exactly
3n−3 edges plus marks and is an f.m.p.t. This also implies that the polyhedron is simple.
If we prove that all the f.m.p.t.’s appear as vertices of Yf we finish the proof, because
then the face poset of Yf will have the right minimal elements and the appropriate upper
ideals of minimal elements (the Boolean lattices of subgraphs of f.m.p.t.’s) to coincide
with the poset of non-crossing marked graphs on A.

That all f.m.p.t.’s appear follows from connectedness of the graph of flips: Starting
with any given vertex of Yf , corresponding to a certain f.m.p.t. T ofA, its 3n−3 incident
edges correspond to the removal of a single edge or mark in T . Moreover, if the edge
or mark is not in the boundary, Lemma 3.4 implies that the edge (of Yf ) corresponding
to it is bounded because it collapses to the origin in Y0. Then this edge connects the
original vertex of Yf to another one which can only be the f.m.p.t. given by the flip in
the corresponding edge or mark of T . Since this happens for all vertices, and since all
f.m.p.t.’s are reachable from any other one by flips, we conclude that they all appear as
vertices.

From Theorems 3.8 and 3.9 it is easy to conclude the statements in the Introduction.
The following is actually a more precise statement implying both:

Theorem 3.10 (The Polytope of All Pseudo-Triangulations). Let Yf (A) be the face of
Yf (A) defined by turning into equalities equations (4) and (5) which correspond to
convex hull edges or convex hull points of A, and assume f to be a valid choice. Then:

1. Yf (A) is a simple polytope of dimension 2ni +n−3 whose 1-skeleton is the graph
of pseudo-triangulations of A. (In particular, it is the unique maximal bounded
face of Yf (A)).

2. Let F be the face of Yf (A) defined by turning into equalities the remaining equa-
tions (5). Then the complement of the star of F in the face-poset of Yf (A) equals
the poset of non-crossing graphs on A that use all the convex hull edges.

Proof. (1) That Yf (A) is a bounded face follows from Lemma 3.4 (it collapses to
the zero face in Y0(A)). Since vertices of Yf (A) are f.m.p.t.’s and since all f.m.p.t.’s
contain all the boundary edges and vertices, Yf (A) contains all the vertices of Yf (A).
Hence, its vertices are in bijection with all f.m.p.t.’s which, in turn, are in bijection
with pseudo-triangulations. Edges of Yf (A) correspond to f.m.p.t.’s minus one inte-
rior edge or mark, which are precisely the flips between f.m.p.t.’s or between pseudo-
triangulations.

(2) The facets containing F are those corresponding to marks in interior points. Then
the faces in the complement of the star of F are those in which none of the inequalities (5)
are tight; that is to say, they form the poset of “non-crossing marked graphs containing
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the boundary edges and marks but no interior marks”, which is the same as the poset of
non-crossing graphs containing the boundary.

We now turn our attention to Theorem 1.4. Its proof is based on the use of the
homogeneous cone Y0(A) or, more preciesely, the set H := {Hi j : i, j = 1, . . . , n} ∪
{H0i : i = 1, . . . , n} of hyperplanes that define it.

Proof of Theorem 1.4. Observe now that the equations defining Hi j , specialized to
ti = 0 for every i , become the equations of the infinitesimal rigidity of the complete
graph on A. In particular, a graph G is rigid on A if and only if the intersection( ⋂

i j∈G

Hi j

)
∩

(
n⋂

i=1

H0i

)

equals zero.
This happens for any pseudo-triangulation because Theorem 3.9 implies that the

hyperplanes corresponding to the 3n − 3 edges and marks of any f.m.p.t. form a basis
of the (dual of) the linear space S.

To prove part (2) we only need the fact that the 3n−3 linear hyperplanes corresponding
to an f.m.p.t. are independent. In particular, any subset of them is independent too. We
consider the subset corresponding to the induced (marked) subgraph on the n − k − l
vertices other than the k pointed and l non-pointed ones we are interested in. They form
an independent set involving only 3(n − k − l) coordinates, hence their number is at
most 3(n − k − l) − 3 (we need to subtract 3 for the rigid motions of the n − k − l
points, and here is where we need k + l ≤ n − 2). Since the f.m.p.t. has 3n − 3 edges
plus marks, at least 3k + 3l of them are incident to our subset of points, and exactly k
marks are incident to our points, hence at least 2k + 3l edges are.

