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ABSTRACT 

Microbial infections present a major global healthcare challenge, in large part because of 

the development of microbial resistance to the currently approved antimicrobial agents. 

This demands the development of new antimicrobial agents. Metal oxide nanoparticles 

(MONPs) are a class of materials that have been widely explored for diagnostic and 

therapeutic purposes. They are reported to have wide-ranging antimicrobial activities and to 

be potent against bacteria, viruses, and protozoans. The use of MONPs reduces the 
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possibility of resistance developing because they have multiple mechanisms of action 

(including via reactive oxygen species generation), simultaneously attacking many sites in 

the micro-organism. However, despite this there are to date no clinically approved MONPs 

for antimicrobial therapy. This review explores the recent literature in this area, discusses 

the mechansims of MONP action against micro-organisms, and considers the barriers faced 

to the use of MONPs in humans. These include biological challenges, of which the potential 

for an immune response and off-target toxicity are key. We explore the possible 

benefits/disbenefits of an immune response being initiated in detail, and consider the effect 

of production method (chemical versus green synthesis) on cytotoxicity. There are also a 

number of techical and manufacturing challenges, which are also discussed in depth. In the 

short term, there are potentially some “quick wins” from the repurposing of already-

approved nanoparticle-based medicines for anti-infective applications, but a number of 

hurdles, both technical and biological, lie in the path to long-term clinical translation of new 

MNOP-based formulations.  

 

GRAPHICAL/VISUAL ABSTRACT AND CAPTION 

 

 

Metal oxide nanoparticles have efficient antimicrobial activity but there are many biological 

challenges restricting their application in man, as well as hurdles to scaled-up clinical manufacture. 

 

1- INTRODUCTION  

Nanomedicine is the branch of medicine that use particles sized from 1 to 1000 nm for 

either therapeutic or diagnostic purposes (Garnett & Kallinteri, 2006). Nanomedicine has 

the potential to overcome several drawbacks of conventional therapies, mainly due to the 

fact that the use of nanoscale particles leads to changes in physicochemical properties 

compared to those of the bulk. Properties such as surface charge, shape, and surface area to 



3 

 

volume ratio can all be varied. Nanoparticles (NPs) can be modulated to accumulate in 

target tissues via surface functionalization or by controlling particle size, and thus drug-

loaded NPs can be used to deliver an active ingredient selectively to a particular part of the 

body. This permits administration of a lower dose. Targeting is also associated with reduced 

side effects due to the lower possibility of drug accumulation in off-target organs. 

 

Initially, nanomedicine was developed to improve the treatment of cancer (Barenholz, 

2012). More recently, researchers have developed a range of nanomedicine products for 

the diagnosis and treatment of myriad other diseases. However, the number of 

nanomedicines currently approved by the Food and Drug Administration (FDA) or in clinical 

trials is very small compared to the massive volume of research work published. A total of 

1567 articles were identified in PubMed by searching for “nanomedicines” on 13th June 

2019 (Figure 1), while only 51 nanomedicine products have been approved by the FDA and 

another 77 are at different stages of clinical trials  (Bobo, Robinson, Islam, Thurecht, & 

Corrie, 2016; Ventola, 2017a). Nanomedicines approved by the FDA mainly consist of 

liposomes, polymers, micelles, polymer conjugated proteins, and nanocrystals. Only 12 

products are metal-containing nanoparticles, such as hydroxyapatite, calcium phosphate 

and iron oxide (Bobo et al., 2016; Ventola, 2017b). Six iron oxide NP (IONP) products were 

approved for the treatment of iron deficiency, but four have been withdrawn from the 

market due to safety issues (this will be discussed in detail later) and only two (Ferumoxytol 

and Resovist) are still used (Yi-Xiang, 2015). 

 

Despite the small number of marketed products, metal oxide NPs (MONPs) have been 

prepared on a very large number of occasions and found to have applications in a wide 

range of fields ranging from semiconductors to biomedicine (for both therapeutic or 

diagnostic purposes) (Bobo et al., 2016; Seabra & Durán, 2015; Ventola, 2017a). One 

example of biomedical applications is for antimicrobial purposes. Microbial infections 

comprise one of the most serious dangers to human health. They include diseases caused by 

bacteria, viruses, protazoans and fungi (Aderibigbe, 2017). Although there are many FDA 

approved antimicrobial agents, there is a need to develop new active ingredients in this field 

owing to the target microbes developing resistance to currently used therapeutics. There 

are many studies which have investigated the antimicrobial activity of MONPs: a total of 

2266 articles were recognized in PubMed by searching for “metal oxide nanoparticles as 
antimicrobial agents” on 13th June 2019 (Figure 1). However, no MONPs have to date been 

FDA approved for use against infectious disease.  
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Figure 1: The number of publications (A) on nanomedicines and (B) investigating the potential applications of 

MONPs as antimicrobial agents published per year from 2004 to 2018 (data extracted from PubMed using the 

search term “nanomedicines” and “metal oxides nanoparticles as antimicrobial agents” on 13th June 2019). 

