THE POSITIVE CONE IN BANACH ALGEBRAS

BY
J. L. KELLEY(") anp R. L. VAUGHT(®)

This paper concerns Banach algebras which are real or * algebras and
possess a unit. The principal method of attack is via an ordering of the
algebra, the positive cone being the closure of the set of sums of squares
(sums of elements xx*) in contrast to the positive open cone used by Raikov
[9](®) and others. An important role is played by an identity on norms, which
together with a few preliminary lemmas is proved in §1. In §2 the real
homomorphisms of a real commutative algebra are found to be the extreme
points of the intersection of the dual cone and the unit sphere in the adjoint
of the algebra, and the “real radical” is shown to consist of elements x such
that —x? is approximately a sum of squares. The theorem of Arens [1] char-
acterizing real function algebras is derived. In §§3 and 4 these results are ap-
plied to * algebras. The new norm of an element x, which Gelfand and Nai-
mark [3] introduced by means of positive functionals, is proved to be the
square root of the distance from —xx* to the positive cone. Some results
relating general * algebras to operator algebras, including the representation
theorem of Gelfand and Naimark [2], are derived. In §5, a refinement of the
basic identity is established for the Fourier transform of a measure (discrete
+ absolutely continuous) on a locally compact Abelian group.

R. V. Kadison [5] has recently investigated Banach algebras by means of
an order relation. The positive cone he uses is identical with that used here
only when 14xx* always has an inverse. The principal overlap with Kadi-
son’s work, outside of the deduction of certain known theorems by order
methods, seems to be the geometric characterization of the real homo-
morphisms of a real algebra (see 2.1). Like Kadison’s work, this paper is
essentially self-contained. (Some notable exceptions occur in §5.)

1. Preliminaries.

1.1. DeFINITIONS. A set Cis a cone in a real Banach space R if it is closed,
nonvoid, the sum of two members of C is a member of C, and non-negative
scalar multiples of members of C are members of C. If Cis a cone in R, then
C', the dual cone, is the set of bounded linear functionals which are non-
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negative on C, i.e., {f:fER* and f(c) 20 for c&C}. (Clearly C’ is a cone in
R*)

1.2. LEMMA. If C is a cone in R, then xE C if and only if f(x) 20 for each
fec.

Proof. Suppose x€& C. Then, since C is closed and convex, there is an
FER* with f(x) <f(y) for all y&C, by the Hahn-Banach theorem(*). Thus
flx) <0=f(0), and, considering positive scalar multiples of any y&C, it is
clear that f(y) =20, and hence f& (.

1.3. LEMMA. Let C be a cone in R, x an element of R, and e an element of
C such that ||el| =1 and such that C includes {y:||y—e|| <1}. Then:
@) |l =1(e), for fEC",
(b) dist (—x, C)=sup {f(x):fEC and ||f| <1}, and
() the mintmum distance in (b) is attained at the point

[dist (=%, C)]-e—x.

Proof. Since ||e|| =1, [|f]| 2f(e). If ||3]| <1, then by hypothesis e +yEC,
so that f(e+¥) =0 and f(e) = I f» ] Statement (a) is thereby established. If
cEC, fEC, and ||f]| 21, then ||x+c]| = |f(x+c)| Zf(x)+f(c) 2f(x), which
establishes one inequality for (b). Let 7 =sup {f(x):f€C’ and ||f|| <1}. Then
if f€C’ and f(e) =1, f(re—x)=r—f(x) 20, and if f(¢) =0, then ||f||=0 and
f(re—x)=0; in any case f(re—x) =0 for each fE(’. Hence, by 1.2, re—x&C,
and dist (—%, C)=inf {||x+c||:cEC}=|x+re—x||=r. This proves the
lemma.

1.4, ReEmARKs. Under the hypotheses of this lemma; any linear functional f
which is non-negative on C is necessarily bounded (by f(e)). For C a cone
in Rlet 2= {f:f€C and ||f]| £1}. Recall that x is an extreme point of a con-
vex set K if x is not an interior point of any line segment lying in X, i.e.,
if whenever x=¢y+(1—1)z, where y and z belong to K and 0<¢<1, then
y=2 We now derive a property of the extreme points of 2.

