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THE POSSIBLE ORDERS OF SOLUTIONS

OF LINEAR DIFFERENTIAL EQUATIONS

WITH POLYNOMIAL COEFFICIENTS

GARY G. GUNDERSEN, ENID M. STEINBART, AND SHUPEI WANG

Abstract. We find specific information about the possible orders of transcen-
dental solutions of equations of the form f(n)+pn−1(z)f(n−1) + · · ·+p0(z)f =
0, where p0(z), p1(z), . . . , pn−1(z) are polynomials with p0(z) 6≡ 0. Several ex-
amples are given.

1. Introduction

For n ≥ 2, consider a linear differential equation of the form

f (n) + pn−1(z)f
(n−1) + · · ·+ p0(z)f = 0,(1.1)

where p0(z), ..., pn−1(z) are polynomials with p0(z) 6≡ 0. It is well known that
every solution f of equation (1.1) is an entire function of finite rational order; see
[7], [8], [3, pp. 199–209], [6, pp. 106–108], [9, pp. 65–67].

For equation (1.1), set

λ = 1 + max
0≤k≤n−1

deg pk
n− k

.(1.2)

Let ρ(f) denote the order of an entire function f . It is known [4, p. 127] that
for any solution f of (1.1),

ρ(f) ≤ λ.(1.3)

Wittich obtained the following result.

Theorem A [8], [9, pp. 65–67]. For a given equation of the form (1.1), there exists
a set of positive rational numbers χ1, χ2, ..., χk, where k ≤ n, such that if f is any
transcendental solution of equation (1.1), then

ρ(f) = χj(1.4)

for some j, 1 ≤ j ≤ k.

In his proof of Theorem A, Wittich used the method of Frobenius, the Wiman-
Valiron theory, the theory of algebraic functions, and the Newton-Puiseux diagram,
where the rational numbers χ1, χ2, ..., χk are determined from the Newton-Puiseux
diagram. Helmrath and Nikolaus [2] and Jank and Volkmann [3, pp. 199–209] also
gave a proof of Theorem A, each on a more general equation than (1.1), where
their proofs use the Wiman-Valiron theory, the theory of algebraic functions, and
the Newton-Puiseux diagram.
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Theorem 1 in §2 gives a list of positive rational numbers that includes all the
possible orders of transcendental solutions of equation (1.1). This list of rational
numbers is obtained from simple arithmetic with the degrees of the polynomial
coefficients in (1.1). We do not appeal to the Newton-Puiseux diagram to obtain
this list of rational numbers or to prove Theorem 1.

Some natural questions can be asked. For example:
(i) What is the maximum number of possible distinct orders of transcendental

solutions of a given equation of the form (1.1)?
(ii) Consider (1.3). Is the upper bound λ always reached? In other words, for

any given equation of the form (1.1), does there always exist a solution f of (1.1)
that satisfies ρ(f) = λ, where λ is the constant in (1.2)?

(iii) What is the smallest possible sum of the orders of a fundamental set of
solutions of a given equation of the form (1.1)?

(iv) What is the maximum number of linearly independent polynomial solutions
that an equation of the form (1.1) can possess?

In this paper we answer these four questions, and we also give related results.
Several examples are given to illustrate our results.

2. Statement of results

Consider equation (1.1). For convenience, set dj = deg pj if pj 6≡ 0 and dj = −∞
if pj ≡ 0, 0 ≤ j ≤ n− 1.

We define a strictly decreasing finite sequence of non-negative integers

s1 > s2 > · · · > sp ≥ 0(2.1)

in the following manner. We choose s1 to be the unique integer satisfying

ds1
n− s1

= max
0≤k≤n−1

dk
n− k

and
ds1

n− s1
>

dk
n− k

for all 0 ≤ k < s1.(2.2)

Then given sj , j ≥ 1, we define sj+1 to be the unique integer satisfying

dsj+1 − dsj
sj − sj+1

= max
0≤k<sj

dk − dsj
sj − k

> −1 and

dsj+1 − dsj
sj − sj+1

>
dk − dsj
sj − k

for all 0 ≤ k < sj+1.

(2.3)

For a certain p, the integer sp will exist, but the integer sp+1 will not exist, and
then the sequence s1, s2, . . . , sp terminates with sp. Obviously, p ≤ n, and we also
see that (2.1) holds.

Correspondingly, define for j = 1, 2, ..., p,

αj = 1 +
dsj − dsj−1

sj−1 − sj
,(2.4)

where we set

s0 = n and ds0 = dn = 0.(2.5)

From (2.3) and (2.4), we observe that αj > 0 for each j, 1 ≤ j ≤ p.
We mention that the integers s1, s2, ..., sp in (2.1) can also be expressed in the

following manner:

s1 = min

{
j :

dj
n− j

= max
0≤k≤n−1

dk
n− k

}
;
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and given sj , j ≥ 1, we have

sj+1 = min

{
i :
di − dsj
sj − i

= max
0≤k<sj

dk − dsj
sj − k

> −1

}
.

We prove the following result.

Theorem 1. For equation (1.1), the following conclusions hold:

(i) If f is a transcendental solution of (1.1), then ρ(f) = αj for some j, 1 ≤ j ≤
p.

(ii) If s1 ≥ 1 and p ≥ 2, then the following inequalities hold:

α1 > α2 > · · · > αp ≥ 1

sp−1 − sp
≥ 1

s1 − sp
≥ 1

s1
.

(iii) If s1 = 0, then any nontrivial solution f of (1.1) satisfies ρ(f) = 1 + d0/n.

Theorem 1(iii) is known [9, Chap. V]. We will, however, give a new proof of this
result by using sharp estimates of logarithmic derivatives; see the remark at the
end of §6.

Regarding Theorem 1(ii), in the case when s1 ≥ 1 and p = 1, we obtain from
Theorem 1(i), (2.2), (2.4), and (2.5) that any transcendental solution f of (1.1)
satisfies ρ(f) = λ, where λ is the constant in (1.2).

We mention that Pöschl [5] gave a detailed analysis of the possible orders of
transcendental solutions of (1.1) in the case when n = 3, and Theorem 1 gives an
improvement of this result of Pöschl.

Since p ≤ n in (2.4), a corollary of Theorem 1 is the known result that there can
exist at most n distinct possible orders of transcendental solutions of equation (1.1);
see Theorem A. However, Theorem 1 yields more than this result. We observe from
(2.2) and (2.3) that the integer p satisfies p ≤ s1 + 1. Then from Theorem 1 and
the construction of αj in (2.4), we deduce the following result.

Corollary 1. There can exist at most s1 + 1 distinct orders of transcendental so-
lutions of (1.1). Furthermore, if an equation of the form (1.1) possesses s1 + 1
transcendental solutions that have s1 + 1 distinct orders, then these s1 + 1 orders
must be the following numbers:

1 +
ds1

n− s1
, 1 + ds1−1 − ds1 , 1 + ds1−2 − ds1−1, ..., 1 + d0 − d1.

Consequently, in this case, ds1 ≤ ds1−1 ≤ · · · ≤ d1 ≤ d0.

Examples 2 through 5 in §8 illustrate the sharpness of Corollary 1. In the special
case when s1 = 1, it follows from Corollary 1 and Theorem 1 that there can exist at
most two distinct orders of transcendental solutions of (1.1), and these two possible
orders are 1 + d1/(n− 1) and 1 + d0 − d1.

Next, from (2.2) we see that

s1 ≤ n− 1.(2.6)

Combining (2.6) with Theorem 1 yields the following result.

