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falciparum — along the coasts of the Gulf of Guinea 
and the East African Rift Valley during their migra-
tion to southern Africa. The host switch of the ances-
tor of the falciparum malaria parasite likely occurred 
in these regions.

Résumé Environ 96% de tous les décès dus au 
paludisme surviennent en Afrique, et le paludisme 
malin à falciparum est également originaire du con-
tinent. Bien que le paludisme à falciparum ne soit 
apparu qu’à l’Holocène, on peut émettre l’hypothèse 
que le transfert de parasites du paludisme d’autres 
primates à l’homme s’est produit plusieurs fois dans 
l’histoire parallèlement à l’évolution humaine. Cette 
étude développe le modèle qui examine la coexistence 
possible des singes hôtes d’origine potentiels, des an-
cêtres humains et des diverses espèces de moustiques 
anophèles; et comment, où et quand s’est produit le 
changement d’hôte de ces parasites des grands singes 
aux humains. Sur la base des sites archéologiques du 
Pliocène et du Pléistocène inférieur, il a été constaté 
que certaines populations d’hominidés précoces au-
raient pu vivre dans des zones de paludisme où la 
faune de moustiques anophèles était modérément di-
versifiée. Les peuples de la culture lupemban, ainsi 
que les populations humaines groenlandaises et nor-
dgrippiennes d’Afrique orientale et centrale occiden-
tale, vivaient à proximité de la grande diversité de la 
faune anophèle et des territoires de grands singes tels 
que Gorilla gorrilla. Les cultures africaines du milieu 
de l’Holocène sont probablement entrées en contact 

Abstract About 96% of all malaria deaths occur 
in Africa, and the malignant falciparum malaria also 
originated on the continent. Although falciparum 
malaria only appeared in the Holocene period, it can 
be hypothesized that the transfer of malaria parasites 
from other primates to humans occurred several times 
in history parallel to human evolution. This study 
develops the model that examines the possible coex-
istence of the potential original host apes, human 
ancestors, and the diverse anopheline mosquito spe-
cies; and how, where, and when the host switch of 
these parasites from great apes to humans occurred. 
Based on the Pliocene-early Pleistocene archaeologi-
cal sites, it was found that certain early hominin pop-
ulations could have lived in malaria areas where the 
anopheline mosquito fauna was moderately diverse. 
The people of the Lupemban Culture, as well as the 
Greenlandian and Northgrippian human populations 
of East and West-Central Africa, lived close to the 
high diversity of anopheline fauna and the territories 
of such great apes as Gorilla gorrilla. African mid-
Holocene cultures likely came in contact with gorilla 
populations — the original hosts of Plasmodium 
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avec des populations de gorilles—les hôtes origin-
aux de Plasmodium falciparum—le long des côtes du 
golfe de Guinée et de la vallée du Rift est-africain lors 
de leur migration vers l’Afrique australe. Le change-
ment d’hôte de l’ancêtre du parasite du paludisme fal-
ciparum s’est probablement produit dans ces régions.

Keywords Malaria origins and host switch · 
Mosquito fauna diversity · Pliocene-early 
Pleistocene · Mid-Holocene · Africa

Introduction

Based on the WHO’s World Malaria Report (WHO, 
2020), the number of global estimated malaria cases 
in 2019 was about 229 million worldwide. Of the 
87 countries where malaria is endemic, 29 countries 
accounted for 96% of malaria cases globally. The 
African region accounted for 215 million cases, and 
384,000 deaths were estimated in 2019. In Southeast 
Asia, 6.3 million malaria cases and 9,000 deaths were 
recorded in the same year. Five Plasmodium species 
are known to infect humans, and from these species, 
Plasmodium vivax (Grassi & Feletti, 1890) and Plas-
modium falciparum (Welch, 1897) are responsible for 
more than 95% of human infections (Larson, 2019). 
However, the global proportion of cases due to P. 
vivax  was only about 3% in 2019 (Daron et al., 2020). 
Plasmodium falciparum is responsible for almost all 
human malaria cases in sub-Saharan Africa.

Malaria in sub-Saharan Africa has been almost 
exclusively attributed to P. falciparum for a long 
time, but P. vivax is being reported more frequently 
from Africa in recent publications. It can be much 
more prevalent there than previously thought 
because, in 2015, the direct transmission of the 
pathogen was already found in 21 of the 47 malaria-
endemic countries (Howes et  al., 2015). For now, 
there is evidence of P. vivax in all regions of Africa 
(Twohig et al., 2019), and it occurs in all areas where 
the annual precipitation sum is no less than 200 mm. 
Today, P. falciparum has a worldwide distribution. 
It is found in the African mainland, Madagascar, the 
Arabian Peninsula, Latin America, and South Asia 
(Kigen, 2019).

In contrast to its present-day global occurrence, it 
is plausible that P. falciparum originated in Africa 
from a Laverania ancestor due to a host switch 

between Gorilla species and humans in the early to 
mid-Holocene era (Loy et al., 2017). Loy et al. (2017) 
found that the observed level of genetic diversity in 
P. falciparum could have readily accumulated within 
the past 10 ky. It could explain why P. falciparum dif-
fers from other human malaria Plasmodium species 
in many aspects of its biology, particularly its viru-
lence (Sundararaman et al., 2016). However, this very 
late origin time can be only valid for the appearance 
of the present-day widespread and highly malignant 
evolutionary line of P. falciparum. Silva et al. (2011) 
found that the divergence of P. falciparum and Plas-
modium reichenowi Sluiter, Swellengrebel,and Ihle, 
1922  (a chimpanzee malaria parasite) could have 
occurred ca. 3.0–5.5 Mya. Interestingly, the aver-
age divergence time value, 4.25 Mya, is close to the 
4.2–3.8 Mya-age fossils of the earliest-known homi-
nin, Australopithecus anamensis  (Ward et al., 1999). 
This early australopithecine clearly shows the ana-
tomical traits of the human clade but does not exhibit 
anatomical features characteristic of the chimpanzee 
lineage (Kimbel et al., 2006).

