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Abstract 7

Pleiotropic fitness tradeoffs and their opposite, buttressing pleiotropy, underlie many 8

important phenomena in ecology and evolution. Yet, predicting whether a population 9

adapting to one (“home”) environment will concomitantly gain or lose fitness in another 10

(“non-home”) environment remains challenging, especially when adaptive mutations have 11

diverse pleiotropic effects. Here, we address this problem using the concept of the joint 12

distribution of fitness effects (JDFE), a local measurable property of the fitness landscape. 13

We derive simple statistics of the JDFE that predict the expected slope, variance and co- 14

variance of non-home fitness trajectories. We estimate these statistics from published 15

data from the Escherichia coli knock-out collection in the presence of antibiotics. We find 16

that, for some drug pairs, the average trend towards collateral sensitivity may be masked 17

by large uncertainty, even in the absence of epistasis. We provide simple theoretically 18

grounded guidelines for designing robust sequential drug protocols. 19
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Introduction 20

As a population adapts to one environment, it might concomitantly gain or lose fitness 21

in other conditions. Such by-product (“pleiotropic”) fitness gains and losses contribute 22

to many eco-evolutionary processes. For example, pleiotropic fitness gains, also known 23

as “buttressing pleiotropy”, are in part responsible for the spread of invasive species 24

and the expansion of virus host ranges (Lee, 2002; Lahti et al., 2009; Duffy et al., 2006; 25

Bedhomme et al., 2015). Similarly, trade-offs between fitness in different environments 26

in part determine the distribution of species across geographical regions or niches within 27

the same habitat (Reusch and Woody, 2007; Friberg et al., 2008). Despite widespread 28

observations of pleiotropy in nature (Futuyma and Moreno, 1988; Anderson et al., 2011; 29

Forister et al., 2012; Chiang et al., 2013) and in the lab (reviewed in Andersson and 30

Hughes, 2010; Bono et al., 2017; Elena, 2017)), some basic population genetic questions 31

about the pleiotropic consequences of adaptation remain unresolved. What evolutionary 32

parameters control whether a population adapting to one (“home”) environment gains 33

or loses fitness in another (“non-home”) condition? What is the expected rate of such 34

pleiotropic fitness changes? And what is the uncertainty around this expectation? 35

From the practical perspective, one of the most important implications of pleiotropy is 36

collateral sensitivity and resistance in bacteria and cancers (Pluchino et al., 2012; Hutchi- 37

son, 1963; Jensen et al., 1997; Hall et al., 2009; Imamovic and Sommer, 2013; Pál et al., 38

2015; Lázár et al., 2018; Barbosa et al., 2017). When a population treated with one drug 39

acquires resistance against it, it may concomitantly become resistant to some other drug 40

and/or susceptible to a third drug. The former situation, called collateral resistance, is 41

an instance of a pleiotropic fitness gain. The latter, called collateral sensitivity, is an 42

instance of a pleiotropic fitness loss. In a clinical setting, one would like to avoid collat- 43

eral resistance, whereas collateral sensitivity may be exploited to develop sequential drug 44

treatments which could help mitigate the looming multidrug resistance crisis (Bonhoeffer 45

et al., 1997; Masterton, 2005; Imamovic and Sommer, 2013; Pál et al., 2015). 46

Developing successful sequential drug treatments hinges on knowing which drugs select 47

for collateral sensitivity against which other drugs. Currently, this information can only 48

be obtained empirically by exposing a bacterial or cancer-cell population to a drug and 49

observing the evolutionary outcome (Bergstrom et al., 2004; Roemhild et al., 2020; Jensen 50

et al., 1997; Imamovic and Sommer, 2013; Lázár et al., 2018; Maltas and Wood, 2019). 51

Unfortunately, different experiments often produce collateral sensitivity profiles that are 52

inconsistent with each other (e.g., Imamovic and Sommer, 2013; Oz et al., 2014; Maltas 53

and Wood, 2019). Some of the inconsistencies can be attributed to the fact that resistance 54

mutations vary between bacterial strains, drug dosages, etc. (Mira et al., 2015; Das et al., 55

2020; Pinheiro et al., 2020; Card et al., 2020). However, these factors cannot explain the 56

wide variation in the pleiotropic outcomes of adaptation that are observed in replicate 57

populations in the same experiment (Oz et al., 2014; Maltas and Wood, 2019; Nichol 58

et al., 2019). Nichol et al. (2019) recently suggested that certain types of epistasis could 59
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contribute to such variation. More generally, pleiotropic outcomes may be highly variable 60

simply due to the intrinsic randomness of the evolutionary process, even in the absence of 61

epistasis (Jerison et al., 2020). Yet, it is unclear which evolutionary parameters we need 62

to know to predict the expected pleiotropic outcome of evolution and the uncertainty 63

around such expectation. 64

Classical theoretical work on pleiotropy has been done in the field of quantitative ge- 65

netics (Lande and Arnold, 1983; Rose, 1982; Barton, 1990; Slatkin and Frank, 1990; Jones 66

et al., 2003; Johnson and Barton, 2005). These models were developed to understand how 67

polygenic phenotypes respond to selection, and pleiotropy in these models manifests itself 68

as a correlated temporal change in multiple traits that affect fitness in a given selection 69

environment. The population genetic question of how new strongly beneficial mutations 70

accumulating in one environment affect the population’s fitness in future environments 71

lies beyond the scope of these models (but see (Otto, 2004)). Pleiotropic consequences 72

of adaptation have been explored in various “fitness landscape” models (e.g. Connallon 73

and Clark, 2015; Martin and Lenormand, 2015; Harmand et al., 2017; Wang and Dai, 74

2019; Maltas et al., 2019; Tikhonov et al., 2020). This approach helps us understand the 75

relationship between the global structure of the landscape and the outcomes of evolution. 76

However, these models are not designed to be predictive because the global structure of 77

the fitness landscape is extremely difficult to estimate. 78

Here we take a different approach which is agnostic with respect to the global structure 79

of the fitness landscape. Instead, we assume only the knowledge of the so-called joint 80

distribution of fitness effects (JDFE), i.e., the probability that a new mutation has a 81

certain pair of fitness effects in the home and non-home environments (Jerison et al., 82

2014; Martin and Lenormand, 2015; Bono et al., 2017). JDFE is a natural extension of 83

the DFE, the distribution of fitness effects of new mutations in the home environment 84

(King, 1972; Ohta, 1987; Orr, 2003; Rees and Bataillon, 2006; Eyre-Walker and Keightley, 85

2007; Martin and Lenormand, 2008; MacLean and Buckling, 2009; Levy et al., 2015). The 86

JDFE is a local property of the fitness landscape which means that it can be measured 87

using a variety of modern techniques (Qian et al., 2012; Hietpas et al., 2013; Van Opijnen 88

et al., 2009; Levy et al., 2015; Blundell et al., 2019). Since the short-term evolution of a 89

population is determined by the pool of beneficial mutations that are currently available 90

to the population, the knowledge of the JDFE should be sufficient to predict population’s 91

fitness in the non-home environment (Jerison et al., 2014). 92

Modeling evolution using the DFE and the JDFE is justified by the fact that there 93

are usually many mutations that can improve the fitness of an organism in the home 94

environment. These adaptive mutations affect a variety of genetic targets (Lang et al., 95

2013; Tenaillon et al., 2012; Kryazhimskiy et al., 2014; Venkataram et al., 2016; Good 96

et al., 2017; Blundell et al., 2019) and provide fitness benefits of various magnitudes 97

(Rees and Bataillon, 2006; MacLean and Buckling, 2009; Khan et al., 2011; Chou et al., 98

2011; Levy et al., 2015; Venkataram et al., 2016) via diverse physiological mechanisms 99

(Travisano and Lenski, 1996; Jerison et al., 2020; Pinheiro et al., 2020; Kinsler et al., 100
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2020). As a consequence, different mutations also have diverse pleiotropic effects on 101

fitness in non-home environments (Lenski, 1988; Ostrowski et al., 2005; Qian et al., 2012; 102