Actually, we can derive some consequences for general planar rigid graphs. Observe
that every planar and generically rigid graph G must have between 2n − 3 and 3n − 3
edges (the extreme cases being an isostatic graph and a triangulation of the 2-sphere).
Hence, we can say that the graph G has 2n − 3+ y edges, where 0 ≤ y ≤ n − 3. If the
graph can be embedded as a pseudo-triangulation, then the embedding will have exactly
y non-pointed vertices. In particular, the following statement is an indication that every
planar and rigid graph can be embedded as a pseudo-triangulation:

Proposition 3.11. Let G be a planar and generically rigid graph with n vertices and
2n− 3+ y edges. Then there is a subset Y of cardinality y of the vertices of G such that
every set of l vertices in Y plus k vertices not in Y is incident to at least 2k + 3l edges,
whenever k + l ≤ n − 2.

Proof. Consider G embedded planarly in a sufficiently generic straight-line manner.
Since the embedding is planar, it can be completed to a pseudo-triangulation T . In
particular, the set of edges of G represents an independent subset of 2n−3+y hyperplanes
of H. However, since the graph is rigid, adding marks to all the vertices produces a
spanning set of 3n − 3+ y hyperplanes. Between these two sets there must be a basis,
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Fig. 7. A planar graph satisfying the conclusion of Proposition 3.11 need not be rigid

consisting of the 2n − 3 + y edges of G plus n − y marks. We call Y the vertices not
marked in this basis, and the same argument as in the proof of Theorem 1.4 gives the
statement.

It has to be said, however, that a planar graph G with a subset Y of its vertices satisfying
Proposition 3.11 need not be generically rigid. Figure 7 shows an example (take as Y
any three of the four six-valent vertices).

4. Valid Choices of f

It remains to be proved that valid choices of parameters do exist. In particular, that the
choice in Theorem 3.8 is valid. Our methods, again inspired by [19], actually give more:
a full description of the set of valid choices via a set of

(n
4

)
linear inequalities, one for

each four-point subset of the n points.

Definition 4.1. Let G be a graph embedded on A, with a set of edges E and a set of
marked vertices V . In our context, an equilibrium stress on G (or a stress, for short) is
an assignment of scalarswi j to edges and αj to marked vertices of G, such that for every
(v, t) ∈ R3n ,∑

i j∈E

wi j (〈pi − pj , vi − vj 〉 − |pi − pj |(ti + tj ))+
∑
i∈V

αi ti = 0. (6)

Lemma 4.2. Let
∑n

i=1 λi pi = 0,
∑
λi = 0, be an affine dependence on a point set

A = {p1, . . . , pn}. Then

wi j := λiλj for every i, j

and

αi :=
∑

j :i j∈E

λiλj |pi − pj | for every i

defines a stress of the complete graph G on A.
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Proof. Equation (6) on the variables v gives∑
i j∈E

wi j 〈pi − pj , vi − vj 〉 = 0 for every v ∈ R2n. (7)

This is fulfilled by the wi j ’s of the statement

∑
j 
=i

λiλj (pi − pj ) =
n∑

j=1

λiλj (pi − pj ) = λi pi

n∑
j=1

λj − λi

n∑
j=1

λj pj = 0,

where the last equality comes from the λi ’s being an affine dependence.
Then, in order for the coefficient of ti in (6) to cancel, we need αi =

∑
j :i j∈E wi j |pi −

pj |.

Crucial for our construction is the case of four points in general position in R2. They
have a unique (up to a constant) affine dependence, whose coefficients are

λi = (−1)i det([p1, . . . , p4]\{pi }).
Dividing the self-stress of Lemma 4.2 by the constant

− det(p1, p2, p3) det(p1, p2, p4) det(p1, p3, p4) det(p2, p3, p4)

we derive that the following expressions form a self-stress of the complete marked graph
on these four points:

wi j = 1

det(pi , pj , pk) det(pi , pj , pl)
, αi =

∑
j :i j∈E

wi j |pi − pj |. (8)

In the equation for wi j , k and l denote the two indices other than i and j . The reason for
not taking the self-stress of Lemma 4.2 directly is that our normalization of it produces
the following key property which turns out to be fundamental later; see Fig. 8:

Lemma 4.3. For any four points in general position, expressions (8) make wi j and αj

positive for boundary edges and points and negative for interior edges and points.

