
This is a repository copy of The Porter stemming algorithm: then and now .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1434/

Article:

Willett, P. (2006) The Porter stemming algorithm: then and now. Program: Electronic
Library and Information Systems, 40 (3). pp. 219-223. ISSN 0033-0337

https://doi.org/10.1108/00330330610681295

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose Consortium ePrints Repository
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Program.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/archive/1434/

Published paper
Willett, P. (2006) The Porter stemming algorithm: then and now. Program:
electronic library and information systems, 40 (3). pp. 219-223.

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

The Porter stemming algorithm: then and now

Peter Willett

Author: Peter Willett is Professor and Head of the Department of Information Studies,

University of Sheffield, Sheffield, UK. E-mail: p.willett@sheffield.ac.uk

Abstract

General review

Purpose: In 1980, Porter presented a simple algorithm for stemming English

language words. This paper summarises the main features of the algorithm, and

highlights its role not just in modern information retrieval research, but also in a range

of related subject domains.

Design: Review of literature and research involving use of the Porter algorithm.

Findings: The algorithm has been widely adopted and extended so that it has become

the standard approach to word conflation for information retrieval in a wide range of

languages.

Value: The 1980 paper in Program by Porter describing his algorithm has been

highly cited. This paper provides a context for the original paper as well as an

overview of its subsequent use.

Keywords. Conflation; Information retrieval; Porter stemming algorithm; Stemming

algorithm; Suffix; Word variant

Word length: 2130

1. Introduction

Natural language texts typically contain many different variants of a basic word.

Morphological variants (e.g., COMPUTATIONAL, COMPUTER, COMPUTERS,

COMPUTING etc.) are generally the most common, with other sources including

valid alternative spellings, mis-spellings, and variants arising from transliteration and

abbreviation. The effectiveness of searching, most obviously but not exclusively in

terms of recall, would be expected to increase if it were possible to conflate (i.e., to

bring together) the variants of a given word so that they could all be retrieved in

response to a query that specified just a single variant.

 1

mailto:p.willett@sheffiled.ac.uk

In English, and many related languages, morphological variation takes place at the

right-hand end of a word-form (Sproat, 1992), and this has spurred the use of user-

directed right-hand truncation for online information retrieval. This is a very simple

approach to conflation but one that requires considerable experience since two major

types of error are possible. Over-truncation occurs when too short a stem remains

after truncation and may result in totally unrelated words being conflated to the same

root, as with both MEDICAL and MEDIA being retrieved by the root MED*. Under-

truncation, conversely, arises if too short a string is removed and may result in related

words being described by different strings, as with BIBLIOGRAPHICALLY being

truncated to BIBLIOGRAPHIC, rather than to the shorter root BIBLIOGRAPH* that

would also encompass BIBLIOGRAPHY.

A fully automated alternative to truncation is provided by a stemming algorithm

(Hooper and Paice, 2005; Porter, 2001). This reduces all words with the same root to

a single form, the stem, by stripping the root of its derivational and inflectional

affixes; in most cases, only suffixes that have been added to the right-hand end of the

root are removed and this approach to conflation forms the basis of the present paper.

The removal of prefixes (i.e., strings that have been added at the left-hand end of a

root) have been much less studied in the case of English-language retrieval; it is,

however, of importance in other languages such as Malay (Ahmad et al., 1996).

Lovins (1968) described the first stemmer to be developed specifically for

information-retrieval applications and introduced the idea of stemming based on a

dictionary of common suffixes, such as *SES, *ING or *ATION. This algorithm

spurred the development of many subsequent algorithms (Lennon et al., 1981; Porter,

2005) and, more generally, the use of stemming as a general tool in information

retrieval (Frakes and Fox, 2003; Harman, 1991; Hull, 1996; Krovetz, 2000). When a

word is presented for stemming in a dictionary-based stemming algorithm, the right-

hand end of the word is checked for the presence of any of the suffixes in the

dictionary. If a suffix is found to be present, it is removed, subject to a range of

context-sensitive rules that forbid, e.g., the removal of *ABLE from TABLE or of *S

from GAS; in addition, a range of recoding rules may be provided to enable the

 2

conflation of variants such as FORGETTING and FORGET or ABSORB and

ABSORPTION.

An alternative, very much simpler procedure was described by Porter (1980) in a

study that continues to be widely cited and that has provided the inspiration for many

subsequent algorithms, not just for English but also for other languages. The Porter

algorithm is discussed in the remainder of this paper.