Hietpas et al., 2013; Rodŕıguez-Verdugo et al., 2014; Jerison et al., 2020; Kinsler et al., 103

2020; Card et al., 2020). Recent evidence suggests that even when adaptive mutations 104

are concentrated in relatively few genetic targets, they still exhibit a large variety of 105

pleiotropic effects (Kinsler et al., 2020). Thus, we can model this mutational diversity 106

as a joint probability distribution that a new mutation provides a certain fitness effect 107

in the home environment and a certain fitness effect in the non-home environment. This 108

modeling approach naturally produces a distribution of pleiotropic outcomes of adaptation 109

among replicate populations evolving even in identical conditions. It can also naturally 110

incorporate fitness trade-offs and some forms of epistasis, as we describe below. 111

To understand analytically how the JDFE determines the statistics of pleiotropy in an 112

evolving population, we model evolution in the strong selection weak mutation (SSWM) 113

regime. Our theory reveals a small number of key pleiotropy statistics of the JDFE that 114

determine whether a population evolving in a home environment will on average gain 115

or lose fitness in a non-home condition, how fast these pleiotropic changes are expected 116

to accumulate, the uncertainty around these expectations and the correlation between 117

fitness changes in the home and non-home environments. We verify that these parameters 118

remain informative even outside of the SSWM regime and in the presence of some types of 119

epistasis. Then, to gain an insight into the evolution of collateral resistance and sensitivity, 120

we estimate the pleiotropy statistics of the antibiotic resistance JDFEs among knock-out 121

mutations in bacterium Escherichia coli. Finally, we use our theory to provide guidance 122

for designing sequential drug protocols. 123

Results 124

JDFE determines the pleiotropic outcomes of adaptation 125

For any genotype g that finds itself in one (“home”) environment and may in the fu- 126

ture encounter another “non-home” environment, we define the JDFE as the probability 127

density Φg (∆x,∆y) that a new mutation that arises in this genotype has the selection 128

coefficient ∆x in the home environment and the selection coefficient ∆y in the non-home 129

environment (Jerison et al., 2014). We measure fitness of a genotype by its malthusian 130

parameter (Crow and Kimura, 1972). So, if the home and non-home fitness of genotype 131

g are x and y, respectively, and if this genotype acquires a mutation with selection coef- 132

ficients ∆x and ∆y, its fitness becomes x+ ∆x and y + ∆y. This definition of the JDFE 133

can of course be naturally extended to multiple non-home environments. In principle, the 134

JDFE can vary from one genotype to another. However, to develop a basic intuition for 135

how the JDFE determines pleiotropic outcomes, we initially assume that all genotypes 136

have the same JDFE. We later explore how epistasis could affect our conclusions. 137
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The JDFE is a complex object. So, we first asked whether some simple and intu- 138

itive summary statistics of the JDFE may be sufficient to predict the dynamics of the 139

non-home fitness of a population which is adapting in the home environment. Intuitively, 140

if there is a trade-off between home and non-home fitness, non-home fitness should de- 141

cline; if the opposite is true, non-home fitness should increase. Canonically, a trade-off 142

occurs when any mutation that improves fitness in one environment decreases it in the 143

other environment and vice versa (Roff and Fairbairn, 2007). Genotypes that experience 144

such “hard” trade-offs are at the Pareto front (Shoval et al., 2012; Li et al., 2019). For 145

genotypes that are not at the Pareto front, some mutations that are beneficial in the 146

home environment may be beneficial in the non-home environment and others may be 147

deleterious. In this more general case, trade-offs are commonly quantified by the degree 148

of negative correlation between the effects of mutations on fitness in the two environments 149

(Roff and Fairbairn, 2007; Tikhonov et al., 2020). Thus, we might expect that evolution 150

on negatively correlated JDFEs would lead to pleiotropic fitness losses and evolution on 151

positively correlated JDFEs would lead to pleiotropic fitness gains. 152

To test this intuition, we generated a family of Gaussian JDFEs that varied, among 153

other things, by their correlation structure (Figure 1; Materials and Methods). We then 154

simulated the evolution of an asexual population on these JDFEs using a standard Wright- 155

Fisher model (Materials and Methods) and tested whether the trade-off strength, mea- 156

sured by the JDFE’s correlation coefficient, predicts the dynamics of non-home fitness. 157

Figure 1 shows that our naive expectation is incorrect. Positively correlated JDFEs 158

sometimes lead to pleiotropic fitness losses (Figure 1D,I), and negatively correlated JD- 159

FEs sometimes lead to pleiotropic fitness gains (Figure 1B,G). Even if we calculate the 160

correlation coefficient only among mutations that are beneficial in the home environment, 161

the pleiotropic outcomes still do not always conform to the naive expectation, as the sign 162

of the correlation remains the same as for the full JDFEs in all these examples. 163

There are other properties of the JDFE that we might expect to be predictive of 164

the pleiotropic outcomes of adaptation. For example, among the JDFEs considered in 165

Figure 1, it is apparent that those with similar relative probability weights in the first and 166

fourth quadrants produce similar pleiotropic outcomes. However, simulations with other 167

JDFE shapes show that even distributions that are similar according to this metric can 168

also result in qualitatively different pleiotropic outcomes (Supplementary Figure S1). 169

Overall, this analysis shows that JDFEs with apparently similar shapes can pro- 170

duce qualitatively different trajectories of pleiotropic fitness changes (e.g., compare Fig- 171

ures 1A,F and 1B,G or Figures 1D,I and 1E,J). Conversely, JDFEs with apparently differ- 172

ent shapes can result in rather similar pleiotropic outcomes (e.g., compare Figures 1B,G 173

and 1E,J or Figures 1A,F and 1D,I). Thus, while the overall shape of the JDFE clearly 174

determines the trajectory of pleiotropic fitness changes, it is not immediately obvious 175

what features of its shape play the most important role, particularly if the JDFE is more 176

complex than a multivariate Gaussian. 177
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Figure 1. Gaussian JDFEs and the resulting fitness trajectories. A–E. Contour lines
for five Gaussian JDFEs. “x” marks the mean. For all distributions, the standard deviation
is 0.1 in both home- and non-home environments. The correlation coefficient ρ is shown in
each panel F–J. Fitness trajectories for the JDFEs shown in the corresponding panels above.
Ribbons show ±1 standard deviation estimated from 100 replicate simulations. Population size
N = 106, mutation rate U = 10−4 (Ub = 1.6× 10−5).

The population genetics of pleiotropy 178

To systematically investigate which properties of the JDFE determine the pleiotropic 179

fitness changes in the non-home environment, we consider a population of size N that 180

evolves on a JDFE in the “strong selection weak mutation” (SSWM) regime, also known 181

as the “successional mutation” regime (Orr, 2000; Desai and Fisher, 2007; Kryazhimskiy 182

et al., 2009; Good and Desai, 2015). We first analyze the evolution on JDFEs without 183

epistasis and then consider how “global” epistasis affects our conclusions. 184

Non-epistatic JDFE. We consider an arbitrary JDFE without epistasis, that is a 185

situation when all genotypes have the same JDFE Φ (∆x,∆y). We assume that mutations 186

arise at rate U per individual per generation. In the SSWM limit, a mutation that arises 187

in the population either instantaneously fixes or instantaneously dies out. Therefore, 188

the population is essentially monomorphic at all times, such that at any time t we can 189

characterize it by its current pair of fitness values (Xt, Yt). If a new mutation with a pair of 190
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selection coefficients (∆x,∆y) arises in the population at time t, it fixes with probability 191