+

+ ++

+ +

-

-

+ + + +

+ ++

+

-

--
-

Fig. 8. The negative parts of these two marked graphs are the excluded minors in non-crossing marked graphs
of a point set in general position.
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Proof. In order to check the part concerningwi j ’s we use that det(q1, q2, q3) is twice the
signed area of the triangle spanned by q1, q2, q3: For a boundary edge the two remaining
points lie on the same side of the edge, so they have the same sign. For an interior edge,
they lie on opposite sides and therefore they have different signs.

For the αi ’s, if i is an interior point, then all thewi, j ’s in the formula for αi are negative
and, hence, αi is also negative. If i is a boundary point, then two of the wi, j are positive
and the third one is negative. However, since∑

j∈{1,2,3,4}\i
wi, j (pi − pj ) = 0,

the triangle inequality implies that the two positive summands wi j |pi − pj | in the ex-
pression of αi add up to a greater absolute value than the negative one. Hence, αi is
positive.

The previous statement is crucial to us, because no matter whether the four points
are in convex position or one of them is inside the convex hull of the other three, the
f.m.p.t.’s on the four points can be characterized as the marked graphs with nine edges
plus marks and in which the missing edge or mark is interior (two f.m.p.t’s for points in
convex position, four of them for a triangle plus an interior point).

We conclude that:

Theorem 4.4. An f ∈ R(n+1
2 ) is valid if and only if the following inequality holds for

every four points {p1, p2, p3, p4} of A:

∑
1≤i< j≤4

wi j fi j +
4∑

j=1

αj f0 j > 0, (9)

where the wi j ’s and αj ’s are those of (8).

Proof. Suppose first that A has only four points. The polyhedron Yf (A) is nine-
dimensional, which implies that for every vertex (v, t) of the polyhedron, the set T (v, t)
contains at least nine edges plus marks on those four points. Therefore, T (v, t) is the
complete marked graph with an edge or mark removed.

We denote by Gk and Gkl the complete marked graph with a non-marked vertex k
or a missing edge kl, respectively. Recall that by Lemma 4.3 the choice of stress on
four points has the property that Gk and Gkl are f.m.p.t.’s if and only if αk and wkl

(corresponding respectively to the removed mark or edge) are negative. Let us see that
this is equivalent to f being valid:

By the definition of stress,

∑
1≤i< j≤4

wi j (〈pi − pj , vi − vj 〉 − |pi − pj |(ti + tj ))+
4∑

j=1

αj tj

equals zero. In the case of Gk , in which every edge and vertex except k are tight, that
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expression equals

∑
1≤i< j≤4

wi j fi j +
4∑

j=1

αj f0 j + αk(tk − f0k).

In the case of Gkl , where every vertex and edge except kl are tight, it equals

∑
1≤i< j≤4

wi j fi j +
4∑

j=1

αj f0 j + wkl(〈pk − pl , vk − vl〉 − |pk − pl |(tk + tl)− fkl).

Since 〈pk − pl , vk − vl〉 − |pk − pl |(tk + tl)− fkl ≥ 0 and tk − f0k ≥ 0, by (4) and
(5), we conclude that in the first and second cases above, αk and wkl , respectively, are
negative if and only if f is valid.

Now we turn to the case of a general A and our task is to prove that a choice of
parameters f is valid if and only if it is valid when restricted to any four points. Observe
that if A′ ⊂ A, then Yf (A′) equals the intersection of Yf (A) with the subspace where
vi = 0 and ti = 0 for all pi ∈ A\A′. In particular, the marked graphs onA′ corresponding
to faces of Yf (A′) are subgraphs of marked graphs of faces of Yf (A). Moreover, non-
crossingness of a marked graph onA is equivalent to non-crossingness of every induced
marked graph on four vertices: indeed, a crossing of two edges appears in the marked
graph induced by the four endpoints of the two edges, and a non-pointed marked vertex
appears in the marked graph induced on the four endpoints involved in any three edges
forming a non-pointed “letter Y” at the non-pointed vertex.