 

 

2- THE NEED FOR NEW TREATMENTS 

A number of factors lie behind the failure of current antimicrobial agents, and the situation 

is currently critical. In the case of bacterial infections, an antibiotic crisis was announced in 

2013 (Fair & Tor, 2014) due to the emergence of resistant bacterial strains that cannot be 

treated with standard antibiotics (Fair & Tor, 2014). Several reasons lie behind the 

emergence of such resistance: (1) approved antibiotics only attack a single target in the 

bacteria (Etebu & Arikekpar, 2016) (see Figure 2); (2) over-prescription and improper use of 

antibiotics by the healthcare sector (Fair & Tor, 2014); and (3) the misuse of antibiotics in 

agriculture (e.g. in feed stock to promote animal growth (Wegener, Aarestrup, Jensen, 

Hammerum, & Bager, 1999) or sprayed over plants to protect them from disease and 

increase production (Fair & Tor, 2014)). 
 

In the case of viral infections, again the approved antiviral therapeutics (e.g. direct acting 

antiviral agents) are designed to attack a specific target on the virus (Figure 2). Viruses are 

characterized by a high rate of genetic mutation, and therefore can be expected to rapidly 

develop resistance and cross resistance (Melikian et al., 2014; Wyles, 2013).  
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Figure 2: The mechanisms of action of current anti-infective agents, including potential resistance mechanisms 

against (A) antibiotics and (B) antivirals. 

 
 

Additionally, the selectivity of antiviral agents makes them specific to a given virus, and they 

cannot generally be used for the eradication of multiple types of viruses (Martinez, Sasse, 

Brönstrup, Diez, & Meyerhans, 2013). This necessitates, the development of broad-

spectrum antiviral agents. Given that the host cellular machinery is commonly required for 

viral replication and propagation, this might represent a good target for developing broad 
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spectrum agents, and some clinical trials of such active ingredients are underway (De 

Chassey, Meyniel-Schicklin, Aublin-Gex, André, & Lotteau, 2012). 

 

Protozoan parasitic diseases mainly occur in developing countries, which has unfortunately 

led to their being neglected: there has been very low investment in the production of 

antiparasitic agents, and this has contributed to the development of resistance. Of 1300 

medicinal agents developed between 1975 to 1999, only 13 were for the treatment of 

parasitic infections (Fairlamb, Ridley, & Vial, 2003). Unfortunately, market forces have been 

insufficient to drive the discovery and development of new drugs for these diseases (Pink, 

Hudson, Mouriès, & Bendig, 2005). This has led to new public sector and public-private 

partnerships, including investment by the Bill and Melinda Gates Foundation to develop 

new antiparasitic agents (Pink et al., 2005). One exciting development was the release of 

Ambisomes (amphotericin B-loaded liposomes), an antiparasitic nanomedicine with high 

efficacy and minimal side effects. However, its high cost ($267 per vial) is problematic, and 

thus it does not reach all patients (Fairlamb et al., 2003). Even in clinical trials where the 

medicine was supplied with a much lower price ($18 per vial) through the WHO/Gilead 

donation program, the estimated per-patient cost of treatment with liposomal amphotericin 

B was $660 (Assis et al., 2017; Bhattacharya & Ali, 2016). Therefore, the cost of 

antimicrobial agents is another important issue that must be restrained to allow more 

effective management of microbial diseases worldwide. 

 

From the above, it can be concluded that the development of microbial resistance is the 

major reason for the failure of currently used anti-infective agents. Currently used active 

anti-infective agents target only a single aspect of microbial reproduction or survival (the 

selective blockage of enzymes, ribosomes, cell membrane synthesis, DNA replication, DNA 

gyrase, folic acid metabolism or protein synthesis (Etebu & Arikekpar, 2016). Therefore, 

there is ample scope for the micro-organisms to develop target-orientated resistance. For 

example, the antibiotic vancomycin functions by binding to the ends of glycol peptides and 

interfering with their cross linking to the bacterial cell wall. Bacteria such as Enteroccoci 

resist vancomycin by interfering with its binding with glycol peptides (Miller, Munita, & 

Arias, 2015). Pseudomonas biofilms can upregulate the production of efflux pumps to expel 

antibiotics from the bacterial cell cytosol and drive them to the extracellular milieu, leading 

to the biofilms becoming resistant to β-lactam antibiotics (Zhang & Mah, 2008). Degradation 

or hydrolysis of antibiotics by special enzymes produced by bacteria is another a self-

defence mechanism which can lead to resistance (e.g. β-lactamase enzymes produced by 

Klebsiella for the degradation of ampicillin (Fu et al., 2007). In another example, genetic 

mutation of Helicobacter pylori causing a change in the binding site for clarithromycin is 

responsible for its development of resistance (Ontsira Ngoyi et al., 2015). Antiviral 

resistance arises for similar reasons; for instance, a mutation in the active site of thymidine 

kinase (the enzyme responsible for the activation of acyclovir) is largely responsible for 

herpes simplex virus becoming resistant to this drug (Morfin & Thou, 2003).  