π (∆x) = 1−e−2∆x

1−e−2N∆x (Kimura, 1962) in which case the population’s fitness transitions to 192

a new pair of values (Xt + ∆x, Yt + ∆y). If the mutation dies out, an event that occurs 193

with probability 1−π (∆x), the population’s fitness does not change. This model specifies 194

a continuous-time two-dimensional Markov process. 195

In general, the dynamics of the probability density p(x, y, t) of observing the random 196

vector (Xt, Yt) at values (x, y) are governed by an integro-differential forward Kolmogorov 197

equation, which is difficult to solve (Materials and Methods). However, if most mutations 198

that contribute to adaptation have small effects, these dynamics are well approximated by 199

a diffusion equation which can be solved exactly (Materials and Methods). Then p(x, y, t) 200

is a normal distribution with mean vector 201

m(t) =

(
x0 + r1 t
y0 + r2 t

)
(1)

and variance-covariance matrix 202

σ2(t) =

(
D11 t D12 t
D12 t D22 t

)
, (2)

where 203

r1 =

∫ ∞
−∞

dη

∫ ∞
0

dξ ξ2 Φ(ξ, η), (3)

r2 =

∫ ∞
−∞

dη

∫ ∞
0

dξ η ξ Φ(ξ, η) (4)

are the expected fitness effects in the home and non-home environments for a mutation 204

fixed in the home environment, and D11, D12 and D22 are the second moments of this 205

distribution which are given by equations (9)–(11). Here, time is measured in units of 206

(2NUb)
−1 generations where Ub = U

∫∞
−∞ dη

∫∞
0
dξΦ(ξ, η) is the total rate of mutations 207

beneficial in the home environment, and x0 and y0 are the initial values of fitness of the 208

population in the home and non-home environments. 209

Equations (1), (2) show that the distribution of population’s fitness at time t in the 210

non-home environment is entirely determined by three parameters, r2, D22 and D12, which 211

we call the pleiotropy statistics of the JDFE. The expected rate of fitness change in the 212

non-home environment depends on the pleiotropy statistic r2, which we refer to as the 213

expected pleiotropic effect. Thus, evolution on a JDFE with a positive r2 is expected to 214

result in pleiotropic fitness gains and evolution on a JDFE with a negative r2 is expected 215

to result in pleiotropic fitness losses. Equation (2) shows that the variance around this 216

expectation is determined by the pleiotropy statistic D22. Since both the expectation and 217

the variance grow linearly with time (provided r2 6= 0), the change in the non-home fitness 218

in any replicate population would eventually have the same sign as r2, but the time scale 219
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Figure 2. (Previous page). Pleiotropy statistics predict the properties of non-home
fitness trajectories in simulations. Each point corresponds to an ensemble of simulations
on one of 70 Gaussian JDFEs with the same population genetic parameters. (See Materials
and Methods and Supplementary Table S1 for the JDFE parameters.) A, D, G, J (top row).
Expected pleiotropic effect r2 versus the slope of the mean non-home fitness (against time)
observed in simulations. B, E, H, K (middle row). Pleiotropic statistic D22 versus the slope of
the variance among non-home fitness (against time) observed in simulations. C, F, I, L (bottom
row). Pleiotropic statistic D12 versus the slope of the covariance coefficient between home and
non-home fitness (against time) observed in simulations. A–C. Evolution was simulated in
the SSWM regime with the parameters indicated at the top, 500 replicates per data point
(see Materials and Methods for details). D–L. Evolution was simulated using the full Wright-
Fisher model with N = 104 and variable U as indicated at the top of each column, 100 replicates
per data point (see Materials and Methods for details). In all panels, the values in the y-axis
are the mean, variance covariance statistics obtained from simulations divided by 2NUb. Grey
dashed line represents the identity (slope 1) line, and the solid line of the same color as the points
is the linear regression for the displayed points (R2 value is shown in each panel; P < 2× 10−16

for all regressions).

of such convergence depends on the uncertainty parameter c =
√
D22/|r2| (Materials and 220

Methods). This observation has important practical implications, and we return to it in 221

the Section “Evolution of collateral resistance and sensitivity in bacteria”. In principle, 222

knowing the pleiotropy statistics r2 and D22 is sufficient to probabilistically predict the 223

non-home fitness of the population at any time t. However, if its home fitness at time t is 224

also known, this prediction can be further refined using the pleiotropy covariance statistic 225

D12. 226

We tested the validity of equations (1) and (2) by simulating evolution in the SSWM 227

regime on 70 Gaussian JDFEs with various parameters (Materials and Methods) and 228

found excellent agreement (Figure 2A–C). We next asked whether the three pleiotropy 229

statistics, r2, D22 and D12, can predict the non-home fitness trajectories when the underly- 230

ing evolutionary dynamics fall outside of the SSWM regime, i.e., when multiple beneficial 231

mutations segregate in the population simultaneously (the “concurrent mutation” regime 232

(Desai and Fisher, 2007; Good et al., 2012)). To this end, we simulated evolution on 233

the same 70 JDFEs using the full Wright-Fisher model with a range of population ge- 234

netic parameters that span the transition from the successional mutation regime to the 235

concurrent mutation regime, for 1000 generations. We found that the rate of change in 236

non-home fitness mean, variance and covariance remain highly correlated with the cor- 237

responding pleiotropy statistics (Figure 2). However, while in the SSWM regime the 238

pleiotropy statistics are quantitative predictors, in the sense that the observed values fall 239

on the diagonal in Figures 2A–C, outside of the SSWM regime they are only statistical 240

predictors, in the sense that the observed values fall on a line but not the diagonal in 241

Figures 2D–L. In other words, the dynamics of adaptation in the concurrent and suc- 242
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cessional mutations regime are different. Nevertheless, the pleiotropy statistics reliably 243

predict whether a population would gain or lose fitness in the non-home environment and 244

allow us to rank environment pairs according to the rates and repeatability of these gains 245

or losses. 246

JDFE with global epistasis. Our results so far were derived under the assumption 247

that all genotypes have the same JDFE. In reality, JDFEs probably vary from one geno- 248

type to another, but how they vary is not yet known. Recently, researchers began to 249

systematically probe how the effects of new individual mutations on fitness in one envi- 250

ronment and their distribution (i.e., the DFE) vary among genotypes (Khan et al., 2011; 251

Chou et al., 2011; Kryazhimskiy et al., 2014; Johnson et al., 2019; Wang et al., 2016; 252

Aggeli et al., 2020). These studies suggest that the fitness effects of mutations available 253

to a genotype and its overall DFE in a given environment depend primarily on the fitness 254

of that genotype in that environment, a phenomenon referred to as “global epistasis” 255

(Wiser et al., 2013; Kryazhimskiy et al., 2014; Reddy and Desai, 2020; Husain and Mu- 256

rugan, 2020). Thus, we next sought to understand how such epistasis might affect the 257

pleiotropic outcomes of adaptation. 258

Global epistasis can be modeled in our framework by assuming that the JDFE of geno- 259

type g depends only the fitness of this genotype in the home and non-home environments, 260

x(g), y(g), i.e. Φg (∆x,∆y) = Φx(g),y(g) (∆x,∆y), which is a two-dimensional extension 261

of the model considered in (Kryazhimskiy et al., 2009). Thus, in the SSWM regime, the 262

population can still be fully described by its current pair of fitness values in the home 263

and non-home environments (Xt, Yt). The dynamics of the probability density p(x, y, t) 264

are governed by the same Kolmogorov equation as in the non-epistatic case, which can 265

still be approximated by a diffusion equation (equation (8) in the Materials and Meth- 266

ods). However, while in the non-epistatic case the drift and diffusion coefficients of this 267

equation, r1, r2, D11, D12 and D22 are constants, in the presence of global epistasis, they 268

become functions of x and y. Although this equation cannot be solved analytically in the 269

general case, it can be solved numerically, provided that the functions r1(x, y), r2(x, y), 270

D11(x, y), D12(x, y) and D22(x, y) are known. Thus, in principle, our theory can predict 271

the trajectories of non-home fitness in the presence of global epistasis. 272

As in the non-epistatic case, it is a priori unclear whether our theory retains its 273

predictive power in the concurrent mutations regime. To test it, we focus on one particular 274

model of a JDFE with global epistasis. In this model, we neglect mutations that are 275

deleterious in the home environment and consider the home-environment DFE to be an 276

exponential distribution with the mean that linearly decays with the genotype’s home 277

fitness (see Figure 3A–D and Materials and Methods). The non-home-environment DFE 278

is a Gaussian distribution with mean and variance that do not depend on the genotype’s 279

current fitness. We allow for an arbitrary correlation between home and non-home fitness. 280