Hence, if f is valid for every four points, then none of the four-point minors forbidden
by non-crossingness appear in faces of Yf (A) and f is valid for A. Conversely, if f is
not valid on some four-point subset A′, then the marked graph on A′ corresponding
to any vertex of Yf (A′) would be the complete graph minus one boundary edge or
vertex, that is to say, it would not be non-crossing. Hence f would not be valid on
A either.

Corollary 4.5. For any a, b ∈ R2, the choice fi j := det(a, pi , pj ) det(b, pi , pj ),
f0 j := 0 is valid.

Proof. Consider the four points pi as fixed and regard R := ∑
wi j fi j +

∑
αj f0 j =∑

wi j fi j as a function of a and b:

R(a, b) =
∑

1≤i< j≤4

det(a, pi , pj ) det(b, pi , pj )wi j .

We have to show that R(a, b) is always positive. We actually claim it to be always one.
Observe first that R(pi , pj ) is trivially one for i 
= j . Since any three of our points are
an affine basis and since R(a, b) is an affine function of b for fixed a, we conclude that
R(pi , b) is one for every i ∈ {1, 2, 3, 4} and for every b. The same argument shows that
R(a, b) is constantly one: for fixed b it is an affine function of a and is equal to one on
an affine basis.
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5. Points in Special Position

In this section we show that almost everything we said so far applies equally to point
sets with collinear points. We essentially follow the same steps as in Sections 2–4. Two
subtleties are that our definitions of pointedness or pseudo-triangulations can only be
fully justified a posteriori, and that the construction of the polyhedron for point sets with
boundary collinearities is slightly indirect: it relies on the choice of some extra exterior
points to make colliniarities go to the interior.

The Graph of All Pseudo-Triangulations of A

Definition 5.1. Let A be a point set in the plane, possibly with collinear points.

(1) A graph G with a vertex setA is called non-crossing if no edge intersects another
edge of G or a point of A except at its endpoints. In particular, if p1, p2 and p3

are three collinear points, in this order, then the edge p1 p3 cannot appear in a
non-crossing graph, independently of whether there is an edge incident to p2 or
not.

(2) A pseudo-triangle is a simple polygon with only three interior angles smaller
than π . A pseudo-triangulation of A is a non-crossing graph with vertex set
A, which partitions conv(A) into pseudo-triangles and such that no point in the
interior of conv(A) is incident to more than one angle of π .

Figure 9 shows the eight pseudo-triangulations of a certain point set. We have drawn
them connected by certain flips, to be defined later, and with certain points marked. The
graph on the right of the figure is not a pseudo-triangulation because it fails to satisfy

Fig. 9. The eight pseudo-triangulations of a point set with interior collinearities (left) plus a non-crossing
graph with pseudo-triangular faces but which we do not consider a pseudo-triangulation (right).
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Fig. 10. The graph of pseudo-triangulations of a point set with boundary collinearities.

the last condition in our definition. Intuitively, the reason why we do not allow it as a
pseudo-triangulation is that we are considering angles of exactly π as being reflex, and
we do not want a vertex to be incident to two reflex angles.

However, if collinearities happen in the boundary of conv(A), as in Fig. 10, we
treat things differently. The exterior angle of π is not counted as reflex, and hence the
middle point in a boundary collinearity is allowed to be incident to an interior angle
of π . This choice of convention can only be fully justified “a posteriori”: it is the one that
produces the result we are interested in (Corollary 5.16). For the impatient reader, maybe
the following argument will suffice: we certainly do not want an interior vertex to be
incident to two angles of π , because then there would be two different ways to insert an
edge incident to that vertex, and the graph of flips would necessarily be non-regular (see
Fig. 9 again). At a semi-interior vertex this is not an issue and our convention actually
produces a much better behaved graph of flips than the one not allowing π interior angles
at semi-interior vertices (compare Figs. 10 and 15).

Definition 5.2. A vertex p in a non-crossing graph onA is considered pointed if either
(1) it is a vertex of conv(A), (2) it is semi-interior and not incident to any edge going
through the interior of conv(A) or (3) it is interior and its incident edges span at most π
radians.