2. The Porter algorithm then

The Porter algorithm differs from Lovins-type stemmers in two major ways. The first

difference is a significant reduction in the complexity of the rules associated with

suffix removal. The need for simplicity is exemplified by Lovins� algorithm, which

contains no less than 294 suffixes, each of which is associated with one of 29 context-

sensitive rules that determine when that suffix can or cannot be removed from the end

of a word; the algorithm also contains 35 recoding rules (Lovins, 1968). Despite the

large number of suffixes, relatively few of them are plural forms and both the suffixes

and the recoding rules suggest that the Lovins algorithm has been designed principally

for the processing of scientific texts (Porter, 2005). The second difference is the use

of a single, unified approach to the handling of context. Many of Lovins� context-

sensitive rules relate to the length of the stem remaining after the removal of a suffix:

the minimal acceptable length is normally just two characters, with a consequent risk

of significant over-stemming.

There are various versions of the Porter algorithm but they differ only slightly (Porter,

2005); here, we focus on that described in the original Program paper (Porter, 1980).

The algorithm is very simple in concept, with ca. 60 suffixes, two recoding rules and

a single type of context-sensitive rule to determine whether a suffix should be

removed. Rather than rules based on the number of characters remaining after

removal, Porter uses a minimal length based on the number of consonant-vowel-

consonant strings (the measure) remaining after removal of a suffix. This idea, which

may be regarded as an easily computable representation of a syllable, was first studied

by Dolby and Resnikoff (1964). A typical rule is thus as follows:

(m>0) *FULNESS ĺ *FUL

 3

This means that the suffix *FULNESS should be replaced by the suffix *FUL if, and

only if, the resulting stem has a non-zero measure (m).

The use of only ca. one-fifth of the suffixes listed in Lovins� dictionary is sufficient

for effective stemming since Porter�s algorithm is iterative in nature, i.e., it allows a

long, multi-component suffix to be removed in stages. For example, there is a rule

(m>0) *FULĺ null,

which means that the suffix *FUL should be replaced by the null string if, and only if,

the resulting stem has a non-zero measure. This rule is invoked after that involving

the suffix *FULNESS given above, and thus the word HOPEFULNESS will be

stemmed first to HOPEFUL and then to HOPE in the second iteration.

In all there are five steps in the algorithm: the first handles inflectional suffixes, the

next three handle derivational suffixes, and there is then a final recoding step. Despite

the simplicity of the basic design, early studies by both Porter (1980) and Lennon et

al. (1981) showed that the algorithm was at least as effective as other, more

complicated conflation procedures, and it was rapidly adopted by the information-

retrieval research community.

3. The Porter algorithm now

Porter�s algorithm was developed for the stemming of English-language texts but the

increasing importance of information retrieval in the 1990s led to a proliferation of

interest in the development of conflation techniques that would enhance the searching

of texts written in other languages. By this time, the Porter algorithm had become the

standard for stemming English, and it hence provided a natural model for the

processing of other languages. In some of these new algorithms the only relationship

to the original is the use of a very restricted suffix dictionary (Porter, 2005), but Porter

himself has developed a whole series of stemmers that draw on his original algorithm

and that cover Romance (French, Italian, Portuguese and Spanish), Germanic (Dutch

and German) and Scandinavian languages (Danish, Norwegian and Swedish), as well

as Finnish and Russian (Porter, 2006).

 4

http://www.snowball.tartarus.org/algorithms/french/stemmer.html
http://www.snowball.tartarus.org/algorithms/spanish/stemmer.html

These stemmers are described in a high-level computer programming language, called

Snowball (Porter, 2006) that has been developed to provide a concise but

unambiguous description of the rules for a stemmer. Some non-English stemmers can

operate effectively using simple sets of rules, with Latin being perhaps the best

example of a language that is defined in what is essentially algorithmic form (Schinke

et al., 1996). However, this level of regularity and simplicity is by no means

common; in such cases, Snowball provides a concise but powerful description that

can then be processed by a compiler to give a C or Java implementation of the

algorithm for the chosen language (Porter, 2001). In passing, it is worth noting that

this paper by Porter contains an extremely illuminating discussion of stemming and

the structures of words that is very well worth reading, even if one does not wish to

obtain any of the downloadable programs.

These developments of the Porter algorithm can only serve further to increase the

level of knowledge and understanding of the original, English-language version; this

level is already considerable as is evidenced by the following simple citation analysis.