 

It is believed that ideally an efficient antimicrobial agent should simultaneously interact with 

multiple sites both on the micro-organisms and the host cell to reduce the likelihood of the 

micro-organism developing resistance. For example, ribavirin is a guanosine analogue that 

has a broad-spectrum activity against many RNA and DNA viruses. Ribavirin has several 

https://en.wikipedia.org/wiki/Public-private_partnership
https://en.wikipedia.org/wiki/Public-private_partnership
https://en.wikipedia.org/wiki/Bill_and_Melinda_Gates_Foundation
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mechanisms of action (Beaucourt & Vignuzzi, 2014) including: (1) inhibition of inosine 

monophosphate dehydrogenase, resulting in depletion of guanosine triphosphate; (2) 

interfering with mRNA-capping; (3) stimulating the host immune system to act against the 

invaded virus; (4) inhibiting viral RNA polymerase, and (5) enhancing virus mutagenesis due 

to incorporation of ribavirin triphosphate in place of guanosine triphosphate into viral RNA, 

resulting in viral death.  

 

MONPs could comprise a very promising route for the development of new antimicrobial 

therapeutics. They have been reported to have a broad antimicrobial activity against 

bacteria (both Gram positive and negative), viruses, fungi, and protazoa (Aderibigbe, 2017, 

Raghunath & Perumal, 2017). Their efficiency stems from their mechanism of action: several 

are reported, but the principle mechanism involves the production of reactive oxygen 

species (ROS) which are potent in killing micro-organisms. Micro-organisms are not able to 

develop resistance to such ROS production (Raghunath & Perumal, 2017), because ROS 

attack multiple different sites and biomolecules in the micro-organism, resulting in their 

oxidation and subsequent cell death. Micro-organisms attempt to protect themselves 

against oxidation through the use of enzymes such as dismutase and catalase to convert 

ROS into water and oxygen, non-toxic by-products. However, these can be overwhelmed by 

the presence of very high amounts of ROS, which results in the oxidation of a range of 

essential molecules such as proteins, lipids, carbohydrates and DNA: this will be discussed 

later in more detail (Fatma Vatansever et al., 2014, Chen, Brugarolas, & He, 2011). The 

production of ROS by MONPs is similar to the approach employed by macrophages to 

eradicate microbes. Macrophages endocytose micro-organisms, trap them inside 

endosomes, and destroy them through the secretion of very large amounts of ROS sufficient 

to overcome the superoxide dismutase enzymes of the micro-organism (Slauch, 2012).  

 

Although MONPs have been proven to have potent antimicrobial properties, they have a 

number of limitations that hinder their clinical application. In vivo, there are several 

challenges which they must overcome to reach their intended target. These include 

requirements to cross biological barriers and maintain stability in biological fluids, in 

addition to considerations of how the MONPs will interact with the immune system and any 

safety and risks associated with their long-term administration. There are also complications 

associated with the technical design of NPs which can selectively attack and eradicate a 

target micro-organism without having any hazardous effects on the patient. All of these 

issues will be discussed in detail below. 

  

3- MECHANISMS OF ACTION OF METAL OXIDE NANOPARTICLES  

This review will focus on the antimicrobial activity of MONPs against bacteria, viruses and 

parasites. A summary of the findings in the literature are given in Table 1. For instance, 

MONPs have been explored for their antimicrobial activities against a range of micro-

organisms that are known to cause common hospital acquired infections (Khan Hassan, 

Baig, & Mehboob, 2017). Potent activity has been reported against a wide range of such 

bacteria, including Escherichia coli, vancomycin resistant Enterococci, and methicillin-

resistant Staphylococcus aureus (Table 1). Viruses such as hepatitis B and C, influenza, 

human immunodeficiency viruses (HIV), rotavirus, and herpes-simplex virus that cause 
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around 5% of nosocomial infections (Khan Hassan et al., 2017). MONPs have demonstrated 

significant potential in vitro against hepatitis C and herpes simplex type 1 and 2 (Table 1). 

Parasitic infections cause a relatively small number (< 0.5%) of total nosocomial infections 

(Góralska & Kurnatowski, 2013), but MONPs have been shown to be effective against 

Plasmodium falciparum (malaria), helminth infections and leishmania species (Table 1). 

 
Table 1: Reported antimicrobial activity of metal oxide nanoparticles 

Material 
Particle 

 Size  

(nm) 

Zeta 

Potential 

(mV)* 

Test  

Method 

Antimicrobial 

effects 
Reference 

Antibacterial activity 

Aluminium oxide 

[α-Al2O3] 
20 - 30 NA 

Agar well 

diffusion  

Staphylococcus 

aureus (S. Aureus), 

Klebsiella 

aerogenes, 

Escherichia coli (E. 

