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Abstract 
The VaR , a new appearing financial risk-manage tool, have been applied widely. Many financial setups have 
accustomed to measure the risk of a portfolio with theVaR . So it is very necessary to discuss the portfolio choice 
problem under the VaR  constraint. In this paper, by setting and solving the portfolio choice model under the VaR  
constraint, we illustrate that the use of the VaR  constraint reduces the array of choice to a more manageable range. The 
probability of targetVaR , therefore, can be thought of as a risk tolerance assessment tool (when coupled with another 
measure of risk).  
Keywords: The VaR  constraint, Portfolio, The optimum weight 
1. Introduction 
In the path-breaking work on Portfolio Selection, Markowitz (1952) developed the concept of an efficient portfolio in 
terms of the expected return and standard deviation of return (i.e. ),( σE  criteria). Modern Portfolio Theory (MPT) has 
become one of the most important bases in modern capital market, and been applied widely in the practice of 
investment. In the absence of specific knowledge of investor’s preference, however, it cannot be determined which of 
any two efficient portfolios is better. Baumel (1963) replaced the ),( σE  criteria with the ),( σkEE −  criteria, where k  
stands for the investor’s attitude toward risk. Baumol demonstrated that his ),( σkEE −  criteria yield a smaller efficient 
set, which is a subset of the Markowitz efficient set, and therefore reduces the range of alternatives from which the 
investor has to select his portfolio.  Recently, Wang Shouyang (1999) studied the portfolio choice model that includes 
trade cost. This work makes the MPT become more satisfactory to the investor’s actual needs. Seeing from 
mathematical eyes, the classical Markowitz model and its plasmodium are some quadratic programmed models with 
regard to defined matrix.  
On the other hand, Value at Risk (VaR ) is an important measure of exposure of a given portfolio of securities to 
different kinds of risk inherent in financial environment. By now, it became a tool for risk management in financial 
industry and part of industrial regulatory mechanisms. Meanwhile Basel Committee requested financial setups to 
measure the market risk with VaR . Considerable amount of research was dedicated recently to development of 
methods of risk manage-ment based on Value at Risk. This literature is dedicated mainly to efficient techniques for 
computing VaR  of a given portfolio. To construct the portfolio under the thought of VaR , therefore, is one of the most 
important problems that the international investment market is being faced.  
In this paper we combine the notion of VaR  with portfolio optimality. More precisely, we seek to define portfolio that 
produces maximal yield (or minimum risk) and at the same time satisfies constraints on Value at Risk. Our aim is to 
develop a theory that is the Markovitz theory for optimal mean-variance portfolios in VaR  constraint and provide 
algorithmic tools for computing such portfolios. Our emphasis here is on algorithms because, unlike classical optimal 
mean-variance portfolios, optimal mean-variance portfolios in VaR  constraint generally defy analysis with simple 
analytical tools. 
2. Building and explaining of the model 
As well known, the classical Markowitz model is: 
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here, T
nRRRR ],,[ 21 Λ= , )( ii rER = is the expected return rate of the i th asset. T

nxxxX ],,,[ 21 Λ= is the weights 
vector of portfolio. nnij ×=Σ ][σ is the covariance matrix of n  assets. )( pp rER =  and 2

pσ  are the expected return 
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rate and its variance of portfolio. The 
pσ , which is used to measure the risk of portfolio by Markowitz and called the 

standard deviation of the return rate, express the scope between the return rate of portfolio 
pr  and )( prE .  

It is common knowledge that the solution of the model )(I  is the curve AB  in 
pp R−σ  space (figure 1) and is called 

the efficient frontier of portfolio. 
Assessing risk of portfolio as the probability of failing to earn a minimum return, we call the way as the VaR  
risk-measure way. The minimum return is called VaR  of the portfolio. This can be denoted:  

α≤−< )Pr( VaRrp
                                                                             (2.1) 

here α  is a given probability. 
Supposing the distribution of portfolio is statistics normal distribution, we incorporate (2.1) into the model )(I . Then 
we get the portfolio model in VaR  constraint:  

(2.2) 
(2.3) 
(2.4) 

 

                                                                                            (2.5) 
 
Because (2.1) can be taken the place of  
              ])()([ 1

pprEVaR σα−Φ−−=                                                          (2.6) 
here )(•Φ  is the standard normal distribution function. The solution of model )(II  is the pitch arc AB  in 