1.5. LEMMA. Let C be a cone, e C such that ||e|| =1 and such that C includes
{x:|_|x-—e||§1}, let 3=1{g:g€C and ||g]| <1}, and let f be an extreme point
of Z. Then for each gEZ such that f—gEC’, g=g(e) - f.

Proof. Let g€2 and f—g &€ C". Since ||f]| =f(e), by 1.3, it is clear that f(e)
=0 or 1. If f(e) =0, then since g(e) =0 and f(e) —g(e) 20, we have ||g| =g(e)
=0, and the conclusion is clear. Suppose f(e) =1. If f=g or g=0, the conclu-

(4) Cones (not necessarily closed) have been studied by Krein and Rutman [7] and others,
and Krein and Rutman established a theorem on the extension of linear functionals non-nega-
tive on a cone. Lemmas 1.2 and 1.3 could be derived from their theorem, but follow more
easily and directly from the following well known consequence of the familiar Hahn-Banach
extension theorem: If X isa closed convex set in a real Banach space R, and x€F K, then there
is an fE R* with f(x) <f(y) for all y&R. .
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sion is obvious, and otherwise we have

f=g@lg/e@] + [fle) = e@][(f — 0)/(f(e) — g(e))],
and since f is extreme, f=g/g(e), which is the desired conclusion.

1.6. LEMMA. Let K be a nonvoid compact convex subset of a real linear
topological space and f a continuous linear functional. Then the supremum of
f(x) for x & K 1is attained at an extreme point of K.

Proof. Let L= {x:xEK and f(x) =sup {f(y) :yEK} } Because K is com-
pact, L is nonvoid, and clearly L is compact and convex. If .S is a line seg-
ment in K such that an interior point belongs to L, then since f is linear,
SCL. Consequently each extreme point of L is an extreme point of K, and,
by the Krein-Milman theorem [7], there are extreme points of L.

2. Real Banach algebras. Suppose that R is a real Banach algebra with
unit 1 such that ||1]| =1. A real homomorphism is a linear functional % such
that k(xy) =k(x)k(y) for all x, yER. Let P be the closure in R of the set of all
finite sums of squares. Clearly (a) Pisa conein R; (b) 1EP; (¢) if Ris a
commutative algebra, P is closed under multiplication; and (d) for fER¥,
fe P if and only if f(x?) 20 for each x ER. Let £ be the intersection of P’
with the unit sphere in R*,

We observe that since the power series for (1 —f)V2 converges uniformly
and absolutely on —1=¢<1, if H 1 —x” =1, then x has a square root, the root
being given by the power series in 1—x. It follows easily that real homo-
morphisms are bounded and members of P’; more generally, since P includes
the unit sphere about 1, we may apply Lemmas 1.3 and 1.5.

2.1. THEOREM. If R is commutative, the sel of exireme points of Z 1is
identical with the set of real homomorphisms of R.

Proof. Let f be an extreme point of Z. Since 0 is certainly a real
homomorphism of R, we may suppose f#0 and hence f(1)=1. Let Hx” =1
and ¥ &P and set f.(y) =f(xy) for yER. It is easy to check that fEZ., Also
1—x&P, and hence if yEP, then (1 —x)yEP and (f—f,)(y) =f((1 —x)y) Z0.
Thus f—f,E P’ and, by 1.5, f.=f,(1) -f, i.e., f(xy) =f(x)f(y) for all yER. The
restriction on ||x|| is easily removed, and since any x &R is the difference of
two members of P (in fact, 4x=(14+x)2—(1 —x)?), it follows that f(xy)
=f(x)f(y) for all x, y&R.

Conversely, suppose f is a real homomorphism of R. Since fEP’, ||fl|
=f(1)=f(12) =(f(1))2=00r 1 and fEZ. Suppose f =tg+ (1 —t)k where 0 <t <1
and g, k2. If f(1) =0, f=g=0, so we may assume f(1) =1. It is easy to check
that g(xy) defines a real inner product on R, and consequently, by the
Cauchy-Schwartz inequality, g(xy)? < g(x?)g(y?). Hence whenever f(x) =0, we
have f(x?)=0 and consequently, since g, REZ, g(x?)=0, and so g(x)?
=g(*x*g(1) =0 and thus, finally, g(x) =0. In particular f(x—f(x)-1) =0 and
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s0 g(x) =g(1)f(x) for all xER. Since 1=f(1)=tg(1)+ (1 —H)k(1), 0<t<1, we
have g(1) =1 and hence g=f. Thus f is extreme.