Coli), 

Pseudomonas 

desmolyticum 

(Prashanth et 

al., 2015) 

Antimony trioxide 

(Sb2O3) 
90 - 210 NA 

Agar plate and 

counting of 

colony forming 

units (CFU) 

E. coli, Bacillius 

subtilis 

Streptococcus 

aureus 

(Baek & An, 

2011) 

Calcium oxide 

(CaO) 
15 - 180 NA 

Agar plate and 

counting of CFU 

Lactobacillus 

plantarum 

(Tang et al., 

2013) 

Calcium oxide 

(CaO) 
16 NA 

Agar well 

diffusion  

Staphylococcus 

epidermidis > 

Pseudomonas 

aeruginosa 

(Roy Arup, 

Gauri, 

Bhattacharya, & 

Bhattacharya, 

2013) 

Cadmium oxide 

(CdO) 
60 NA 

Determination 

of optical 

density; agar 

plate and 

counting of CFU 

E. coli 
(Rezaei-Zarchi 

et al., 2010) 

Cerium oxide 

(CeO2) 
6 – 40 NA 

Disc diffusion 

method 

E. coli and B. 

subtilis 

 

(Pelletier et al., 

2010) 

Chitosan based 

Zinc oxide NPs 

(ZnO) 

99 - 603 
-12.9 to – 

35.5 

Agar diffusion 

and micro titre 

methods 

Antibacterial 

activity and 

biofilm inhibition 

activity against 

Micrococcus 

luteus and 

S. aureus 

(Dhillon, Kaur, 

& Brar, 2014) 

Chromium oxide 

(Cr2O3) 
41, 65 and 79 NA Disc diffusion 

E. coli, P. 

aeruginosa 

(Ananda & 

Gowda, 2013) 

Cinnamomum 

verum 

functionalized 

Fe3O4 

9.4 NA 
Agar plate and 

counting of CFU 

S. aureus and E. 

coli 

(Anghel et al., 

2014) 



9 

 

Cobalt oxide 

(Co3O4) 
100 -150 NA Broth dilution  

S. aureus and E. 

coli 

(Ghosh et al., 

2014) 

Copper oxide 

(CuO) 
23 NA Well diffusion  

E. coli, 

Enterococcus 

faecalis, and 

Klebsiella 

pneumenia 

(Ahamed, 

Alhadlaq, Khan, 

Karuppiah, & Al-

dhabi, 2014) 

Copper oxide 

nanorods 

(CuO) 

Width: 60 

nm, length: 

8.3 µm 

NA 
Agar plate and 

counting of CFU 
E. coli 

(Pandey et al., 

2014), 

(Khashan, 

Sulaiman, & 

Abdulameer, 

2016), 

(Gilbertson et 

al., 2016), 

(Bondarenko, 

Ivask, Käkinen, 

& Kahru, 2012) 

Copper oxide 

(CuO) 
5 - 8 NA Well diffusion  

K. penumeniae,  

Salmonella 

typhimurium, 

and Enterobacter . 

aerogenes 

(Kumar, Salar, & 

Purewal, 2014) 

Copper oxide 

(CuO) 
10 - 40 NA 

Agar plate and 

counting of CFU 

Different stains of 

S. aureus 

(Hsueh, Tsai, & 

Lin, 2017) 

Copper oxide 

(CuO) 
20 - 27 NA Well diffusion 

B. subtilis, S. 

aureus, E. coli and 

P. aeruginosa 

(Azam, Ahmed, 

Oves, Khan, & 

Memic, 2012) 

Copper oxide 

(CuO) 
15 – 30 NA 

Determination 

of optical 

density 

E. coli and P. 

aeruginosa 

(Das, Nath, 

Phukon, & 

Dolui, 2013) 

Copper oxide 

(CuO) 
9.6 NA Broth dilution 

E.coli and S. 

aureus 

(Jadhav, 

Gaikwad, 

Nimse, & 

Rajbhoj, 2011) 

 

Copper oxide 

(CuO) 

Nanosize: 20 

– 200 nm 

Microsize: 

200 – 2000 

nm 

-16.5 

 

 

-28.5 

Determination 

of optical 

density 

E. coli and 

Lactobacillus  

brevis 

(Kaweeteerawa

t et al., 2015) 

Copper oxide 

(CuO) 
< 50 NA 

Determination 

of optical 

density 

P. aeruginosa 
(Guo et al., 

2017) 

Copper oxide 

(CuO and Cu2O) 

CuO = 30 

Cu2O= 40 
NA 

Agar plate and 

counting of CFU 
E. coli 

(Meghana, 

Kabra, 

Chakraborty, & 

Padmavathy, 

2013) 

Copper oxide 

(CuO) 
20 - 95 NA 

Agar plate and 

counting of CFU 

Various 

nosocomial 

bacteria inc. 

methicillin-

resistant 

Staphylococcus 

(Ren et al., 

2009) 
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aureus (MSRA), S. 

epidermis, P. 

aeruginosa, and E. 

coli 

Copper oxide 

(CuO) 
20 – 30 NA 

Agar plate and 

counting of CFU 

E. coli, B. subtilis 

and S. aureus 

(Baek & An, 

2011) 

Copper oxide 

(CuO) 
25 - 30 NA Well diffusion 

Strongly 

diminishes the 

biofilm forming 

uro-pathogens of 

MRSA and E. coli 

(Agarwala, 

Choudhury, & 

Yadav, 2014) 

Graphene oxide 

modified zinc 

oxide (ZnO) 

nanoparticles 

170 NA Microdilution 

E. Coli, S. 

typhimurium, B. 

subtilis, 

E. faecalis 

(Linlin Zhong & 

Yun, 2015) 

Iron oxide NP 

(Fe3O4) 

functionalized 

with carvone 

12 NA Biofilm assay 

Inhibited 

colonisation and 

bio-film formation 

of S. aureus and E. 