Although indirect evidence suggests that differ-
ent malaria parasites influenced the human evolu-
tion both in Africa and Europe (Trájer, 2021; Trájer 
et al., 2020), the estimation of the possible time and 
place of the host switch of ancient Plasmodium spe-
cies — apart from the molecular genetic evidence — 
is difficult to test. There are no elaborated and widely 
accepted methods that could help to test the genetic-
based hypothesis. The direct evidence for the genetic 
traits of the parasites and other infectious agents 
is rare. The exceptions include the leishmaniasis-
infected ancient Egyptian mummies and the remains 
of formerly malaria-infected ancient Roman individu-
als (Marciniak et al., 2016; Zink et al., 2006). Due to 
the relative rarity of well-preserved human remains 
older than the Holocene era and the effect of the dia-
genetic processes during fossilization, the probability 
of finding the molecular trait of ancient parasites is 
low. However, the extraction of nuclear sequences 
from the 430,000  years old Sima de Los Huesos 
hominin remains signals more possibilities in the near 
future (Meyer et al., 2016).

The presence of falciparum malaria and tuberculo-
sis were also confirmed in ancient Egyptian mummies 
(Lalremruata et al., 2013). Sometimes, as indirect evi-
dence, palaeopathological signs like the leishmania-
sis-related bone lesions or cribra orbitalia in the case 
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of malaria infections indicate the past presence of a 
parasitic disease in an area (e.g., Costa et  al., 2009; 
Gerszten et  al., 2012; Gowland & Western, 2012; 
Obertová & Thurzo, 2008). It is known that exosto-
sis was a prevalent disease among Homo erectus indi-
viduals, and the clear skeletal signs of arthritis, per-
haps the tuberculosis of the spine, and generalized 
syphilitic osteomyelitis-like signs have been observed 
in Neanderthals (Theodorakopoulou & Karamanou, 
2020). However, one must exercise caution in inter-
preting the ancient osteologic malformations. On the 
one hand, ancient infectious diseases are not known, 
and a given skeletal lesion can be traced back to dif-
ferent causes. On the other hand, infections, tumors, 
malnutrition, and autoimmune processes can also 
result in similar skeletal lesions. Of greater relevance 
to  the present study is that the earliest hyperostotic 
lesion was observed on a 1.5-million-year-old homi-
nin remain found in the Olduvai Gorge, Tanzania 
(Domínguez-Rodrigo et  al., 2012). Although porotic 
hyperostosis can also be the consequence of other 
hemolytic anemias, like sickle cell and thalassemia, 
the strongest correlation exists between malaria and 
the prevalence of this lesion in the tropical regions 
(Angel, 1966). It should also not be forgotten that 
high frequencies of α-thalassemia and sickle cell ane-
mia result from natural selection caused by malaria 
(Flint et  al., 1986; Kariuki & Williams, 2020; Luz-
zatto, 2012).

A possible indirect way to test hypotheses related 
to the past presence of malaria in an area, via a 
coexistence approach, is to investigate whether the 
elements of the vector chain, namely the anophe-
line mosquito vectors, the possible host primates, 
and human hosts, could be present in an area at the 
same time or not (Trájer, 2021). It can be hypoth-
esized that the diversity of the anopheline malaria 
vectors influences the possibility of host switch due 
to several causes. For example, human-made frag-
mented habitats can increase the anopheline mos-
quito diversity, leading to the higher prevalence of 
both human and simian malaria in these sites (Mul-
tini et al., 2020). It is also known that the areas with 
the greatest Anopheles abundance are also those 
where the highest diversity of anopheline mosquito 
species can be observed (Gomes et al., 2020). These 
facts indicate a strong correlation between anophe-
line mosquito diversity, abundance, and malaria 
prevalence. Given these relationships, it would 

be difficult to assume that the likelihood of a host 
change of malaria parasites would not be substan-
tially affected by the same factors. It was observed 
that even in the case of two malaria mosquito spe-
cies, the genetic diversity of P. falciparum could be 
high (Annan et al., 2007), and this genotypic diver-
sity is an essential factor in the host switch prob-
ability. Haemosporidians (Phylum Apicomplexa), 
including malaria parasitic agents, are transmitted 
by several hematophagous vectors like mosquitoes, 
sandflies, louse flies, biting midges, and blackflies. 
The mosaic of the competent vectors and the differ-
ent parasites related to the susceptible reptile, bird, 
and mammal species indicates that vector switches 
between the vector insects occurred multiple times 
(Martinsen et al., 2008). It is very plausible that the 
ability of malaria parasites to radiate in the world 
was strongly influenced by their propensity to shift 
among different host species, as observed in the 
Amazonian avian malaria species (Fecchio et  al., 
2018).

Host switches occurred between primates and 
ancient humans. It is known that primates have 
several of their own Plasmodium pathogens. For 
example, Pan and Gorilla species harbor several 
protozoan species in close relationship with human 
P. vivax (Loy et  al., 2018). Japanese macaques and 
cynomolgus macaques also have closely related P. 
vivax-like malaria parasites (Tachibana et al., 2015). 
All these show that primates are hosts of several 
malaria parasites that, based on the evolutionary 
process of host switch, could become the agents of 
human malaria forms. However, considering the pos-
sibility of host switch, it should be known that nei-
ther the malaria vectors’ human blood preference nor 
the parasite transmission potential is the same. For 
example, the potential malaria vectors in Hungary 
(Central Europe) do not prefer human blood (Trájer, 
2018), which is intriguing in the sense that malaria 
was endemic in the country (Szénási et  al., 2003). 
The vector capability of a malaria mosquito can 
also depend on the climate in a region. For example, 
Anopheles superpictus can transmit both P. vivax and 
P. falciparum (Aytekin et al., 2009), due to the Med-
iterranean-Middle Eastern-Central Asian occurrence 
of this mosquito (Sinka et  al., 2012) and the rela-
tively high-temperature threshold of P. falciparum 
(18 °C compared to the 15 °C threshold of P. vivax; 
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Patz & Olson, 2006). However, An. superpictus is a 
dominant vector of P. vivax in their occurrence area, 
not P. falciparum.