Let X, be the set of all real homomorphisms of R, and let X =X,— {0}
be the set of nontrivial homomorphisms. If R* is topologized by the w*
topology, i.e., the topology of point-wise convergence, then the unit sphere
in R* is w* compact, and one easily verifies that X, is a w* closed subset.
Since X is the intersection of X, with the w* closed set {f:f(1)=1}, the set
X is w* compact.

There is a natural map U of R into the algebra R(X) of all w* continuous
real-valued functions on X, defined by

Ux)(f) = f(x), fort €ER, fE X.

We assume R(X) has the usual supremum norm. Because X consists of homo-
morphisms, U is a homomorphism. We summarize the properties of U:

2.2. THEOREM. Let R be a commutative real Banach algebra with unit of
norm 1, let P be the closure of the set of all sums of squares, let X be the set of
nontrivial real homomor phisms(5) with the w* topology, and let U be the natural
map of R into the real continuous functions R(X) on X. Then

(@) U maps R onto a dense subalgebra of R(X),

(b) if &R, dist (—x, P)=max [0, sup {f(x):fEX}], and

(c) in particular,

|U®)|| = max [dist (—=, P), dist (%, P)] = dist (— =2, P)}/2

Proof. It is clear that if f>g and f, g&X, then, for some xER, f(x)
=Ux)(f) = U(x)(g). Consequently the image of R in R(X) distinguishes
points of X and, by the Stone-Weierstrass approximation theorem [13],
must be dense in R(X). To prove (b), first observe that P’ is w* closed. Since
= is w* compact, Lemma 1.6 shows that sup {f(x) :fEZ} is attained for an
extreme point of Z. But, by 2.1, X is the set of these extreme points, so, by
1.3,

dist (—x, P) = sup {f(#):f € Xo} = max [0, sup {f(x):f € X}].

The norm equality is straightforward.

2.3. REMARKs. The real radical of a commutative Banach algebra with
unit is the kernel of the map U. From the preceding results it is clear that
the following statements are equivalent:

(a) x belongs to the radical,

(8) There may be no real homomorphisms of R except 0 (as in the case where R is the com-
plex numbers.) The meaning of Theorem 2.2 may not be quite “clear” in this case. For the sake
of completeness, therefore, we remark that 0 is the only real homomorphism of R if and only
if R=P. To make 2.2 intelligible in this case we must define || U(x)” =max [0, sup {f(x):fEX}},
since X may be empty. The proof of 2.4 then contains an assurance that X is not empty under
the additional hypotheses there. The situation in 3.4, in the case where Y is empty, is analogous.
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(b) both x and —x may be approximated by sums of squares,

(c) f(x) =0 for every real homomorphism f,

(d) —x? can be approximated by a sum of squares.
Thus there are “sufficiently many” real homomorphisms, i.e., the radical is
{0} if and only if 0 is an extreme point of the positive cone. It is of particular
interest to know conditions under which the natural map of R into R(X) is
an isometry. We now prove the theorem of Arens [1].

2.4. THEOREM. If R is a real commutative Banach algebra with unit such
that ||x¥| =||x||2 and [z 47| = ||x?|| for each x, yER, then R is isomorphic and
isometric to the Banach algebra of all real-valued continuous functions on the
space of all nontrivial real homomorphisms of R.

Proof. Observe that if ||| <1 and ||t —«]| =1, then both x and 1~x are
squares. Conversely if x=#2 and 1 —x =92, then 1 =4249% and, in view of the
hypothesis of the theorem ||x|| and ||1 —x|| are less than or equal to 1. Now
suppose x and y are squares and also ||%||, ||y|| <1. Then 1—x and 1—y are
squares and so [[1—=x||, |1—%||<1. Hence l1=G+y)/2l <1/2(|1 -]
+[|1—yl|) =<1, and so (x+y)/2 and hence x+y are squares. It follows easily
that the sum of any two squares is a square. But then squares are dense in
P and so, for any xER, ||U(x) 2=|| U(x?)|| =inf {[|x2+p|l:pEP}, by 2.2
(c), =inf {|[x2+y?|:yER} =]|x?| =]|#]|2, the last two equalities following di-
rectly from our hypotheses on R. Thus U is an isometry. That U is an iso-
morphism follows at once, and, by 2.2, the image of R is dense, and being
now complete, is therefore all of R(X).

