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Abstract

Discoveries of adaptive gene knockouts and widespread losses of complete genes have in recent years led to a major rethink

of the early view that loss-of-function alleles are almost always deleterious. Today, surveys of population genomic diversity

are revealing extensive loss-of-function and gene content variation, yet the adaptive significance of much of this variation

remains unknown. Here we examine the evolutionary dynamics of adaptive loss of function through the lens of population

genomics and consider the challenges and opportunities of studying adaptive loss-of-function alleles using population

genetics models. We discuss how the theoretically expected existence of allelic heterogeneity, defined as multiple

functionally analogous mutations at the same locus, has proven consistent with empirical evidence and why this impedes

both the detection of selection and causal relationships with phenotypes. We then review technical progress towards new

functionally explicit population genomic tools and genotype-phenotype methods to overcome these limitations. More

broadly, we discuss how the challenges of studying adaptive loss of function highlight the value of classifying genomic

variation in a way consistent with the functional concept of an allele from classical population genetics.

The historical context

Views on loss-of-function mutations—those abolishing a

gene’s biomolecular activity—have changed considerably

over the last half century. Early theories of molecular evolu-

tion that emerged during the 1960’s and 1970’s saw little

potential for loss-of-function mutations to contribute to

adaptation (Maynard Smith 1970). Except in the case of

inactivated gene duplicates, nonfunctional alleles were often

assumed to be lethal, with adaptation being generally

regarded as a process explained only by the fixation of single,

mutationally rare alleles that improved or altered a gene’s

function (Orr 2005). Only relatively recently, through dis-

coveries enabled by the availability of molecular sequence

data, were alternative views of adaptive loss-of-function

alleles formalized, most notably with the “less is more” ideas

proposed by Olson (1999). Classical paradigms of molecular

evolution had by that time been challenged, for example, by

evidence that natural loss-of-function variants of CCR5 lead

to reduced HIV susceptibility in humans (Libert et al. 1998).

Discoveries during the subsequent two decades have con-

tinued to support the idea that loss of function contributes to

adaptation (Murray 2020), with cases of adaptive or beneficial

loss of function being discovered across diverse organisms,

genes, traits, and environments (Fig. 1).

Today, reductive genome evolution is viewed as a powerful

force of adaptation (Wolf and Koonin 2013) and gene loss is

considered an important source of adaptive genetic variation

(Albalat and Cañestro 2016; Murray 2020). The flood of

-omics data generated in recent years is beginning to reveal the

extent of loss of function and gene content variation segre-

gating within species. Pan-genome and pan-transcriptome

analyses have found that gene absence variation is pervasive in

both prokaryotic and eukaryotic species (Jin et al. 2016;

McInerney et al. 2017; Gerdol et al. 2020). And surveys of

functional genomic diversity in organisms from Arabidopsis

thaliana (Monroe et al. 2018; Xu et al. 2019) to humans
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(MacArthur et al. 2012; Karczewski et al. 2020) have revealed

extensive genetic variation causing predicted loss of function.

Yet, the adaptive importance of such variation remains largely

unknown.

While the existence of adaptive loss of function is no

longer seriously disputed, the assumed maladaptive nature

of loss of function from early theories can persist in the

language of population genetics such as in the continued

use of deleterious as a synonym for loss-of-function

(Moyers et al. 2018). Perhaps less visible but more con-

sequential, historical assumptions about loss of function

remain implicit in some analyses of DNA sequence varia-

tion as many classic tests for evidence of selection or causal

relationships with phenotypes are built upon expectations of

adaptation only involving hard sweeps of single mutation-

ally rare alleles (Pennings and Hermisson 2006a, b). Con-

temporary disagreements in population genetics can also

reflect differences in views on the functional molecular

basis of adaptation. This can be seen for instance in alter-

native perspectives on the relative importance of soft versus

hard selective sweeps, a debate which is inherently con-

nected to the propensity for adaptation to involve recurrent

loss-of-function mutations (Messer and Petrov 2013; Jensen

2014).