It should also be noted that one parasite could 
also have several vectors depending on the climate, 
vegetation, and other ecological factors. In the trop-
ical rainforest of Africa, Anopheles funestus  and 
Anopheles gambiae  are the main vectors of P. fal-
ciparum because these mosquitoes prefer the con-
tinuously humid and hot climate of Central Africa 
(Sinka et al., 2012). The secondary but still impor-
tant malaria vectors are Anopheles moucheti  and  
Anopheles  nili. In the forested savanna environ-
ments, An. funestus, An. gambiae, and  Anophe-
les arabiensis are the primary vectors of falciparum 
malaria. In the savanna-type settings, these are An. 
funestus and An. arabiensis, and in the Sahel, An. 
arabiensis plays the role of the primary vector of P. 
falciparum. In addition, the coastal areas of West, 
Central, and East Africa have different mosquito 
assemblages in the case of the secondary vectors. 
The above-described fact indicates several limita-
tions of host switch on the side of the vectors, the 
hosts, and the parasites. These facts do not con-
tradict the probability of frequent host switches of 
Plasmodium species between apes and humans dur-
ing the evolutionary history of the human species 
and their relatives.

Materials and Methods

This study follows these steps to understand when and 
where the host switches of malaria parasites between 
primates and ancient humans might have occurred in 
Africa.

(1) It conducts a palaeoenvironmental characteriza-
tion of Pliocene and Pleistocene habitats where 
the coevolution of ancient hominins and malaria 
Plasmodium species could have occurred.

(2) The climatic suitability patterns of the malaria 
mosquito fauna were modeled for different Plio-
cene and Quaternary periods.

(3) The climatic determinants of the distribution of 
the high diversity malaria mosquito (anopheline) 
fauna and the extant Gorilla genus were deter-
mined and modeled for the Greenlandian and the 
Northgrippian periods.

(4) The modeled diversity values of the anopheline 
mosquito fauna and the climatic suitability val-
ues of Gorilla species were compared (depending 
on the period) to the occurrence of Pliocene and 
Pleistocene hominins and mid- and late Pleisto-
cene humans, including the sites of the Lupem-
ban Culture and the Neolithic farmers in Africa.

Climate Data

The climate data of the reference period (1970–2000) 
was obtained from the WordClim climate database 
(WorldClim version 2.1; Fick and Hijmans, 2017). 
The palaeoclimatic data of these other periods were 
also used: the Greenlandian and Northgrippian parts 
of the Holocene; three stages of the Pleistocene era: 
the MIS9 period, the Last Interglacial Period, and the 
Last Glacial Period; and the Middle Pliocene (mid-
Pliocene warm period and the Marine isotope stage 
M2 period). These palaeoclimatic reconstructions 
originated from the PaleoClim database (Brown et al., 
2018). Table 1 contains the details of the referenced 

Table 1  The climate 
models used in this study

Climate model Period Reference

WorldClim version 2.1 1970–2000 Fick and Hijmans (2017)
mid-Holocene, Northgrippian v1.0 8.326–4.2 ka Fordham et al. (2017)
early-Holocene, Greenlandian v1.0 11.7–8.326 ka Fordham et al. (2017)
Last Interglacial v1.0 130 ka Otto-Bliesner et al. (2006)
Last Glacial Maximum, v1.2b, NCAR CCSM4 21 ka Karger et al. (2021)
mid-Pleistocene MIS19 v1.0 787 ka Brown et al. (2018)
mid-Pliocene warm period v1.0 3.205 Ma Hill (2015)
mid-Pliocene M2 cold period v1.0 3.3 Ma Dolan et al. (2015)
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climate models. For modeling purposes, 11 temper-
ature-like and eight precipitation-nature bioclimatic 
variables were used (Table 2).

Archaeological Site and Gorilla Occurrence Data

The purpose of this study is to make visible the 
environment in which ancient people lived as this 
relates to the host switch probability of malaria 
Plasmodium species. The Gorilla species is used in 
the study to represent the great apes since falcipa-
rum malaria possibly originated in this genus (Liu 
et al., 2010).

The sources of the archaeological sites and gorilla 
distribution data are the following:

(1) Pliocene and the early Pleistocene occurrence of 
fossil hominin species and the accompanying fos-
sil fauna were gained from the Fossilworks data-
base (Alroy et al., 2018).

(2) The Lupenbam culture-related archaeological site 
data that represents one of the Middle Stone Age 
cultures of Central and West Africa were gained 
from Taylor (2011, 2016).

(3) The Neolithic archaeological data of Africa was 
based on the publications by Brooks et al. (2009, 
North Africa), Shoemaker and Davies (2019, 
East Africa), and Sadr (2003, South Africa).

(4) The present distribution of Gorilla species was 
based on the publication by McRae and Aronsen 
(2018; Fig. 1).

Environmental Interpretation of the Fossil Zoological 
Data

Hadar (Ethiopia), the West and East Turkana region 
(Kenya), and Chad were selected as sample regions 
for early hominids. Unlike other parts of the conti-
nent, these areas present examples of early to mid-
Pliocene, mid-Pliocene, and early Pleistocene ancient 
hominin-related fossil sites. Supplementary Table  1 
contains the essential data about the formation, age, 
and palaeoenvironments of the collecting areas.