3. * Algebras.

3.1. DEFINITIONS. A * algebra A is a complex Banach algebra with unit 1
of norm 1 and with a unary operation * such that x**=x, ||x||=]x*|,
(xy)*=y*x* and (ax+by)* =ax*+by* for all x, y& A4 and all complex num-
bers a, b. The set H of kermitean or self-adjoint elements is {x:x=x*} and
the positive cone P is the closure of the set of all finite sums of elements of the
form xx*. (Note that H is a real Banach space and P is a cone in H.) The
set P’ of functionals of positive type is the set of all fEA* such that f(xx*) 20
for x€A. The intersection of P’ with the unit sphere in A* is Z.

3.2. REMARKs. Each x €4 is uniquely expressible in the form %+ where
u, vEH. (Directly: u=(x+x*)/2 and v=(x—x%)/24.) If fEH* and we set
F(u+1v) =f(u) +if(v), then FEA* and F(x*)=F(x). Conversely, if FEA*
and F(x*)=F(x) for x€ A, then F is real on H. If F(xx*)Z0 for each x&4,
then F(x*)=TF(x). (Consider F((e=*+x)(e?+x*)).) Thus H* is embedded
naturally in 4*, so that members of the dual cone of P, i.e., members of H*
which are non-negative on P, correspond exactly to members of P’. If 4 is
not commutative, H may not be a subalgebra. However, powers of hermitean
elements are hermitean, and if A€ H and ”h” <1, then, by the same power
series argument, 1 —% is the square of an hermitean element. Consequently
P contains the unit sphere in H about 1 and Lemma 1.3 is applicable. Finally,
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we remark that if FEP’,|| F|| = F(1), and thus the norms of Fand its restriction
to H are identical. In fact, F(y*x) defines an inner product on 4 and, by the
Cauchy-Schwartz inequality and then Lemma 1.3, I F(x)| < F(x*x) F(1)
< F(1)||x*«]| F(1) < F(1)?|%||2. Thus Lemma 1.3 now gives us:

3.3 LemMA. For x=x*€ A, dist (—x, P)=sup {f(x) fEP and ||f|| §1}.

In the remainder of §3 we shall suppose 4 is commutative. In this case
H is a real algebra, and it is easy to check that the set of real homomorphisms
of H is in the natural correspondence with the set ¥, of homomorphisms %
of A into the complex numbers for which k(x*) =k(x) for x€A. Such homo-
morphisms are of real type. (In general, there may be homomorphisms of
A4 into the complex numbers which are not of real type. It is easy to see
that all such homomorphisms are of real type if and only if 4 is symmetric
in the sense of Gelfand and Naimark [2], i.e., if and only if 1+xx* has an
inverse for each x&A4.) The results of §2 make the proof of the following
theorem easy.

3.4. TuEOREM. Let A be a commutative * algebra and let U be the natural
*_preserving homomorphism of A into the * algebra C(Y) of all complex-valued
continuous functions on the (compact) space Y of nontrivial homomorphisms of
A of real type, with the w* topology. Then(®):

(@) The image of A under U is dense in C(Y),

(b) For x=x*EA, dist (—x, P)=max [0, sup {fx):fE Y} I,

(c) For xEA, ||U@)||2=sup {f(xx*):fE Y} =dist (—xx*, P),

d)y ¢ If ”xx*” =”x] 2 for each xE A, then U is an isometry (and hence an
isomorphism of A onto C(Y)).

Proof. (a) follows from the Stone-Weierstrass theorem, (b) from Theorem
2.2, and (c) from (b) and the fact that || U(x)|[2=]| U@)||[|T(x)|| =] U(zx*)].
To prove (d): for x, yEH, 2x =x+iy+x —iy, so that 2||x|| <||x+ay|| +||x—dy]
=2||x+4y||; consequently [[x2+y7|| =l (x+iy) (x+i3) *| =[lx+35]|2 2|« >. By
2.4 and the remarks ending 3.2, it follows that || U(x)|| =||x|| for x€H. Hence
for any xE 4, ||x||2=lxx*|| = || U(xx*)|| =|| U(x)||2, which completes the proof.