The aim of this article is to examine theoretical and

empirical advances describing the population evolutionary

dynamics of beneficial loss-of-function alleles, which

remain on one hand a low-hanging fruit when it comes to

functionally classifying molecular diversity but on the

other, a particularly challenging class of molecular variants

to study using common population genetics models. We

hope this review will facilitate new considerations of the

population genomic diversity now being revealed with the

widespread generation of whole genome sequence data

(Table 1, Fig. 2). We also hope to shed light on some

practical challenges confronting population geneticists

Fig. 1 Examples of genes from different species with adaptive or

beneficial loss-of-function alleles. In each example, multiple inde-

pendent variants can be combined to constitute the population scale

loss-of-function allele state. a Loss of function in SLC30A8 is asso-

ciated with reduced risk of type 2 diabetes in humans (Flannick et al.

2014; Dwivedi et al. 2019). b Experimental evolution in Pseudomonas

aeruginosa resulted repeatedly in loss-of-function mutations in nfxB,

conferring antibiotic resistance (Wong et al. 2012). c Experimental

evolution in yeast led to consistent disruption of specific signaling

pathway genes including MTH1 during adaptation to stable

environments (Kvitek and Sherlock 2013). d Populations of Plasmo-

dium falciparum repeatedly evolved loss-of-function alleles in Epac

during adaptation to lab culture environments (Claessens et al. 2017). e

Natural RDO5 loss-of-function variants in Arabidopsis thaliana

occurred at high frequency in northwest Europe and caused reduced

seed dormancy, a trait under strong locally adaptive selection (Xiang

et al. 2016). f Adaptation to agricultural intensification led to selection

for semi-dwarf rice, which is caused by loss-of-function variants in

GA20ox2 (Spielmeyer et al. 2002; Sasaki et al. 2002).
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(Figs. 3 and 4) and the intriguing dynamics of loss-of-

function alleles through the lens of classic models (Fig. 5).

We further discuss advances in sequencing technologies

and annotation approaches that are facilitating new ways to

discover cases of beneficial loss-of-function and more

broadly, syntheses between modern genomics and the

functional concept of alleles from classic population

genetics (Fig. 6).

Table 1 Recent whole genome re-sequencing projects with functional annotations of variants. Numbers of premature stop, synonymous, and non-

synonymous single nucleotide polymorphisms indicate number of variants segregating among the genotypes sequenced (Fig. 2). Sample Size =

number of genotypes sequenced.

Species Sample size Premature stops Synonymous Non-synonymous Citation

Ananas comosus 89 7,084 689,019 589,484 (Chen et al. 2019)

Arabidopsis thaliana 1,135 27,813 803,665 1,135,115 (1001 Genomes Consortium 2016)

Bos indicus 20 1,132 255,296 155,251 (Iqbal et al. 2019)

Bos taurus 15 3,837 1,155,244 524,103 (Zhang et al. 2019)

Branchiostoma belcheri 20 11,487 2,818,189 1,467,863 (Bi et al. 2020)

Brassica napus 991 1,413 120,926 79,018 (Wu et al. 2019)

Caenorhabditis elegans 330 5,084 271,950 261,538 (Cook et al. 2017)

Cairina moschata 15 285 36,517 19,817 (Gu et al. 2020)

Canis lupus 722 11,273 540,063 332,559 (Plassais et al. 2019)

Capsella grandiflora 15 5,209 644,326 478,238 (Koenig et al. 2019)

Capsella orientalis 16 269 11,250 13,281 (Koenig et al. 2019)

Capsella rubella 50 2,508 194,078 171,071 (Koenig et al. 2019)

Cicer arietinum 16 352 50,290 38,078 (Thudi et al. 2016)

Cucumis melo 1,175 7,030 102,687 94,426 (Zhao et al. 2019)

Cucurbita pepo 7 864 156,828 111,687 (Xanthopoulou et al. 2019)

Drosophila melanogaster 205 1,532 351,255 182,520 (Huang et al. 2014)

Ebola virus 140 3 555 403 (Ladner et al. 2015)

Echinochloa crus-galli 328 9,264 184,746 319,816 (Ye et al. 2019)

Felis catus 54 838 128,844 77,662 (Buckley et al. 2020)

Fraxinus excelsior 37 2,997 251,249 259,946 (Sollars et al. 2017)

Glycine max 1,007 2,826 122,469 182,479 (Torkamaneh et al. 2019)

Gossypium spp. 243 6,851 101,059 128,512 (Du et al. 2018)

Hippotragus niger 7 201 11,350 11,386 (Koepfli et al. 2019)

Homo sapiens 141,465 133,019 2,173,110 4,548,307 (Karczewski et al. 2020)

Macaca mulatta 133 2,642 148,278 126,445 (Xue et al. 2016)