To create a more sensible characterization method 
related to the dryness/wetness of the ancient tapho-
nomical conditions, the plausible environmental 
requirements of the fossil species were estimated 

Table 2  The description of 
the referenced bioclimatic 
variables

Bioclimatic vari-
ables

Description Unit

BIO1 Annual mean temperature °C
BIO2 Mean diurnal range (mean of monthly (max temp − min temp)) °C
BI03 Isothermality (BIO2/BIO7) (× 100) °C
BIO4 Temperature seasonality (standard deviation × 100) °C
BIO5 Max temperature of warmest month °C
BIO6 Min temperature of coldest month °C
BIO7 Temperature annual range (BIO5–BIO6) °C
BIO8 Mean temperature of wettest quarter °C
BIO9 Mean temperature of driest quarter °C
BIO10 Mean temperature of warmest quarter °C
BIO11 Mean temperature of coldest quarter °C
BIO12 Annual precipitation mm
BIO13 Precipitation of wettest month mm
BIO14 Precipitation of driest month mm
BIO15 Precipitation seasonality (coefficient of variation) mm
BIO16 Precipitation of wettest quarter mm
BIO17 Precipitation of driest quarter mm
BIO18 Precipitation of warmest quarter mm
BIO19 Precipitation of coldest quarter mm
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based on their living relatives in Africa. The classifi-
cation categories were as follows:

(1) Dry (fully terrestrial) environments ( +): deserts, 
semi-deserts, rocky environments.

(2) Moderately dry environments (+ +): open wood-
lands, grasslands, forests, and bushlands (drier 
mesic environment).

(3) Moderately wet (semi-aquatic) environments 
(+ + +): floodplains, swamps, marshlands. Gal-
lery forests (wetter mesic environment).

(4) Wet environments (+ +  + +): freshwater lakes, 
rivers, and brackish waters.

Based on land characteristics and environmental 
patterns, dry terrestrial environments are very favora-
ble to very low malaria prevalence or the total absence 
of malaria. The mesic sites tend to be linked to unsta-
ble malaria environments where mosquito breeding 
sites are only available in the wet season or in small, 
demarcated areas. The wetlands could be an area of 

stable malaria as in the present times where mosquito 
breeding sites are perennially available (e.g., Kabaria 
et  al., 2016; Midekisa et  al., 2014; Wimberly et  al., 
2021).

Determination of the Climate Range of Malaria 
Mosquito Distribution

The source of the country-wide mosquito data was the 
Walter Reed Biosystematics Unit (WRBU) database 
(Gaffigan et  al., 2015). From the database, the coun-
try-wide number of anopheline (malaria) mosquitoes 
was used as an indicator of the possibility of altering 
the host primate since it can be proposed that in those 
areas where diverse malaria mosquito fauna exist, 
the probability of host switch is higher than in areas 
where the diversity of anopheline mosquitoes is low. 
Six countries (Russia, Canada, China, USA, Brazil, 
and Australia), with a total area of 5 + million square 
kilometers, are excluded from this study because their 

Fig. 1  The distribution of 
the extant gorilla species in 
Central Africa (1: Gorilla 
gorilla diehli; 2: Gorilla 
gorilla gorilla; 3: Gorilla 
beringei; 4: Gorilla ber-
ingei beringei)
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climatic conditions are too heterogenous to handle as a 
unit of analysis (Supplementary Fig. 1).

Among the remaining 187-member states of the 
United Nations plus the two observer states, the 
anopheline mosquito data was available in the case of 
158 countries. Sorting the countries by the number of 
species, it was found that the species of anopheline 
mosquitoes is between 0 and 20 for 114 countries, 
21–40 for 31 countries, and the diversity of malaria 
mosquitoes reaches or exceeds 41 species in 13 coun-
tries. The five most diverse mosquito fauna can be 
found in South and Southeast Asian countries (Viet-
nam: 53, India: 62, Malaysia: 75, Thailand: 76, and 

Indonesia: 77 species). In addition, high anopheline 
diversity was also found in some African states (Ethi-
opia: 41, Cameroon: 42, Tanzania: 42, Angola: 48 
malaria mosquito species). A strict criterion was used 
to determine the climatic limits of the low, medium, 
and high malaria diversity areas: the lower and the 
upper quartiles of the bioclimatic values related to the 
diversity were used as limiting factors (Fig. 2).

However, no distinction was made between indi-
vidual Gorilla species. The area of Gorilla gorilla 
diehli, Gorilla gorilla gorilla, Gorilla beringei  and 
Gorilla beringei beringei  was handled as a single 
unit. The absolute lower and upper values of the 

Fig. 2  The box-plot diagram of the climatic values related to the countries with low (0–20 species), medium (21–40 species), and 
high (41 <) malaria mosquito faunae
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bioclimatic factors related to the fossil sites were 
applied in further modeling. Supplementary Table 2 
shows the climatic limits of the occurrence of extant 
Gorilla species.

Model Identification

The extreme climate factors described above were 
used to numerically model the potential (collective) 
distribution areas of the high diversity anopheline 
mosquito fauna and Gorilla species. The appearance 
of the species is characterized by true or false (0; 1) 
values. Hence, the area which is determined by the 
cut limit value of a bioclimatic factor can be written 
in the following form:

Here, bio N represents the bioclimatic factor iden-
tification number. The limitation factor values are cli-
mate model-independent. The areas excluded by the 
limiting factors can be summed, and the following 
formula describes the aggregated distribution area:

A(bio1…..n) shows the potential distribution area 
of the studied taxonomic units. The results were dis-
played as heat maps.

Results

Anopheline Diversity Conditions in the Last 3.3 ky

The modeled results show that Africa’s high diver-
sity of malaria mosquito fauna has notable alterations 
depending on the actual climatic conditions. In gen-
eral, the continent’s climate would have been more 
suitable for malaria mosquitoes in the interglacial 
than in the glacial periods. In the interglacial periods, 
diverse anopheline fauna likely inhabited the south 
coast of West Africa, large areas of Central Africa, 
and the southeast coast of East Africa. However, dur-
ing the coolest episodes of the drier and cooler glacial 
periods, the climatic suitability of the diverse malaria 

1(bioN) =

{

0 if bio N < bioN limit

1 if bio N ≥ bioN limit

A
(

bio
1…..n

)

= bio
1….n −

7
∑

i=1

0(bio
1…..n)

mosquito fauna would have notably decreased in 
Central Africa. In the Last Glacial Maximum, the 
southeast corner of West African coastland could be 
the most important refugia of the diverse anopheline 
fauna in the continent (Fig. 3).