A non-crossing marked graph is a non-crossing graph with marks at some of its
pointed vertices. If all pointed vertices are marked we say the non-crossing graph is fully
marked. Marks at interior and semi-interior points are called interior marks.

For example, all the graphs of Figs. 9 and 10 are fully marked. That is to say, big dots
correspond exactly to pointed vertices. Of course, f.m.p.t.’s are just pseudo-triangulations
with marks at all their pointed vertices. Observe that we are calling interior marks
and edges exactly those which do not appear in all pseudo-triangulations. From now
on, we denote by ni , ns and nv the number of interior, semi-interior and extremal
points of A. Finally, n = nv + ns + ni denotes the total number of points in A. The
following two statements essentially say that Proposition 2.9 is valid for non-generic
configurations.
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Lemma 5.3. F.m.p.t.’s are exactly the maximal marked non-crossing graphs on A.
They all have 3n− ns − 3 edges plus marks and 2ni + n− 3 interior edges plus interior
marks.

Proof. The first sentence is equivalent to saying that every non-crossing graph G can
be completed to a pseudo-triangulation without making any pointed vertex non-pointed.
The proof of this is that if G is not a pseudo-triangulation, then either it has a face with
more than three corners, in which case we insert the diagonal coming from the geodesic
between any two non-adjacent corners, or there is an interior vertex with two angles of π ,
in which case we choose to consider one of them as reflex and the other as convex, and
insert the diagonal joining the convex angle to the opposite corner of the pseudo-triangle
containing it.

To prove the cardinality of pseudo-triangulations, let nε denote the number of marks.
Let us think of boundary collinearities as if they were concave boundary chains in our
graph, and triangulate the polygons formed by these chains by adding (combinatorially
or topologically) ns edges in total. If, in addition, we consider interior angles ofπ or more
as reflex and the others as convex, we get a graph with all the combinatorial properties
of pseudo-triangulations and, in particular, a graph for which Proposition 2.2 can be
applied, since its proof is purely combinatorial (a double counting of convex angles,
combined with Euler’s relation). In particular, the extended graph has 3n− 3 edges plus
marks, and the original graph has 3n − 3− ns of them. Since there are exactly ns + nv
exterior edges and nv exterior marks in every pseudo-triangulation, the last sentence
follows.

Lemma 5.4. If an interior edge or mark is removed from an f.m.p.t., then there is a
unique way to insert another edge or mark to obtain a different f.m.p.t.

Proof. If an edge is removed, then there are three possibilities: (1) The removal does
not create any new reflex angle, in which case the region obtained by the removal is
a pseudo-quadrangle (that is, it has four non-reflex angles), because the two regions
incident to it had six corners in total and the number of them decreases by two. We insert
the opposite diagonal of it. (2) The removal creates a new reflex angle at a vertex which
was not pointed. Then the region obtained is a pseudo-triangle and we just add a mark
at the new pointed vertex. (3) The removal creates a new reflex angle at a vertex that
was already pointed. This means that after the removal the vertex has two reflex angles,
that is to say two angles of exactly π each. We insert the edge joining this vertex to the
opposite corner of the pseudo-triangle containing the original reflex angle.

If a mark is removed, then the only possibility is: (4) The pointed vertex holding the
mark is incident to a unique reflex angle (remember that we consider interior angles of π
as reflex). We insert the edge joining the vertex to the opposite corner of the corresponding
pseudo-triangle.

Definition 5.5. Two f.m.p.t.’s are said to differ by a flip if they differ by just one edge or
mark. Cases (1)–(4) in the previous proof are called, respectively, diagonal flip, deletion
flip, mirror flip and insertion flip.
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Of course, our definition of flips specializes to the one for points in general position,
except that mirror flips can only appear in the presence of collinearities. An example of
a mirror flip can be seen towards the upper right corner of Fig. 9.

Corollary 5.6. The graph of flips between f.m.p.t.’s of a planar point set is connected
and regular of degree 2ni + n − 3.

The reader will have noticed that the graphs of Figs. 9 and 10 are more than regular
of degrees 4 and 3, respectively. They are the graphs of certain simple polytopes of
dimensions 4 and 3. (Fig. 9 is a prism over a simplex.)