This form of the JDFE is consistent with our current understanding of the structure of 281

global epistasis (Kryazhimskiy et al., 2014; Johnson et al., 2019; Lukačǐsinová et al., 2020). 282
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Figure 3. Evolution on a JDFE with global diminishing returns epistasis. A–D.
JDFE with global epistasis where genotype’s JDFE depends on its fitness (see text and Materials
and Methods for details). Panel A shows three pairs of home- (x) and non-home (y) fitness for
which the JDFEs are shown in panels B,C,D, as indicated. ∆x and ∆y are the fitness effects
of a new mutation in the home- and non-home environments, respectively. E–H. Trajectories
of mean change in home and non-home fitness. Simulations were performed as described in
Materials and Methods , with 100 replicates per panel. To improve visual clarity, simulations in
different panels were performed on JDFEs with different values of parameter γ (see Materials
and Methods for details). Ribbons show ±1 standard deviation across replicate simulations.
I–L. Expected pleiotropic effect r2 evaluated at the initial time point versus the mean change
in population’s non-home fitness after 1,000 generations in the corresponding simulations shown
above in panels E–H. Variation in r2 was generated by altering the correlation of the JDFEs
(see Materials and Methods). Solid line is linear regression, P < 0.006 for all panels. Grey
ribbons represent standard error of the regression.
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In this model, it is possible to obtain analytical expressions for the expected fitness 283

trajectories of the population 〈Xt〉, 〈Yt〉 in the home and non-home environments (see Ma- 284

terials and Methods). As expected, our theory quantitatively predicts the fitness trajec- 285

tories obtained in stochastic SSWM simulations (Figure 3E). The trajectories simulated 286

with the full Wright-Fisher model in the concurrent mutation regime deviate substan- 287

tially from our predictions. However, the sign of the function r2 still reliably predicts the 288

expected direction of non-home fitness change (Figure 3F–H). Moreover, the pleiotropy 289

statistic r2(x0, y0), i.e., r2 evaluated for the ancestral genotype, is a good predictor of the 290

relative magnitude of the change in non-home fitness (Figure 3I–L). We conclude that our 291

theory remains useful even in the presence of some forms of epistasis. 292

Evolution of collateral resistance and sensitivity in bacteria 293

We next sought to apply our theoretical results to understand how bacteria adapting to 294

one antibiotic develop collateral resistance and/or sensitivity to other antibiotics. To do 295

so, we need to know the full bacterial JDFEs in the presence of antibiotics. Estimating 296

such full JDFEs is difficult because it requires large samples of mutations that have a rea- 297

sonable chance of fixing in the home environment. Because the techniques for obtaining 298

such samples became only recently available (Levy et al., 2015; Venkataram et al., 2016), 299

full bacterial JDFEs are not yet available. To circumvent this problem, we investigate 300

the pleiotropic consequences of evolution on the joint distributions of fitness effects of 301

knock-out mutations (koJDFEs). In contrast to full JDFEs, koJDFEs can be readily es- 302

timated from fitness measurements in knock-out collections (Qian et al., 2012; Chevereau 303

et al., 2015) or from Tn-Seq experiments in various bacteria (Van Opijnen et al., 2009; 304

Wetmore et al., 2015; Morin et al., 2018). We do not expect the koJDFEs to be identical 305

to the corresponding full JDFEs. However, since knock-outs are a subset of all muta- 306

tions, koJDFEs give us a lower bound on the breadth of fitness effects of new mutations. 307

Furthermore, because loss-of-function mutations play an important role in adaptive evo- 308

lution in microbes, including the evolution of antibiotic resistance (Kohanski et al., 2007; 309

Schurek et al., 2008; Török et al., 2012; Hottes et al., 2013; D’Souza et al., 2014), the 310

koJDFEs may be reasonable zeroth order approximations for the full JDFE. Supporting 311

this conjecture, Chevereau et al. (2015) showed that the dynamics of short-term adaptive 312

evolution in the presence of an antibiotic can be predicted using knock-out data. 313

We obtained the growth rate measurements of 3883 E. coli gene knockout mutants in 314

the presence of six different antibiotics from the study by Chevereau et al. (2015). From 315

these data, we could in principle estimate the koJDFEs in 30 ordered drug pairs. How- 316

ever, to justify using the JDFE framework, we first need to establish whether there is a 317

sufficient number of beneficial knock-out mutations in the presence of each drug. In four 318

out of six antibiotics, we found that between 24 (0.62 %) and 329 (8.47 %) of knock-out 319

mutations are adaptive at the false discovery rate (FDR) of ∼ 25% (Figure 4; Supplemen- 320

tary Table S2). In the remaining two drugs, chloramphenicol and trimethoprim, we could 321
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Figure 4. (Previous page) Empirical koJDFEs for E. coli in the presence of four
antibiotics, based on data obtained by Chevereau et al. (2015). Panels on the diago-
nal show the distributions of fitness effects (DFEs) of knock-out mutations in the presence of
corresponding antibiotics (equivalent to Figure 1C in Chevereau et al. (2015)). The estimated
measurement noise distributions are shown in red (see Materials and Methods for details). Note
that the noise distributions are vertically cut-off for visual convenience. The number of identified
beneficial mutations (i.e., resistance mutations) and the expected number of false positives (in
parenthesis) are shown in the bottom left corner. Off-diagonal panels show the koJDFEs. Each
point corresponds to an individual knock-out mutation. Identified resistance mutations are col-
ored according to their collateral effects, as indicated in the legend. The numbers of mutations
of each type are indicated in the corresponding color in the bottom left corner of each panel.
The expected numbers of false positives are shown in parenthesis.

not reliably discriminate between adaptive mutations and measurement noise (Materials 322

and Methods), so we excluded these antibiotics from further analysis. Plotting the fitness 323

effect of each knock-out mutation in one drug against its effect in another drug, we find 324

that, for all 12 ordered drug pairs, there exist mutations in all four quadrants of this 325

plane (Figure 4, Supplementary Table S2). Thus, even when we consider only knock-out 326

mutations, no drug pair exhibits hard trade-offs, i.e., a fitness gain in the presence of any 327

drug can come either with a pleiotropic gain or a pleiotropic loss of fitness in the presence 328

of another drug. We conclude that the JDFE framework is suitable for modeling the 329

evolution of collateral resistance/sensitivity. 330

For each of the 12 koJDFEs, we computed the pleiotropy statistics r2, D22, D12 (Fig- 331

ure 5A, B; Supplementary Table S3) using mutations with significant beneficial effects in 332

the home environment. Our results remain robust with respect to changes in the FDR 333

(see Supplementary Figure S3 and Supplementary Table S4). Because some of the ko- 334

JDFEs are markedly non-Gaussian, we sought to verify that the pleiotropy statistics still 335

accurately capture how populations evolve on these more realistic JDFEs. To this end, 336

we simulated evolution on all 12 koJDFEs using the Wright-Fisher model with N = 104
337

and mutation rate U = 10−2 (NU = 100), taking care to account for the uncertainty 338

in our estimates of these koJDFEs caused by measurement noise (Materials and Meth- 339

ods). Our simulations confirm that the expected non-home fitness gains, their variances 340

and covariances are still predicted by the pleiotropy statistics of the underlying koJDFEs 341