Pliocene and Early Pleistocene Conditions

Comparing the suitability patterns of the high diver-
sity mosquito fauna and the distribution of the Plio-
cene hominin sites indicates that Pliocene hominins 
avoided areas that were especially suitable for the 
high diversity anopheline mosquito fauna. The most 
hazardous place for ancient malaria could be the 
northern part of East Africa. However, this assump-
tion could be valid only for the warm and humid 
interglacial periods. In the cold period, the mean 
suitability of the high diversity anopheline fauna 
was 43%; and in the warm period, it could be 48%. 
It means that although there is a great difference in 
the suitability values for the modeled Central African 
patterns between the cold and warm Pliocene periods, 
this could not have had a notable difference for Plio-
cene hominins in terms of the probability of malaria 
transmission from primates to early hominin species. 
However, the results also indicate that the areas with 
a high diversity of anopheline mosquito fauna in the 
eastern part of Central Africa could be close to early 
hominins-inhabited regions. In contrast, in Chad and 
South Africa, the probability of host switch appears 
low, based on the model values (Fig. 4).

The sediment conditions indicate that Chad’s Plio-
cene-age hominin fossil sites were originally located 
in wet floodplain areas. The presence of the ancient 
Lake Chad and its rivers created various aquatic hab-
itats where several fish, aquatic and semi-aquatic tur-
tles, bird and reptiles, and mammal species existed 
(Table  3). Based on the plausible environmental 
requirements of the collected fossil vertebrate taxa, 
the rivers were surrounded by extensive marshes and 
swamps. Grassy and woodland areas both existed in 
the wider area. However, the higher number of semi-
arid environment mammals indicates that the climate 
was unstable, and semi-arid regions existed around 
the marsh areas. The 12% of the fossil animal taxa 
refer to dry and semi-dry (including the rocky envi-
ronments), 39% to moderately wet (e.g., savanna and 
forest), 22% to wet or semi-aquatic (marshes gallery 
forests), and 27% to freshwater or, in other words, 
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aquatic habitats (lakes, rivers; Fig.  5). Under simi-
lar environmental conditions, the climate suitability 
of human malaria is high, and malaria’s presence is 
stable in present-day Africa. Similar conditions cur-
rently characterize the floodplain areas of the Niger 
River in West Africa.

Plio-Pleistocene fossil animal taxa were collected 
in 13 sites related to Australopithecus afarensis in 
Hadar, Ethiopia (Johanson et  al., 1978). The sedi-
ments and the presence of bony fish remains indicate 
permanent, medium-sized, or large streams or lakes. 
However, aquatic turtles, crocodiles, and water birds 
are missing from the fossil materials (Table 4). None 
of the collected vertebrate taxa could prefer dry and 
semi-dry environments. The majority, 75% of the 
taxa, are related to moderately wet environments, 
and 8–17% could live under semi-aquatic and fresh-
water aquatic conditions (Fig. 5). The most plausible 
palaeoenvironment is a drier floodplain surrounded 
by the mosaics of open grasslands and deciduous 

tropical forests and shrubland, indicating a tropical 
savanna (Aw/Af) environment. Under similar condi-
tions, the climate suitability of human malaria is low 
in the fully terrestrial ecotypes and moderate along 
the floodplains. The presence of malaria can be 
unstable in such areas. The floodplains and the sur-
rounding rivers of eastern and southeastern Ethiopia 
provide similar conditions in the present times (e.g., 
Awash and Wabi Shebele).

The fossil vertebrate fauna of nine H. erectus-
related collecting sites in the East and West Turkana 
region is presented in Table  5. The environment 
and the vertebrate fossils indicate a tropical forest-
savanna mosaic (Aw/As) crossed by medium-sized 
rivers that emptied into Lake Turkana. Many of the 
ancient mammal fauna might have lived in the eco-
tone between woodlands and savannas or in the for-
ested savanna. However, many hot semi-arid climate 
(BSh)-tolerating species indicate (Supplementary 
Table  3) that the area was at the margin of tropical 

Fig. 3  The high diversity anopheline fauna in Africa in the MIS9 (A), the Last Interglacial Period (B), the Last Glacial Maximum 
(C), the Greenlandian (D), the Northgrippian (E) periods and in 1970–2000 (F)
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savanna and semi-arid environments, and climate 
fluctuations could strongly affect the ecology of the 
Turkana region. Only 21% of the fossil vertebrate 
taxa could be tied to a dry or semi-dry environment, 
71% to moderately wet, and 9% to semi-wet. None 
is expressly associated with wet environmental con-
ditions (Fig. 5). Due to the proximity of the ancient 
Turkana Lake and the oxbows, several aquatic and 
semi-aquatic habitats existed around the lake and in 
the floodplains. Under similar climatic conditions, the 
climate suitability of human malaria is unstable, or 
there is no malaria in the present time.

It can be said that the taphocenosis of the Chad 
sites refers to a wet palaeoenvironment with the pres-
ence of several aquatic and semi-aquatic animal taxa. 
This environment would have favored the breeding 
sites of anopheline mosquitoes, and the mosquito 
populations could be abundant. The fossil assem-
blages of the Hadar sites refer to drier conditions, but 
mosquito breeding sites might also have been present 
in this area. In the case of the Turkana sites, the ani-
mal fossils of the ancient hominin-related sites refer 
to a relatively dry environment in which the malaria 

mosquito breeding sites could occur only occasion-
ally, plausibly only during the wet season.