The Case with Only Interior Collinearities. Now we assume that our point set A has
only interior collinearities.

For each f ∈ Rn+1 let Yf (A) be the polyhedron defined in Section 3. Recall that
everything we said in that section, up to Corollary 3.6, is valid for points in special
position. Our main result here is that Theorems 3.8 and 3.9 hold word by word in the
case with no boundary collinearities, except that precision needs to be made regarding
the concept of validity.

Recall that for a given choice of f ∈ R(n+1
2 ), an edge pi pj or a point pi is called tight

for a certain (v, t) ∈ R3n−3 or for a face F of Yf (A) if the corresponding equation (4)
or (5) is satisfied with equality.

Definition 5.7. For any (v, t) ∈ R3n−3, we denote by T (v, t) the marked graph of
all its tight edges and points. We call it a strict supporting graph of (v, t). We call the
weak supporting graph of a (v, t) the marked subgraph consisting of edges and points
of T (v, t) which define facets of Yf (A).

We call the (strict or weak) supporting graph of a face F of Yf (A) one of any point
(v, t) in the relative interior of F .

A choice of f is called weakly valid (resp., strictly valid) if the weak (resp., strict)
supporting graphs of all the faces of Yf (A) are non-crossing marked graphs.

Observe that from any weakly valid choice f one can obtain strictly valid ones: just
decrease by arbitrary positive amounts the coordinates of f corresponding to equations
which do not define facets of Yf (A). Hence, we could do what follows only in terms of
strict validity and would obtain the same polyhedron. However, weak validity is needed,
as we will see in Remark 5.13, if we want our construction to depend continuously on
the coordinates of the point set A.

To obtain the equations that valid choices must satisfy we proceed as in Section 4.
The crucial point there was that a marked graph is non-crossing if and only if it does not
contain the negative parts of the unique stress in certain subgraphs.

Lemma 5.8. Let A be a point set with no three collinear boundary points. Then a
marked graph onA is non-crossing if and only if it does not contain any of the following
four marked subgraphs: the negative parts of the marked graphs displayed in Fig. 8 and
the negative parts of the marked graphs displayed in Fig. 11.
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Fig. 11. The two additional excluded minors for non-crossing marked graphs of a point set with interior
collinearities.

Proof. Exclusion of the negative parts of the left graphs in both figures are our definition
of crossingness for an unmarked graph. An interior vertex is pointed if and only if none
of the negative parts of the right graphs appear.

Lemma 5.9. The two graphs in Fig. 11 have a stress with signs as in the figure.

Proof. For the left part it is easy to show that the following is a stress:

w12 = 1

|p2 − p1| , w13 = − 1

|p3 − p1| , w23 = 1

|p3 − p2| ,

α1 = α3 = 0, α2 = 2.

For the right part, observe that, by definition, stresses on a marked graph form a linear
space. Let the four exterior points be p1, p2, p3 and p4, in cyclic order, and let the
interior point be p5. We know three different stresses of the complete graph on these
five points: the one we used in Section 4 for the four exterior points and the two that we
have just introduced for the two collinear triplets. From these three we can eliminate the
coordinates of edges p1 p3 and p2 p4 and we get a stress with the stated signs.

Theorem 5.10. Let A be a point set with no three collinear boundary points. Then
a choice of f is weakly valid if it satisfies (9) for all quadruples of points in general
position plus the following sets of equations:

• For any three points p1, p2 and p3 collinear in this order,

f12

|p2 − p1| −
f13

|p3 − p1| +
f23

|p3 − p1| + 2 f02 ≥ 0. (10)

• For any five points as in the right part of Fig. 11, the following equation where the
wi j ’s and the αi ’s form a stress with signs as indicated in the figure (by convention,
wi j equals zero for the two missing edges in the graph):

∑
1≤i< j≤5

wi j fi j +
5∑

j=1

αj f0 j > 0. (11)

The choice is strictly valid if and only if, moreover, equation (10) of every collinear
triplet is satisfied strictly.
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Proof. Equations (9) guarantee that no weak or strict tight graph contains the two
excluded marked graphs of negative edges and points of Fig. 8. Equations (10) and (11)
with strict inequality, do the same for the graphs of Fig. 11. That these equations are
equivalent to strict validity is proved exactly as in Section 4. The reason why we allow
equality in (10) if we only want a weakly valid choice is that the negative part of the stress
consists of a single edge. If the equation is satisfied with equality, then the hyperplane
corresponding to this edge is a supporting hyperplane of the face of Yf given by the
intersection of the three hyperplanes of the positive part of the stress.

