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The Possibility of Introducing of Metric Structure
in Vortex Hydrodynamic Systems
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Geometrization of the description of vortex hydrodynamic systems can be made on the ba-
sis of the introduction of the Monge — Clebsch potentials, which leads to the Hamiltonian form
of the original Euler equations. For this, we construct the kinetic Lagrange potential with the
help of the flow velocity field, which is preliminarily determined through a set of scalar Monge
potentials, and thermodynamic relations. The next step is to transform the resulting Lagrangian
by means of the Legendre transformation to the Hamiltonian function and correctly introduce
the generalized impulses canonically conjugate to the configuration variables in the new phase
space of the dynamical system. Next, using the Hamiltonian function obtained, we define the
Hamiltonian space on the cotangent bundle over the Monge potential manifold. Calculating the
Hessian of the Hamiltonian, we obtain the coefficients of the fundamental tensor of the Hamil-
tonian space defining its metric. Next, we determine analogs of the Christoffel coefficients for
the N-linear connection. Considering the Euler — Lagrange equations with the connectivity coef-
ficients obtained, we arrive at the geodesic equations in the form of horizontal and vertical paths
in the Hamiltonian space. In the case under study, nontrivial solutions can have only differen-
tial equations for vertical paths. Analyzing the resulting system of equations of geodesic motion
from the point of view of the stability of solutions, it is possible to obtain important physical
conclusions regarding the initial hydrodynamic system. To do this, we investigate a possible
increase or decrease in the infinitesimal distance between the geodesic vertical paths (solutions
of the corresponding system of Jacobi—Cartan equations). As a result, we can formulate very
general criterions for the decay and collapse of a vortex continual system.
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1. Introduction

The possibility of introducing a metric on manifolds associated with hydrodynamic flows of
various types has been repeatedly discussed in the literature (see, for example, [1, 2]), however,
the results to date have either an excessive generality (which makes development of techniques
suitable for describing flows of specific types) [3, 10] or require the introduction of significant
restrictions and problem-oriented problems with an a priori rigidly defined setting of additional
conditions, the physical content of which requires special analysis [5, 6]. If we consider the hydro-
dynamic flow as a statistical system in a state close to equilibrium, then its geometric properties
can be investigated using the general Amari—Weinhold technique, using the possibility of in-
troducing of a Riemannian topology on Gibbs manifolds (these manifolds are determined with
the help of the relations between the thermodynamic potentials p = p(p,T) and s = s(u, p)).
In particular, if we turn to the model of a real flow in the form of a set of point vortices of
Onsager type, we can obtain meaningful differential-functional relations that are expressions for
the specific heats of the vortex population and the geodesics equations relating the states of
equilibrium levels of the system [4].

In [7], the possibility of a transition in the Lamb—Kozlov hydrodynamic equation [11] to
new canonical coordinates (representing the generalized Monge potentials) is considered. This
approach can be applied to the geometric representation of the Hamiltonian dynamical system
on the basis of Lagrangian and Hamiltonian geometry methods [8]. In this paper, we consider
the fundamentals of the geometrodynamic Hamiltonian formalism in relation to the stability of
hydrodynamic structures.

2. Lagrangian and Hamiltonian formalism of the description
of the hydrodynamic system in terms of Monge potentials

Locally, the state of the hydrodynamic system may be described by density, velocity and
density of entropy (in the general case of a compressible medium) at a given point (x,t) €
Kni1 € RVT (x € RVS3 ¢ € RY), that is, by the set of quantities {p(x,t); v(x,t);s(x,t)}.
The hydrodynamic equations that describe their variation in time have the form

pet (V) =0, (o) + (pv)x = —px,  (ps)e+ (pvs)x =0, (2.1)
where p = p(x,t) is a scalar pressure field. We will use the representation of velocity fields with
the help of the Monge potentials {Mq}|,_15; € Yy, separating in the expansion of the velocity

field gradient term and a set of quasi-solenoidal ones:
v=—(M" (M —s- (M*)x— (M%) if m=4,

where M*(x,t) are some scalar variables. For isentropic flows with s = const, we must change
M3 +s-M? — M?, M* — M? (in this case m = 3). For the uniqueness of the choice of these
fields it is necessary to introduce additional conditions; following [9], we select the following
conditions as the first three ones: D(M*) = D(M') =0, D(M?) = T, where D(...) = (...); +
+ v - (...)x is the substantial derivative operator, T' = T'(x,t) is the field of thermodynamic
temperature. We take for the last additional condition the relation defining the specific enthalpy
of the flow: w(x,t) = (M*)- (M), +s- (M?); + (M3); — v?/2. In accordance with the results
of 9], the hydrodynamic equations (2.1) with the above additional conditions are equivalent
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to the corollaries from the Seliger — Whitham variational principle 6 [[ wdxdt = 0, where the
density of the kinetic potential (pressure in the Monge representation) can be represented in the
following form (the basic thermodynamic relation v = (w — p/p)|p=r is used):

m({MOY{(M), },{(M*),}) = plw —u) = p((M*) - (M")); + 5 - (M?); +
+ (Mg)t - %( — M*. (Ml)x —5- (M2)x — (]\/.1'3),()2 — u(p, s)) (m=4),

T({MOB{(M), 3 A(M),}) = p((MP) - (M) + (M?); —

— %( — M3 (MY, — (M2)x)2 —u(p,s)) (m=3).