Manihot esculenta 203 4,399 265,094 299,197 (Ramu et al. 2017)

Mycoplasma pneumoniae 15 88 4,382 6,891 (Xiao et al. 2015)

Oryza sativa 3,024 198,609 2,952,705 3,599,083 Wang et al. 2018)

Parastagonospora nodorum 197 2,815 226,803 160,159 (Richards et al. 2019)

Phaseolus vulgaris 683 1,352 112,173 97,536 (Wu et al. 2020)

Populus trichocarpa 1,014 8,365 231,894 333,036 (Piot et al. 2019)

Protobothrops mucrosquamatus 22 883 53,023 56,553 (Aird et al. 2017)

Puccinia hordei 5 2,629 46,763 67,526 (Chen et al. 2019)

Rattus norvegicus 40 285 42,182 26,239 (Hermsen et al. 2015)

SARS-nCoV-2 8,053 90 2,678 4,731 (Rayko and Komissarov 2020)

Saccharomyces cerevisiae 1,011 7,207 517,729 549,300 (Peter et al. 2018)

Solanum melongena 7 438 6,645 12,828 (Gramazio et al. 2019)

Solanum tuberosum 201 4,962 541,208 515,492 (Li et al. 2018)

Sorghum bicolor 44 3,114 112,255 112,108 (Mace et al. 2013)

Trypanosoma evansi 15 1,685 30,714 53,002 (Lazaro et al. 2020)
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What are loss-of-function alleles?

Classifying biological diversity into discrete categories has

always been difficult. Descriptions of even the most fun-

damental biological units such as cell types, populations,

and species can be challenging. Yet these classifications

provide units of study that help make sense of biological

and evolutionary phenomena. This is also true for alleles.

The existence of a category of alleles distinguished by a

derived loss of biochemical function has been described by

various names: “amorphic” (Muller 1932), “loss-of-func-

tion” (Jones 1972), “nonfunctional” (Nei and Roy-

choudhury 1973), “knockout” (Kulkarni et al. 1999),”null”

(Engel et al. 1973), “pseudogene” (Jacq et al. 1977), or

simply “gene loss” (Zimmer et al. 1980). Total gene loss is

the most obvious case of loss of function. Comparisons of

gene content between distantly related species have

revealed considerable evidence for adaptation via com-

plete deletion of genes or even entire sets of functionally

related genes (Wang et al. 2006; Blomme et al. 2006; Will

et al. 2010; McLean et al. 2011; Griesmann et al. 2018;

van Velzen et al. 2018; Sharma et al. 2018; Huelsmann

et al. 2019; McGowen et al. 2020; Baggs et al. 2020).

Pangenome analyses have revealed extensive gene content

variation segregating within species. For example, the

average Brachypodium distachyon genotype is missing

almost half of the genes observed in the species pangen-

ome (Gordon et al. 2017). Yet total gene loss is not the

only means by which loss of function can occur. In their

review of evolution by gene loss, Albalat and Cañestro

(2016) point out that single mutations and many mutation

types such as premature stop codons, frameshifts, splice

site disruptions, and elimination of regulatory regions

required for gene expression can have effects that are

functionally indistinguishable from complete gene loss.

Here we will discuss how the phenomenon of allelic het-

erogeneity—that numerous types of mutations can produce

the same functionally analogous allele—is important for

understanding the evolutionary dynamics and implications

of adaptation by loss of function.

First principles and empirical evidence indicate that

many types of mutations can have effects that are equivalent

to total gene loss, and for the purposes of this review, we

employ this definition of complete gene losses being func-

tionally equivalent to other loss-of-function mutations such

as premature stop codons. However, there is the practical

difficulty that these different types of mutations vary in how

easily they can be detected and correctly annotated as loss-

of-function alleles (Fig. 3). Insertions and deletions that

interrupt the reading frame of a protein coding region

(frameshift mutations), for example, might be readily clas-

sified as loss-of-function alleles because the downstream

Fig. 2 Rates of putative loss-of-function variants (stop gained)

relative to synonymous single nucleotide polymorphisms reported

in recent whole genome re-sequencing projects (Table 1). Species

exhibit considerable differences in the ratio of stop gained to synon-

ymous single nucleotide polymorphisms, with a 20-fold difference

between the greatest (Cucumis melo) and fewest (Bos taurus) obser-

vations. The causes for these differences between species and, more

generally, the (mal)adaptive nature of this extensive loss-of-function

variation remain largely unknown.