Corollary 2. Every transcendental solution f of (1.1) satisfies

ρ(f) ≥ 1

n− 1
.(2.7)
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Wittich [8], [9, pp. 65–68] proved Corollary 2, and he also gave an example to
indicate that Corollary 2 is sharp for all n ≥ 2 (see the remark at the end of Example
1 in §8). In his proof of Corollary 2, Wittich used the method of Frobenius and
the Newton-Puiseux diagram, which we do not appeal to here. In Example 1 in
§8, we exhibit an equation of the form (1.1) where n = 3, which possesses a special
contour integral solution f = G(z) satisfying ρ(G) = 1/2, which gives equality in
(2.7). Of course all nontrivial solutions of equations of the form (1.1) with constant
coefficients have order one, which gives equality in (2.7) when n = 2.

We prove the following result.

Theorem 2. For any j = 1, 2, ..., p, there can exist at most sj linearly independent
solutions f of (1.1) satisfying ρ(f) < αj.

Examples 2 through 6 in §8 illustrate the sharpness of Theorem 2.
Note that α1 = λ, where α1 is defined in (2.4) and λ is the constant in (1.2).

From (1.3), the order of any solution of (1.1) cannot be greater than λ. From (2.6)
and Theorem 2 (with j = 1), we obtain the following result, which says that this
maximum possible order λ is always reached.

Corollary 3. For any given equation of the form (1.1), there must exist a solution
of (1.1) that satisfies ρ(f) = λ, where λ is the constant in (1.2).

Thus from (1.3) and Theorem 1, Corollary 3 shows that there always exists a
solution of equation (1.1) that has the maximum possible order λ = α1. This shows,
among other things, that it is not possible for an equation of the form (1.1) to have
only polynomials for solutions. Moreover, we observe from Theorem 1 that any
solution f 6≡ 0 of (1.1) satisfying ρ(f) < αp must be a polynomial. Combining this
with Theorem 2 yields the following result.

Corollary 4. There can exist at most sp linearly independent polynomial solutions
of (1.1).

Corollary 4 is sharp; see Example 6 in §8.
Wittich proved the following result.

Theorem B [8]. Suppose that every nontrivial solution of (1.1) is transcendental.
If {f1, f2, ..., fn} is any fundamental set of solutions of (1.1), then

n∑
k=1

ρ(fk) ≥ n.(2.8)

We can improve Theorem B by appealing to Theorem 2. Specifically, suppose
that {f1, f2, ..., fn} is any fundamental set of solutions of equation (1.1), where
we allow the possibility that an fk might be a polynomial. From Theorem 2 and
Corollary 4, it can be deduced that

n∑
k=1

ρ(fk) ≥ (n− s1)α1 + (s1 − s2)α2 + · · ·+ (sp−1 − sp)αp + sp · 0.(2.9)

From (2.4), we obtain that the right side of (2.9) equals n+ dsp − sp, and so

n∑
k=1

ρ(fk) ≥ n+ dsp − sp.(2.10)
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Now dsp − sp ≥ d0, because if sp = 0, then dsp − sp = d0, while if sp ≥ 1, then from
(2.3) and the fact that sp is the last element in the sequence s1, s2, ..., sp, we obtain
(d0 − dsp)/(sp − 0) ≤ −1. Combining this with (2.10) gives the following result.

Corollary 5. If {f1, f2, ..., fn} is any fundamental set of solutions of (1.1), then
n∑

k=1

ρ(fk) ≥ n+ d0.(2.11)

Corollary 5 is sharp. This is illustrated by Examples 2 through 6 in §8 and by the
situation in Theorem 1(iii). Corollary 5 is an improvement of Theorem B because
(2.11) improves (2.8), and also because nontrivial polynomial solutions of (1.1) are
allowed.

In §§3–7 we give the proofs of Theorems 1 and 2. In §8 we give several examples
to illustrate the sharpness of our results, and also to exhibit some possibilities that
can occur.

We mention that we prove Theorem 1(ii) first (in §3), because we use Theorem
1(ii) in the proof of Lemma 4.2 in §4, and Lemma 4.2 is used in the proof of Theorem
1(i) in §5.

3. Proof of Theorem 1(ii)

We first prove α1 > α2 > · · · > αp. From (2.1), (2.2), (2.3), and (2.5), we obtain,
for any j = 1, 2, ..., p− 1,

sj > sj+1 and
dsj − dsj−1

sj−1 − sj
>
dsj+1 − dsj−1

sj−1 − sj+1
,

which yields

−dsjsj+1 − dsj−1 (sj − sj+1) > dsj+1 (sj−1 − sj)− dsjsj−1.(3.1)

Adding dsjsj to both sides of (3.1) gives

(dsj − dsj−1 )(sj − sj+1) > (dsj+1 − dsj )(sj−1 − sj),

dsj − dsj−1

sj−1 − sj
>
dsj+1 − dsj
sj − sj+1

.(3.2)

From the definition of αj in (2.4), we obtain immediately from (3.2) that αj > αj+1.
This proves that

α1 > α2 > · · · > αp.(3.3)

From (2.1) we have

1

sp−1 − sp
≥ 1

s1 − sp
≥ 1

s1
,(3.4)

and so to complete the proof of Theorem 1(ii), we need only to prove that

αp ≥ 1

sp−1 − sp
.(3.5)

From (2.3) we obtain

dsp − dsp−1

sp−1 − sp
> −1,
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dsp − dsp−1 + sp−1 − sp > 0.(3.6)

Since the left side of (3.6) is an integer, we have dsp − dsp−1 + sp−1− sp ≥ 1. Hence
from (2.4), we see that (3.5) holds. By combining (3.5), (3.4), and (3.3), we obtain
Theorem 1(ii).

4. Lemmas for the proof of Theorem 1(i)

We use the three lemmas in this section in the proof of Theorem 1(i).

Lemma 4.1. For any fixed j = 0, 1, ..., p− 1, let α be any real number satisfying
α > αj+1, and let k be any integer satisfying 0 ≤ k < sj. Then

n− k + dk + kα < n− sj + dsj + sjα.(4.1)

Proof. Since n− k+ dk + kα = (n− sj + dsj + sjα) +α(k− sj) + dk − dsj + sj − k,
we obtain

n− k + dk + kα < (n− sj + dsj + sjα) + αj+1(k − sj) + dk − dsj + sj − k.(4.2)

Now from the definition of αj+1 in (2.4), we obtain

αj+1(k − sj) + dk − dsj + sj − k = (k − sj)

(
dsj+1 − dsj
sj − sj+1

− dk − dsj
sj − k

)
.(4.3)

Since 0 ≤ k < sj , it follows from the definition of sj+1 in (2.2) and (2.3) that

dsj+1 − dsj
sj − sj+1

≥ dk − dsj
sj − k

.(4.4)

From (4.4) and (4.3) we obtain

αj+1(k − sj) + dk − dsj + sj − k ≤ 0.(4.5)

Then (4.1) follows from (4.2) and (4.5). �
Lemma 4.2. For any fixed j = 1, 2, ..., p, let α be any real number satisfying α <
αj, and let k be any integer satisfying sj < k ≤ n. Then

n− k + dk + kα < n− sj + dsj + sjα.(4.6)

Proof. We consider two separate cases.
Case (i). Suppose that sj < k ≤ sj−1.
This case uses an argument similar to the proof of Lemma 4.1. As in the proof

of Lemma 4.1, we have

n− k + dk + kα < (n− sj + dsj + sjα) + αj(k − sj) + dk − dsj + sj − k.(4.7)

Then from the definition of αj in (2.4), we obtain

αj(k − sj) + dk − dsj + sj − k = (k − sj)
dsj − dsj−1

sj−1 − sj
+ dk − dsj .(4.8)

If k = sj−1, then the right side of (4.8) equals zero. Then (4.6) follows from
(4.7).

