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Summary. We calculate the non-synchronous velocity field of a low mass
convective secondary in a close binary system, taking rotation into account.
We find that, contrary to previous belief, the velocity tends to zero as the L,
point is approached. We also find that the use of tidal lobes is inappropriate
when the secondary is asynchronous.

We consider the action of a turbulent viscosity on the velocity field and
find that, when convection is inefficient, synchronization times can approach
the lifetime of the system.

1 Introduction

In the study of close interacting binary systems, such as the cataclysmic systems, it is usually
assumed that the mass transferring component is in a circular orbit and in a state of
synchronous rotation (see Shu & Lubow 1982 and references therein). If the companion is
compact, this leads to a picture in which matter overflows the Roche lobe of the mass
transferring component and an accretion disc is formed (Lubow & Shu 1975).

In view of the fact that the cataclysmic binary systems show a complex range of outburst
behaviour, a study of the possible effects of non-synchronism is of interest. Lack of
synchronism has been suggested by Vogt (1980), and the presence of a small eccentricity by
Papaloizou & Pringle (1979), as a possible explanation of the superoutburst phenomenon.

A study of non-synchronous motion is also of interest in order to assess the applicability
of tidal lobes. The assumption here is that the stellar surface is a total potential surface, the
total potential being a combination of gravitational and centrifugal potentials. It has been
used in the study of X-ray binary systems (Davidson & Ostriker 1973).

Finally, if the non-synchronous flow can be calculated, the synchronization time may be
found if some dissipation mechanism is assumed. In order that there should be incomplete
tidal relaxation, it is necessary that the synchronization time be at least comparable to the
age of the system.
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The nature of non-synchronous motion in radiative envelopes has been considered by
Lubow (1979). Scharlemann (1981) has considered the case of convective envelopes, but
with particular reference to RS CVn binary systems. These systems are detached so that the
tidal distortion is weak. A highly condensed secondary was assumed.

In Section 2 of this paper we calculate the non-synchronous velocity field for the case of
a completely convective star corresponding to a full polytrope with n = 1.5. This is relevant
to the cataclysmic systems in which the mass transferring star is likely to be a low mass
main-sequence star, and so largely, if not fully convective. We assume the degree of non-
synchronism to be small and both tidal distortion and rotation are taken into account. We
show that, as the star approaches the Roche lobe, the non-synchronous motion is slowed
down near the L, point. This has the consequence that mass transfer in the non-synchronous
case is probably not too different from the synchronous case. Our results do not confirm
previous work which assumed that matter would flow round the critical surface with
essentially uniform velocity. Our solution also shows that tidal lobes cannot be presumed to
apply to close binary systems.

In Section 3 we show how the synchronization rate may be derived from our solution.
Zahn (1977), has estimated this for a non-rotating spherical model. He assumed that
turbulent viscosity as a result of convection provided the dissipative mechanism. We assume
the same mechanism here. However, because the orbital periods for cataclysmic binaries are
much shorter than the typical convection time-scale, the efficiency of the viscosity should
be reduced. We follow the procedure of Goldreich & Keeley (1977). Some reduction in
efficiency is necessary to ensure that the dissipation rate from synchronization does not
exceed the luminosity of the star so resulting in an inconsistency.

In Section 4 we evaluate the synchronization rate for the case when the tidal distortion
is weak. We argue from a variational principle that an extrapolation of our results to the case
of strong tidal distortion should not underestimate the synchronization rate. Finally, in
Section S we discuss our results. We find that, given the uncertainties in this type of calcula-
tion, if the degree of non-synchronism is moderate, then the synchronization time may
approach the lifetime.

2 Calculation of the tidal velocity field

We consider a secondary of mass M and a compact primary of mass M, separated by
distance D. We work in a frame corotating with the orbit which has period 27/S. We take
the origin of the cylindrical polar coordinates (&3, ¢,z) at the centre of mass of the
secondary, with the z-axis perpendicular to the orbital plane. The primary is at ¢ = 0.