(Supplementary Figure S2). 342

To understand what patterns of collateral resistance and sensitivity we would expect 343

to observe on these koJDFEs, we examined the structure of the matrices of the pleiotropic 344

parameters. We found that the expected pleiotropic effect r2 varies widely among drug 345

pairs. One striking feature of the r2 matrix is its asymmetry, i.e., the fact that, for many 346

drug pairs, the order of the drugs affects the sign of the expected pleiotropic effect (Fig- 347

ure 5A). As discussed above, this sign determines whether the population evolving in the 348

presence of the first drug eventually acquires collateral resistance or collateral sensitivity 349
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to the second drug. For example, if ciproflaxin (CPR) is used first (home environment) 350

and nitrofurantoin (NIT) is used second (non-home environment), the expected pleiotropic 351

effect is negative, which indicates that acquisition of resistance against CPR will eventu- 352

ally lead to collateral sensitivity to NIT. If these drugs are applied in the reverse order, 353

the expected pleiotropic effect is positive, which indicates that the acquisition of resis- 354

tance against NIT will eventually lead to collateral resistance against CPR. In fact, NIT 355

is in general a poor choice for the first drug in a sequential treatment as it is expected to 356

generate collateral resistance against at least two drugs (MEC and CPR) and only weak 357

collateral sensitivity against TET (Figure 5A). On the other hand, NIT may be a good 358

candidate for the second drug in a sequential treatment since multiple other drugs are 359

expected to produce collateral sensitivity against it (Figure 5A). 360
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Figure 5. Pleiotropic parameters of koJDFEs in E. coli in the presence of antibiotics.
A. The matrix of expected pleiotropic effects r2, colored by rank order. B. The matrix of
uncertainty parameters c, colored by rank order. C. Scaling of the pleiotropy statistics. Each
point is an ordered drug pair. Points are colored by the sign of the r2 value. Parameters are
estimated from knock-out mutations that are beneficial in the home environment at ∼ 25% FDR
(see Figure 4 and text).

Even though some drugs are expected to lead to collateral sensitivity against some 361

other drugs eventually, the actual collateral resistance/sensitivity state of any individual 362

population after a treatment with the first drug might be the opposite of this expectation 363

(Maltas and Wood, 2019; Nichol et al., 2019). For example, by the time that the aver- 364

age population evolving in the presence of NIT loses 40% percent of fitness in TET (i.e., 365

becomes collaterally sensitive to TET), 17% of individual populations will have acquired 366

collateral resistance against TET. Our theory shows that such departures from the ex- 367

pectation become less likely with longer treatments, and their probability depends on the 368
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uncertainty parameter c: the larger c, the more likely is a departure from expectation. 369

Thus, a successful sequential drug treatment protocol needs to satisfy two criteria. First, 370

the expected pleiotropic effects (r2) for all sequential drug pairs should be negative and as 371

large by absolute value as possible. This will ensure that the evolution in the presence of 372

the preceding drug will on average induce stronger collateral sensitivity to the following 373

drug. Second, all values of the uncertainty parameter c should be as small as possible. 374

This will ensure that any individual population adapting to the preceding drug rapidly 375

achieves sensitivity against the following drug. 376

Is it possible to satisfy both of these criteria? To answer this question, we examined 377

how the pleiotropy statistics co-vary among drug pairs. We find that the square root of the 378

variance parameter D22 and the expected pleiotropic effect r2 linearly co-vary for most 379

drug pairs, so that the uncertainty parameter c is concentrated around 5 (Figure 5C). 380

Two pairs, (TET,MEC), (CPR,TET) have a much larger uncertainty parameter ∼ 17. 381

The approximately linear relationship between
√
D22 and r2 is preserved if relax our FDR 382

cutoff (Supplementary Figure S3). These results suggest that, as long as drug pair with 383

abnormally high uncertainty parameter c are avoided, selection of drugs for sequential 384

treatment based solely on the expected effect r2 will produce surprisingly robust sequential 385

protocols. However, it is important to keep in mind that this conclusion is based on limited 386

data and its generality needs to be further scrutinized. 387

In summary, it is natural to model the evolution of collateral resistance and sensitivity 388

within the JDFE framework. Although bacterial JDFEs in the presence of antibiotics are 389

currently unknown, our analysis of the knock-out data suggests that they have a wide 390

variety of shapes. Our theory provides a principled way to select drugs for designing 391

robust sequential drug treatments based on their pleiotropy statistics. 392

Discussion 393

We have developed a basic theory which describes how a population evolving in a home 394

environment concomitantly gains or loses fitness in a non-home environment, how fast and 395

with what probability. The central concept of our theory is the joint distribution of fitness 396

effects of mutations (JDFE), a measurable local property of the fitness landscape. The 397

idea behind the JDFE is that adaptation can be driven by many beneficial mutations with 398

diverse pleiotropic effects. In other words, fitness gains in the home environment do not 399

inevitably lead to either fitness losses (hard trade-offs) or fitness gains (hard buttressing 400

pleiotropy) in the non-home environment, although they may have a tendency to do so. 401

We have shown that a small number of intuitively interpretable parameters of the 402

JDFE can be used to predict the pleiotropic outcomes of evolution. Specifically, the 403

expected pleiotropic effect (parameter r2) predicts the average rate at which fitness in 404

the non-home environment will be gained (if r2 > 0) or lost (if r2 < 0). The pleiotropy 405

variance parameter D22 predicts how strongly the non-home fitness in any individual 406
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population would deviate from the expectation. Regardless of D22, as time goes on, any 407

individual population adapting to the home environment will eventually gain fitness in 408

the non-home environment (if r2 > 0) or lose it (if r2 < 0). In the absence of epistasis, 409

the time scale of such convergence depends on the uncertainty parameter c =
√
D22/|r2|. 410

Finally, the covariance parameter D12 allows us to predict the non-home fitness of the 411

population if we know its home fitness. Using simulations, we have shown that these 412

parameters statistically predict the outcomes of evolution even outside of the SSWM 413

regime where they were derived. 414

Most of our results were obtained for constant JDFEs, i.e., in the absence of epistasis. 415

The predictive power of such non-epistatic theory is expected to decline with time, for 416

two reasons. First, as the population accumulates mutations that are beneficial in the 417

home environment, these mutations are removed from the beneficial part of the JDFE 418

thereby changing its structure. The second reason is epistasis, i.e., the fact that different 419

genotypes probably have different JDFEs. Even if each individual mutation alters the 420

effects of other mutations only slightly, these small changes will accumulate and the 421

structure of the JDFE will eventually change. We have examined how one particularly 422

simple type of epistasis—diminishing returns—could affect the evolutionary dynamics of 423

pleiotropy. Our results show that the r2 parameter remains correlated with non-home 424

fitness in the presence of this type of epistasis. Empirically measuring how JDFEs vary 425

across genotypes and theoretically understanding how such variation would affect the 426

evolution of pleiotropic outcomes are important open problems. 427

We applied our theory to understand the evolution of collateral resistance and sensi- 428

tivity in bacteria. We used previously published data to estimate the JDFE of knock-out 429

mutations (koJDFE) in E. coli in the presence of several commonly used antibiotics. We 430

found that many knock-outs significantly improve fitness in the presence of single drugs 431

and that these mutations have diverse beneficial and deleterious pleiotropic effects in the 432

presence of other drugs. In other words, we did not find evidence for hard physiological 433

trade-offs or buttressing pleiotropy, even among knock-out mutations. Since knock-outs 434

are a subset of all mutations, the diversity of pleiotropic effects among all mutations 435

must be even greater. Thus, modeling antibiotic resistance within the JDFE framework 436

is appropriate. 437

Based on our theory, we proposed two simple rules for designing robust sequential 438

drug treatments. First, the expected pleiotropic effect (that is, the parameter r2 of the 439