On the other hand, if sj < k < sj−1, then from the definition of sj in (2.2) and
(2.3), we obtain

(k − sj)
dsj − dsj−1

sj−1 − sj
+ dk − dsj = (k − sj−1)

(
dsj − dsj−1

sj−1 − sj
− dk − dsj−1

sj−1 − k

)
≤ 0.

(4.9)
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Combining (4.9), (4.8), and (4.7) gives (4.6). This proves Lemma 4.2 for Case (i).
Case (ii). Suppose that sj−1 < k ≤ n.
Since sj < sj−1 < · · · < s1 < s0 = n and sj−1 < k ≤ n, it follows that j ≥ 2

and there exists an integer m, 1 ≤ m ≤ j− 1, such that sj−m < k ≤ sj−m−1. Also,
from Theorem 1(ii), which we proved in §3, we have

αj < αj−1 < · · · < αj−m.(4.10)

Since α < αj , we have α < αj−m. Hence we can apply Case (i) to obtain that

n− k + dk + kα < n− sj−m + dsj−m + sj−mα.(4.11)

Now from successive applications of Case (i), we obtain the following inequalities:

n− sj−1 + dsj−1 + sj−1α < n− sj + dsj + sjα for α < αj ,

n− sj−2 + dsj−2 + sj−2α < n− sj−1 + dsj−1 + sj−1α for α < αj−1,

· · · · · · · · ·
n− sj−m + dsj−m + sj−mα < n− sj−m+1 + dsj−m+1 + sj−m+1α

for α < αj−m+1.

It follows from (4.10) that all of the above inequalities hold for α < αj . Therefore,
by combining these inequalities with (4.11), we obtain (4.6). This proves Case (ii),
and completes the proof of Lemma 4.2. �

Lemma 4.3. Let α > 0. Then for any integer k satisfying 0 ≤ k < sp, we have

n− k + dk + kα < n− sp + dsp + spα.(4.12)

Proof. Since sp is the last element in the sequence s1, s2, ..., sp, it follows from the
construction of sp in (2.2) and (2.3) that for any k < sp,

dk − dsp
sp − k

≤ −1.

This gives dk − k ≤ dsp − sp. Since kα < spα, we obtain (4.12). �

5. Proof of Theorem 1(i)

Let f be a transcendental (entire) solution of (1.1) with order ρ(f). The state-
ments in (5.1), (5.2), and (5.3) below are well known; see [3, pp. 199–209], [6,
pp. 105–108], and [9, pp. 65–67]. We have

0 < ρ(f) <∞.(5.1)

Furthermore, if V (r) denotes the central index of f , then

V (r) = (1 + o(1))Crα(5.2)

as r → ∞, where α = ρ(f) and C is a positive constant. In addition, from the
Wiman-Valiron theory it follows that there exists a set E0 ⊂ (0, ∞) that has finite
logarithmic measure, such that for all q = 1, 2, ..., n we have

f (q)(zr)

f(zr)
= (1 + o(1))

(
V (r)

zr

)q
(5.3)

as r → ∞, r 6∈ E0, where zr is a point on the circle |z| = r that satisfies |f(zr)| =
M(r, f). Here M(r, f) denotes the usual maximum modulus function: M(r, f) =
max|z|=r |f(z)|, 0 < r <∞.
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Now in equation (1.1), for each k, 0 ≤ k ≤ n − 1, let bk denote the leading
coefficient of the polynomial pk(z), and set ak = Ck|bk|, where C > 0 is the
constant in (5.2). Also set an = Cn. We now divide equation (1.1) by f , and then
substitute (5.3) and (5.2) into (1.1). This yields an equation whose right side is
zero and whose left side consists of a sum of n+ 1 terms whose absolute values are
asymptotic (as r →∞, r 6∈ E0) to the following n+ 1 terms:

anr
nα, an−1r

1+dn−1+(n−1)α, · · · , akrn−k+dk+kα, · · · , a0r
n+d0 .(5.4)

Now from (1.2) and (1.3), the order of any solution of (1.1) is at most λ, and
λ = α1 from (2.4) and (2.2). Thus α ≤ α1.

Now suppose that αj+1 < α < αj for some j = 1, 2, ..., p− 1. Then from Lemma
4.1 and Lemma 4.2, we obtain that

n− k + dk + kα < n− sj + dsj + sjα for any k 6= sj .(5.5)

But from inspection of (5.5) and (5.4), we see that there will exist exactly one
dominant term (as r → ∞, r 6∈ E0) in (5.4). Specifically, there exists exactly one
term in (5.4) with exponent n−sj+dsj +sjα, where asj 6= 0, such that the exponent
n−sj +dsj +sjα is greater than all the other exponents of the terms in (5.4). This
is impossible.

On the other hand, suppose that α < αp. Then from Lemma 4.2 and Lemma
4.3, we obtain

n− k + dk + kα < n− sp + dsp + spα for any k 6= sp.(5.6)

Again, by the same reasoning, (5.6) is impossible, because otherwise (5.4) would
have exactly one dominant term as r →∞, r 6∈ E0.

Therefore, the only admissible values for α, the order of f , are α1, α2, ..., αp.
This proves Theorem 1(i).

6. Lemmas for the proof of Theorem 2

For the rest of the paper we make the following two conventions: (i) A mero-
morphic function will always be meromorphic in the whole complex plane. (ii) We
will let E = E0 ∪ [0, 1], where E0 is a set in 0 < r <∞ that has finite logarithmic
measure, and the set E may not necessarily be the same set each time it appears.

We also mention that the definition of the order of a meromorphic function is
the standard definition from Nevanlinna theory (see [4, p. 24]), and this definition
generalizes the definition of the order of an entire function. As with entire functions,
we again use ρ(f) to denote the order of a meromorphic function f .

Our proof of Theorem 2 will consist of combining the standard method of reduc-
tion of order for linear differential equations with the following result.

Lemma 6.1 [1]. Let f 6≡ 0 be a meromorphic function of finite order β, and let
k ≥ 1 be an integer. Then for any given ε > 0, we have∣∣∣∣f (k)(z)

f(z)

∣∣∣∣ ≤ |z|k(β−1)+ε, |z| 6∈ E.(6.1)

We remark that the estimate (6.1) is sharp in the sense that we cannot replace
(6.1) with the statement ‘|f (k)(z)/f(z)| ≤ C |z|k(β−1), where C > 0 is some con-
stant’ (see [1, §9]). We need this sharpness in our proof of Theorem 2, and also in
our new proof of Theorem 1(iii).

Lemmas 6.2 to 6.5 below are concerned with the method of reduction of order.
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Lemma 6.2. Let f1, f2, ..., fN (N ≥ 2) be N linearly independent meromorphic
functions. Set hj = (fj+1/f1)

′ for j = 1, 2, ..., N − 1. Then h1, h2, ..., hN−1 are
N − 1 linearly independent meromorphic functions.

Proof. Suppose that h1, h2, ..., hN−1 are linearly dependent. Then there existN−1
constants c1, c2, ..., cN−1, which are not all zero, such that

c1h1 + c2h2 + · · ·+ cN−1hN−1 ≡ 0,

i.e.,

d

dz

(
c1f2 + c2f3 + · · ·+ cN−1fN

f1

)
≡ 0.

It follows that there exists some constant c0 such that

c0f1 + c1f2 + c2f3 + · · ·+ cN−1fN ≡ 0.