3.5. REmarks. Calling the kernel K of the homomorphism U the * radical
of A, we see that, for any xE 4, the following conditions are equivalent:
(a) xE€K, (b) —xx*EP, (c) h{x) =0 for every homomorphism of real type.

4. Noncommutative * algebras.

4.1. PRELIMINARIES. If 4 is not commutative, the algebraic significance of
the positive functionals is more complicated. We shall first outline briefly
the construction due to Gelfand and Naimark [3] (see also Segal [11]).

(%) This result is due to Gelfand and Naimark [2]. See also Arens [1]. It is to be remarked
that in Arens’ work, the representation of commutative * algebras is obtained first and then
used to obtain the representation theorem for real Banach algebras, in contrast to our de-
velopment.
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An operator representation U of A is an algebraic homomorphism of 4
into the * algebra of all bounded operators on a Hilbert space. (In particular,
U. is the operator adjoint to U,.) We include the one element Hilbert space,
for convenience. It follows that U is bounded, and in fact ||Ul||=]| U
=||U][2=1 or 0. To see this, let ||x|| <1. Then [Jxx*|| <1, so 1 —xx* is the
square of an hermitean element. Thus U, U,* and U;— U,,* are positive
operators, and so || U.||2=|| U.f|| = || U3l =] U4 %

Corresponding to each f& P’ we construct an operator representation
U’ as follows: Let (x, y);=f(y*x) for x, y&A. Then (, ); is an inner product
on A and the quotient A modulo I;= {x:f(x*x) =0} is a possibly incomplete
Hilbert space which can be embedded in a complete Hilbert space 3¢;. For
fixed v, let g(z) =f(y*zy) and observe that g&P’, so that ||g| =g(1), and
hence g(x*x)ég(l)”x*x”ég(l)”x”?, i.e., f(y*x*xy) éf(y*y)”x”z. Using this
relation, we see that I; is a left ideal, and that for x€4 we may define U}
as the unique extension to all of 3¢; of the (bounded) operator such that
Ul(y/I;) =(xy)/I; for yEA. It is easy to check that U” is an operator repre-
sentation of 4.

Now let 3¢ be the Hilbert space product []{3¢,:fEP’}, and let U be
defined coordinate-wise by setting (U,£),= UL, for x € A4, §€3¢, and fE P/,
Then U is an operator representation of 4, which, as we shall see, is in a sense
a universal operator representation of 4.

In the following, the upper bound of an hermitean operator B is defined,
for convenience, as uboB =sup { (B, £):]|f]| £1}. Note that this differs from
the usual upper bound, and is, in fact, equal to the greater of the usual
upper bound and 0. '

4.2. LeMMA. Let x=x*CA. Then ubyU,=sup {ubyUL:fEP'}=sup
{ubo U.: U any operator representation of A }

Proof. Let a, b, ¢ be, in order, the three numbers asserted to be equal.
That a =b follows in straightforward manner from the definitions of product
space and upper bound and that ¢=a is obvious. It remains to prove that
bZc¢. Let U be any operator representation over a Hilbert space, and £ any
member of that Hilbert space with ”E” =1. Set f(y) = (U, £) for yEA. Then
FEP, and |1/Lfi=f(1)=(U:, ©=(U:k, U =|U:l[2=]lE2<1, and
(ULQ1/Iy), 1/I);=f(x) = (U.£, £), which proves that b=c.

This last argument can be extended to show that any representation U in
which, for some §, {U.t:x €A} is dense in the Hilbert space is unitarily
equivalent to one of the U7, and, more generally, that any operator represen-
tation is unitarily equivalent to a preduct of representations U”. (Cf. [3].)

4.3. LEMMA. Let x=x*CA. Then sup {g(y*xy):yEA, g(y*y) <1, and
gEP'} =sup {f(x):fEP and f(1)<1}.

Proof. For g& P’ and y such that g(y*y) =1, let f(3) =g(y*zy) for 2EA4.
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Then f(1) £1, and fEP’, and f(x) =g(y*xy). Thus the second member is at
least as great as the first. The reverse inequality can be obtained by setting
y=1 in the first member.