JDFE) for all sequential drug pairs in the treatment should be negative and maximal 440

by magnitude. Second, the uncertainty parameter c of the JDFE for all sequential drug 441

pairs should be minimal. The first rule ensures that resistance to the previous drug in 442

the sequence on average leads to collateral sensitivity to the next drug. The second rule 443

ensures that the deviations from this average are as small as possible. 444

Examining the pleiotropy statistics of the koJDFEs, we found that the expected 445

pleiotropic effect r2 varies substantially among different drug pairs but the uncertainty 446

parameter c is surprisingly similar for most drug pairs, with a few exceptions. Thus, 447
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our analysis suggests that selecting drugs for a sequential treatment based only on the 448

expected pleiotropic effect may not be as bad as one might have expected a priori. It 449

is however important to keep in mind the limitations of our analysis. Specifically, errors 450

in the measurements of growth rate were quite large in this data set, preventing us from 451

calling mutations with small fitness benefits and defects which nevertheless could be im- 452

portant for evolution. Improved fitness estimates could lead to changes in the estimates 453

of pleiotropic parameters. Another caveat is that our estimates are based on knock-out 454

mutations. Full JDFEs could differ substantially from the koJDFEs that we examined 455

here. Finally, the availability and the type of resistance mutations depend on drug concen- 456

trations, other environmental conditions and on the bacterial species and strain (Lindsey 457

et al., 2013; Das et al., 2020; Pinheiro et al., 2020; Card et al., 2020). All these factors 458

could significantly affect the JDFE shape. These caveats notwithstanding, our observa- 459

tions provide the first glimpse of how bacterial JDFEs in the presence of antibiotics might 460

look like. 461

Previous studies of collateral antibiotic resistance/sensitivity have been retrospective 462

and phenomenological, in the sense that we could learn whether and to what degree any 463

particular population would evolve collateral resistance or sensitivity only after observing 464

its evolution. Ascertaining robustness of such results is very challenging with respect 465

to any kind of perturbations, including variations in the population-genetic parameters, 466

such as population size or mutation rate. In contrast, JDFE does not depend on these 467

parameters; it is a property of the genotype and the environment. Thus, although the 468

JDFE must still be empirically measured, our approach accounts for the population ge- 469

netics of adaptation. Thus, JDFE-based evolutionary predictions of collateral resistance 470

and sensitivity should be more robust than purely phenomenological ones. 471

Perhaps the most important practical implication of our results is that, because re- 472

sistance mutations have a wide range of collateral effects, it is essential to consider the 473

repeatability of collateral resistance/sensitivity evolution in designing sequential drug pro- 474

tocols. In other words, our results support the conclusion of Nichol et al. (2019) et al 475

that experimental studies of collateral resistance/sensitivity should be carried out with 476

sufficient replication, so that the distribution of collateral outcomes can be accurately 477

estimated, at least for the most promising drug pairs. 478

Materials and Methods 479

Theory 480

We assume that an asexual population evolves according the Wright-Fisher model in the 481

strong selection weak mutation (SSWM) limit (Orr, 2000; Kryazhimskiy et al., 2009; Good 482

and Desai, 2015), also known as the “successional mutations” regime (Desai and Fisher, 483

2007). In this regime, the population remains monomorphic until the arrival of a new 484

mutation that is destined to fix. The waiting time for such new mutation is assumed to 485
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be much longer than the time it takes for the mutation to fix, i.e., fixation happens almost 486

instantaneously on this time scale, after which point the population is again monomorphic. 487

If the per genome per generation rate of beneficial mutations is Ub, their typical effect is 488

s and the population size is N , the SSWM approximation holds when NUb � 1/ ln (Ns) 489

(Desai and Fisher, 2007). 490

We describe our population by a two-dimensional vector of random variables (Xt, Yt), 491

where Xt and Yt are the population’s fitness (growth rate or the Malthusian param- 492

eter) in the home and non-home environments at generation t, respectively. We as- 493

sume that the fitness vector of the population at the initial time point is known and is 494

(x0, y0). We are interested in characterizing the joint probability density p(x, y, t) dx dy = 495

Pr {Xt ∈ [x, x+ dx), Yt ∈ [y, y + dy)}. 496

Constant JDFE 497

We first consider the simple case when all genotypes have the same JDFE Φ (∆x,∆y). 498

In the exponential growth model, the selection coefficient of a mutation is the difference 499

between the mutant and the ancestor growth rates in the home environment, i.e., ∆x. The 500

probability of fixation of the mutant is given by Kimura’s formula, which we approximate 501

by 2∆x for ∆x > 0 and zero otherwise (Crow and Kimura, 1972). 502

If the total rate of mutations (per genome per generation) is U , the rate of mutations 503

beneficial in the home environment is given by Ub, that is Ub = U
∫∞
−∞ dη

∫∞
0
dξ Φ(ξ, η). 504

Then, in the SSWM limit, our population is described by a two-dimensional continuous- 505

time continuous-space Markov chain with the transition rate from state (x, y) to state 506

(x′, y′) given by 507

Q(x′, y′|x, y) =

{
2NUb (x′ − x) Φ (x′ − x, y′ − y) if x′ > x,
0 otherwise.

or, after rescaling time by 2NUb, 508

Q(x′, y′|x, y) =

{
(x′ − x) Φ (x′ − x, y′ − y) if x′ > x,
0 otherwise.

(5)

The probability distribution p(x, y, t) satisfies the integro-differential forward Kol- 509

mogorov equation (Van Kampen, 1992) 510

∂p

∂t
(x, y, t)

=

∫ ∞
−∞

dη

∫ ∞
−∞

dξ
(
p(ξ, η, t)Q(x, y|ξ, η)− p(x, y, t)Q(ξ, η|x, y)

)
(6)

with the initial condition 511

p(x, y, 0) = δ(x− x0) δ(y − y0). (7)
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When beneficial mutations with large effects are sufficiently rare, equation (6) can be 512

approximated by the Fokker-Planck equation (Van Kampen, 1992) 513

∂p

∂t
= −r1

∂p

∂x
− r2

∂p

∂y
+
D11

2

∂2p

∂x2
+D12

∂2p

∂x∂y
+
D22

2

∂2p

∂y2
, (8)

where r1 and r2 are given by equations (3), (4) and 514

D11 =

∫ ∞
−∞

dη

∫ ∞
0

dξ ξ3 Φ(ξ, η), (9)

D12 =

∫ ∞
−∞

dη

∫ ∞
0

dξ η ξ2 Φ(ξ, η), (10)

D22 =

∫ ∞
−∞

dη

∫ ∞
0

dξ η2 ξ Φ(ξ, η) (11)

are the second moments of the distribution of the fitness effects of mutations fixed in the 515

home environment. 516

The solution to equation (8) with the initial condition (7) is a multi-variate normal 517

distribution with the mean vector m(t) and the variance-covariance matrix σ2(t) given 518

by equations (1), (2). Since both the mean and the variance of Yt scale linearly with time, 519

the bulk of the non-home fitness distribution will eventually shift above y0 (if r2 > 0) or 520

below y0 (if r2 < 0). In fact, it is easy to see that, for any positive number Z, the mean 521

of this distribution will be at least Z standard deviations above y0 (if r2 > 0) or below y0 522

(if r2 < 0) after time tZ = Z2D22/r
2
2. In other words, the time scale of convergence of the 523

non-home fitness effect to the expectation is controlled by the parameter c =
√
D22/|r2|. 524

JDFE with global epistasis 525

It is straightforward to incorporate global epistasis into a Gaussian JDFE model, but 526

analytical calculations become cumbersome. To simplify theses calculations, we consider 527

the following convenient JDFE shape. 528

Φ(ξ, η) =
1

µ1

√
2πσ2 (1− ρ2)

exp

− ξ

µ1

−

(
η − µ2 − ρ σ

µ1
(ξ − µ1)

)2
2σ2 (1− ρ2)

 ,

ξ ∈ R+, η ∈ R (12)

Note that this distribution is defined only for ξ ≥ 0, i.e., we assume that mutations 529

deleterious in the home environment never fix. 530

According to equation (12), the DFE in the home environment is an exponential distri- 531

bution p1(ξ) with mean µ1, and the conditional DFE p2(η|ξ) in the non-home environment, 532

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.267484doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267484
http://creativecommons.org/licenses/by/4.0/


given that the effect of mutation the home in environment is ξ, is a normal distribution 533

with mean and variance 534

µ′2(ξ) = µ2 +
ρ σ

µ1

(ξ − µ1),

(σ′)
2

= σ2
(
1− ρ2

)
.