Fig. 3 Examples of loss-of-function (LoF) variants. Shown are those types caused by different kinds of mutations (SNP single nucleotide

polymorphism, indel insertions and deletions), which vary in the kind of data needed to detect them (short/long read sequencing) and the

predictability of their effect on gene function.
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amino acid sequence will be severely disrupted. Yet a fra-

meshift mutation at the extreme 3′ end of a coding region

affecting only a few amino acids might be functionally

distinct from a frameshift mutation at the extreme 5′ end

disrupting the entire coding sequence. One simple heuristic

to address this ambiguity is a threshold, measured by the

portion of the gene affected by functionally disruptive

mutations, at which an allele is classified as loss-of-

function. This approach can be used to classify premature

stop codons, frameshift, splice site disruptions, start loss,

and inframe insertions and deletions. In humans (MacAr-

thur et al. 2012; Karczewski et al. 2020) and Arabidopsis

thaliana (Monroe et al. 2018; Baggs et al. 2020), loss-of-

function mutations affecting only a small fraction (e.g.,

<10%) of total coding sequence in a gene were ignored

when classifying loss-of-function variants. Such cutoffs are

supported by the observation that even in genes not thought

to be experiencing adaptive loss of function, there is an

enrichment for otherwise predicted loss-of-function muta-

tions that affect only small fractions of coding regions

(MacArthur et al. 2012; Flowers et al. 2009), suggesting

reduced functional impact of such variants.

Other single mutations causing loss of function may be

even more difficult to predict. Mutations changing func-

tionally critical amino acids can disable a protein’s mole-

cular function. Indeed, detailed studies of individual genes

Fig. 4 Theoretical predictions and empirical observations of allelic

heterogeneity. a Predicted values of the number of independent var-

iants of the same allele observed at fixation (k) as a function of

mutation rates (u). Equation based on Haldane (1927) and Kimura

(1962) and taken from Wilson et al. (2014). Predictions are based on

an effective population size (Ne) of 50,000 and selection coefficient (s)

of 0.01. Highlighted are frequently observed ranges of empirical

estimates of mutation rates from classic population genetics (Muller

1928; Haldane 1933; Rhoades 1941; Stadler 1946, 1948) and

sequence-based mutation rates from modern molecular genomics

(Lynch et al. 2016). Inset figure illustrates the hypothetical dynamics

of multiple independent alleles (each a different color) with positive

selection. Collectively the variants increase in frequency, ultimately

leading to fixation of adaptive variants (elimination of deleterious

ancestral allele), but individually each variant remains at low fre-

quency. b Detected levels of allelic heterogeneity in genes enriched for

loss of function in humans (obs > exp) reported by (Karczewski et al.

2020). Highlighted are cases of previously studied genes with evidence

of beneficial effects or positive selection CCR5 (Libert et al. 1998),

SLC30A8 (Flannick et al. 2014; Dwivedi et al. 2019), TMPRSS11B

(Updegraff et al. 2018), TRIM65 (Wang et al. 2016; Wei et al. 2018),

PLA2G7 (Song et al. 2012), HDAC10 (Dahiya et al. 2020), CD36 (Fry

et al. 2009; Love-Gregory et al. 2011).

Fig. 5 Among genes with high Neutrality Index (NI), those with a

high frequency of loss-of-function alleles are enriched for non-

synonymous polymorphism (Pn). Shown here are mean components

of NI in A. thaliana genes with high (top 20%) NI values in relation to

loss-of-function (LoF) allele frequencies (binned by quartiles). Loss-

of-function calls based on approach from (Monroe et al. 2018; Baggs

et al. 2020) and data from (Monroe et al. 2020). Pn= non-synonymous

polymorphism, Ps= synonymous polymorphism, Dn= non-synon-

ymous divergence, Ds= synonymous divergence (using A. lyrata as

an outgroup).
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have uncovered non-synonymous loss-of-function variants

(Sasaki et al. 2002; Barboza et al. 2013; Zhang and Jimé-

nez-Gómez 2020; Song et al. 2020, 2014) suggesting the

maintenance of extensive cryptic (not easily identified as

loss-of-function from standard annotation pipelines) genetic

loss-of-function variation within populations (Table 1). But

identifying non-synonymous mutations which result in loss-

of-function among the numerous non-synonymous poly-

morphisms is difficult since experimental validation of the

functional impacts for every non-synonymous variant is

infeasible at genomic scales. Instead, predictions of func-

tional impact must be predicted by more sophisticated

methods (Tang and Thomas 2016), such as quantifying

changes in the chemical properties of amino acid substitu-

tions (Grantham 1974), sequence homology (Ng and

Henikoff 2001), known phenotypic effects (Schwarz et al.