4.4, THEOREM. Let A be a * algebra, P its positive cone, P’ the set of positive
functionals, U’ the operator representation corresponding to a positive functional
[, and U the product of all the representations UY. Then:

(@) for x=x*&A4,

dist (— =z, P)

sup {ubon,:f € P}
sup {uboU 22U an operator representation of A }
= ubo"Uz;

]

(b) for x€A,
dist (—xa*, P) = sup {H U,Hz: U an operator representation of A}
[ROEIR

Proof. (a) follows from Lemmas 3.3, 4.3, and 4.2, and the fact that
uboUl=sup {f(v*xy):f(y*y)=<1}. (b) follows from (a), since, for any repre-
sentation U, uboU,.*=uboU. Uy =||U,U| = || U.||2

4.5. REmMArks. We shall apply 4.4 to three problems, namely, to obtain
necessary and sufficient conditions for the existence of an operator repre-
sentation of 4 which is also (a) an isomorphism, (b) a bicontinuous iso-
morphism, (c) an isometry. From the fact that ||U.||=sup {||U.]|: Uan
operator representation of A }, it follows that it is equivalent to ask whether
U is one of (a), (b), (c), respectively.

The * radical of A is defined to be the kernel of U, i.e., {x: U,=0 for all
operator representations U } From 4.4, we see that if x =x*, the following
are equivalent: (a) x€K, (b) x€EP and —xEP, (¢) f(x) =0 for all fEP'. By
breaking into real and imaginary parts, it follows that for any x&€ A4, the
following are equivalent: (a) x€K, (b) —xx*EP, (c) x*xEK, (d) f(x*x) =0
for all fEP’, (e) f(x) =0 for all fEP’. (Cf. Raikov [9].) Thus K = (PN —P)
+i(PM —P); and the * radical is {0}, i.e., U is an isomorphism if and only
if PN—P={0}.

(It is well known that if fEP’ and f(1) =1, then U’ is irreducible if and
only if f is an extreme point of =. (See, e.g., [3].) Applying Lemma 1.6 then
shows that ||U,|| is also equal to the supremum of the norms || U|| for U an
irreducible operator representation. These facts, with the fact that an irre-
ducible representation of an Abelian * algebra is one-dimensional, enable the
results on Abelian * algebras to appear as special cases of the present results,
and make clear the consistency of our two definitions of the * radical.)

4.6. THEOREM. U is a bicontinuous isomorphism if and only if {x:1+x,
1—xEP} is bounded.
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Proof. Let x =x*. Since dist (x, P)=ubo— U,, xEP if and only if U, is a
positive operator. Recall that an hermitean operator B has norm =1 if and
only if both 1—B and 1+ B are positive, and note that Uy=1. Thus the set
of hermitean elements of 4 mapping into the unit sphere of the operator
algebra under U is precisely {x:14x, l—xEP}. It is easy to see that this
set is bounded if and only if the entire inverse image under U of the unit
sphere of the operator algebra is bounded, and the latter is a necessary and
sufficient condition that a continuous linear map be bicontinuous.

Note that if U is a bicontinuous isomorphism, the image of 4 is complete,
and is therefore a C* algebra in the terminology of [11], i.e., a * algebra of
operators on a Hilbert space, closed in the uniform or norm topology.

We now consider the problem of characterizing those * algebras which are
isomorphic and isometric to a C* algebra, i.e., for which U is an isometry.
We do not succeed in proving the conjecture of Gelfand and Naimark [2]
that ||xx*|| =||x||? is a sufficient condition. However, Theorem 4.7 below may
be of interest in itself. (The same argument used in its proof suffices to prove
the closely related result of Sherman [13] that, in the terminology of Segal
[12], non-negative observables are squares.)

4.7. THEOREM. Let A be a * algebra such that ||xx*|| =||x||? for each xE 4,
and let Q be the set of all squares of hermitean elements. Then:

(@) Q= {x:x=x* and either x=0 or ||t —x/||«| || =1}.

(b) Qs a cone in H.

(c) For x hermitean, dist (—x2, Q) =||x2|[

(d) For x, y hermitean, ||x?+y?| Z||xY.

(e) If also xx* is the square of an hermitean element for each xC A, then U
is an isometry.