For a polytrope with n=1.5, the equation of motion describing the evolution of a
velocity field u is

ou
—a—t+(252+ VAuAu=-VH+F, (D)

where H=5P/2p +{ +%u?, P is the pressure, p the density, { the total gravitational plus
centrifugal potential and F, is the viscous force. We are looking for solutions of equation (1)
that correspond to a non-synchronous rotation. However, in a tidally distorted star it is not
possible to find a motion corresponding to rigid rotation. If the degree of non-synchronism
is small, quadratic terms in u may be neglected. In this case, the time-dependence may be
separated out by assuming an exp (— \¢) dependence.
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Equation (1) then becomes

_Au+2QAu=—VW+F, )

where W is the perturbed form of H resulting from the imposition of the velocity field u on
the synchronous polytrope. We have also the perturbed form of the continuity equation
which may be written,

Ap' = V-(pu) ' 3)

where p is the density of the synchronous polytrope and p’ is the perturbed density. In
general the decay rate A and the viscous force F, are small so that, as a first approximation,
they may be neglected in equations (2) and (3). In this case the components of equation )
are

2Qup=— 4
*T o 4)
0 1 oW )

Ug=—— —

T wag

ow ©)
0z '
Equation (3) gives
0 1 op oW dp oW
2 o= o (22 222 ) ™)
0z 2Qw \ew 09 09 O

We may integrate equation (7) through the star with respect to z, then, using the fact that
the density vanishes at the surface, we find

3T oW 3T W
=22 (8)

where the surface density ¥ is defined by

Zs
2=2J p dz,
0

and z4(@, ¢) is the equation for the stellar surface. From equation (8), it follows immediately
that W is a function of T alone. From this result, some important properties of the flow
emerge. From equations (4) and (5) we find that in the orbital plane where u, =0

1
=— | VW] 9
lul=_g 1VWI ©)
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In the absence of non-synchronous motion, it follows from equation (1) that H =
5P[2p +{ is constant. Thus if g is the potential at the stellar surface, we have P/p =
% (Y5 — ¥). Using the polytropic equation of state, we may then write

p= [g% (\bs—w)]m (10)

where K is the polytropic constant. If we are interested in a region of the star near the
orbital plane, we may expand ¢ in a Taylor series, thus

U =vo tf2? (1)

where

! ?2_‘8)
f_2(622 z=0

and Y, is the potential in the orbital plane.
We may use equations (10) and (11) to evaluate the surface density, we find

AYWERAYE 3/2 -1/2 3m2\"* 1 2
z=(§-§) (f—,z)fw (W= )" (¥ — Vo) dw=§(5?) WYt (12)

Equation (12) gives behaviour of the surface density in regions near to the bounding
curve where the star intersects the orbital plane. We may use equation (12) together with
equation (9) to work out how the velocity behaves on the bounding curve. Of course, on
the bounding curve, we have Y, = Y and ¥ = 0. Using equations (9) and (12), we find that

37T 2 3/2
i)
162 \5K

and close to the bounding curve

2(‘#5 - WO)leO (ws - lpO)ZVf dw
R + 2f32 ) E

aw  (Ys—o)

|u|°‘E'—flT|VWo|- ; (13)

If the velocity, is not everywhere zero or infinite as Yo > /5, we require dW/d T o T7V2
as 2 approaches zero. Thus

lule 7Y% | vyl (14)

If r is the distance to the centre of the secondary and rp the distance to the primary, then

02 GM, GM
2f:(—kb) = S+ p‘
z=0

022 rd r3

p
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We find that the factor £~ 4 is slowly varying on the critical equipotential surface in the
orbital plane. For most mass ratios this factor varies by less than 20 per cent. So that
equation (14) essentially states that the magnitude of the velocity is proportional to the
magnitude of the local gravity.

Equation (14) leads to some, at first sight, surprising results concerning the non-
synchronous flow field on the stellar surface where that surface intersects the orbital plane.
As the bounding curve approaches the critical surface, we see that |u|— 0 at the L; point.
Thus the flow is decelerated as it approaches the region from where mass transfer may occur,
and as a consequence, we may expect that mass transfer would proceed more or less as in the
synchronized case.

It has usually been assumed in previous work (Kopal 1959, Sparks & Stecher 1974,
Batten 1973, Morris 1981), that matter on the surface of a non-synchronous contact
component moves with essentially uniform velocity, so being ejected from the critical L,
point because it is a conical point. Our result shows that such a mass ejection situation does
not occur in non-synchronous contact components, when the hydrodynamic equations are
used to derive the flow. Although we made the approximation of linearizing the equations,
our effects should also operate in the non-linear regime. Matter slows down as the critical
point is reached because the equipotential surfaces, isobaric surfaces and stream lines all
diverge as that point is approached. This forces the magnitude of the velocity to decrease.