While the precise relationship between citation and significance is a matter of some

dispute, it does seem reasonable to regard the 1980 Program paper as being a

significant contribution to the literature since a search of the ISI Web of Knowledge

database on 21
st
 March 2006 yielded 442 citations. Hardly surprisingly, many of

these appeared in mainstream information science journals (e.g., Journal of

Documentation, Information Processing and Management, Information Retrieval, the

Journal of the American Society for Information Science and Technology, and

Scientometrics); however, the majority were in the more general computer science

literature relating to data and knowledge (e.g., Artificial Intelligence Review, IEEE

Transactions on Knowledge and Data Engineering, International Journal of

Intelligent Systems, Lecture Notes in Computer Science, and Pattern Recognition

Letters), with some coming from still more widely dispersed fields (e.g., Behaviour

Research Methods, Bioinformatics, Neuroinformatics, Sociological Methodology and

User-Modeling and User-Adapted Interaction). It is interesting to note that almost

100 of the citations appeared in 2005 or 2006 (with all of the journals noted above

carrying citations in this period), from which we can conclude that the paper

continues to be of importance, despite it first being published over a quarter of a

century ago.

 5

4. Conclusions

Porter�s algorithm is important for two reasons. First, it provides a simple approach

to conflation that seems to work well in practice and that is applicable to a range of

languages. Second, it has spurred interest in stemming as a topic for research in its

own right, rather than merely as a low-level component of an information retrieval

system. The algorithm was first published in 1980; however, it and its descendants

continue to be employed in a range of applications that stretch far beyond its original

intended use.

References (All URLs were checked 18th April 2006)

Ahmad, F., Yusoff, M. and Sembok, T.M.T. (1996), �Experiments with a stemming

algorithm for Malay words�, Journal of the American Society for Information
Science, Vol. 47 No. 12, pp. 909-918.

Dolby, J.L. and Resnikoff, H.L. (1964), �On the structure of written English�,

Language, Vol. 40 No.2, pp. 167-196.

Frakes, W.B. and Fox, C.J. (2003), �Strength and similarity of affix removal

stemming algorithms�, SIGIR Forum, Vol. 37, pp. 26-30. Available at:

http://www.sigir.org/forum/S2003/StemSim.pdf.

Harman, D. (1991), �How effective is suffixing?�, Journal of the American Society
for Information Science, Vol. 42 No 1, pp. 7-15.

Hooper, R. and Paice, C. (2005), The Lancaster Stemming Algorithm. Available at:

http://www.comp.lancs.ac.uk/computing/research/stemming/

Hull, D.A. (1996), �Stemming algorithms: a case study for detailed evaluation�,

Journal of the American Society for Information Science, Vol. 47 No. 1, pp. 70-

84.

Krovetz, B. (2000), �Viewing morphology as an inference process�, Artificial
Intelligence, Vol. 118 Nos. 1 and 2, pp. 277-294.

Lennon, M., Peirce, D.S., Tarry, B.D. and Willett, P. (1981), �An evaluation of some

conflation algorithms for information retrieval�, Journal of Information Science,

Vol. 3 No.4, pp. 177-183.

Lovins, J.B. (1968), �Development of a stemming algorithm�, Mechanical
Translation and Computational Linguistics, Vol. 11 Nos 1 and 2, pp. 22-31.

Porter, M.F. (1980), �An algorithm for suffix stripping�, Program, Vol. 14 No.3, pp.

130-137.

Porter, M.F. (2001), Snowball: A Language for Stemming Algorithms. Available at:

http://www.snowball.tartarus.org/texts/introduction.html.
Porter, M.F. (2005), �Lovins revisited�, In Tait, J.I. (editor) Charting a New Course:

Natural Language Processing and Information Retrieval. Essays in Honour of
Karen Spärck Jones, Springer, Dordrecht, pp. 39-68.

Porter, M.F. (2006) �Stemming algorithms for various European languages�.

Available at:

http://www.snowball.tartarus.org/texts/stemmersoverview.html

 6

http://www.sigir.org/forum/S2003/StemSim.pdf
http://www.comp.lancs.ac.uk/computing/research/stemming/
http://www.snowball.tartarus.org/texts/introduction.html
http://www.snowball.tartarus.org/texts/stemmersoverview.html

Schinke, R., Greengrass, M., Robertson, A.M. and Willett, P. (1996), �A stemming

algorithm for Latin text databases�, Journal of Documentation, Vol. 52 No.2,

pp. 172-187.

Sproat, R. (1992), Morphology and Computation, MIT Press, Cambridge MA.

 7

	Porter, M.F. (2001), Snowball: A Language for Stemming Algorithms. Available at: http://www.snowball.tartarus.org/texts/introduction.html.
	Porter, M.F. (2006) “Stemming algorithms for various European languages”. Available at: http://www.snowball.tartarus.org/texts/stemmersoverview.html