Corollary 5.11. Let A be a point set with no collinear boundary points. Any choice
of f satisfying (9) for every four points in general position plus the following ones for
every collinear triplet is weakly valid:

f12

|p2 − p1| −
f13

|p3 − p1| +
f23

|p3 − p1| + 2 f02 = 0. (12)

In particular, the choices of Corollary 4.5 and Theorem 3.8 are weakly valid.

Proof. For the first assertion, we need to show that (11) follows from (9) and (12).
However, this is straightforward: from our proof of Lemma 5.9 it follows that (11) is
just the equation obtained by substituting in (9) the values for w13 and w24 obtained
from (12).

For the last assertion, we already proved in Corollary 4.5 that the choices of f
introduced there satisfy (9). It is easy, and left to the reader, to show that they also satisfy
(12).

Theorem 5.12 (Main Theorem, Case without Boundary Collinearities). Let A be a
point set with no three collinear points in the boundary of conv(A), and let f be a
weakly valid choice of parameters. Then:

(1) Yf is a simple polyhedron of dimension 3n − 3 whose face poset equals (the
opposite of) the poset of non-crossing marked graphs on A.

(2) The face Yf defined by turning into equalities equations (4) and (5) corresponding
to boundary vertices and edges is the unique maximal bounded face of Yf . It is
a simple polytope of dimension 2ni + n − 3 whose 1-skeleton is the graph of
pseudo-triangulations of A.

(3) Let F be the face of Yf defined by turning into equalities the remaining equations
(5). The complement of the star of F in the face-poset of Yf equals the poset of
non-crossing graphs on A that use all the convex hull edges.

Proof. Recall that if no three boundary points are collinear, then every f.m.p.t. (i.e.,
maximal marked non-crossing graph) has 3n − 3 edges plus marks, exactly as in the
general position case (Lemma 5.3). In particular, it is still true, for the same reasons
as in the general position case, that Yf (A) is simple and all its vertices correspond to
f.m.p.t.’s, for any valid choice of f . The rest of the arguments in the proof of Theorem
3.9 rely on the graph of flips being connected, a property that we still have. As for
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Fig. 12. The 16 pseudo-triangulations ofA1.

Theorem 3.10, the face Yf (A) is bounded because Lemma 3.4 still applies. The rest is
straightforward.

Remark 5.13. It is interesting to observe that taking the explicit valid choice of f of
Theorem 3.8 the equations defining Yf (A) depend continuously on the coordinates of
the points in A. When three points become collinear, the hyperplane corresponding to
the (now) forbidden edge becomes, as we said in the proof of Theorem 5.10, a support-
ing hyperplane of a codimension 3 face of Yf (A). The combinatorics of the polytope
changes but maintaining its simplicity. This continuity of the defining hyperplanes would
clearly be impossible if we required our choice to be strictly valid for point sets with
collinearities.

Example 5.14. Let A1 and A2 be the two point sets with five points each whose
pseudo-triangulations are depicted in Figs. 12 and 13. The first one has three collinear
points and the second is obtained by perturbation of the collinearity. These two examples
were computed with the software CDD+ of Fukuda [9] before we had a clear idea of what
the right definition of a pseudo-triangulation for points in special position should be. To
emphasize the meaning of weak validity, in Fig. 12 we show the weak supporting graphs
of the vertices of Yf (A1), rather than the strict ones.