Our results also have some bearing on the use of tidal lobes for non-synchronous binaries
(see Davidson & Ostriker 1973). In the absence of viscosity it is easy to show fromequation
(1) that  + % u? is constant on the stellar surface. From this, it follows that if u is zero at
the L; point, but non-zero elsewhere, then the surface must lie below the critical equi-
potential surface whatever the sign of u. This contradicts the result from the use of tidal
lobes that the critical surface should diminish in volume monotonically with the stellar
rotation speed (Davidson & Ostriker 1973). Accordingly, tidal lobes cannot be used in the
study of non-synchronous binary systems.

From equations (4), (5) and (7) we may write expressions for the velocity field at any
point

1 dw X as)
Up = ————""—",
® 20d>
—1 dw 33 y
U™ ——— —— ' —,
0w dT 9 (16)
1 dW [3F 3% dF 9%
uz= —(— _____ —. (17)
2Qwp dX \ow 96 9¢ 003
where
VA
F=f pdz.
0

We note that equations (15)—(17) contain an unspecified function of Z. This is because, in
the absence of viscosity, we are free to associate an arbitrary amount of differential rotation
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with the non-synchronism. We can localize it to particular regions of the star. However,
when viscosity is taken into account this freedom disappears.

2.1 THE CASE OF WEAK TIDAL DISTORTION

If the secondary is detached, so that the mean surface radius is less than 80 per cent of the
value pertaining to the critical surface, the tidal distortion is weak. Under these conditions it
may be treated by perturbation theory. The same is also true of the internal regions for lobe
filling secondaries. The theory of weakly distorted polytropes is well known (Chandrasekhar
1933, Schwarzschild 1958, Kopal 1959). One defines a coordinate ry constant on equi-
potential surfaces such that

rg =r+ Y, am(r) P (w) cosmg. (18)

1I,m
ry is a mean radius that can be thought of as the radius of the equivalent spherical volume.
For our problem only the term with / =m =2 is significant so we drop the subscripts / and

m. The density p is a function of r,, alone and takes on the same functional form as in the
undistorted spherical case. We then write the surface density as

z R ry)rar
E=2'[Spdz=2f SM_

0 . (r2 _ m2)1/2
where R is the surface value of ». Developing to first order in a, we write
=2yt 2y,
where

R r)rdr
Eo=2f s p()

. (r2 . cjz)l/z’
and

Rs dp a(r)dr

3, =685 cos2 —_—. 19
! ¢ w dr r(r*—o?)Y? (19)

The function « satisfies the second order differential equation

d?a +2(41rr2p l)da 4 0 20

dr? M rlar 2% (20)

where M is the mass at an internal point of the secondary. In addition a a must be regular
near the centre and satisfy the surface boundary condition

da a 5 M, (Rg\*
“+_) =—— 1) . (21)
dr r =Ry 4 M, \D
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It is a simple matter to determine @ for any spherical model. We write ¢ = cay, where a is
the solution of equation (20) which satisfies ao = 7 + O(r?) near the centre. Then

c=—>Mp (’is_)s/(d_“_o +"_°)

4 Mg \D dr r/,- R
contains all the mass ratio dependence. We may now determine the velocity components
from equations (15)—(17) and (19). We note first of all that in the limit of no tidal distor-

tion, the only non-zero component is u,. We have equation (15) and £ = Zo(&) giving a
general non-uniform cylindrical rotation law

U, = v)ys—— - ——,
0=8@ =0 v W

We may use this result to determine ug correct to first order from equations (16) and
(19). After some simplifications we find

6Cg(a)11
U= ———

sin2¢ (22)

2

where

s _fRS dp  ao(r)dr
! o dr r(r? —w)V?

I _J‘Rs dp dr
2 o dr (r2_m2)1/2'

We may then find the first order non-axisymmetric contribution Vg to ug. This is most easily
done by using the fact that

all¢ + a o ) 0

— e u .= U,

20 op Dl

We find that
3eT d

o= | —@e)-1, +0g(ly 1y /1) cos2g =
I, law

where

/ _J’Rs d (ao a’p) dr
? w dr\r* dr] (r*-w??