coli 

 

(Holban et al., 

2015) 

Iron oxide (Fe3O4) 

NP impregnated 

polyacrylonitrile 

matrix 

2 - 24 

-34 to 

-20 at pH 4 

to 10 

Membrane agar 

test 
E. coli 

(Mukherjee & 

De, 2015) 

Iron oxide 

(Fe3O4) 

 

33 – 40 NA Well diffusion 

E.coli, S. aureus, 

and Proteus 

vulgaris 

(Prabhu, Rao, 

Kumari, Kumar, 

& Pavani, 2015) 

Iron oxide 

(Fe3O4) 

 

10 – 120 NA Well diffusion 

S. aureus, B. 

subtilis and E. coli, 

S. epidermidis, 

Bacillus  

Licheniformis,  

Brevibacillusbrevis

, and Vibrio 

cholerae  , 

(Behera, Patra, 

Pramanik, 

Panda, & 

Thatoi, 2012); 

Iron oxide 

(α-Fe2O3) 
50 - 110 NA Well diffusion 

S. aureus, E. coli, 

P. aeruginosa and 

Serratia  

marcescens 

(Ismail, 

Sulaiman, 

Abdulrahman, 

& Marzoog, 

2015) 

Iron oxide 

(Fe3O4) 
10.4 – 11.4 

-32.2 to + 

36.3 

Determination 

of optical 

density; agar 

plate and 

counting CFU 

B. subtilis and E. 

coli 
(Arakha et al., 

2015) 

 

Iron oxide 

(mixture of Fe3O4 

and 

γ-Fe2O3) 

9 -19 

Determination 

of optical 

density 

Concentration 

dependant 

antibacterial 

activity against S. 

aureus 

(Tran et al., 

2010) 

Layered graphene 

sheets decorated 

with zinc oxide 

nanoparticles 

30 – 40 NA Well diffusion 
Salmonella typhi > 

E. coli 

(Bykkam et al., 

2015) 
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(ZnO) 

Magnetite (Fe3O4) 8 NA 

Determination 

of optical 

density 

Concentration 

dependant 

bacteriostatic 

effect against E. 

coli 

(Chatterjee et 

al., 2011) 

Maghemite (Fe2O3) 25 – 30 NA Well diffusion 

Active against the 

following uro-

pathogens; MRSA, 

methicillin 

resistant 

Staphylococcus 

epidermidis 

(MRSE), 

vancomycin 

resistant 

Enterococci (VRE), 

Proteus mirabilis 

E. coli, K. 

penumnoiae, and 

P. aeruginosa 

(Agarwala et al., 

2014) 

Magnesium oxide, 

nanowire 

(MgO) 

Width: 6 nm, 

length: 10 

µm 

NA 

Well diffusion; 

determination of 

optical density 

Showed a 

concentration 

dependant 

bacteriostatic 

activity against E. 

coli and Bacillus 

species 

(Al-Hazmi et al., 

2012) 

Metatitinic acid 

(H2TiO3) and 

silicon dioxide 

(SiO2) NPs 

incorporated into 

dressings 

NA NA Disc diffusion 

Inhibited growth 

of E. coli, S. aureus 

and E. faecalis. 

(Krokowicz et 

al., 2015) 

Nickel oxide 

(NiO) 
10 – 20 NA 

Agar plate and 

counting of CFU 

Active against 

E.coli, B. subtilis 

and S. aureus 

(Baek & An, 

2011) 

Nickel oxide 

(NiO) 
20 – 30 36.8 Well diffusion 

Broad spectrum 

antibacterial 

activity against 

gram-positive and 

gram-negative 

pathogens 

 

 

(Rakshit et al., 

2013) 

 

 

 

 

Polyethyleneimine 

capped zinc oxide 

NPs (ZnO–PEI NP) 

3 – 7 (core) 

20 (capped) 
NA 

Determination 

of optical 

density 

E. coli bearing high 

pathogenicity 

island genes 

 

 

 

(Chakraborti et 

al., 2014) 

 

 

 

 

Titanium dioxide 
< 50 NA Well diffusion 

Active against 

biofilm producing 

(Jesline, John, 

Narayanan, 
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(TiO2) MRSA Vani, & 

Murugan, 2015) 

Titanium dioxide 

(TiO2) 
NA NA 

Agar test and 

counting of CFU 

Promising 

treatment for 

dental plaque 

(Thomas, Raj, & 

Venkataramana

, 2014) 

Titanium dioxide 

(TiO2) 
23 to 134 NA  

Streptococcus  

mutans 

(Besinis, De 

Peralta, & 

Handy, 2014) 

Titanium dioxide 

(TiO2) 
60 NA 

Determination 

of optical 

density; agar 

plate method 

and counting 

CFU 

E. coli 

(Rezaei-Zarchi 

et al., 2010), 

(Alhadrami, Al, 

& Hazmi, 2017), 

(Tong, Binh, 

Kelly, Gaillard, 

& Gray, 2013) 

 

 

Titanium dioxide 

(TiO2) 

10, 25, and 

50 

-33.8  to -

5.48 at pH 

range 3.6 to 

6.2 

Agar plate test 

and counting of 

CFU 

Size dependant 

activity against E. 

coli 

 

(Lin et al., 2014) 

 

 

 

Titanium dioxide 

(TiO2) 
7 - 12 NA 

Quantitative 

assessment 

method as per 

AATCC test 

method 100-

2004. 