Proof. Recall that if x & H and |1 —x|| <1, then xE€Q. We now have the
partial converse: if x€(Q and [|x|| <1, then ||t —x|| £1. In fact, let x=wu?,
uEH, ||x]| £1, and let 4(x) be the commutative closed * subalgebra gen-
erated by % and 1. By 3.4(d), 4 («) is isometric to a function algebra, and so,
since ||u?| <1, it is clear that |1—u <1.

(a) follows at once, and from (a) we see that Q is closed. We complete
the proof that Q is a cone by showing that if x, yEQ, then x+y& Q. We may
presume that ||«]|, ||¥]| £1. Then [|1 —x]], |t —9]| =1, and so ||1—(x+y)/2|
<1, and hence (x+7¥)/2, x+y&E0.

To prove (c), let »=dist (—x2, Q) and A(x) as above. The cone Q in H
satisfies the hypotheses of Lemma 1.3, and hence r-1 —x?€Q. In view of the
characterization of Q in (a), applied now relative to A(x), 7-1—x2 is also
the square of an hermitean element z of A(x). Thus in the “function algebra”
A(x), r-1=x%+22, and so dist (—«?, Q) =r= |[x2+z2|[ g”x?” This proves (c),
and (d) follows at once from (c).

Finally, under the additional hypothesis of (e), any xx*&Q, and since Q
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is a cone, it follows that P =Q. Hence, by 4.4 and (c), for any x&4, ”"(.),“2
=dist (—xx*, P)=dist (—xx*, Q) =|]xx*” =Hx”2, so that U is an isometry.

Various other criteria for a C* algebra follow rather easily from 4.7(e).
We shall for completeness include the theorem of Gelfand and Naimark

[2]().

4.8. THEOREM. In order that a * algebra A be isomorphic and isometric to
a C* algebra, it is necessary and sufficient that ||xx*|| =||x||? and that 1 +xx*
have an inverse, for each xE 4.

Proof. We need only show that under the hypotheses, every xx* is the
square of an hermitean element. For x=x*, let A(x) be as before. If x=x*
and A-1—x has an inverse, the smallest closed * subalgebra containing
Al—x, A 1—x)"1 and 1 is clearly commutative and, by 3.4(d) and the
Stone-Weierstrass theorem, is identical with A(A-1—x) and hence with
A(x). Thus the spectrum of an hermitean element x is the same relative to
A4 and to A(x). Under our assumption, for any x €4, xx* has a non-negative
spectrum, and so, considering the “function algebra” 4(xx*), is the square
of an hermitean element.

5. Application to groups.

5.1. PRELIMINARIES. Let G be a locally compact Abelian topological group.
A Radon measure (or simply, measure) on G is a finite linear combination,
with complex coefficients, of outer regular measures on the Baire ¢-ring of G.
(Cf. [4].) The set B of Radon measures is in one to one linear correspondence
with the adjoint of C(G), where C,(G) is the Banach space of all complex
continuous functions on G which vanish at infinity, with the supremum norm.
We norm B with the norm of (C.(G))*. For m, n €B, mn is the convolution,
i.e., [f(x)dmnx=[[f(xy)dmxdny for fE C.(G), while m* is defined by the
requirement that [f(x)dm*x= [[Ffx—)dmx]- for fEC.(G), where the bar
indicates complex conjugate. B is then a * algebra. For a €G, the point meas-
ure at a is the measure m such that [f(x)dmx=f(a) for fE€ C.(G). A measure
m is discrete if it is a countable linear combination of point measures.

Let L be the set of all measures absolutely continuous with respect to
Haar measure. L is a closed * ideal in B, and is isomorphic and isometric to
the usual L, algebra of the group. Let 4 be the set of all measures m =m;+m.,
where m, is discrete and m, € L. It is easy to see that ||my+m,|| = ||m,|| +]|m4],
and hence that 4 is itself a * algebra, and the representation m =m,;~+ms,,
as above, is unique (unless G is discrete, in which case all measures in B are
discrete). Theorem 3.4(b) tells us that if P is the positive cone of 4 and
m=m*EA, then dist (—m, P)=max [0, sup {f(m):f a nontrivial homo-
morphism of 4 of real type }]. Using techniques due to Segal [10], this can be
refined so as to give us a bound for the Fourier transform of a measure in 4.