2010), the context of known domains and protein structures,

or through integration of multiple methods with tools such

as CADD (Kircher et al. 2014; Tang and Thomas 2016).

Emerging statistical machine learning approaches, such as

unsupervised latent variable models can also detect other-

wise cryptic loss of function caused by non-synonymous

substitutions (Riesselman et al. 2018). The effect of coding

sequence variation on protein folding may also be predicted

from deep learning approaches, such as AlphaFold (Senior

et al. 2020). Beyond mutations affecting coding sequence,

eliminating gene expression could also cause loss of func-

tion (Albalat and Cañestro 2016), but identifying such

mutations is challenging and validation at genomic scales is

currently difficult. However, as with non-synonymous

substitutions, advances in machine learning have also led

to models that can predict functional consequences of non-

coding variants (Zhou and Troyanskaya 2015). These

methods can also be used to predict variants causing loss of

gene expression. The application of these new tools presents

a path forward for a new generation of functionally explicit

analyses of genomic diversity. More broadly, a major goal

of modern biology is to predict molecular function from

genomic sequence data. The study of adaptive loss-of-

function alleles could serve as a model class of genetic

variation to spearhead this effort.

The accurate prediction of allele function from popula-

tion genomic data assumes that researchers have complete

information about what is functional and about sample

sequence diversity. The genomes of reference genotypes

used as the basis of comparison for whole genome re-

Fig. 6 Imagined case in which independent loss-of-function (LoF)

alleles give rise to adaptive dwarf phenotypes inspired by (Bar-

boza et al. 2013). In this case, a premature stop codon and a frameshift

mutation have arisen in alternative genetic backgrounds distinguished

here by a nearby SNP (top). Conventional, functionally agnostic

GWAS (bottom left) tests for association between individual variants

and the trait of interest, in this case plant height, fail because none of

the individual variants capture the functionally definitive variation

(indicated by p-values below the significance threshold marked by the

dashed line). An alternative approach, functional GWAS, first anno-

tates variants according to predicted functional effects, then defines

alleles as functional or non-functional. This corrects for allelic het-

erogeneity when testing for allele-trait associations and results in a

significant allele trait association (bottom right).
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sequencing projects can themselves already harbor loss-of-

function alleles, obfuscating definitions of “functional” and

therefore loss of function as well. For example, the standard

A. thaliana reference is based on the genome of the Col-0

genotype, which is known to harbor an adaptive loss-of-

function variant in the vernalization gene FRIGIDA

(Johanson et al. 2000). Therefore, to study natural func-

tional variation in this locus, Zhang and Jiménez-Gómez

(2020) computationally swapped the reference sequence at

this locus with a known functional allele and remapped

public short read sequencing data to discover novel loss-of-

function variants. Such scenarios at genome-wide scales

motivate ongoing efforts to generate and annotate multiple

reference genomes for a given species (Michael et al. 2018;

Sun et al. 2018; Yang et al. 2019; Jiao and Schneeberger

2020; Zhou et al. 2020; Liu et al. 2020; Michael and

VanBuren 2020; Li et al. 2020) to be used as a basis of

comparison to describe broader population genetic diver-

sity. Furthermore, most population-scale genome sequen-

cing has been completed using short read sequencing

technologies (</= 300 base pairs), which require greater

depth to reliably detect small insertions and deletions

(compared to single nucleotide polymorphisms) and may be

unable to reliably detect large insertions, deletions, and

other structural variants altogether (Kishikawa et al. 2019).

These unseen variants could be a considerable source of

loss-of-function alleles in natural populations, and the dif-

ficulty to detect them (Fig. 3) might imply that many

adaptive loss-of-function alleles are yet to be discovered.

Thus, most assessments of population genetic variation are

still limited to only a fraction of functional allelic diversity.

Third-generation sequencing technologies are therefore

facilitating more complete characterizations of allelic

diversity (Alonge et al. 2020; Liu et al. 2020). Precise

characterization of alleles at functional molecular resolu-

tions is greater than being a technical challenge for studying

sequence variation—it is essential for making sense of

genomic sequence data through the lens of classic popula-

tion genetics theory. We will see how this is exemplified in

cases of adaptive loss-of-function alleles, whose high

effective mutation rate leads to a breakdown of the

assumptions underlying standard approaches used to detect

signatures of selection and genotype to phenotype mapping.