J ‘fRS d(l dp) dr
Yl ar\rar (r*—ow?)v?
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Finally we calculate u, from equation (17), and obtain

6cg )
u,= —— (Is—1I,-I4/I,)sin2¢ (24)
P

where

_ J‘V dp ay dr

I = -
S )e dr r(r?-wh)?

rd dr
I6=J p

o dr (rz_mz)l/z‘

If one knows the density as a function of radius it is a simple matter to compute the
integrals /,—14 which are needed to specify the non-axisymmetric part of the velocity field
correct to first order. We note the function g(¢) enables the non-synchronous rotation to be
non-uniform. It cannot be specified without consideration of viscous forces. When the non-
synchronous rotation is uniform the appropriate form of g(es) is

g@)=w-AQ (25)

where the period of rotation as seen in the corotating frame is equal to 27/A Q.

3 The effect of viscosity

The principal effect of introducing conventional viscous dissipation is that, as a result of
energy loss, the magnitude of the velocity decreases with time, and synchronism is achieved.
In general we may expect the decay constant A, appearing in equation (2), to be an eigen-
value corresponding to a decay mode. The unknown function W(Z), corresponding to g(e),
will be prescribed by this eigenvalue problem as an eigenfunction. If we take the scalar
product of equation (2) with pu and integrate over the volume of the star, we find that

—Afpu2 dr= fWV-(pu)dT+ fpu-der, (26)

where W is the perturbed form of H.

If we neglect the variation of the gravitational potential of the secondary and use the poly-
tropic equation of state, then W = 5Pp'/3p?. Using this, and the equation of continuity, we
may find an expression for A in the form

—qu'der
A= . (27)
f(pu2 +3W?p?/5P)dr
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Equation (27) is a convenient expression from which the decay rate may be calculated. If a
conventional form of viscous force is used, after an integration by parts, the numerator of
equation (27) may be rewritten as

1
“fﬂU'Fv dr =5 Z PV E;j€ij dr (28)
ij

where v is the coefficient of kinematic viscosity and, in Cartesian coordinates,

ou; Oduj 2 .
€ij =—t—"—— VUS;

ox' ox' 3

In this case it may be shown that equations (27) and (28) yield a variational problem for

A and the eigenfunction W, (see the Appendix). If equations (15)—(17) are substituted for u
and the integral expression for A minimized, then the smallest decay rate and corresponding
eigenfunction are specified. However, one can only use the standard form of viscous force
when the viscosity is molecular in origin, In our problem we are interested in low mass stars
which are likely to be fully convective. As a result it is generally believed that viscous effects
will be caused primarily by turbulence. In this case the form of the stress tensor is not
known and it is likely to be affected by the anisotropy of the turbulence (see Wasiutynski
1946, Kippenhahn 1963 and Tayler 1973). If the stress tensor does depart from the
standard form then there may not be a tendency for uniform rotation to be achieved. Hence,
synchronization is impossible, and some compromise between tidal effects and the tendency
of turbulence to generate non-uniform rotation will result in a steady state. However, in the
work presented here we shall ignore this possibility and assume the stress tensor takes the
standard form. The relaxation times we calculate should be estimates of the time required to
achieve a steady state in the more general case.

3.1 THE TURBULENT VISCOSITY

It is well known that there is no good theory of convection available to give a convenient
estimate of the coefficient of viscosity in the presence of turbulence. For simplicity, we
adopt the approach of mixing length theory (see Cox & Giuli 1968), which gives the simplest
estimate of v as

1
v=—A-
3

=~

(29)
where ¥ is the mean convective velocity and A the mixing length. The convective heat flux is
given by

F, =10pV?3 Ap/A

where A, is the pressure scale height, so we may write

1 )\ (A)4/3 ( L )1/3 (30)
V:V e —_— .
° 3Py, 407r2p

where L is the luminosity.