(%) See Kaplansky [5] for a formulation and proof of this result in the case where 4 has no
unit element.
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Let G’ be the group G considered as a discrete group, and G* be the con-
tinuous character group of G. For mCA4, fEG*, let F.(f)=[f(f)dmt. The
continuous function F,, on G* is the Fourier transform of m. Similarly we de-
fine G’* and F'. The complex homomorphisms of A are of two sorts(?). If
FEG* and k(m) = Fu (f) for m=my+myEC A, or if gEG* and k(m) = Fn(g)
for mE A then k is a homomorphism of A4 of real type. Conversely, suppose &
is any complex homomorphism of 4. If & vanishes on L, it is easy to see that
k is of the first type. Otherwise k(n) =1 for some nEL, and for some fEG*
we have k(m) = [f(t) dmt for mEL [10, Theorem 1.9, p. 80]. Thus for any
mEA, since mnEL, we have h(m)=~h(mn)=[f(t)dmnt=[[f(st)dmsdnt
= [f(s)dms [f(t)dnt = Fu(f)h(n) = Fa(f), and & is of the second type. In par-
ticular, we see that all complex homomorphisms of 4 are of real type.

5.2. LEMMA. If G is not discrete and m=m*E A, then sup {F,,,(f) :fEG*}
2sup { Fy,(f):f€G'*].

Proof. It is well known that G* is a dense subgroup of G'*; hence we may
replace the right member of the inequality by sup {F,,,l(f) :fEG*}. Since m;
is discrete and m, absolutely continuous, F., is almost periodic, and Fp,
vanishes at infinity in G* [16, p. 116]. Let ¢>0. We may choose C compact
in G* so that | Fn,(f)| <e when fEG*—C and thus sup { Fu,(f):fEG*—C}
<sup {Fn(f):fEG*} +e. An obvious modification of a lemma of Segal [10,
Lemma 3.7.1. p. 99] tells us that

sup { Fu,(f) :fEG*—C} =sup { Fu,(f):fEG*},

since F,, is almost periodic. Thus sup { Fm,(f) :fEG*} Ssup{ Fu(f) :fEG*} +e¢,
and the lemma is proved.

5.3. THEOREM. If G s a locally compact Abelian group, A the algebra of
measures each of which is the sum of a discrete measure and a measure absolutely
continuous with respect to Haar measure, and F, is the Fourier transform of
mEA, then:

(a) sup {|Fu(f)|2:fEG*} =inf {||mm*+n?|:nCA4 and n=n*},

(b) if m=m*, then

max [0, sup {Fn(f):f €G*}] = inf {Hm+ n2“2n € A and n = n*}.

Proof. If P is the positive coneof 4, mE P, and k>0, then, since all com-
plex homomorphisms of the commutative * algebra 4 are of real type, it is
clear that the spectrum of m+£-1 is strictly positive. Raikov [9, p. 389] has
shown by contour integration that m-+k-1 is therefore the square of an
hermitean element of A. Such squares are therefore dense in P, and

(8) Unless G is discrete, in which case it is easy to see that for any complex homomorphism
h, there is a character f with F.(f) =h(m) and m& 4. In the remainder of this paragraph, as-
sume G is not discrete.
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dist (—m, P)=inf {Hm+n“’” :n€A and n=n*} for any m&A4. (b) then
follows from Theorem 3.4(b), our identification of the complex homomor-
phisms of 4, and Lemma 5.2. (a) follows from (b), since ]F (f)] = Fpm*(f)-
5.4. REmMARKS. Theorem 5.3, applied to the group of integers, gives ex-
pressions for the upper bound of a real Fourier series and the upper bound of
the absolute value of any Fourier series which seem to be new. Using Fejér’s
theorem on positive trigonometric polynomials (see, for example, [15, p. 3]),
it is not difficult to see that here measures of the form m*m, where m consists
of masses placed at a finite number of non-negative integers, are dense in P,
Thus, for example, if f(£) = D_r-_ . a.ei* is absolutely convergent, and is real-
valued (i.e., a,=d_,), and if S is the class of all (two-ended) sequences
which are 0 except for a finite number of terms with non-negative indices, then
max [0, sup {f(£):0=5¢<2r}]=inf { D |@nt Domer o bubmoal : bES}
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