Late Pleistocene Conditions

The possibility of a high diversity of anopheline 
mosquito during the Last Glacial Maximum and the 
Last Interglacial periods suggests that the Middle 
Stone Age Lupemban Culture archaeological sites 
(age: ~ 300–12 ka) would have been in regions where 
the diversity of malaria mosquito fauna could be 
medium level or moderately high. However, the con-
ditions could depend on the area and the glacial/inter-
glacial status of the period. The modeled mean suit-
ability values of the highly diverse anopheline fauna 
in the Lupemban sites are 54% in the Last Glacial 
Maximum and 71.5% in the Last Interglacial Period. 
The human populations of the southeast coast of West 
Africa could permanently live in such regions where 
the malaria mosquito fauna could be highly diverse 
on a global level (Fig.  6A–B). In West Africa, the 
mean suitability values of the diverse malaria mos-
quito fauna are 64% in the Greenlandian and 66% in 
the Northgrippian periods. However, the values might 

Fig. 4  The mid-Pliocene cold (A) and warm (B) periods’ models of the suitability of the high diversity anopheles fauna with some 
Pliocene archaeological sites of hominins



293Afr Archaeol Rev (2022) 39:283–302 

1 3
Vol.: (0123456789)

have been as high as 97–93% in some areas of West 
and Central Africa (Fig. 6C–D).

Early to Mid-Holocene Conditions

Projecting Later Stone Age sites to the gorilla-
related climatic suitability map, it seems that the 
encounter between human populations and gorillas 

Table 3  Environmental 
indicators of the vertebrate 
fossil taxa in Chad 
related to the Pliocene 
hominin sites. Terrestrial 
environment-preference 
categories: dry environment 
( +), moderately dry 
environments (+ +), 
moderately wet 
environments (+ + +), wet 
environments (+ +  + +)

Non-hominin taxa Type of animal Environmental 
humidity require-
ment

Geochelone sp. Terrestrial tortoises  +  + 
Trionyx sp. Aquatic tortoises  +  +  +  + 
Tomistoma sp. Crocodilian  +  +  + and +  +  +  + 
†Rimasuchus lloydi Extinct crocodilian  +  +  +  + 
†Euthecodon sp. Extinct crocodilians  +  +  +  + 
Crocodylus niloticus Crocodilian  +  +  + and +  +  +  + 
Varanus niloticus Varanid from + to +  +  + 
Python sebae Nonvenomous snake from + to +  +  + 
Phalacrocorax sp. Aquatic birds  +  +  +  + 
Ephippiorhynchus sp. Aquatic birds  +  +  + and +  +  +  + 
Ardea sp. Aquatic birds  +  +  + and +  +  +  + 
Xerus sp. Xerophilic rodents  + and +  + 
Hystrix sp. Xerophilic rodents  + and +  + 
Ceratotherium sp. Rhinos  +  + 
†Eurygnathohippus sp. Extinct hipparionine horses  +  + 
†Anancus sp. Extinct proboscids  +  + 
Orycteropus sp. Tubulidentids  +  + 
†Kolpochoerus sp. Extinct suids  +  + 
†Libycosaurus sp. Extinct anthracotherid  +  +  + 
Hexaprotodon sp. Hippopotamid  +  + and +  +  + 
Antidorcas sp. Antelope  + and +  + 
Kobus sp. Antelope  +  + and +  +  + 
Syncerus sp. Buffalo  +  + and +  +  + 
Lutra sp. Otter  +  +  + and +  +  +  + 
Hyaena sp. Hyena  + and +  + 

Fig. 5  The palaeoenvi-
ronmental characterization 
of the Pliocene hominin 
fossils-related sites based 
on the palaeozoological 
evidence in the early and 
mid-Pliocene Chad, the 
mid-Pliocene Hadar, and 
the early Pleistocene Tur-
kana sites
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and the malaria parasites of these apes might have 
occurred most probably along the coasts of the 
Guinean Bay in West and Central Africa and maybe 
in the eastern part of Central Africa (Fig. 7).

Discussion

In mid-Pliocene Africa, ancient humans likely lived 
in climatic conditions where the suitability of the 
highly diverse anopheline fauna was moderate in 
cold and warm periods. The investigation of the fos-
sil assemblages also confirms this hypothesis show-
ing that specific early hominin populations lived 

Table 4  Environmental indicators of the vertebrate fossil taxa 
in Hadar related to the Pliocene hominin sites. Terrestrial envi-
ronment-preference categories: deserts, semi-deserts, rocky 
environments ( +); open woodlands, grasslands, forests, and 

bushlands (+ +); semi-aquatic and aquatic environment-prefer-
ence categories (+ + +); floodplains, swamps, marshlands, gal-
lery forests, freshwater lakes, and rivers and/or brackish water 
(+ +  + +)

Non-hominin taxa Type of animal Environmental 
humidity require-
ment

Osteichthyes s.l Bony fishes  +  +  +  + 
Tachyoryctes sp. Rodents  +  + 
Golunda sp. Rodents  +  + 
Millardia sp. Rodents  +  + 
Tatera sp. Rodents  +  + and +  +  + 
†Palaeoloxodon recki Extinct proboscid  +  + 
†Kolpochoerus afarensis Extinct suid  +  + 
†Nyanzachoerus pattersoni Extinct suid  +  + and +  +  + 
†Notochoerus euilus Extinct suid  +  + and +  +  + 

Table 5  Environmental 
indicators of the vertebrate 
fossil taxa in Turkana 
related to the Pliocene 
hominin sites. Terrestrial 
environment-preference 
categories: deserts, semi-
deserts, rocky environments 
( +); open woodlands, 
grasslands, forests, and 
bushlands (+ +); semi-
aquatic and aquatic 
environment-preference 
categories; floodplains, 
swamps, marshlands, 
gallery forests (+ + +); 
freshwater lakes and rivers 
and/or brackish waters 
(+ +  + +)