Size dependant 

antibacterial 

activity against S. 

aureus and K. 

pneumonia 

(Sundaresan, 

Sivakumar, 

Vigneswaran, & 

Ramachandran, 

2012) 

Zinc oxide 

(ZnO) 
89 - 159 NA 

Determination 

of optical 

density 

K. pneumonia 

(Reddy, Nisha, 

Joice, & Shilpa, 

2014) 

Zinc oxide 

(ZnO) 

12, 25, 30, 

88, 142, 212, 

307 

NA 

Determination 

of optical 

density 

Size dependant 

growth inhibition 

of S. aureus, E. 

coli, and B. 

subtilis. 

(Raghupathi, 

Koodali, & 

Manna, 2011) 

Zinc oxide 

(ZnO) 
50 NA 

Agar plate and 

counting of CFU 

Concentration 

dependant activity 

against B. subtilis 

(Hsueh et al., 

2017) 

Zinc oxide 

(ZnO) 
10 – 25 NA Well diffusion  

Active against 

clinical isolate of S. 

aureus 

(Narasimha, 

Sridevi, Prasad, 

& Kumar, 2014) 

Zinc oxide 

(ZnO) 
30 NA 

Agar plate and 

counting of CFU 

Campylobacter 

jejuni 

(Xie, He, Irwin, 

Jin, & Shi, 2011) 

Zinc oxide 

(ZnO) 
20 - 25 NA 

Determination 

of optical 

density; agar 

plate and 

determination of 

zone of 

inhibition 

E. coli and S. 

aureus 

(Mirhosseini & 

Firouzabadi, 

2013) 

Zinc oxide 

(ZnO) 
70 NA 

Determination 

of optical 

density 

Concentration 

dependant 

inhibitory effect of 

E. coli O157:H7 

(Liu et al., 2009) 
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Zinc oxide 

(ZnO) 

20 

 

60 

-21.9 

 

-17 

Agar plate and 

counting of CFU 

Size dependant 

inhibitory activity 

against 

S. aureus 

(Seil & Webster, 

2012) 

Zinc oxide 

(ZnO nano and 

microwires) 

Microwire: 

Width: 200 – 

500 nm, 

length: 2 to 4 

µm 

 

Nanowire: 

Width: 20 – 

40 nm, 

length: 4µm 

NA 
Agar plate and 

counting of CFU 

Size and dose 

dependant 

inhibitory effect 

against B. subtilis 

> S. aureus 

(Rago et al., 

2014) 

Zinc oxide 

(ZnO) 
100 – 150 NA 

Agar plate and 

counting of CFU 

Active against 

Streptococcus 

agalactiae and S. 

aureus 

(Huang et al., 

2008) 

Zinc oxide 

(ZnO) 
50 – 70 NA 

Agar plate and 

counting of CFU 

Selective 

antimicrobial 

activity against 

E. coli and B. 

subtilis 

(Baek & An, 

2011) 

Zinc oxide 

(ZnO) 
19.8 NA Well diffusion 

Inhibited bacterial 

growth of 

methicillin-

sensitive S. aureus 

(MSSA), and MRSA 

(Ansari, Khan, 

Khan, Sultan, & 

Azam, 2012) 

Zinc oxide 

(ZnO) 

15, 25, and 

38 
NA 

Agar plate and 

determination of 

zone of 

inhibition 

Size dependant 

inhibitory effect 

against 

Salmonella, 

Paratyphi, B. 

subtilis, K, 

pneumoniiae, 

S. epidermidis, E. 

aerogenes and 

MRSA 

 

(Palanikumar, 

Ramasamy, & 

Balachandran, 

2014) 

 

Zinc oxide 

(ZnO) 
17 – 21 NA Disc diffusion 

Concentration 

dependant activity 

against S. aureus, 

E. coli, K. 

pneumoniae, E. 

faecalis and P. 

aeruginosa 

(Narayanan, 

Wilson, 

Abraham, & 

Sevanan, 2012) 

Zinc oxide 

(ZnO) 

Nanorods: 

Diameter:  

30 – 60 nm, 

length: 80 

nm and  

widt: 

 50 – 200 nm, 

Length: 5 

µm. 

NA 

Broth dilution 

and colony 

counting; agar 

plate; disc 

diffusion; 

microtiter plate; 

conductivity 

assay 

 

E. coli, Salmonella 

choleraesuis, P. 

aeruginosa, L. 

plantarum and 

Listeria 

monocytogenes 

(Espitia et al., 

2012) 
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Spherical:  

37 – 47 nm. 

Circular:  

30 – 60 nm. 