Thus, distribution (12) has four parameters µ1, µ2, σ
2 and ρ. It is easy to check that 535

µ1 and µ2 are the expected effects of a random mutation in the home and non-home 536

environments, respectively; σ2 is the variance of the distribution of effects of mutations 537

on fitness in the non-home environment; ρ is the correlation coefficient between the effects 538

of mutations in the home and non-home environments. 539

Using the fact that 540

〈ξn〉 = n!µn1 ,

we obtain 541

r1 =

∫ ∞
0

ξ2 p1(ξ) dξ

∫
R
p2(η|ξ) dη = 〈ξ2〉 = 2µ2

1,

r2 =

∫ ∞
0

ξ p1(ξ) dξ

∫
R
η p2(η|ξ) dη = 〈ξ µ′2(ξ)〉 = µ1 (µ2 + ρ σ)

and 542

D11 =

∫ ∞
0

ξ3 p1(ξ) dξ

∫
R
p2(η|ξ) dη = 〈ξ3〉 = 6µ3

1,

D12 =

∫ ∞
0

ξ2 p1(ξ) dξ

∫
R
η p2(η|ξ) dη = 〈ξ2 µ′2(ξ)〉

= 2µ2
1 (µ2 + 2 ρ σ) ,

D22 =

∫ ∞
0

ξ p1(ξ) dξ

∫
R
η2 p2(η|ξ) dη =

〈
ξ
(

(σ′)
2

+ (µ′2(ξ))
2
)〉

= µ1

[
σ2 + µ2

2 + 2ρ σ + 2ρ2 σ2
]
.

Next, we model global diminishing returns epistasis by assuming that the mean of the 543

DFE in the home environment µ1 declines with the fitness of the genotype in the home 544

environment x (Kryazhimskiy et al., 2014; Aggeli et al., 2020), i.e., 545

µ1 = γ1 (xmax − x) . (13)

We will assume that the mean µ2, variance σ2 and the correlation coefficient ρ are the 546

same for all genotypes. 547

Next, we calculate the mean fitness trajectories F1(t) and F2(t) in the home and
non-home environments, respectively. To calculate F1(t), recall that the probability
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p(x, y, t;x0, y0) of observing the population at fitness (x, y) at time t, given that its fit-
ness was (x0, y0) at time zero, obeys the Kolmogorov backward equation (in the diffusion
approximation)

∂p

∂t
= r1

∂p

∂x0
+ r2

∂p

∂y0
+
D11

2

∂2p

∂x20
+D12

∂2p

∂x0∂y0
+
D22

2

∂2p

∂y20
.

Multiplying it by x and integrating, we obtain an equation for the mean fitness F1(t; x0) 548

in the home environment 549

∂F1

∂t
= r1(x0)

∂F1

∂x0
+ r2(x0)

∂F1

∂y0
+
D11(x0)

2

∂2F1

∂x20
+D12(x0)

∂2F1

∂x0∂y0
+
D22(x0)

2

∂2F1

∂y20
(14)

with the initial condition 550

F1(0;x0) = x0. (15)

In our model, the DFE in the home environment does not depend on the fitness in the 551

non-home environment. Therefore F1 does not depend on the initial fitness in the non- 552

home environment y0. Furthermore, we will assume that µ1(x) ≤ µ1(x0)� 1 so that the 553

term D11(x0) can be ignored compared to the term r1(x0). Then, equation (21) simplifies 554

to 555

∂F1

∂t
= r1(x0)

∂F1

∂x0
, (16)

which can be solved by the method of characteristics. An alternative way to solve it is to 556

use the result from Ref. (Kryazhimskiy et al., 2009) where it is shown that equation (23) 557

is equivalent to the ordinary differential equation 558

Ḟ1 = r1 (F1) (17)

with the initial condition (22). The solution of equations (23), (24) is 559

F1 = xmax −
[
2γ21 t+

1

xmax − x0

]−1
. (18)

As expected, F1(t; x0)→ xmax as t→∞, i.e., up to the maximum fitness where beneficial 560

mutations are still available. 561

To calculate F2(t), recall that the probability p(x, y, t;x0, y0) also obeys the Fokker-
Planck equation

∂p

∂t
= − ∂

∂x
(r1 p)−

∂

∂y
(r2 p) +

1

2

∂2

∂x2
(D11 p) +

∂2

∂x∂y
(D12 p) +

1

2

∂2

∂y2
(D22 p) .

Multiplying it by y and integrating, we obtain an integro-differential equation for F2, 562

which to the leading order O(µ1), is approximated by the ODE 563

Ḟ2 = 〈r2〉 (t), (19)
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with the initial condition 564

F2(0) = y0, (20)

where 565

〈r2〉 (t) =

∫
R+

r2(x) dx

∫
R
p(x, y, t) dy = γ1 (µ2 + ρ σ) (xmax − F1(t)) (21)

is the r2 expected at time t. Substituting expressions (25) and (28) into (26) and inte- 566

grating, we obtain 567

F2 = y0 +
µ2 + ρ σ

2γ1
ln
[
1 + 2γ21 (xmax − x0) t

]
. (22)

Equations (25) and (29) are the theoretical predictions plotted in Figure 3. 568

Generation of JDFEs 569

Gaussian JDFEs. The JDFEs in Figure 1 have the following parameters. Mean in the 570

home environment: −0.1. Standard deviation in both home and non-home environments: 571

0.1. Means in the non-home environment: 0.08, 0.18, 0, −0.18, −0.08 in panels A through 572

E, respectively. 573

The JDFEs in Figure 2 have the following parameters. Mean and standard devia- 574

tion in the home environment: −0.1 and 0.1, respectively. The non-home mean varies 575

between −0.15 and 0.05. The non-home standard deviation varies between 0.06 and 0.1. 576

The correlation between home and non-home fitness varies between −0.9 and 0.9. All 577

parameter values and the resulting pleiotropy statistics for these JDFEs are given in the 578

Supplementary Table S1. 579

JDFEs with equal probabilities of pleiotropically beneficial and deleterious 580

mutations. All JDFEs in Figure S1 are mixtures of two two-dimensional uncorrelated 581

Gaussian distributions, which have the following parameters. Mean in the home environ- 582

ment: 0.4. Standard deviation in both home and non-home environments: 0.1. Means in 583

the non-home environment: 0.1 and −0.1 in panel A, 0.5 and −0.5 in panel B, 0.17 and 584

−0.5 in panel C, and 0.5 and −0.17 in panel D. 585

JDFEs with epistasis. The JDFEs used in Figure 3 are given by equations (12) and 586

(20). In all panels, µ2 = −0.1, σ = 0.01, xmax = 3 and ρ = −0.9. Parameter γ equals 587

0.05, 0.05, 0.025, 0.0125 in panels E through H, respectively. JDFEs in panels I through 588

L retain the same parameters as in panels E through H, respectively, with the exception 589

that ρ which varies from −0.9 to 0.9 in increments of 0.2. 590
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Antibiotic resistance koJDFEs. We draw random mutations from the E. coli an- 591

tibiotic resistance koJDFE as follows. We first determined that the distributions of mea- 592

sured knock-out (KO) growth rates in the presence of antibiotics were best approximated 593

by the Weibull distribution (Supplementary Table S5). To draw the selection coefficient 594

of a new mutation in a given home environment, we sample from the Weibull distribu- 595

tion fitted to that environment and subtract the corresponding wildtype growth rate. We 596

next drew the selection coefficient of this mutation in the non-home environment from 597

the conditional distribution, which we obtain as follows. In each home environment, we 598

bin all knock-out mutations by their home growth rate into 13 bins of size 0.1. For each 599

bin, we fit the Weibull distribution to the non-home growth rates of all mutants that fall 600

into the bin (Supplementary Table S6). We find the bin that corresponding to the new 601

mutation and draw a random number from the fitted conditional distribution to obtain 602