Hence, f1, f2, ..., fN are linearly dependent, which contradicts our assumption. �

Lemma 6.3. Let f and g be two linearly independent meromorphic solutions of an
equation of the form

y(n) +An−1(z)y
(n−1) + · · ·+A1(z)y

′ +A0(z)y = 0,(6.2)

where A0(z), A1(z), ..., An−1(z) are meromorphic functions. Set u = (f/g)′. Then
y = u(z) satisfies the equation

y(n−1) +Bn−2(z)y
(n−2) + · · ·+B1(z)y

′ +B0(z)y = 0,

where

Bj(z) =

n∑
k=j+1

(
k

j + 1

)
Ak(z)

g(k−j−1)(z)

g(z)
, j = 0, 1, ..., n− 2.

Here
(

k
j+1

)
denotes the binomial coefficient, and An(z) ≡ 1.

Proof. Set v = f/g. By substituting f = vg into equation (6.2), and noting that
u = v′, we deduce the result. �

Lemma 6.4. Let f0,1, f0,2, ..., f0,m be m ≥ 2 linearly independent meromorphic
solutions of an equation of the form

y(n) +A0,n−1(z)y
(n−1) + · · ·+A0,0(z)y = 0, n ≥ m,(6.3)

where A0,0(z), ..., A0,n−1(z) are meromorphic functions. For 1 ≤ q ≤ m− 1, set

fq,j =

(
fq−1,j+1

fq−1,1

)′
, j = 1, 2, ...,m− q.

Then fq,1, fq,2, ..., fq,m−q are m− q linearly independent meromorphic solutions of
the equation

y(n−q) +Aq,n−q−1(z)y
(n−q−1) + · · ·+Aq,0(z)y = 0,(6.4)

where

Aq,j(z) =

n−q+1∑
k=j+1

(
k

j + 1

)
Aq−1,k(z)

(fq−1,1)
(k−j−1)(z)

fq−1,1(z)
(6.5)

for j = 0, 1, ..., n− q − 1. Here we set Ak,n−k(z) ≡ 1 for all k = 0, 1, ..., q.
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Moreover, suppose that for each j, j = 0, 1, ..., n− 1, there exists a real number
τ0,j such that

|A0,j(z)| ≤ |z|τ0,j , |z| 6∈ E.(6.6)

Suppose further that each f0,j is of finite order ρ(f0,j). Set β=max1≤j≤m
{
ρ(f0,j)

}
.

Then for any given ε > 0, we have

|Aq,j(z)| ≤ |z|τq,j , |z| 6∈ E,(6.7)

where

τq,j = max
q+j≤k≤n

{
τ0,k + (k − q − j)(β − 1) + ε

}
(6.8)

for j = 0, 1, ..., n− q − 1.

Proof. By applying Lemma 6.2 and Lemma 6.3 q times, we obtain (6.4) and (6.5).
Therefore, we need only to prove (6.7) and (6.8). For this proof, we use induction
on q.

First suppose that q = 1. Then (6.5) is

A1,j(z) =

n∑
k=j+1

(
k

j + 1

)
A0,k(z)

f
(k−j−1)
0,1 (z)

f0,1(z)
.(6.9)

Hence

|A1,j(z)| ≤
n∑

k=j+1

(
k

j + 1

)
|A0,k(z)|

∣∣∣∣∣f
(k−j−1)
0,1 (z)

f0,1(z)

∣∣∣∣∣ .(6.10)

Since ρ(f0,1) ≤ β, it follows from (6.1), (6.6), and (6.10) that (6.7) and (6.8)
hold for q = 1.

For the induction step, we now make the assumption that for any given ε > 0,
(6.7) and (6.8) hold for q − 1, i.e.,

|Aq−1,j(z)| ≤ |z|τq−1,j , |z| 6∈ E,(6.11)

where

τq−1,j = max
q−1+j≤k≤n

{
τ0,k + (k − q + 1− j)(β − 1) + ε

}
(6.12)

for j = 0, 1, ..., n− q. We now show that (6.7) and (6.8) hold (for q). From (6.11)
and ρ(fq−1,1) ≤ β, we apply the same argument as above to (6.5), and obtain

|Aq,j(z)| ≤ |z|µq,j , |z| 6∈ E,(6.13)

where

µq,j = max
j+1≤k≤n−q+1

{
τq−1,k + (k − j − 1)(β − 1) + ε

}
.(6.14)

From (6.14) and (6.12), we have

µq,j = max
j+1≤k≤n−q+1

{
max

q−1+k≤l≤n
{
τ0,l + (l − q + 1− k)(β − 1) + ε

}
+ (k − j − 1)(β − 1) + ε

}
≤ max

q+j≤l≤n
{
τ0,l + (l − q − j)(β − 1) + 2ε

}
.

(6.15)
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From (6.15), (6.14), and (6.13), we see that (6.7) and (6.8) hold (for q). This
proves the induction step, and therefore completes the proof of Lemma 6.4. �

Next we analyze the particular coefficient Aq,0(z) in (6.4), for use in the proof
of Lemma 6.5 below. From (6.5), we have

Aq,0 = Aq−1,1 +

n−q+1∑
k=2

(
k

1

)
Aq−1,k

f
(k−1)
q−1,1

fq−1,1

= Aq−2,2 +

n−q+2∑
k=3

(
k

2

)
Aq−2,k

f
(k−2)
q−2,1

fq−2,1
+

n−q+1∑
k=2

(
k

1

)
Aq−1,k

f
(k−1)
q−1,1

fq−1,1

= · · · · · ·

= A0,q +
n∑

k=q+1

(
k

q

)
A0,k

f
(k−q)
0,1

f0,1
+

n−1∑
k=q

(
k

q − 1

)
A1,k

f
(k−q+1)
1,1

f1,1

+ · · ·+
n−q+2∑
k=3

(
k

2

)
Aq−2,k

f
(k−2)
q−2,1

fq−2,1
+

n−q+1∑
k=2

(
k

1

)
Aq−1,k

f
(k−1)
q−1,1

fq−1,1

= A0,q +

q+1∑
j=2

Hj ,

(6.16)

where

Hj(z) =

n−q+j−1∑
k=j

(
k

j − 1

)
Aq−j+1,k(z)

f
(k−j+1)
q−j+1,1 (z)

fq−j+1,1(z)
.(6.17)

Then we have the following result.

Lemma 6.5. Under the hypotheses of Lemma 6.4, we have

Aq,0(z) = A0,q(z) +Gq(z),(6.18)

where Gq(z) =
∑q+1

j=2 Hj(z) with Hj(z) given in (6.17). Moreover, Gq(z) satisfies

|Gq(z)| ≤ |z|τq , |z| 6∈ E,(6.19)

where

τq = max
q+1≤k≤n

{
τ0,k + (k − q)(β − 1) + ε

}
.(6.20)

Proof. First note that (6.18) is (6.16) with (6.17). Thus we need only to prove
(6.19) and (6.20).

Let j be fixed, 2 ≤ j ≤ q + 1. From (6.17), we have

|Hj(z)| ≤
n−q+j−1∑

k=j

(
k

j − 1

)
|Aq−j+1,k(z)|

∣∣∣∣∣f
(k−j+1)
q−j+1,1 (z)

fq−j+1,1(z)

∣∣∣∣∣ .(6.21)

Since ρ(fq−j+1,1) ≤ β, we obtain from (6.1), (6.7), and (6.21) that

|Hj(z)| ≤ |z|µj , |z| 6∈ E,(6.22)

where

µj = max
j≤k≤n−q+j−1

{
τq−j+1,k + (k − j + 1)(β − 1) + ε

}
.(6.23)
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However, from (6.23) and (6.8), we have

µj = max
j≤k≤n−q+j−1

{
max

q+k−j+1≤l≤n
{
τ0,l + (l − q − k + j − 1)(β − 1) + ε

}
+ (k − j + 1)(β − 1) + ε

}
≤ max

q+1≤l≤n
{
τ0,l + (l − q)(β − 1) + 2ε

}
.