Acicular: 

20 – 30 nm 

Zinc oxide adhered 

to a surface of 

fabric 

(ZnO) 

I) Width, 200 

– 800 nm, 

length: 2- 

4µm. II) 

Width 50 – 

300 nm, 

length 1 - 

2µm 

NA 

Agar diffusion; 

modified colony 

counting 

method 

Bacteriostatic 

effect against K. 

pneumoniae and 

S. aureus 

(Shateri-

Khalilabad & 

Yazdanshenas, 

2013) 

Zinc oxide 

(ZnO) 
20 – 217 19.7 In vivo rat model 

Bactericidal 

activity against P. 

aeruginosa 

(Watson et al., 

2015) 

Zinc oxide 

(ZnO) 
< 100 NA Well diffusion  MRSA 

(Jesline et al., 

2015) 

 

Zinc oxide NPs 

(ZnO) and 

ultrasound 

application 

20 and 60 
-21.9 and - 

17 

Agar plate and 

counting of CFU 

Ultrasound 

stimulation led to 

stronger 

antibacterial 

activity against S. 

aureus than NPs 

alone 

 

(Seil & Webster, 

2012) 

Zinc oxide 

nanoparticles 

coating a glass 

slide 

15 NA 
Agar plate and 

counting of CFU 

Excellent 

antibiofilm activity 

against E. coli and 

S. aureus 

 

 

 

(Applerot et al., 

2010) 

 

 

 

Zinc oxide, 

nanoparticle and 

nanorods 

(ZnO) 

Nanoparticle: 

20 nm 

 

Nanorods: 

width from 

60 – 350 nm 

and length 

from 0.5 to 

4.2µm 

NA Agar diffusion  

Inhibited growth 

of S. aureus, E. coli 

and Aspergillus 

niger 

 

(Jaisai, Baruah, 

& Dutta, 2012) 

Super 

paramagnetic iron 

oxide 

nanoparticles 

(unconjugated and 

conjugated to zinc 

and iron metals) 

Unconjugate

d: 18 nm 

 

Zinc 

conjugated: 

20 nm 

 

Iron 

conjugated: 

28 nm 

Unconjugat

ed: -35.5 

 

Zinc 

conjugated: 

-40.1 

 

Iron 

conjugated: 

-34 

Bacterial biofilm 

and counting of 

CFU 

Biofilm of MRSA, 

E. coli, P. 

aeruginosa 

 

(Durmus, 

Taylor, 

Kummer, & 

Webster, 2013) 

Silver and Zinc ZnO: 50 NA Agar plate and S. mutans  (Kasraei, 2014) 
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oxide composite Ag2O: 20 counting of CFU 

Antibacterial activity of biogenically synthesized metal oxide NPs 

 

Aluminium oxide 

(Al2O3) 

synthesized by 

using leaf extracts 

of lemongrass 

254 + 52.2 Disc diffusion E. coli 
(Ansari et al., 

2012) 

Cobalt oxide 

(Co3O4) 

synthesized using 

leaf extracts of 

Sageretia thea 

20 NA Disc diffusion 

Concentration 

dependant activity 

against 

S. aureus and E. 

coli 

Antibacterial 

activity increased 

after exposure to 

UV 

(Khalil et al., 

2017) 

Copper oxide 

(CuO) synthesized 

through microbial 

method using 

Streptomyces 

species 

(forming CuO 

coated textile) 

100 – 150 NA 

Agar plate and 

determination of 

zone of 

inhibition 

E. coli, S. aureus, 

and A. niger 

CuO nanoparticles 

applied to textile 

showed maximum 

zone of 

mycostaisis -  a 

promising future 

for a textile that 

might decrease 

transmission of 

infectious 

diseases. 

(Usha, Prabu, 

Palaniswamy, 

Venil, & 

Rajendran, 

2010) 

Copper oxide 

(CuO) synthesized 

using gum karya 

4.8, 5.5, and 

7.8 
NA Well diffusion  

E. coli and S. 

aureus 

 

(Padil & Černík, 

2013) 

 

Copper oxide 

(CuO) synthesized 

using extract of 

brown algae 

5 – 45 NA Disc diffusion  

Enterobacter 

aerogenes and S. 

aureus 

(Abboud et al., 

2014). 

Copper oxide 

(CuO) synthesized 

using Phyllanthus 

amarus leaf 

extract 

20 NA Well diffusion  

B. subtilis, S. 

aureus, E. coli 

and P. aeruginosa 

 

(Acharyulu et 

al., 2014) 

Copper oxide 

(CuO) prepared 

using tea leaf and 

coffee 

powder extracts 

50 – 100 NA Disc diffusion  

Shigella 

dysenteriae and V. 

cholera 

(Sutradhar, 

Saha, & Maiti, 

2014) 

Iron oxide (Fe3O4) 

Produced using  

seaweed 

(Sargassum 

muticum aqueous 

extract) 

10 – 30 NA Disc diffusion  

E. coli, Proteus 

mirablis, 

Proteus vulgaris 

and S. aureus 

 

 

 

(Arokiyaraj et 

al., 2013) 
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Titanium dioxide 

(TiO2) synthesized 

using the fungus 

Aspergillus flavus 

33 NA Well diffusion  E. coli 

 

(Santhoshkuma

r et al., 2014) 

Titanium dioxide 

(TiO2) synthesized 

using Aeromonas 

hydrophila 

40.5 NA Well diffusion  

S. aureus and 

streptococcus 

pyogenes 

(Jayaseelan et 

al., 2013) 

Zinc oxide (ZnO) 

produced using 

the leaf extract of 

Solanum nigrum 

20 – 30 NA Disc diffusion  

Salmonella 

paratyphi, E. coli, 

V. cholerae and S. 

aureus 

(Ramesh, 

Anbuvannan, & 

Viruthagiri, 

2015). 