We may adopt equation (30) for the viscosity provided that the time-scale for convection
t.=A/V is short compared to a relative rotation period. In general, the typical convective
time-scale in the stellar interior is found to be ~ 107s. This means that for binaries with
short periods of order a hundred minutes there will be many cases where the above will not
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be satisfied, so that equation (30) should not be used unmodified. We use the modification
adopted by Goldreich & Keeley (1977). If the dissipating motion has a frequency w
associated with it, we write

V=VOGR (31)

where if wt, <1, then Gg = 1. If wt, > 1, then G = (wt.) 2. We use w =2A8, which is
the relative forcing frequency of the tide as seen in a frame which on average corotates with
the star. It is less clear that this is the relevant forcing frequency in the surface layers of a
strongly distorted star, but the convective time-scale is so short in these layers that no
modification is required. For large w, the rate of viscous dissipation in the interior is
sensitive to the way Gy approaches zero, and different results may be obtained by altering
that presciption. In this regard, we note that Zahn (1977) uses a linear rather than quadratic
fall-off for Gr. However, we feel that the form of G should be constrained by the require-
ment that the power generated by synchronization should be less than the stellar luminosity
(see Discussion). In addition we note that convection is likely to be inhibited by the effect
of rotation in the synchronous state, so that the viscosity could well be smaller than that
derived by using the mixing length theory assuming spherical symmetry as we have done.
The mixing length theory is a local theory and is used taking the mixing length to be a
multiple, a, of the pressure scale height. The theory does not apply near the centre of the
star where the scale height diverges. To avoid this difficulty we take the mixing length to be
a constant equal to the value where a\p, =7, for radii less than that at which equality first
occurs. We also assume ¥ to be a constant in the central regions and equal to the minimum
value predicted using simple mixing length theory with a constant luminosity, L.

4 The synchronization rate

With the above presciption for the viscosity, we are in a position to calculate the synchroni-
zation rate A. From equations (27)—(29), we have

fpveijeij dr
A= : (32)
2j(pu2 +3p?W?/5P) dr

When the tidal distortion is small, we may use equations (22)—(24) for the velocity
components and equations (29)—(31) for the viscosity to evaluate X. We note that in this
limit, the variational principle governing the determination of A, shows that the correct form
of g(w) to use is given by equation (25) corresponding to uniform non-synchronous
rotation, whatever the spatial behaviour of the viscosity. This follows essentially because the
standard form of viscosity tends to result in uniform rotation. Furthermore, the dominant
term in the denominator of equation (32) comes from the axisymmetric component of u,
and other terms may be neglected for weak tidal distortion.

We have calculated A from equation (32) after making the above simplications. The calcu-
lation is rather long because inclusion of the z-component of velocity requires a two-
dimensional numerical integration over r and . We used up to 300 grid points for each
dimension. Because we are working with a simple polytropic model most of the dimensional
dependence can be removed from the results. It is easy to show that A may be written in the
form

(5 )
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The function f depends on the quantity

AQ\ (M R2\V3
n=2 (—)9 ) (34)
Q L,

and «, the mixing length to pressure scale height ratio. To fix ideas; if we consider a low
mass main-sequence star with My =03 M,, R;=1.7x10"cm and Ly =10"%L,, then
(MR?*/Lg)"® = 1.6 x107s. If such a star fills its Roche lobe in a binary system in which
M,> Mg, we expect in the synchronous state that € = Q. = (0.1 GM,/R2)"* (Kopal 1959).
We then find Q. (M RZ/L)"3 = 1.5 x 10* to be a characteristic value of the dimensionless
quantity n, which may be expected to be large for any reasonable degree of non-synchronism.

In Table 1, we give numerical values of f(n, a) for various values of n and a. From these
A\ may be calculated. Of course, the synchronization time is just equal to \™!. We also give
(A2/Q2), which is the degree of non-synchronism pertaining to the value of n if the results
are extrapolated to apply to a lobe filling 0.3 M, star. For values of n less than about 10 or
(AQ/Q). < 107%, the value of fis constant, for a given «, because the convective turnover
time is shorter than (AQ)™! and turbulent viscosity operates at the highest efficiency. But
for the larger values of n we have approximately f~ 30(n) ? and the synchronization time-
scale increases rapidly. We may summarize the results for A, when a =1 in the approximate
form

M 2 R \ 6 L 1/3

=04 (—") (—) ( 52) , n<9, (35)
m,) ‘D) \M,R?
Mp 2 Rs 6 L 1/3 1

_ ]

=00 G () - o (6)