(after subtracting wildtype growth rate) the mutant’s non-home selection coefficient. Fi- 603

nally, if the selection coefficient of the mutation in the home environment is above s−α and 604

below s+α (specified below in the section “Identification of resistant, collaterally resistant 605

and collaterally sensitive mutations”), the mutation is considered neutral in the home 606

environment, and its home selection coefficient is set to zero. 607

Simulations 608

We carried out two types of simulations, SSWM model simulations and full Wright-Fisher 609

model simulations. 610

Strong selection weak mutation 611

The SSWM simulations were carried out using the Gillespie algorithm (Gillespie, 1976), 612

as follows. We initiate the populations with home and non-home fitness values x0 = 1 613

and y0 = 1. At each iteration, we draw the waiting time until the appearance of the next 614

beneficial mutation from the exponential distribution with the rate parameter NUb and 615

advance the time by this amount. Then, we draw the selection coefficients ∆x and ∆y 616

of this mutation in the home- and non-home environment, respectively, from the JDFE 617

(see below for the explanation of how we draw from the antibiotic resistance JDFEs). 618

With probability 2∆x, the mutation fixes in the population. If it does, the fitness of the 619

population is updated accordingly. 620

Wright-Fisher model 621

We simulate evolution in the home environment according to the Wright-Fisher model 622

with population size N as follows. We initiate the whole population with a single genotype 623

with fitness x0 = 1 and y0 = 1 in the home and non-home environments, except for 624

simulations with epistasis (see below). Suppose that at generation t, there are K(t) 625

genotypes, such that genotype i has home- and non-home fitness Xi and Yi, respectively, 626
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and it is present at frequency fi(t) > 0 in the population. We generate the genotype 627

frequencies at generation t+1 in three steps. In the reproduction step, we draw B′i(t+1), 628

i = 1, ..., K(t) from the multinomial distribution with the number of trials N and success 629

probabilities pi(t) = fi(t) + fi(t)
(
Xi(t)−X(t)

)
, where X(t) =

∑K(t)
i=1 Xi(t)fi(t) is the 630

mean fitness of the population in the home environment at generation t. In the mutation 631

step, we draw the number M of new mutants from the Poisson distribution with parameter 632

NU , where U is the total per individual per generation mutation rate. We randomly 633

determine the “parent” genotypes in which each mutation occurs and turn the appropriate 634

numbers of parent individuals into new mutants. We assume that each new mutant has a 635

new genotype (infinite alleles model). To obtain the new genotype’s home and non-home 636

fitness, we first draw its selection coefficients in the home and non-home environments 637

from its JDFE (see below for the explanation of how we draw from the antibiotic resistance 638

JDFEs) and then add these selection coefficients to the parent genotype’s fitness. In the 639

final step, all genotypes which are represented by zero individuals are removed and we 640

are left with K(t+ 1) genotypes with Bi(t+ 1) > 0, i = 1, . . . , K(t+ 1) individuals. Then 641

we set fi(t+ 1) = Bi(t+ 1)/N . 642

Simulations on JDFEs with epistasis. Since we initiate our Wright-Fisher simu- 643

lations with monomorphic populations, it takes some time for these populations to accu- 644

mulate diversity. This creates a ‘lag’ before the mean fitness of the population begins to 645

change. The lag effectively shifts the entire ensemble of simulated fitness trajectories to 646

the right relative to theoretical predictions which cannot have such lag by construction. 647

This lag becomes especially pronounced in simulations with epistasis. To resolve this 648

issue, we initiate all populations at home fitness x0 = 0.5 y0 = 0.5 and evolve them for 649

a “burn-in” period until the mean population fitness in the home environment reaches 1. 650

This burn-in period usually takes between 50 and 200 generations. Figure 3 shows the 651

trajectories after the burn-in period. 652

Analysis of the antibiotic resistance koJDFEs 653

Identification of resistant, collaterally resistant and collaterally sensitive mu- 654

tations 655

We identified resistance mutations in a given antibiotic environment as those that were 656

significantly more beneficial than would be expected due to measurement errors. To do 657

so, we obtained the wildtype growth rate measurements in the presence of antibiotics 658

from Guillaume Chevereau and Tobias Bollenbach (available at https://github.com/ 659

ardellsarah/JDFE-project). In this data set, the wildtype E. coli strain is measured 660

on average 476 times. In each environment, we estimate the wildtype growth rate rWT 661

as the mean of these measurements. We then shift all growth rate measurements (for the 662

wildtype and the mutants) in that environment by rWT and thereby obtain the selection 663
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coefficient si = ri − rWT for each knock-out i as well as the “noise distribution” Pnoise(s), 664

that is the probability of observing selection coefficient s simply due to noise. Pnoise(s) is 665

shown in red in the diagonal panels in Figure 4. 666

The noise distribution allows us to identify the critical selection coefficient s+α > 0, 667

such that any discovered beneficial knock-out mutation (i.e., any mutation i with si ≥ s+α ) 668

has the probability α of being a false positive (i.e., not beneficial). Thus, for any α, we 669

calculate the expected false discovery rate (FDR) among discovered beneficial mutations 670

as 671

FDRben(α) = α× # of mutations with si > 0

# of mutations with si > s+α
.

We similarly identify the critical value s−α and the FDR for deleterious mutations. 672

For each antibiotic, we attempt to find such α that FDRben(α) ≈ 0.25. We could not 673

find such α in the trimethoprim (TMP) and chloramphenicol (CHL) environments, i.e., 674

there were not enough knock-out mutations with positive selection coefficients to reliably 675

distinguish them from measurement errors. We also carry out the same procedure with 676

FDRben(α) ≈ 0.5. 677

To identify mutations resistant against drug A that were also collaterally resistant 678

against drug B, we applied the same procedure as described above, only restricted to the 679

pool of mutations identified as resistant to drug A and aiming for FDR . 0.05. We called 680

collaterally sensitive mutations analogously. 681

Estimation of the pleiotropy statistics from a sample of mutations 682

To estimate the pleiotropy statistics for a given pair of home and non-home environments, 683

we first identify the subset of mutations that are beneficial in the home environment. 684

Denoting the effects of these mutations in the home and non-home environments by ∆x 685

and ∆y, respectively, we estimate the pleiotropy statistics as r̂1 = (∆x)2, r̂2 = ∆x∆y, 686

D̂11 = (∆x)3, D̂12 = (∆x)2 ∆y, D̂22 = ∆x (∆y)2, where the overline denotes an average 687

over beneficial mutations. 688

Implementation 689

All code was written in R. Distributions were fit using the fitdistrplus package. Linear 690

models were fit using the lm function. All scripts are available at https://github.com/ 691

ardellsarah/JDFE-project. 692
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Supplementary Figure S1. Same as Figure 1, but for JDFEs with equal probability weights
in the first and fourth quadrants. See Materials and Methods for details.
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Supplementary Figure S2. Same as Figure 2, but for E. coli antibiotic resistance koJDFEs
(see Materials and Methods for details). Evolution was simulated using the Wright-Fisher model
with N = 104 and U = 10−2. P < 0.01 for all linear regressions.
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Supplementary Figure S3. Same as Figure 5, but with parameters estimated from reistance
mutations discovered at 50% FDR.

37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.267484doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.25.267484
http://creativecommons.org/licenses/by/4.0/


Supplementary Tables 950

Supplementary table S1. Parameters of Gaussian JDFEs without epistasis, used in Figure 2.

Supplementary table S2. Knock-out mutations identified as significantly beneficial (2),
deleterious (1), or neutral (0) at 25% FDR in each of four drugs.

Supplementary table S3. Mean, variance, covariance and pleiotropy statistics for all an-
tibiotic resistance koJDFEs, calculated with beneficial knock-out mutations discovered at 25%
FDR.

Supplementary table S4. Mean, variance, covariance and pleiotropy statistics for all an-
tibiotic resistance koJDFEs, calculated with beneficial knock-out mutations discovered at 50%
FDR.

Fitted distribution
Home Weibull Gaussian Exponential
CPR 2838 2471 −3553
MEC 1237 1141 −3289
NIT 4846 3705 −3592
TET 4879 3705 −3507

Supplementary table S5. Log likelihood values for different distributions fitted to home
DFEs. Higher values signify better fit.

Supplementary table S6. The shape and scale parameters for the home DFEs and conditional
non-home DFEs in all home/non-home antibiotic pairs. N/A values represent empty bins.
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