Non-hominin taxa Type of animal Environmental 
humidity require-
ment

Hystrix sp. Xerophilic rodents  + and +  + 
Ceratotherium simum Rhinoceros  +  + 
Diceros bicornis Rhinoceros  +  + 
†Kolpochoreus limnetes Extinct suid  +  + 
†Metridiochoreus sp. Extinct suid  +  + 
Giraffa jumae Giraffe  +  + 
Beatragus sp. Antelope  +  + 
†Pelorovis turkanensis Antelope  +  + and +  +  + 
†Pelorovis oldowayensis Antelope  +  + and +  +  + 
Tragelaphus sp. Antelope  +  + 
Raphicerus sp. Antelope  + and +  + 
Kobus sp. Antelope  +  + and +  +  + 
Aepyceros melampus Antelope  + and +  + 
Connochaetes sp. Antelope  + and +  + 
Antidorcas marsupialis Antelope  + and +  + 
Cephalophus sp. Antelope  + and +  + 
Canis mesomelas Jackal  + and +  + 
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near wetlands where mosquito breeding sites also 
occur. Most of these permanently wet habitats could 
be linked to tropical wet (Af, Am) climates. Africa’s 
tropical forest and woodland habitats are areas where 
malaria is always present (Kibret et al., 2015). These 
regions include West and Central Africa, the Kongo 
Basin, certain areas of the East African Rift Valley, 
and Southeast Africa. For example, in 2000–2019, 
the malaria incidence was the highest in the southern 
part of West Africa, Central Africa, and the southern 
regions of East Africa. The prevalence of sickle cell 
disease also follows this pattern (Kato et  al., 2018), 
evidence of a long-lasting selection effect against fal-
ciparum malaria in these areas.

Several extinct hominoid species are known 
from the Late Palaeogene period to the end of the 

Pleistocene epoch in Africa and Eurasia. Presum-
ably, each species may have had its malaria parasite 
lineages. The oldest fossil malaria mosquito species, 
Anopheles rottensis, was found in the Upper Oligo-
cene (Chattian) lacustrine strata of the Rott Forma-
tion of Germany (Harbach, 2013; Statz, 1944). How-
ever, the genus may have been established earlier, 
presumably sometime in the Upper Eocene epoch. 
The hominoid clade originated in Africa in the Late 
Oligocene epoch (Begun, 2007) and their radiation in 
Eurasia occurred in the turn of the late Early Miocene 
and the early mid-Miocene epochs (Casanovas-Vilar 
et al., 2011). This event was linked to the formation 
of the Gomphotherium land bridge, which connected 
the Afro-Arabian continent and Eurasia (Harzhauser 
et  al., 2007). For the early Late Miocene epoch, 

Fig. 6  The Last Glacial Maximum’s (A) and the Last Intergla-
cial Period’s (B) models of the high diversity anopheline fauna 
with the archaeological sites of the Lupemban Culture (Mid-
dle Stone Age) in Africa; the Greenlandian (C) and the North-

grippian (D) period’s models of the high diversity anopheline 
fauna with early agricultural sites in the southern part of West 
and the northwestern part of Central Africa
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hominoid species populated large areas of Africa and 
the tropical and subtropical climate regions of Eurasia 
(Li et al., 2020). It is very likely that the early homi-
noids already had their Plasmodium parasites because 
their closest relatives, catarrhine monkeys, also have 
simian malaria parasites (Eyles, 1963). Even the 
earliest anthropoids lived in malaria-risk areas. For 
example, the primitive anthropoid, Aegyptopithecus 
zeuxis lived in a shallow lake/marsh-like environment 
and the gallery forest of a very low energy stream in 
the Fayum area of Egypt during the early part of the 
Oligocene epoch (Seiffert, 2006).

Several other hominoids also preferred swamp for-
ests and different wetland habitats. For example, the 
Iberian Hispanopithecus laietanus lived in subtropical 
marshy and riparian areas (Marmi et al., 2012). The 
Central European Rudapithecus hungaricus inhabited 
dense swamp forests (Andrews & Cameron, 2010). 
Other important Late Miocene hominoid-fossils-bear-
ing sites, including the Central European Mariathal, 
Götzendorf an der Leitha, and Klein Hadersdorf, 
were likely localized coastal bald cypress swamp for-
ests (Antalfi & Fehér, 2013; Erdei et  al., 2007). All 

of these indicate that many Late Miocene hominoid 
populations in Western Eurasia specifically favored 
wetland habitats, which provided extensive breed-
ing sites and adequate climatic conditions for malaria 
mosquitoes. Some authors suggested  that the evolu-
tionary lineage of the extant African primates and 
humans is due to a back-migration evolutionary event 
from Eurasia to Africa in the Latest Miocene epoch 
(e.g., Begun & Kordos, 1997; Begun & Nargolwalla, 
2004; Moya-Sola et  al., 2009). If this assumption is 
valid, it is not impossible that the ancestor of P. vivax, 
which can perform its extrinsic developmental cycle 
at relatively low temperatures, may have completed a 
part of its evolution in the more temperate lands of 
Western Eurasia.

In the Pliocene and the Pleistocene epochs, the 
diversity of malaria parasites—including the ances-
tors of P. vivax and P. falciparum—could have been 
considerably more significant than it is today. Recent 
discoveries demonstrate a wide range of hominid 
species during the last 3 million years before the 
appearance of modern humans. Appearance of mod-
ern humans. Homo erectus, Homo habilis,  Homo 
naledi,  Homo bodoensis,  and various australopithe-
cines in Africa, as well as Neanderthals, Denisovans, 

Fig. 7  Early agricultural sites projected to the modeled climatic suitability map of Gorilla species in the Greenlandian (A) and the 
Northgrippian (B) periods in Africa, Madagascar, and the Middle East
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and other ancient humans outside the continent, may 
have been exposed to both malaria parasites and 
their vectors. Middle Palaeolithic archaeological 
sites in Eurasia are often associated with wetland-
margin environments, swamps, and seasonal riv-
erbeds. These environments are the most preferred 
natural breeding habitats of competent anopheline 
malaria vectors (Ondiba et  al., 2019). For example, 
wetland-associated Middle Palaeolithic sites were 
found at the Shishan Marsh in Jordan (Pokines et al., 
2019), in the Schöningen open pit mine in Germany 
(Turner et  al., 2018), in the ancient lakeshore sites 
of the Nefud Desert, Saudi Arabia (Petraglia et  al., 
2011), and the Eastern Desert of Egypt (Kindermann 
et al., 2018). It is plausible that the network of these 
Middle Palaeolithic sites was influenced by ancient 
malaria prevalence patterns (Trájer et al., 2020).