Equation (35) is in reasonable agreement with the order of magnitude estimate of Zahn
(1977) which neglected rotation. Our results are such that the power generated from
synchronization is less than the luminosity of the star. The power generated W may be
written as W=K,MR2(AQ)*\, where K, is the radius of gyration equal to 0.2. Using
equations (36) and (34), we find

_ Mp 2 Rs 6
w=15L(-2) (=) .
M D

S

and W is always less than L even if the star is lobe filling.
Equations (35) and (36) apply to detached binaries with mean radii less than 80 per cent
of the critical mean radius and it is not clear that they can be extrapolated to lobe filling

Table 1. The function f(e, n).

n=0 n=30
(AQ/Q)=0 (AQ/Q)=107
1 1/3 3 1 3 3

0.4 0.1 1.7 1.4 X10°? 9.8x107° 1.5X107?

n =300 n=3x10?
(AQ/Q). =102 (AQ/) = 107"
a 1 1/3 3 1 1/3 3

f 3.2x107* 2.5x107¢ 3.4%x107¢ 6.4x10°¢ 5.1x107¢ 8.2x107°¢
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conditions. However, if equation (36) is extrapolated to these conditions, when (M, /M)
(R¢/D)* ~ 0.1, one finds

Ls 1/3 1
>\~0.3( ) _. (37)

Mng 7?2

This is just the characteristic viscous diffusion rate through the entire star. It is clear from
the variational principle governing equation (32) for A that the correct value should not be
much greater than this. Therefore we feel the error in extrapolating to lobe filling conditions
should not be greater than other uncertainties in the problem.

Two other features of the results are worthy of note. It will be seen from Table 1 that for
large n, the results are not very sensitive to the value of the mixing length. Also the distribu-
tion of the dissipation through the star changes as n is increased. For small values most
dissipation occurs in the centre, while for large values it occurs near the surface.

If we apply equations (34)—(37) to a lobe filling main-sequence star with Mg = 0.3 M,
and My, > Mg, we see that the synchronization time varies strongly with the degree of non-
synchronism AQ/Q. If AQ =0, the synchronization time is short and about 120 yr but if
A2/ is as large as 0.1, then the synchronization time is as large as 107 yr.

5 Discussion

We have found a solution for the fluid velocity field associated with the non-synchronous
rotation of a member of a close binary system. We considered the case when a polytropic
equation of state applies so our results should apply when the component is largely
convective, as is the case for the secondary of the cataclysmic binary systems.

Our results, when applied to the lobe filling situation, show that the velocity approaches
zero as the L, point is approached. This indicates that mass transfer may proceed in much
the same way as in the synchronous case, at least if the degree of non-synchronism is not
too large. Furthermore, because of the slowing down, no definite period can be associated
with the flow of matter round the surface in the equatorial plane.

We have also shown how our solution may be used to determine the synchronization rate.
However, this is rather uncertain because there is no good theory of turbulent viscosity. We
find that, for close binary systems, if the degree of non-synchronism AQ/S) is greater than
about 107%, then the mean convective turnover time is long compared to the relative
rotation period. Adopting the same treatment of the viscosity as Goldreich & Keeley (1977),
we find that, if AQ/Q is very small, the synchronization time is short and of order 10? yr,
but if AQ/Q is 107! or greater then the synchronization time is greater than 107 yr. Also,
we note that a long synchronization time for large AQ/Q is needed if the power generated
from synchronization is not to exceed the stellar luminosity. If the lifetime of the system
is less than 10® yr, then it is possible for some significant non-synchronism to exist, although
this would depend on the starting conditions.
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Appendix

In this appendix we show how to formulate a variational principle for the decay rate \. We
first formulate the eigenfunction problem for the function W(Z) as described in Section 3.
First, we take the z-component of the curl of equation (2) multiplied by p. This is

}\I:l 0 1 9 )]+29[1 6( )+l 0 o )]
A= — - —— —— — u
3% (pouy) ® 36 (ptes ® 99 pUg = 305 (pBug

@

_1(apaw apaW) 1 9
00 0T3 0w 0¢

19
+— — (p@Fyg) — — — (0Fyg). Al
aaa(p ) cja¢(/> ®) (A1)