(2.2)

Here u(p, s) is the specific internal energy of the flow (the caloric equation of the state of the
medium is assumed to be known).

We consider a Hamiltonian representation for which we define the “Monge representation
impulses” {P,} conjugated to quasi-velocity variables {(M%);}:

o o o _

=gy M P aey T B ey Y
__Om 3 __0m =
" amy T B ey e Y

We introduce a Hamiltonian function H,, ({M*},{P,}) with the help of Legendre transforma-
tion of Lagrangian (H,, = >.""! P, - (M), — T({MY; {(M*)})):

3 2
Hm:4 - ﬁ <ZPC“ ’ (Ma)x> +P3 'u(P27P3)7

a=1
2

2
Hyg — —2 Po- (M), | + Py u(B).
2P, \ &~

We consider the Hamiltonian space W™ = (Y,,,, Hy,), Hp: T*Y,,, — R! with fundamental
tensor g ({M+}.{P.}) = %82Hm/8Pa8Pﬁ; the corresponding Riemannian element of the

a=

interval is do-‘%[/m = 0 g(gaﬁ)m dM® @ dMP. As an example, we give an explicit form of the
contravariant metric coefficients for the simplest case of m = 3, N = 2 (index m omits):

2 2

2 2
- P2 ) - - 1

P
1\2 1\2 2
(P)? dPy ©ap,?

)

922 — (P1)2

Y

and the determinant det(g*’) = |(MY) [2(Py) 1 (2u/ + Pou”) # 0. Tt should be noted that the co-
efficients g®? (as well as their analogs for m = 4) do not depend directly on the Monge potentials
(new “configuration variables”). This greatly simplifies further analysis of the geometrodynamic
properties of vortex motion of the hydrodynamic medium.
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3. The canonical connections of the Hamiltonian space W™
and geodesic equations

The N-linear connection on T*Y;, is characterized by a pair of d-tensor fields DI'(N) =
= (H gw’ Cﬁ”), that is, the system of generalized Christoffel coefficients (H, C'), which in the gen-
eral case are functions of Monge potentials {M*#} and pseudo-impulses {P,} canonically conju-
gate to them. However, one should pay attention to the specific structure of the dependence only
on the impulses of the components of the fundamental tensor ¢g** = g% ({P.}), obtained in Sec-

tion 2. In this case, there is a nullification of coefficients Hj = % 9" (0¢ gny+0498¢ —0c¢ g ), where
0y = 0/OM* + N, 0/0P, is an element of adapted basis for direct decomposition T,,7*Y;, =
=N, @V, (YueT*Y,,). Here N, = i{gw,, H} — i(gugazH/aM”ﬁpg + gun0*H/OM"OP,) are
coefficients of the nonlinear connection of the Hamiltonian space W™ (the notation {g,.,,H}
is used for Poisson brackets on the 77*Y,,). Thus, the horizontal paths of the N-linear con-
nection D are described by a system of differential equations (M®)y + Hg‘ﬁ/(Mﬁ)t(MV)t =0,
(Pa)t — Nuya(M*#"); = 0; however, these equations obtain the confluent forms because of the ab-
sence of a direct functional relationship of variables M in the Hamiltonian and the components
of metric tensor (the solutions of horizontal paths equations are trivial: M = cit+ca, P3 = c3).

Accordingly, we will analyze physically more interesting vertical paths (v-paths) (at a fixed
point (M), € Y,,) with respect to the N-linear connection DI'. These v-paths are characterized
by a system of differential equations that are analogs of the (nonconfluent) Euler —Lagrange
equations:

d?P,

Th ooy my)| SR

My, 6 dt

a= a)

— (3.1)

v 9gB¢ Hab
gy _ 1 g g™ 9y
Ca 2926 ( opP; ' OP,  OF; >

The values of generalized Christoffel coefficients (for m = 3) C are

o DI (P |(M1), [ oo _ [, (P)[(M1), |

b (P2)* (Po)°> om) (P2)>
b 2P(MY) 2 Pi(MY), (3(M?), 3(Py)*(M?), +3(Py)(MY),
Gt = 1 2 2 1 +
(P) 2(Py) (P2) (P)

" n (Ml)i
+ 30" (P2) + Pou" (Py)) — 2B
o IO 2P)Y (MY MY,
Loapy) (Py)° (Py)?
3(M?),  3(Py)*(M?), +3(P1)*(MY), p p
( T P R (PQ))

The above Egs. (3.1) can be considered as the basic equations in the study of the stability of
the dynamics of the vortex flow of a fluid, described initially by the system of Euler equations.
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The basic information contained in their solutions relates to the form of the geodetic trajectory
in an “impulse space” (really, on a manifold of densities of scalar flow characteristics). Of spe-
cial interest are closed trajectories that are naturally associated with periodic hydrodynamic
structures of different scales.