It seems that the host switch of malaria parasites 
between great apes and humans occurred several 
times, even in the early stages of Hominidae evolu-
tion in Africa. A similar multiple host switches event 
was also suggested in the case of P. vivax (Mu et al., 
2005). Furthermore, lateral switches between dis-
tantly related hosts of malaria parasites may also 
have occurred (Garamszegi, 2009). It implies that the 
transfer of Plasmodium species could occur between 
apes and humans and between old-world monkeys 
and humans. Most of the studies, which deal with a 
human evolution ancient malaria, focus on the origin 
of the extant malaria species and the possibility of the 
descent of different Plasmodium lineages. However, 
while anatomically modern humans lived at least as 
early as 286 kya (Richter et al., 2017), human popu-
lations in about 70 kya underwent a bottleneck event 
(Ambrose, 2003). The decrease in the population of 
human hosts might have substantially reduced the 
diversity or caused the extinction of some malaria 
parasites in Africa. This could explain why the 
human hemoglobin sickle cell mutation is so young, 
ca. 22 ky old (Laval et al., 2019). Based on the model 
results, several Lupemban sites are close to the areas 
with diverse malaria mosquito fauna in West and 
Central Africa. This indicates that such competent 
malaria vectors like An. gambiae have the chance and 
a long time to adapt to the blood of humans. Inter-
estingly, about 50 kya, an unknown archaic human 
group interbred with modern humans in Africa, with 
2–19% of this archaic population’s genetic ancestry 

being present in modern African human populations 
(Durvasula & Sankararaman, 2020).

During the Pleistocene era in Africa, the coastal 
areas of the Gulf of Guinea could be the most stable 
for the high diversity of anopheline fauna. Likely, 
the host switch of a Laverania species and its trans-
formation to the present-day P. falciparum parasite 
in humans occurred along the coasts of the Gulf of 
Guinean, between Sierra-Leone and Gabon, in the 
transition zone of the tropical monsoon and tropi-
cal savanna climate areas, or the northeastern parts 
of Central Africa in present-day Burundi, Rwanda, 
and Uganda. Coluzzi (1999) and Rich et  al. (2009) 
hypothesized that the anthropophilic taxa of Afro-
tropical malaria mosquitoes (An. funestus and An. 
gambiae complexes) emerged in the Neolithic period 
parallel to the increase of human populations due to 
economic and demographic consequences of agricul-
tural innovations. The present-day highly aggressive 
falciparum malaria has a high prevalence in Central 
Africa. However, it is interesting that the rainforest 
hunter-gatherers of equatorial Africa acquired the βS 
mutation from agriculturalists through adaptive gene 
flow only in the last 6 ky (Laval et al., 2019), indicat-
ing that the equatorial regions could not have been the 
source of malignant malaria. The results of this study 
suggest that considering both the long-term climatic 
suitability patterns of the diverse anopheline mos-
quito faunae, the occurrence of Gorilla species, and 
the ways of agricultural beginnings and expansion, 
two main foci of malaria parasite-host switch could 
have existed in Africa: West-Central Africa and the 
East African Rift Valley territories of the continent. 
However, it cannot be ruled out that some human 
malaria parasite lineages survived this period and 
still exist in great apes or other ancient humans. Since 
the Anderson-May model of host-parasite dynam-
ics states that infections of different levels of viru-
lence become extinct if they do not optimize the basic 
reproductive rate of the causative parasite (Bremer-
mann & Thieme, 1989), it can be hypothesized that 
higher virulence and greater mortality rates would 
have occurred in larger and well-connected human 
populations than in small and relatively isolated pop-
ulations. This reasoning can explain why malignant 
malaria lineages might have arrived in tropical Africa 
with the mobile and populous farming groups.
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The hypothesis about the origin of falciparum 
malaria is consistent with the results of the study by 
Mu et al. (2002). They found that even the lineage of 
the ancestor of the falciparum parasite could be much 
older. It may have appeared during the Last Intergla-
cial Period, but the extant P. falciparum underwent 
a severe population bottleneck about 3–6 ky ago. It 
is likely then that the encounter of the ancestor of 
P. falciparum and human populations occurred in 
West, North-Central Africa, or East Africa, where the 
migrating farming populations reached the area of the 
present-day south Sahel belt about 7–5 kya. Although 
a genetic study found that the paternal lineages of 
most North Africans emerged 15 ka and the popula-
tion splits started after the desiccation of the Sahara 
(Vai et al., 2019), Haber et al. (2016) suggested that 
multiple Holocene Eurasian migrations also marked 
the genetic history of Africa ca. 7.2–3.0 kya. These 
demographic movements strongly affected the genetic 
patterns of North Africa.

Conclusions

The host switch of primates-related malaria species 
could have happened several times in the last 5.3 my 
in Africa. However, certain permanent patterns can 
be observed. Great apes such as the Gorilla species 
lived in those regions where the malaria mosquito 
diversity could be very high. In contrast, the known 
archaeological sites of ancient hominins can be found 
in moderately diverse regions. West-Central and West 
Africa, as well as certain regions of East-Central 
Africa, could be the areas where the host switch of 
Plasmodium species between the great apes and hom-
inins took place.
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