pp R−σ space (Figure 2). The pitch arc is called the efficient frontier of portfolio in VaR constraint.  
Figure 2 is a risk-return diagram illustrating that the VaR  constraint plots as a straight line with slope )(1 α−Φ  and 
Y-axis intercept of VaR− . All portfolios lying on or above this line have a α−1  probability of exceeding the VaR−  
return minimum, while portfolios that lie below this line will not exceed a return of VaR−  with α−1  confidence. As 
one would expect, the minimum return for a given confidence level will increase as the expected return increases 
(holding the standard deviation constant) and will decreases as the standard deviation increases (holding the expected 
return constant). 
Assessing risk as the probability of failing to earn a minimum return can further be helpful in selecting the optimal 
portfolio from an array of portfolios representing the efficient frontier. This is because the VaR  restriction essentially 
provides information regarding the risk tolerance of the investor. By formally introducing the VaR  as a constraint into 
the portfolio optimization problem, the range of choice across the full array of efficient portfolios can be narrowed to 
those that are most relevant to the investor. That is, the constraint allows the investor to focus on that segment of the 
frontier that best fits his or her degree of risk aversion. The probability of target VaR , therefore, can be thought of as a 
risk tolerance assessment tool (when coupled with another measure of risk). 
Figure 2 illustrates this process of selecting an optimal portfolio in conjunction with a VaR  constraint. It shows an 
efficient frontier of portfolios along with the VaR  constraint of a α−1  probability of exceeding a VaR−  return. 
Note again that the VaR  constraint segments the combination of expected returns and risk. Portfolios to the right of the 
line violate the constraint; their realized returns do not exceed VaR−  with α−1  confidence. Portfolios to the right of 
the line actually satisfy a higher α−1  confidence limit than VaR− . 
At the same time, only portfolio risk-return trade-offs on or below the efficient frontier are feasible. As Figure 2 shows, 
the set of feasible portfolios satisfying a VaR  constraint is limited. The set of portfolios to be considered for selection 
in the optimization decision is limited to the shaded area of portfolios that both are feasible and also satisfy the specified 
VaR  constraint. In this case, the investor would select a portfolio from the segment ranging from point A to B, as these 
represent the optimal portfolios available. In this illustration, and in other cases, the use of the VaR  constraint reduces 
the array of choice to a more manageable range. We should note, however, that the constraint may be either too severe, 
so as to preclude the possibility of any choice, or too loose, so as to maintain much, if not all, of the efficient frontier as 
a range of choice. 
3. Solving of the model 
Knowing from figure 2, we only need to find the weights of point A and B. To solve the weights of the two points, 
however, won’t work with the simple Laganarge algorithms. So we will solve the problem with a geometric algorithm 
that was produced by us.  
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3.1 Introducing of the geometric algorithm 
We consider a finite set of assets ni ,,2,1 Λ=  which can be any kind of financial assets, stocks, bonds and options being 
the most common examples. Weight vector of Portfolio X  is characterized by positions in these assets: 

),,,( 21 nxxxX Λ=  

Because 121 =+++ nxxx Λ , 1211 −−−−−= nn xxxx Λ . The expected return )( pp rER =  and its variance risk σ p
2  of 

portfolio can be repressed:  
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The covariance matrix Σ  is a definite matrix. So the formula (3.2) stands for a equal-variance ellipsoid in the 
weights-space ( , , )x x xn1 2 1Λ − . With regard to different σ p

2 , we can get a family of equal-variance ellipsoids that have a 
concentric MVP. The center MVP expresses the portfolio that has the least risk in the set of feasible portfolios. In the 
weights-space ( , , )x x xn1 2 1Λ − , the formula (3.1) stands for a equal-expected-return super-plane. With regard to different 
Rp

, we can obtain a family of parallel super-plane. So the optimal weights of the portfolio that includes n  assets 
should be the tangential point of the equal-expected-return super-plane (3.1) and the equal-variance ellipsoid (3.2). 
Joining these tangential points, we can obtain a straight line that is called the critical-line of the portfolio of n  assets. 
In fact, the critical-line is the manifestation of the efficient frontier in weights-space.  
Knowing from differential geometry, the normal vector of the formula (3.1) in point ( , , )x x xn1 2 1Λ −  is: 

                               ( , , , )R R R R R Rn n n n1 2 1− − −−Λ  

The normal vector of the formula (3.2) in point ( , , )x x xn1 2 1Λ −  is 
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Then the normal vector of the formula (3.1) in point ( , , )x x xn1 2 1Λ −  can be simplified to 

),,,,,( 121 QWPQWPQWPQWP nk ΣΣΣΣ −ΛΛ   

According to the definition of the critical-line, we can obtain the equation of the critical-line that is 
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By the formula (2.3), we can obtain a linear equations group that is composed of n-2 linear equations: 
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3.2 The solution of the portfolio based on the geometric way  
The formula (2.6) can be turn into the following form: 

)2(
))((

1 22
21

2 VaRVaRRR ppp ++
Φ

= − α
σ                                 (3.5) 

Taking the formula (2.2) and (2.3) into (3.5), we can get: 

])(2[
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1 22
21 RXRVaRXVaRXX TTT ++

Φ
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                              (3.6) 

The rank of the linear equations group is 2−n , so the number of its based solutions system is 1. That is saying 
that 132 ,, −nxxx Λ  can all be expressed by 1x . Knowing from the formula (2.5), therefore, nx  can be expressed by 1x  

too. Taking nxxx Λ,, 21  into the formula (3.6), we can get a quadratic equation with one unknown concerning 1x . 