(6.24)

SinceGq(z) =
∑q+1

j=2 Hj(z), (6.19) and (6.20) follow immediately from (6.22), (6.23),

and (6.24). �

Lemmas 6.6 to 6.9 contain properties of the integers sj and the rational numbers
αj in §2, which we also use in the proof of Theorem 2.

Lemma 6.6. Suppose that sm−j ≤ k < n, where 1 ≤ j ≤ m− 1. Then

dsm−j−1 + (sm−j−1 − k)(αm−j − 1) ≤ dsm−j + (sm−j − k)(αm−j+1 − 1).(6.25)

Proof. If k = sm−j , then (6.25) follows directly from the definition of αm−j in (2.4).
On the other hand, if sm−j < k < n, then using (2.4) we obtain that (6.25) holds

⇐⇒ (sm−j−1 − k)(αm−j − 1) ≤ dsm−j − dsm−j−1 + (sm−j − k)(αm−j+1 − 1)

⇐⇒ (sm−j−1 − k)(αm−j − 1)

≤ (sm−j−1 − sm−j)(αm−j − 1) + (sm−j − k)(αm−j+1 − 1)

⇐⇒ (sm−j − k)(αm−j − 1) ≤ (sm−j − k)(αm−j+1 − 1)

⇐⇒ αm−j ≥ αm−j+1,

which is true from Theorem 1(ii). Lemma 6.6 follows. �

Lemma 6.7. Suppose that sm−j ≤ k < n, where 1 ≤ j ≤ m− 1. Then

dsm−j−1 + (sm−j−1 − k)(αm−j − 1) ≤ dsm−1 + (sm−1 − k)(αm − 1).

Proof. Since sm−j > sm−j+1 > · · · > sm−1, applying Lemma 6.6 repeatedly yields

dsm−j−1 + (sm−j−1 − k)(αm−j − 1) ≤ dsm−j + (sm−j − k)(αm−j+1 − 1)

≤ dsm−j+1 + (sm−j+1 − k)(αm−j+2 − 1) ≤ · · · · · ·
≤ dsm−1 + (sm−1 − k)(αm − 1). �

Lemma 6.8. Suppose that sm+1 ≤ k < n for two positive integers m and k. Then

dk ≤ dsm−1 + (sm−1 − k)(αm − 1).(6.26)

Proof. If sm + 1 ≤ k < sm−1, then by the definition of sm in (2.2) and (2.3), we
have

dk − dsm−1

sm−1 − k
≤ dsm − dsm−1

sm−1 − sm
= αm − 1.

Thus (6.26) holds for such k.
On the other hand, if sm−1 ≤ k < n, then m ≥ 2 and sm−j ≤ k < sm−j−1 for

some j = 1, 2, ...,m− 1. Then by the definition of sm−j, we obtain

dk − dsm−j−1

sm−j−1 − k
≤ dsm−j − dsm−j−1

sm−j−1 − sm−j
= αm−j − 1.(6.27)
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Applying Lemma 6.7 to (6.27) gives

dk ≤ dsm−j−1 + (sm−j−1 − k)(αm−j − 1) ≤ dsm−1 + (sm−1 − k)(αm − 1),

which is (6.26). Lemma 6.8 is proved. �

Lemma 6.9. For all m = 1, 2, ..., p, we have

(n− sm)dsm−1 ≥ (n− sm−1)dsm .(6.28)

Proof. We prove Lemma 6.9 by induction on m. Obviously, (6.28) holds for m = 1,
since s0 = n and ds0 = dn = 0 from (2.5).

Suppose now that (6.28) holds for m = j, 1 ≤ j ≤ p− 1, i.e., suppose that

dsj−1 ≥
n− sj−1

n− sj
dsj .(6.29)

We will show that (6.28) also holds for m = j+1. From the definition of sj in (2.2)
and (2.3), we have

dsj − dsj−1

sj−1 − sj
>
dsj+1 − dsj−1

sj−1 − sj+1
.

Hence

(sj−1 − sj+1)dsj > (sj−1 − sj)dsj+1 + (sj − sj+1)dsj−1 .(6.30)

Substituting (6.29) into (6.30) and simplifying gives

(sj−1 − sj)(n− sj+1)dsj > (sj−1 − sj)(n− sj)dsj+1 ,

which means (6.28) holds for m = j + 1, since the common factor sj−1 − sj (> 0)
on both sides can be deleted. This proves the induction step, and completes the
proof of Lemma 6.9. �

Remark. As mentioned in §2, we now give a new proof of Theorem 1(iii) by using
Lemma 6.1. We show that if s1 = 0, then every nontrivial solution of (1.1) has
order 1 + d0/n.

Suppose to the contrary that there exists a nontrivial solution f of (1.1) which
satisfies ρ(f) < 1 + d0/n. Set β = ρ(f). Then

β = 1 + d0

n − τ,(6.31)

where τ is a positive constant. We will show that this results in a contradiction.
Since s1 = 0, from (2.2) we have

dk ≤ n− k

n
d0, k = 1, 2, ..., n− 1.(6.32)

Since f is a solution of (1.1), we obtain

−p0(z) =
f (n)

f
+ pn−1(z)

f (n−1)

f
+ · · ·+ p1(z)

f ′

f
,

from which it follows that

|p0(z)| ≤
n∑

k=1

∣∣∣∣pk(z)f (k)(z)

f(z)

∣∣∣∣ ,(6.33)

where we set pn(z) ≡ 1.
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Since pk(z) is a polynomial of degree dk and f is of order β, from (6.1) and (6.33)
we obtain that for any given ε > 0,

|p0(z)| ≤
n∑

k=1

|z|dk+k(β−1)+2ε, |z| 6∈ E.(6.34)

From (6.34), (6.32), and (6.31), we have

|p0(z)| ≤
n∑

k=1

|z|d0−kτ+2ε ≤ n |z|d0−τ+2ε, |z| 6∈ E,

which is impossible if we choose 2ε < τ , since d0 = deg p0(z). This proves Theo-
rem 1(iii).

7. Proof of Theorem 2

Assume the contrary, i.e., suppose that for some integer m satisfying 1 ≤ m ≤ p,
an equation of the form (1.1) admits sm + 1 linearly independent solutions with
order less than αm. We show that this assumption results in a contradiction.