From the z-component of equation (2) it is easy to show that
}\[8 U, aF) 1 a( aF)] a[(lawaF 1aFaw”+1(apaw awap)
— I N ey i e e I — -
a¢(mam wow\ 0¢/]l azl\wow 0p wow 9p/) w\ow 3¢ ow 9¢
0 (sz aF) 19 ( aF)
p ()= (P —
00 \ » 0w/ ©3 o 1)

where F is defined by equation (17) and is such that

z
F=f pdz
0

and it is assumed that W is an even function of z.
If we add (A1) and (A2) and integrate through the star from zg to —z, along a line of
constant (&3, ¢) we obtain after using the continuity equation (3):

}\J‘[l 2 oy L )+a(i¢zaF) 1 a( aF)}d
- — — ———(pug)t—|— — | —— |y, — ) |dz
o am PP 526" 5\ 5 ) 3¢

2mf’d ﬂl R . (FVZ aF) 12 (F aF)]d
= +|=— - — )= — —|dz
Pz | | ae (PFvo mop TP oo\ o) wom \ VEag

(A2)

1 (az oW oW ox\
(o]

————— : | A3
20 06 0w 30 ), (43)
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At this point it is convenient to introduce an orthogonal coordinate system (Z, x) instead of
(3, ¢). For any quantity Q we have

0z 0 00 0% 0
(ZE_22B) joxyiva 22 (A%)
003 ¢ 0T 3¢ X

If we multiply equation (A3) by 1/(IVZ||Vxl), and integrate with respect to x round a
loop of constant X, we find

dz dx 3 W dzdy dz dx AW\ oz,
—xﬂj———nm J. o —— = ||k — [ —) —2ay,
IVZlivxl 5 PIVZIIVxI IVZlIvxl 0z /5 09X
(AS)

where J is an abbreviation for the integrand on the left-hand side of equation (A3) and K is
an abbreviation for the integrand contained in the second term on the right-hand side of
equation (A3). In equation (A5), dW/dz, by use of the z-component of equation (2), may be
replaced by Au, + Fy,. In the limit of zero viscosity the velocity components are given by
equations (15)—(17), which contain the arbitrary function W(Z). We see that if these are
substituted into (AS5) as a first approximation, (A5) becomes a differential equation for the
single function W(Z) and eigenvalue A. In this way the arbitrariness in the inviscid solution
is removed. We now want to show that (AS) is equivalent to a variational problem derived
from equations (27) and (28). This may be written as

3 1
A Hpu2 + g W2p?/ P } dr =5 Y J.pveijeij dr. (A6)
ij

Equations (15)—(17) for u have to be substituted into (A6) and the result varied with
respect to W(Z). We first vary (A6) with respect to u and W in complete generality. This
gives

3 WSWH
2)\J(pu 8u+5p —P—)dr=—2f8u-va dr (A7)

and we will assume from now on that v vanishes at the surface. The next step is to use
equations (15)—(17), which when perturbed give a relation between the components of
Su and 6W. After performing several integrations by parts, remembering that the volume
element may be writtendr =dz dx dZ/(IVZ |1V x1), (A7) may be worked into the form

dxdz dx 3 dy dz d3
——f e +2>\j Oy XA

—f( ) (Nug + F,,)8W dz dy
IVxIVZ] 5P IVZ1Vx]

_1 f dx dz dX (A8)

lvxIIVEL

where the last term on the left-hand side arises from an integration by parts with respect to
2 remembering that the lower limit corresponds to the stellar surface. This is a surface
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integral. On the surface X is a function of z¢ and ¥,

) =56

Zs
and
0Z\ [0z 0z
G, G G2):
Thus

lf(aF) SWdz dx(\u, + Fyy) : f(x +F )aswazs dz d
— I\ z u = — u — X
RPAC X z vz Q z vz 0%

where we remember there are equal contributions from above and below the orbital plane
if W is an even function of z. We then see that (A8) is obtained from (A5) by multiplying by
8W/ and integrating with respect to 2. Thus if (AS) is satisfied for a given W(X), X as
specified by (A6) will be stationary with respect to variations of the velocity satisfying
equations (15)—(17). The problem has the trivial solution A =0 corresponding to W
constant. However, this is eliminated from consideration by insisting that

j'd f3 2wa’ 0
T= —_ — daTr = R
g Sp P

so restricting trial functions to those which conserve the total mass of the star.
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