4. The deviation of geodesics on the Monge manifolds and its
relation to the evolution of coherent hydrodynamic systems

The question naturally arises of the stability of periodic orbits in an impulse space. To an-
alyze deviation from the geodesic motion described by Eq. (3.1), we represent P, = (P,), +
+ eIl + O(€?), where (P, ), is the solution of (3.1), € is a small parameter, II, is the deviation
from the exact solution (depending on the geodetic parameter or time). Substituting the above
equation into (3.1), we get

@2(P,) APy AP
0= 70 — Cgﬁ/({Mn}v {(PW)O}) Maz(Ma)o dt - dt ) *
) d(P,
i E(% — 2007 ({(M*)o}, {(Pa)o}) (df)o % B

d(P,
- e ) T ) + o)

Making a transformation of the expression in parentheses with the factor €, we obtain an analog
of the Jacobi equation (it can be called the Jacobi—Cartan equation) for the deviation vector
with the components II:

D2(11,, d(P, d(P.
’”d; )+( (df)‘))( (dZ)O)SQWWHn)—u (4.1)

where Dpll,/dt = dl,/dt — C5 ({(M%)o}, {Pe}) (L) (d(P,),/dt), S is the (“third”) curva-
ture d-tensor of path:

oc>  aobn

op,  OP,

P — + 0560517 — angﬁw‘

Equation (4.1) describes the evolution of the deviation vector from the geodesic motion and,
when considering the (), €)-congruence of closed trajectories (A being the affine parameter along
the streamline proportional to time t), it is possible to trace the change in the density charac-
teristics (p, pM*, ps)|m=4 or (p, pM3)|;n=3 of the hydrodynamic structure, containing this con-
gruence. At the same time, it is not assumed that the system has strict limitations in the
spatial sense, that is, this system has nonlocal correlation properties (which is characteristic of
coherent structures of different genesis). If the solution of the Jacobi— Cartan system has stable
limit cycles, then this allows us to state that the system has a set of certain pseudo-stationary
states (associated with these cycles). It seems very interesting to investigate the properties of
these pseudo-stationary states and to reveal the relationship with QSS (quasi-stationary states),
associated with coherent structures in multi-vortex dynamics. If the norm of the solution of
the Jacobi— Cartan equation grows with time, this obviously indicates the decay of the coherent
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hydrodynamic system. If the equation of geodesics has a singularity at some point and the
deviation vector tends to zero in the norm, then we have a collapse of the vortex system.

Ezample. We consider the simple special cases of Eq. (4.1), which demonstrate the main fea-
tures of the physical processes described with the help of Jacobi— Cartan equation. We assume
that the values of (M2?), = M2 are constants, then the coefficients of the connection Cﬁﬁ
and components of S5 depend only on (P12)o: O = —(Pl)o]\Ajl/(Pg)B1 - (Pl)g]\72/(P2)8
(m = 3), etc. Respectively, in the case under study, Egs. (4.1) take the form of a sys-
tem of ordinary differential equations of the 2nd order: d?Il,/dt*> + K ((Pl)o, (Pg)(])dna /dt +
+ KQ((Pl)O, (Pg)o) . Ha + (d(Pﬁ)O/dt) (d(Pfy)O/dt)ngn((Pl)o, (PQ)O) . HW = 0 with coefficients
depending on variables (Py)o, ((Pa)o) , explicitly and being implicit functions of variable t.
In fact, these coefficients may be considered constant for a fixed point in time. Thus, consider-
ing this equation as an equation for the vector variable P, with “frozen” coefficients, one can
see its analogy with the system of equations (with dissipative terms) describing the dynamics
of coupled oscillators (in principle, it is possible to create conditions for the occurrence of self-
oscillations in the system described by Eq. (4.1)). If we additionally set Py = const, then for the
simplest case m = 3 we will get one dissipative oscillator ordinary differential equation for the
variable P (= pM?3) (without singularities in the coefficients); its solutions, according to general
criteria, are oscillations decreasing in magnitude.

5. Conclusion

We have considered the possibility of formulating the dynamics of large-scale hydrodynamic
structures in terms of geometric objects associated with the Hamiltonian system derived from
Euler’s equations of hydrodynamics. This line of research seems extremely promising, since
all the existing coherence criteria are either descriptive (they allow us to determine only the
qualitative level of the situation) or they are purely specific and cannot be extended to flows
with similar properties. The geometrodynamic approach developed in the present article is
universal, it subtracts the deep essence of coherence as a congruence of geodesic streamlines,
and also allows predicting the behavior of the system (and, possibly, influencing the creation
and destruction of coherent structures by local impact methods).
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