We consider two separate cases.
Case (i). Suppose that sm ≥ 1.
We denote these sm + 1 linearly independent solutions of (1.1) by f0,1, f0,2, ...,

f0,sm+1, and we define β to be the maximum order of these sm +1 solutions. Then
our assumption is that

β = max
1≤k≤sm+1

{ρ(f0,k)} < αm.(7.1)

Denote A0,k(z) = pk(z) for k = 0, 1, ..., n − 1. We now perform the method of
reduction of order on equation (1.1), by using these solutions {f0,j} of (1.1). As in
Lemma 6.4, for 1 ≤ q ≤ sm, set

fq,j =

(
fq−1,j+1

fq−1,1

)′
, j = 1, 2, ..., sm + 1− q.(7.2)

From Lemma 6.4, fq,1, fq,2, ..., fq,sm+1−q are linearly independent meromorphic
solutions of equation (6.4). Taking q = sm and using (7.2) and Lemma 6.4, we
obtain that the function f = fsm,1(z) is a nontrivial solution of an equation of the
form

f (n−sm) +Asm,n−sm−1(z)f
(n−sm−1) + · · ·+Asm,0(z)f = 0,(7.3)

where the coefficients Asm,n−sm−1(z), ..., Asm,0(z) are meromorphic functions
which for any given ε > 0 satisfy

|Asm,j(z)| ≤ |z|τsm,j , |z| 6∈ E,(7.4)

where

τsm,j = max
sm+j≤k≤n

{
dk + (k − sm − j)(β − 1) + ε

}
(7.5)

for j = 0, 1, ..., n− sm − 1, and dk = deg pk(z) = degA0,k(z).
Note that ρ(fsm,1) ≤ β. Hence it follows from (7.4), (7.5), and (6.1) that for

j = 0, 1, ..., n− sm − 1,∣∣∣∣∣Asm,j(z)
f

(j)
sm,1(z)

fsm,1(z)

∣∣∣∣∣ ≤ |z|σj , |z| 6∈ E,(7.6)
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where

σj = max
sm+j≤k≤n

{
dk + (k − sm)(β − 1) + 2ε

}
.(7.7)

However, from (7.3) we have

−Asm,0(z) =
f

(n−sm)
sm,1

fsm,1
+

n−sm−1∑
j=1

Asm,j(z)
f

(j)
sm,1

fsm,1
.(7.8)

Therefore, from (7.6), (7.7), and (7.8), we obtain

|Asm,0(z)| ≤ |z|η, |z| 6∈ E,(7.9)

where

η = max
sm+1≤k≤n

{
dk + (k − sm)(β − 1) + 2ε

}
.(7.10)

However, from Lemma 6.5, we have

A0,sm(z) = Asm,0(z)−Gsm(z),(7.11)

where Gsm(z) satisfies (6.19) and (6.20) with q replaced by sm. Hence from (7.9),
(7.11), (6.19), and (6.20) (with q = sm), we obtain

|A0,sm(z)| ≤ |z|η, |z| 6∈ E,(7.12)

where η is the number in (7.10). Here, note that τ0,k = dk + ε in (6.20).
Finally, we will show that (7.12) results in a contradiction. To this end, we will

prove that, for any k satisfying sm + 1 ≤ k ≤ n,

dk + (k − sm)(β − 1) ≤ dsm − α,(7.13)

where α = αm − β > 0 from (7.1). Once (7.13) has been established, then a
contradiction will follow immediately, since from (7.13), (7.12), and (7.10) we obtain

|A0,sm(z)| ≤ |z|dsm−α+2ε,

which is impossible when 2ε < α, because A0,sm(z) = psm(z) is a polynomial of
degree dsm .

To prove (7.13), we will use Lemmas 6.8 and 6.9. We consider the cases sm+1 ≤
k < n and k = n separately.

If sm + 1 ≤ k < n, then from Lemma 6.8 and the definition of αm in (2.4), we
obtain

dk + (k − sm)(β − 1) ≤ dsm−1 + (sm−1 − k)(αm − 1) + (k − sm)(β − 1)

= dsm − α(k − sm)

≤ dsm − α.

(7.14)

On the other hand, from Lemma 6.9, we obtain

(n− sm)(dsm − dsm−1) ≤ (sm−1 − sm)dsm .

Noting that dn = 0, this gives

dn + (n− sm)(β − 1) = (n− sm)(αm − 1)− α(n− sm)

≤ (n− sm)
dsm − dsm−1

sm−1 − sm
− α

≤ dsm − α.

(7.15)
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Therefore, from (7.15) and (7.14), we see that (7.13) holds for all sm+1 ≤ k ≤ n.
This proves (7.13), which completes the proof of Case (i).

Case (ii). Suppose that sm = 0.
In this case, m = p and sp = 0. We thus need to show that equation (1.1) does

not admit a nontrivial solution with order less than αp.
To this end, we assume that there exists a solution f0 6≡ 0 of (1.1) with ρ(f0) <

αp. Then, by Theorem 1(i), f0 must be a polynomial.
From (1.1), we obtain

−p0(z) = p1(z)
f
′
0

f0
+ · · ·+ pn−1(z)

f
(n−1)
0

f0
+
f

(n)
0

f0
.(7.16)

Since f0 is a polynomial, it follows from (7.16) that

d0 ≤ max
1≤k≤n−1

{
dk − k

}
.(7.17)

Applying Lemma 6.8 with m = p gives

dk ≤ dsp−1 + (sp−1 − k)(αp − 1)(7.18)

for all 1 ≤ k ≤ n− 1, since sp = 0. Therefore, from (7.18), the definition of αp in
(2.4), and the fact that sp = 0, we obtain for any 1 ≤ k ≤ n− 1,

dk − k ≤ dsp−1 − k + (sp−1 − k)(αp − 1)

= d0 +
k

sp−1
(dsp−1 − d0 − sp−1).

(7.19)

Since αp > 0 and sp = 0, it follows from the definition of αp in (2.4) that dsp−1 <
sp−1 + d0. Hence from (7.19), we obtain dk − k < d0 for all k = 1, 2, ..., n− 1. But
this contradicts (7.17).

This proves Case (ii), and thus completes the proof of Theorem 2.

8. Examples

In this section we give several examples which illustrate the sharpness of our
results and which also exhibit some possibilities that can occur.

Example 1. We now exhibit a special contour integral solution f = G(z) of the
third order differential equation

f ′′′ − zf ′′ − f = 0(8.1)

which satisfies ρ(G) = 1/2. This gives equality in (2.7) when n = 3.
We define the function G(z) as follows:

G(z) =

∫
KR

exp

{
z

w
− 1

2w2
− w

}
dw, where KR : |w| = R (R > 0).(8.2)

For any fixed z, the integrand in (8.2) is analytic for all w 6= 0. From Cauchy’s
theorem it follows that for any fixed z, the value of G(z) is independent of R > 0.
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From (8.2) we obtain

G′′′(z)− zG′′(z)−G(z) =

∫
KR

(
1

w3
− z

w2
− 1

)
exp

{
z

w
− 1

2w2
− w

}
dw

=

∫
KR

∂

∂w
exp

{
z

w
− 1

2w2
− w

}
dw

=

[
exp

{
z

w
− 1

2w2
− w

}]
KR

= 0,

since KR is a closed curve. Thus f = G(z) is a solution of equation (8.1).
Now note that equation (8.1) cannot possess a nontrivial polynomial solution.