Many ways to break a gene: quantifying
allelic heterogeneity

A characteristic feature of genes experiencing adaptive loss

of function is the existence of multiple functionally

equivalent variants. To understand the extent of such var-

iation, we can quantify and predict allelic heterogeneity, the

phenomenon where multiple independent molecular

variants exist that produce functionally analogous alleles of

a given locus (Haldane 1927; Kimura 1962; Wilson Petrov

et al. 2014; Ralph and Coop 2015). Assuming a constant

effective population size (Ne), mutation rate of an adaptive

allele (u), and selection coefficient on that adaptive allele

(s), the expected number of mutationally independent

alleles of the locus that will be observed in a population at

the moment of allele fixation (k), a unit of allelic hetero-

geneity, is predicted (Wilson Petrov et al. 2014) as:

k ¼ 2log NeSð ÞNeu ð1Þ

The expected number of independent alleles at fixation is

directly correlated with the mutation rate (Eq. 1, Fig. 4).

Early studies of mutation rate quantified the frequency at

which mutations gave rise to a particular allelic state,

defined by its phenotypic effect. These studies often

reported phenotypic mutation rate estimates ranging from

10-4 to 10-6 mutations (change in phenotype) per generation

(Muller 1928; Haldane 1933; Rhoades 1941; Stadler

1946, 1948). Estimates of molecular mutation rates at the

DNA sequence level are generally orders of magnitude

lower: 10−8 to 10−10 mutations (change in sequence) per

site per generation (Lynch et al. 2016). A partial explana-

tion for the discrepancy between the range of phenotypic

and molecular mutation rate is the obvious fact that many

different molecular mutations can give rise to the same

phenotypically/functionally effective allele type. Loss-of-

function mutations exemplify this reality. Because there are

hundreds or thousands of different molecular mutations that

can produce a suite of analogous loss-of-function alleles

(e.g., any premature stop codon or differently sized dele-

tions along much of the coding region of a gene), the

aggregated mutation rate for loss of function is expected to

be orders of magnitude greater than the molecular mutation

rate. At such high effective mutation rates we should pre-

dict, given biologically reasonable population sizes and

selection coefficients, the existence of considerable allelic

heterogeneity (Fig. 4a), which appears consistent with

empirical observations (Figs. 1 and 4b).

Mixed signals in signatures of selection

Early genetics employed a functionally definitive concept of

an allele. Alleles were treated as local units of inheritance

based on their functional effect, observed at the phenotypic

level (e.g., Rhoades 1938). As such, at locus a experiencing

adaptive loss of function, the (potentially multiple) variants

causing the adaptive trait should act collectively as a single

allele, even if due to independent mutational events (Pen-

nings and Hermisson 2006a, b). If, for example, this func-

tionally identical set of variants experiences positive

selection, it behaves like a single allele according to
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predictions of classic population genetic theory (Orr 2005)

—increasing in frequency to fixation (Fig. 4a, inset).

Indeed, foundational models of population genetics (Hal-

dane 1927) accommodate recurrent mutation and predict

that adaptation will often involve multiple independent

mutational origins given realistic population sizes, selection

coefficients, and mutation rates (Eq. 1, Fig. 4a). But if we

encounter such cases through analyses of DNA sequence

alone, we may be troubled to find that the sequence variants

only exhibit the expected evolutionary dynamics of classical

alleles when considered as aggregated functional units, but

not when analyzed individually (Remington 2015).

Scenarios like these have been extensively studied in a

broad manner, in order to detect signatures of soft sweeps of

multiple independent variants. A number of approaches

have been developed to study soft sweeps. These generally

do not attempt to classify variants into functional allele

categories but instead look for evidence of increased fre-

quency of multiple rather than single haplotypes in a

functionally agnostic fashion (Schrider and Kern 2016;

Hermisson and Pennings 2017; Harris et al. 2018; Mughal

and DeGiorgio 2019; Stern et al. 2019; Hartfield and

Bataillon 2020; Garud et al. 2020). Nevertheless, it is

interesting to note that extensive research into soft sweeps

came only after increasing evidence of the potential

adaptive value of loss-of-function alleles had been pub-

lished (Pennings and Hermisson 2006a, b 2006). In con-

trast, hard sweeps of a single adaptive variant were

described during the era predominated by the view that

loss-of-function mutations were necessarily deleterious,

and adaptation could only proceed through mutationally

rare gain-of-function alleles (Maynard Smith and Haigh

1974). Such historical dynamics speak to the inter-

connectedness, intentional or otherwise, between ideas

about the functional molecular basis of adaptation and

advances in the development of population genetic models

and theories.