The first ten pseudo-triangulations are common to both figures (upper two rows).
Only the pseudo-triangulations ofA1 using the two collinear edges plus the mark at the
central point of the collinearity are affected by the perturbation of the point set. This is no
surprise since these two edges plus this mark are the positive part of the stress involved
in the collinearity. At each of these six pseudo-triangulations, the hyperplane of the big
edge is tangent to the vertex of Yf (A1) corresponding to the pseudo-triangulation. When
the collinearity is perturbed, this hyperplane moves in one of the two possible ways:
away from the polyhedron, in which case the combinatorics is not changed, or towards
the interior of the polyhedron, in which case the old vertex disappears and some new
vertices are cut by this hyperplane. In our case, these two behaviors appear each in three
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Fig. 13. The 25 pseudo-triangulations ofA2.

of the six “non-strict” pseudo-triangulations ofA1. When the hyperplane moves towards
the interior, four new vertices appear where there was one.

Boundary Collinearities. In the presence of boundary collinearities, Lemma 5.3 implies
a significant difference: with the equations we have used so far, the face of Y0(A) defined
by tightness at boundary edges and vertices is not the origin, but an unbounded cone
of dimension ns . Indeed, for each semi-interior point pi , the vector (v, t) with vi an
exterior normal to the boundary of conv(A) at pi and every other coordinate equal to
zero defines an extremal ray of that face. As a consequence, the corresponding face in
Yf (A) is unbounded.

We believe that it should be possible to obtain a polyhedron with the properties we
want by just intersecting the polyhedron of our general definition with ns hyperplanes.
However, instead of doing this we use the following simple trick to reduce this case to
the previous one. From a point set A with boundary collinearities we construct another
point setA′ adding toA one point in the exterior of each edge of conv(A) that contains
semi-interior points (Fig. 14).

Lemma 5.15. A marked graph G on A is non-crossing if and only if it becomes a
non-crossing graph on A′ when we add to it the marks on all points of A′\A and the

Fig. 14. The extended point setA′ and the relation between non-crossing marked graphs onA andA′.
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edges connecting each of these points to all the points of A lying in the corresponding
edge of conv(A).

Proof. Straightforward.

In particular, we can construct the polyhedron Yf (A′) for this extended point set A′
(taking any f valid onA′), and call Yf (A) the face of Yf (A′) corresponding to the edges
and marks mentioned in the statement of Lemma 5.15. Then:

Corollary 5.16 (Main Theorem, Case with Boundary Collinearities). In these condi-
tions:

(1) Yf is a simple polyhedron of dimension 3n− 3− ns whose face poset equals (the
opposite of) the poset of non-crossing marked graphs on A.

(2) The face Yf defined by turning into equalities equations (4) corresponding to the
nv + ns edges between consecutive boundary points and equations (5) for the
nv marks at vertices of conv(A) is the unique maximal bounded face of Yf . It
is a simple polytope of dimension 2ni + n − 3 whose 1-skeleton is the graph of
pseudo-triangulations of A.

(3) Let F be the face of Yf defined by turning into equalities the remaining n − nv
equations (5). The complement of the star of F in the face-poset of Yf equals the
poset of non-crossing graphs on A that use all the convex hull edges.

Remark 5.17. The reader may wonder about the combinatorics of the polyhedron
Yf (A) that one would obtain with the equations of the generic case. Clearly, the tight
graphs of its faces will not contain any of the four forbidden subgraphs of Lemma 5.8. It
can be checked that the maximal marked graphs without those subgraphs all have 3n−3
edges plus marks and have the following characterization: as graphs they are pseudo-
triangulations in which all the semi-interior vertices are incident to interior edges, and
they have marks at all the boundary points and at the pointed interior points. In other
words, they would be the f.m.p.t.’s if we treated semi-interior points exactly as interior
ones, hence forbidding them to be incident to two angles of π and considering them
always pointed since they are incident to one angle of π .

For example, in the point set of Fig. 10 there are six such graphs, namely the ones
shown in Fig. 15.

Fig. 15. The bounded part of Yf (A) for a point set with boundary collinearities.
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This implies that the polyhedron Yf (A) is still simple. The reason why we prefer
the definitions we have given is that the polyhedron no longer has a unique maximal
bounded face (it has three in the example of Fig. 15) and the graph of flips is no longer
regular.

Observe finally that the proof of Theorem 1.4 given at the end of Section 3 is valid
for points in special position, without much change: in all cases the hyperplanes corre-
sponding to the edges of a pseudo-triangulation are independent in Y0(A).
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