Hence it follows from Theorem 1(i) that we must have exactly one of the following:

ρ(G) = 2, ρ(G) = 1/2, or G ≡ 0.(8.3)

We will show that ρ(G) = 1/2.
We first prove that G 6≡ 0. To prove this, we show that G′(0) 6= 0. Since the

value of G(z) is independent of R > 0 in (8.2), we use R = 1 and obtain

G′(0) =

∫
K1

1

w
exp

{
− 1

2w2
− w

}
dw =

∫ π

−π
i exp

{
− 1

2ei2θ
− eiθ

}
dθ.(8.4)

We break this expression into real and imaginary parts. The real part of the
integrand is an odd function, while the imaginary part of the integrand is an even
function. This gives

G′(0) = 2i

∫ π

0

exp

{
−cos 2θ

2
− cos θ

}
cosL(θ) dθ,(8.5)

where

L(θ) =
sin 2θ

2
− sin θ.(8.6)

Consider now the function L(θ) in (8.6). Since

L′(θ) = cos 2θ − cos θ = 2 cos2 θ − 1− cos θ = (2 cos θ + 1)(cos θ − 1),

we obtain L′(θ) < 0 for 0 < θ < 2π
3 and L′(θ) > 0 for 2π

3 < θ < π. Also,

L(0) = L(π) = 0 and L(2π
3 ) < 0. Hence, L(θ) < 0 for 0 < θ < π. More specifically,

we have

−π
2 < − 3

√
3

4 = L(2π
3 ) ≤ L(θ) < 0 for 0 < θ < π,

which implies that cosL(θ) > 0 for 0 < θ < π. Then from (8.5) we obtain that
G′(0) 6= 0. Hence

G 6≡ 0.(8.7)

We next show that ρ(G) ≤ 1/2. To see this, let z 6= 0 be fixed, and choose

R =
√|z| > 0 in (8.2), i.e., KR : |w| = √|z|. Then

|G(z)| ≤
∫
KR

exp

{ |z|
|w| +

1

2|w|2 + |w|
}
|dw| = 2π

√
|z| exp

{
2
√
|z|+ 1

2|z|
}
.

By letting z →∞, we see that ρ(G) ≤ 1/2. By combining this fact with (8.7) and
(8.3), we obtain that ρ(G) = 1/2. Since f = G(z) satisfies equation (8.1), this is
an example where the inequality (2.7) becomes an equality in the case when n = 3.
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We also mention the following observation. By differentiating equation (8.1) and
then adding the resulting equation to (8.1), we obtain that f = G(z) is a solution
of the fourth order equation

f (4) + (1− z)f ′′′ − (1 + z)f ′′ − f ′ − f = 0.

Continuing in this manner, we see that for any n ≥ 3 we can obtain a particular
equation of the form (1.1) that possesses a solution of order 1/2, namely, f = G(z).

Remark. For n ≥ 2, consider an equation of the form

f (n) + p(z)f (n−1) + cn−2f
(n−2) + · · ·+ c1f

′ + c0f = 0,(8.8)

where c0, c1, ..., cn−2 are all constants (c0 6= 0) and p(z) is a polynomial of degree
n − 2. From Theorem 1(i), there are two possible orders α1 = n − 1 and α2 =
1/(n− 1) of transcendental solutions of equation (8.8). Wittich [8], [9, pp. 65–68]
indicates that there always exists a solution f = ψ(z) of equation (8.8) that satisfies
ρ(ψ) = 1/(n− 1), which gives an equality in (2.7) for all n ≥ 2.

Examples 2 through 6 below illustrate the sharpness of Corollary 1, Theorem 2,
and Corollary 5, and are also examples of Theorem 1.

Example 2. Let q1, q2, ..., qn be any n distinct integers that satisfy

0 < q1 < q2 < ... < qn.

We construct an equation of the form (1.1) which possesses n distinct solutions
f1, f2, ..., fn satisfying ρ(fk) = qk for 1 ≤ k ≤ n. This illustrates the sharpness of
Corollary 1 and Theorem 2. Furthermore, the equation of the form (1.1) that we
construct satisfies d0 = deg p0 = q1+q2+· · ·+qn−n, which means that this is a sharp
example for Corollary 5, because (2.11) becomes an equality (= q1 + q2 + · · ·+ qn).

We construct the equation as follows. Set

A1,0(z) = −q1zq1−1.

Then f1(z) = exp(zq1) is a solution of the equation

L1(f) = f ′ +A1,0(z)f = 0,(8.9)

and ρ(f1) = q1.
Since f1 is a solution of (8.9), f1 is also a solution of the two equations

f ′′ + A1,0(z)f
′ +A

′
1,0(z)f = 0(8.10)

and

zq2−1f ′ + zq2−1A1,0(z)f = 0.(8.11)

By adding (8.10) and (8.11), we obtain that f1 is a solution of the equation

L2(f) = f ′′ +A2,1(z)f
′ +A2,0(z)f = 0,(8.12)

where A2,1(z) = zq2−1 +A1,0(z) and A2,0(z) = zq2−1A1,0(z) +A
′
1,0(z). Note that

L2(f) = zq2−1L1(f) +
d

dz
(L1(f)).

Since 0 < q1 < q2, A2,1(z) is a polynomial of degree q2 − 1. We also note that
degA2,0 = q1 + q2 − 2. Now let f2 be any solution of (8.12) such that f1 and f2
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are linearly independent. From (8.12) and Abel’s identity [4, p.16], the Wronskian
W (f1, f2) satisfies

W (f1, f2) = C exp

(∫
−A2,1(z) dz

)
for some constant C 6= 0. Since ρ(f1) = q1 and ρ(W (f1, f2)) = 1 + degA2,1 = q2 >
q1, we conclude that ρ(f2) ≥ q2. However, from (1.2) and (1.3), we have

ρ(f2) ≤ 1 + max

{
degA2,1,

degA2,0

2

}
= 1 + max

{
q2 − 1,

q1 + q2 − 2

2

}
= q2.

Hence ρ(f2) = q2. (Note: Alternatively, it also follows from Corollary 3 that we
must have ρ(f2) = q2.) Therefore, f1 and f2 are solutions of equation (8.12) such
that ρ(fk) = qk for k = 1, 2.

Continuing in this manner, we can contruct the desired general example. Namely,
we define

Lj(f) = zqj−1Lj−1(f) +
d

dz
(Lj−1(f))

for 3 ≤ j ≤ n. Then by the same argument as above, it can be shown that the j-th
order linear differential equation Lj(f) = 0 admits j solutions f1, f2, ..., fj such that
ρ(fk) = qk for k = 1, 2, ..., j. Furthermore, the coefficient of f in the differential
equation Lj(f) = 0 is a polynomial of degree q1 + q2 + · · ·+ qj − j.

Example 3. The equation

f ′′′ − f ′′ + zf ′ − zf = 0(8.13)

possesses the solution f1 = ez, and, by Corollary 3, a solution f2 satisfying ρ(f2) =
3/2. For this equation we have p = 2, s1 = 1, s2 = 0, α1 = 3/2, and α2 = 1. This
gives a sharp example for Corollary 1 and Theorem 2.

It can also be deduced that this gives a sharp example for Corollary 5. Specifi-
cally, since α1 = 3/2 and α2 = 1, it follows from Theorem 2 or Corollary 5 that there
exists a third solution f3 of (8.13) that satisfies ρ(f3) = 3/2, such that {f1, f2, f3}
is a fundamental set of solutions of (8.13). Hence for the fundamental solution set
{f1, f2, f3}, we obtain the equality 4 = 4 in (2.11).

Example 4. The equation

f (4) − f ′′′ + zf ′ − zf = 0

possesses the solution f1 = ez, and, by Corollary 3, a solution f2 satisfying ρ(f2) =
4/3. For this equation we have p = 2, s1 = 1, s2 = 0, α1 = 4/3, and α2 = 1. This
gives a sharp example for Corollary 1 and Theorem 2. By reasoning similar to that
in Example 3, we can deduce that this also gives a sharp example for Corollary 5,
because we can obtain the equality 5 = 5 in (2.11).

Example 5. The equation

f (4) + (8z3 − 13)f ′′ − (16z4 + 16z3 + 12z2 + 4z + 2)f ′

+ (16z4 + 8z3 + 12z2 + 4z + 14)f = 0

possesses the solutions f1 = ez and f2 = ez
2

, and, by Corollary 3, a solution f3
satisfying ρ(f3) = 5/2. For this equation we have p = 3, s1 = 2, s2 = 1, s3 =
0, α1 = 5/2, α2 = 2, and α3 = 1. This gives a sharp example for Corollary 1,
Theorem 2, and (by reasoning similar to that in Example 3) Corollary 5.
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Example 6. Let q and n be integers satisfying 2 ≤ q ≤ n, and consider the
equation

f (n) − 1

(q − 1)!
zq−1f (q−1) +

1

(q − 2)!
zq−2f (q−2) − · · ·

+ (−1)q−1zf ′ + (−1)qf = 0.