Unfortunately, population genetic statistics based on the

expectation that adaptive alleles are mutationally rare per-

form poorly when this assumption is violated. For example,

statistics based on the site frequency spectrum such as

Tajima’s D do not deviate from neutral expectations in a

predictable fashion for adaptive alleles with multiple

mutational origins (Pennings and Hermisson 2006a).

Similarly, statistics based on linkage disequilibrium around

adaptive loci, though they tend to perform better for soft

sweeps, also appear neutral if the number of mutational

origins of an adaptive allele is high enough (Hermisson and

Pennings 2017). For adaptive loss of function, this may

often be the case. More generalized methods of detecting

soft selective sweeps from independent mutational origins,

such as the H12 statistic developed by Garud and colleagues

(Garud et al. 2015) might be useful for detecting adaptive

loss of function. The reciprocal is also true—known cases

of adaptive loss of function could serve as valuable models

for testing the limits of test statistics intended to detect soft

sweeps.

More functionally explicit statistics of allelic variation

are now possible because of the availability of whole

genomic sequence data. However, the application of func-

tional test statistics to genes experiencing putatively adap-

tive loss-of-function can yield surprising results. For

example, the Neutrality Index (NI) (McDonald and Kreit-

man 1991; Rand and Kann 1996) estimates histories of

selection by comparing rates of within-species polymorph-

ism and between-species divergence. It is more functionally

explicit than many population genetics statistics—compar-

ing putatively functionally impactful (non-synonymous)

versus silent (synonymous) variation. Where Pn= non-

synonymous polymorphism, Ps= synonymous polymorph-

ism, Dn= non-synonymous divergence, Ds= synonymous

divergence

NI ¼ Pn=Psð Þ= Dn=Dsð Þ ð2Þ

Traditional interpretations of the results are based on the

assumption that adaptive variants will become fixed and

therefore be observed as diverged (Dn) from related species

rather than polymorphic (Pn) within the study species.

When genes putatively experiencing adaptive loss of func-

tion are investigated, they are often found to have high NI

values (Le Corre et al. 2002; Flowers et al. 2009; Will et al.

2010; Rose et al. 2012; Monroe et al. 2016), a pattern that

seems paradoxical given that high NI values are commonly

interpreted as evidence of purifying selection (Weinreich

and Rand 2000). But when considered with the knowledge

that non-synonymous variants can themselves cause loss of

function, and given the likely independent mutational ori-

gins of loss of function, this result is consistent with

expectations of an enrichment of non-synonymous poly-

morphism in genes with both high frequency of loss of

function and high NI (Fig. 5).

Increasingly functionally precise statistics such as the

sum frequencies of losses of function in a given gene across

all variants (Albalat and Cañestro 2016) might better

describe loss-of-function alleles than functionally agnostic

test statistics or descriptions of individual variants. Accel-

erations in whole genome sequencing technologies and

improved capacity to classify previously cryptic loss-of-

function variants may facilitate a new generation of func-

tionally definitive population genetic models and methods.

This would not only be valuable for improving the capacity

to understand the forces shaping intraspecific loss-of-func-

tion, but more generally promote a re-synthesis between

studies of molecular sequence variation and the function-

based conception of alleles from early population genetic

theory.
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Functionally explicit genotype-to-phenotype
mapping

To identify genes contributing to adaptive phenotypic var-

iation, Genome Wide Association (GWA) scans in natural

populations have become a popular alternative to conven-

tional mapping in an experimental population derived from

a bi-parental cross. GWA is normally implemented by

testing for associations between individual DNA sequence

variants in a population and the phenotype (or environ-

mental gradient) of interest. This statistical framework can

fail to detect causal loci in the presence of allelic hetero-

geneity because none of the individual variants are linked to

a single causal variant—an assumption of single-locus two-

allele population genetic models (Korte and Farlow 2013).