According to the extract roots formula, we can find the two roots of 1x . Then we can get naturally the value of 

nxxx Λ,, 32 . Noting that 1x  has two roots, so there are two groups of solutions that are the weights of point A and B 
respectively. According to the following formulas: 

RXR T
p =                                          (3.7) 

  XX T
p Σ=2σ                                          (3.8) 

We can obtain the expected returns AR  and BR  of the portfolios, and their variances 2
Aσ  and 2

Bσ  at points A and B 
respectively. 
Thus we can obtain the range of portfolio choice in VaR  constraint: 

222, ApBAPB RRR σσσ ≤≤≤≤  

Given an expected return 
pR  of portfolio within the range, we can find the optimal portfolio weights in the critical-line 

by connecting (3.1) and (3.4). The variance of portfolio will reduce to minimum under the optimal portfolio weights. 
This process can be finished through decreasing unknowns of linear equations group. The minimum variance of 
portfolio can be obtained by the formula (3.2). Given a variance 2

pσ  of portfolio within the range, at the same time, we 
can find the optimal portfolio weights in the critical-line by connecting (3.2) and (3.4). The expected return of portfolio 
will increase to maximum under the optimal portfolio weights. The maximum expected return of portfolio could be 
obtained by the formula (3.2). 
We should note, however, that the VaR  constraint may be either too severe, so as to find non-solution of the quadratic 
equation with one unknown concerning 1x , and preclude the possibility of any choice. The VaR  constraint, of course, 
may be lead to find the sole solution of the quadratic equation with one unknown concerning 1x , and lead to take the 
choice of portfolio is sole too.  
4. Example 
To demonstrate how the portfolio model in VaR  constraint is applied in asset allocation, we will consider three major 
asset classes: common stocks, long-term bonds, and money market instruments. These are the securities commonly used 
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by portfolio managers and major investors, either as a complete list of classes for consideration or as essential classes 
within more extended groupings of asset classes. These can thus be representative of the sort of actual results produced 
from an asset allocation while at the same time being clear enough in application to illustrate the process. 
Table 1 shows the realized return and standard deviation of return for each of the three asset classes, as well as the 
correlation across those asset classes shown over the 129-1993 period.  

Knowing from Table 1, TR ]7.34.53.12[= , and 
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So the linear equations group is turned into: 

8467.20607.364738.22 21 =− xx                                 (4.1) 

Therefore 
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Supposing %0.5=VaR , %5=α , then 65.1)(1 =Φ − α . So the formula (3.3) is turned into: 
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Taking R , Σ  and 
                       TT xxxxxxX ]6223.11267.1,6223.01267.0,[],,[ 111321 −+−==  

into (4.2), we can get the quadratic equation with one unknown concerning 1x : 

   09769.145078.1711028.565 1
2
1 =−− xx                                      (4.3) 

According to the extract roots formula, we can find the two roots of 1x : 

                                   3743.01 =x  or 0708.01 −=x  

Taking the value of 1x  into the expressed formulas 2x  and 3x , we can obtain the portfolio weights at points A and 
B: 
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According to the formulas (3.4) and (3.5), the expected returns and their variances at points A and B are respectively:  
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So the standard deviations of portfolio at points A and B are respectively: 
%57.4%383.7 == BA σσ  

Thus we can obtain the range of portfolio choice in our VaR  constraint:  

%383.7%57.4,%182.7%882.2 ≤≤≤≤ PPR σ  

All portfolios lying in the range have a 95 percent probability of returns exceeding  
                             

PprE σ65.1)( −  

That is saying that there is only a 5% probability of a risk-loss exceeding %0.5=VaR . 
Given an expected return 

pR  of portfolio within the range, we can find the optimal portfolio weights directly by 
connecting (3.1) and (4.1). Given a variance 2

pσ  of portfolio within the range, on the other hand, we can find the 
optimal portfolio weights directly by connecting (3.2) and (4.1).  
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Given %7=PR  for example, the formula (3.1) is changed into  

            7)1(7.34.53.12 2121 =−−++ xxxx  

i.e. 
                      3.37.16.8 21 =+ xx                                         (4.4) 

Then the formula (4.1) is turned into: 

8467.20607.364738.22 21 =− xx                            (4.5) 

To solve the equations group that is formed of the two equations (4.4) and (4.5), we can get:  
1428.03555.0 21 == xx  

So 
5017.01 213 =−−= xxx  

According to the formula (3.8), the minimum variance of portfolio is: 
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Therefore, the minimum standard deviation of portfolio is 
%9557.6=pσ  

Given a standard deviation of portfolio 
pσ , whereas, we can find the optimal portfolio weights by imitating the solving 

process of the equation (4.2) (substituting 2
pσ  for ])(2[

))((
1 22

21 RXRVaRXVaR TT ++
Φ− α

 in the right hand of the formula 

(4.2)). Noting there are two groups of the optimal portfolio weights. Next computing their 
pR s with the formula (3.7), 

we can obtain the real optimal portfolio weights by comparing. We don’t explain the process in detail. 
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Table 1.                    Risk-return date (1926-1993) 
Asset classes Mean returns (%) Standard deviation (%) Correlation 

Common stock 12.3 20.5 1.0 0.114 -0.5 

Long-term bonds 5.4 8.7 0.114 1.0 0.24 

Treasury bills 3.7 3.3 -0.5 0.24 1.0 

 

Figure 1. 

 
Figure 2. 