(8.14)

Observe that equation (8.14) has the q−1 linearly independent polynomial solutions
fk(z) = zk, k = 1, 2, ..., q − 1. For equation (8.14), we have p = 1, s1 = q − 1, and
α1 = n/(n− q + 1). Therefore, we see that equation (8.14) gives a sharp example
for Theorem 2 and Corollary 4.

Moreover, from Theorem 2 or Corollary 5, we deduce that there exist n− q + 1
linearly independent solutions g1, g2, ..., gn−q+1 of (8.14) that satisfy ρ(gj) = α1 =
n/(n−q+1) for each 1 ≤ j ≤ n−q+1, and that {g1, g2, ..., gn−q+1, z, z

2, ..., zq−1}
forms a fundamental set of solutions of (8.14). Hence equation (8.14) also gives a
sharp example for Corollary 5.

In the special case when q = n, equation (8.14) is an equation of order n that
possesses n − 1 linearly independent polynomial solutions and a transcendental
solution of order n.

Example 1 is an example of an equation of the form (1.1) that possesses a special
contour integral solution of order 1/2. The next example is another equation of the
form (1.1) that possesses a special transcendental contour integral solution with
order less than one.

Example 7. We now show that there exists a special contour integral solution
f = H(z) of the fourth order equation

f (4) − zf ′′′ − f = 0(8.15)

which satisfies ρ(H) = 2/3. Then by the technique given at the end of Example
1, we see that for any n ≥ 4, there will exist an equation of the form (1.1) that
possesses a solution of order 2/3.

We define the function H(z) as follows:

H(z) =

∫
C

exp

{
z√
2w

− 1

4w
− w

}
dw,(8.16)

where C is the contour defined by C = C1 + C2 + C3 with

C1 : w = r eiπ/4, r goes from +∞ to 1,

C2 : w = eiθ, θ goes from π/4 to 7π/4,

C3 : w = r ei7π/4, r goes from 1 to +∞,

and where
√

2w is defined by the branch
√
ζ = exp{ 1

2 log |ζ|+ i 12 arg ζ}, 0 < arg ζ <
2π.

From (8.16),

H(4)(z)− zH ′′′(z)−H(z) =

∫
C

(
1

4w2
− z

(2w)3/2
− 1

)
exp

{
z√
2w

− 1

4w
− w

}
dw

=

[
exp

{
z√
2w

− 1

4w
− w

}]
C

= 0.

Thus f = H(z) is a solution of equation (8.15).
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Since equation (8.15) cannot possess a nontrivial polynomial solution, it follows
from Theorem 1(i) that we must have exactly one of the following:

ρ(H) = 2, ρ(H) = 2/3, or H ≡ 0.(8.17)

We will show that ρ(H) = 2/3.
We will first show that H 6≡ 0 by calculating that H(0) 6= 0. From (8.16),

H(0) =

∫
C

exp

{
− 1

4w
− w

}
dw.(8.18)

By appealing to Cauchy’s theorem, it can be deduced that the contour C in (8.18)
can be replaced by the unit circle |w| = 1. Then, from the residue theorem, we
obtain

H(0) =

∫
|w|=1

exp

{
− 1

4w
− w

}
dw = 2πiRes(g(w), 0),(8.19)

where

g(w) = exp

{
− 1

4w
− w

}
=

∞∑
k=0

(− 1
4w − w

)k
k !

.(8.20)

From inspection of (8.20), we see that the even terms in the series contribute only
even powers of w and thus contribute 0 to Res(g(w), 0), while the odd terms in the
series contribute only odd powers of w with negative constant factors. Therefore,
Res(g(w), 0) < 0. Hence from (8.19), H(0) 6= 0. Thus

H 6≡ 0.(8.21)

We next show that ρ(H) ≤ 2/3. By appealing to Cauchy’s theorem, it can be
seen that we can replace the contour C in (8.16) with the following curve γR, R > 1:
γR = K1 +K2 +K3, where

K1 : w = x+ i, x goes from +∞ to
√
R2 − 1,

K2 : w = Reiθ, θ goes from arctan

(
1√

R2 − 1

)
to 2π − arctan

(
1√

R2 − 1

)
,

K3 : w = x− i, x goes from
√
R2 − 1 to +∞.

Then

H(z) =

∫
γR

exp

{
z√
2w

− 1

4w
− w

}
dw,

where for a fixed value of z, the value of H(z) is independent of R > 1.
Now for any fixed z satisfying |z| > 1, we choose R = |z|2/3. Then

|H(z)| ≤
∫
γR

exp

{
|z|√
2|w| +

1

4|w|

} ∣∣e−w∣∣ |dw| ≤ exp

{ |z|2/3√
2

+
1

4

}∫
γR

∣∣e−w∣∣ |dw|
and ∫

γR

∣∣e−w∣∣ |dw| < e|z|
2/3 · 2π|z|2/3 + 2

∫ ∞

1

e−xdx.

It follows that ρ(H) ≤ 2/3. Therefore, from (8.21) and (8.17), we obtain that
ρ(H) = 2/3. Since f = H(z) satisfies (8.15) and ρ(H) = 2/3, this proves the
assertion.
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Example 8. Theorem 1 gives all the possible orders α1, α2, ..., αp of transcendental
solutions of equation (1.1). This example shows that not every value αj , j =
1, 2, ..., p, is necessarily attained as the order of a solution of (1.1). Consider the
equation

f ′′ + z3f ′ − (z4 + z2)f = 0.(8.22)

Here p = 2, α1 = 4, and α2 = 2. So 4 and 2 are the only possible orders for
transcendental solutions of (8.22). Clearly, (8.22) does not possess a nontrivial
polynomial solution. Moreover, if f is any transcendental solution of (8.22), and if
we set

v = f e−
1
2 z

2

,(8.23)

then v is a solution of the equation

v′′ + (z3 + 2z)v′ + v = 0.(8.24)

Obviously, (8.24) does not admit a nontrivial polynomial solution. From Theo-
rem 1(i), all transcendental solutions of (8.24) have order 4. Hence from (8.24) and
(8.23), we conclude that ρ(f) = 4. Therefore, all solutions f 6≡ 0 of (8.22) satisfy
ρ(f) = α1 = 4, and (8.22) does not admit any solution with order α2 = 2.

Example 9. From Theorem 1(iii), if

deg pk
n− k

≤ deg p0

n
(8.25)

holds for all k = 1, 2, ..., n− 1, then all solutions f 6≡ 0 of (1.1) satisfy ρ(f) = λ =
1 + deg p0/n. Example 8 shows that (8.25) is not a necessary condition to ensure
that all solutions of (1.1) have the maximum possible order λ; see (1.2) and (1.3).
Here is another example.

Consider the equation

f ′′′ + z5f ′′ + z2f ′ + z2f = 0.(8.26)

Here we have p = 1 and α1 = λ = 6. Hence, by Theorem 1(i), all transcendental
solutions of (8.26) have order λ. Clearly, (8.26) does not have a nontrivial polyno-
mial solution. Therefore, all nontrivial solutions of (8.26) have order λ = 6, and
equation (8.26) does not satisfy the condition (8.25).
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