This problem is exemplified by loss of function variation in

which, with a few notable exceptions (Song et al. 2020),

allelic heterogeneity is expected to be the norm (Pennings

and Hermisson 2006a, b).

The case of the GA-20 oxidase gene in plants provides a

useful illustration of these challenges. This well-studied

gene is involved in gibberellin biosynthesis and loss of

function produces semi-dwarf phenotypes in wild plants

and crop varieties of the Green Revolution (Fig. 1f)

(Spielmeyer et al. 2002; Sasaki et al. 2002; Jia et al. 2009;

Barboza et al. 2013). While functional experiments have

demonstrated that loss of this gene causes considerable

reduction in plant height, and investigations of natural

molecular variation in A. thaliana identified cases of likely

loss-of-function differences between genotypes, a conven-

tional GWA looking for loci explaining variation in plant

height failed to detect the GA-20 oxidase locus in A.

thaliana (Barboza et al. 2013). However, when all of the

genotypes with predicted loss-of-function variants were

collapsed into a single allele state and their heights con-

trasted with the genotypes containing predicted functional

variants, the known highly significant effect on plant height

was detected (Barboza et al. 2013). Without previous

knowledge that this gene plays an important role in plant

height, it would have been missed by conventional GWA.

This experiment provides a cautionary tale as to how con-

ventional GWA approaches can fail in the presence of

allelic heterogeneity at causal loci. It also highlights the

power of functionally explicit GWA approaches based on

population genetic models that allow for allelic hetero-

geneity—using predictions about functional effects of

individual variants to collapse variants into allele classes (in

this case, loss-of-function vs functional) so that a func-

tionally explicit contrast can be made (Fig. 6).

To date, such a framework has been primarily used in the

study of rare variants (Wu et al. 2011; Pan and Shen 2011;

Zhang et al. 2017) to identify rare deleterious loss-of-

function alleles associated with disease phenotypes in

humans (Zuk et al. 2014) but it could also be used to find

beneficial and adaptive loss of function as well. For

example, loss of function in SLC30A8 was found to be

strongly associated with decreased risk of type 2 diabetes

when all loss-of-function variants were collapsed into a

single allele state (Flannick et al. 2014) (Fig. 1a), thus

identifying its protein product as a promising therapeutic

target to treat diabetes (Dwivedi et al. 2019). With popu-

lation whole-genome-sequence data becoming available in

model and non-model species, this approach can now be

readily applied by evolutionary biologists at genome wide

scales to discover loss-of-function alleles contributing to

phenotypic evolution in populations (Monroe et al. 2020).

A functionally explicit GWA framework may have value

beyond scanning genomes for causal loss-of-function

alleles. More broadly, it reflects a step toward represent-

ing genetic diversity as a matrix of functionally relevant

genetic alleles rather than a matrix of DNA sequence var-

iants. While loss of function is currently the easiest allele

state to classify, we anticipate that more nuanced and pre-

cise allele categories can be identified through analyses of

population genomic diversity with advances in sequence

annotation. Ideally, these categories would specify the

activity of an allele along a scale that reflects Muller’s

original categories of amorphic, hypomorphic, hyper-

morphic, antimorphic, and neomorphic states (Muller

1932). In addition to facilitating discovery of causal loci,

functionally explicit methods of population genomics could

be useful for predicting quantitative traits (i.e., genomic

prediction) and address the problem of missing heritabilities

(Manolio et al. 2009) that has frustrated modern geneticists

for over a decade (Eichler et al. 2010).

Outlook and concluding remarks

Loss-of-function alleles were once often held up as a

paragon of deleterious genetic variation. Today a more

nuanced appreciation for their potential role in adaptation

has emerged. This new paradigm inspires investigations

into deeper questions about the causes and consequences of

adaptation by genetic loss of function. For example: Do

species or populations differ in their capacity to adapt via

loss of function, and if so, why? Does the high effective

mutation rate of loss-of-function alleles lead to bias in the

probabilities of different evolutionary outcomes? What is

the contribution of adaptive loss of function to the phe-

nomena of antagonistic pleiotropy and reproductive isola-

tion? How does adaptation by loss of function affect long

term evolutionary trajectories of populations and future

evolvability? Ongoing technical breakthroughs promise to

scale up the study of loss-of-function alleles experiencing

positive selection for population genomic research to
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address these questions. More broadly, these lines of

research provide paths toward advancing tools and concepts

that facilitate a continued synthesis between functional

molecular genomics and classic population genetic theory.
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