Antiviral activity 

 

Cuprous oxide 

Cu2O) 

45.5 (by 

TEM) 

 

92.4 (by Zeta 

sizer) 

NA 

In vitro, Huh 

7.5.1 cells 

infected with 

HCV 

Inhibited Hepatitis 

C virus entry 

(Genotype 1a, 1b 

and 2a) at a 

concentration of 2 

µg/ml 

 

(Hang et al., 

2015) 

Iron oxide 

(Fe3O4) 
75 – 80 

+ 7.25 – 

7.48 

In vitro, Huh7 

cells infected 

with HCV 

Induced 

knockdown of 

Hepatitis C virus 

genes encoding 

helicase and 

protease, essential 

for cirus 

replication 

 

(SooRyoon Ryoo 

et al., 2012) 

 

Zinc oxide, 

Tetrapod shape 

(ZnO) 

Arm 

diameter: 

200 nm to 

1µm, length 

5 - 30 µm 

NA 
In vivo using 

BALB/c mice 

Interacts with 

Herpes simplex 

virus 2 inhibiting 

its entry into cells 

(Antoine et al., 

2016) 

(Mishra et al., 

2011) 

Antiparasitic activity 

 

Al2O3, 

CeO2, 

Fe3O4, 

ZrO2 

and MgO 

<50 

<25 

9 – 11 

<100 

<30 

NA 

In vitro, human 

blood cells 

infected with 

the parasite 

were treated 

with NPs 

Plasmodium 

falciparum 

(malaria) 

(Jacob 

Inbaneson & 

Ravikumar, 

2013) 

Zinc oxide 

(ZnO) 
10 - 15 NA 

In vivo, mice 

infected with 

parasite were 

treated orally 

with the NPs 

Showed protective 

effect against 

Eimeria Papillate 

induced 

coccidiosis 

(Dkhil, Al-

Quraishy, & 

Wahab, 2015) 

Zinc oxide (ZnO) 17 NA 

In vitro, parasite 

in medium were 

treated with NPs 

Helminth infection 
(Khan et al., 

2015b) 

Zinc oxide (ZnO) 

and 

iron oxide (FeO) 

20 – 30 

 

20 – 40 

NA 

In vitro, 

parasites in 

medium were 

Helminth infection 

(Dorostkar, 

Ghalavand, 

Nazarizadeh, 
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treated with NPs Tat, & 

Hashemzadeh, 

2017) 

Titanium dioxide 

(TiO2), 

 

Zinc oxide (ZnO), 

 

Magnesium oxide 

(MgO) 

10 – 25 

 

 

10 – 30 

 

30 – 40 

NA 

In vitro, 

promastigotes in 

medium were 

treated with NPs 

Promastigotes of 

leishmaniasis 

major 

 

 

(Jebali & 

Kazemi, 2013) 

(Delavari, 

Dalimi, 

Ghaffarifar, & 

Sadraei, 2014) 

Antiparasitic Activity of biogenically synthesized metal oxide NPs 

 

Cobalt oxide 

(Co3O4) 

synthesized using 

leaf extracts of 

Sageretia thea 

20 NA 

In vitro, 

parasites in 

culture media 

were treated 

with NPs 

Active against 

leshimaniasis, 

both the axenic 

promastigote and 

amastigote 

cultures. 

(Khalil et al., 

2017) 

*NA = Not available  

 

 

 

3.1. Antibacterial activity  

The antibacterial effects of MONPs arise from damage to cell membranes, the generation of 

ROS, photokilling, disturbance of metal/metal ion homeostasis, genotoxicity, and protein or 

enzyme damage (Figure 3) (Raghunath & Perumal, 2017). A brief description of the major 

mechanisms is presented below. For further detail about the mechanisms of action, readers 

are directed to a recent review (Raghunath & Perumal, 2017). 

3.1.1. Cell wall damage 

The surface charge, size of the MONPs and the nature of the bacterial cell wall (Gram 

negative versus Gram positive) profoundly affect the antimicrobial activity of NPs 

(Raghunath & Perumal, 2017). The cell walls of both Gram negative and positive bacteria 

have a peptidoglycan (sugar/amino acid polymer) layer, but this is thicker with Gram 

positive bacteria. The membrane of Gram negative bacteria is more negatively charged than 

Gram positive bacteria (Figure 3) (Beveridge, 1999).  

 

Many binding forces are involved in the adhesion of NPs to the bacterial cell wall, including 

electrostatic, van der Waals and hydrogen bonding interactions (Parikh & Chorover, 2006). 

Binding is further influenced by steric effects (Neu & Marshall, 1990). The relative 

importance of these will depend on the net surface charge of a NP (neutral, negative or 

positive). It has been reported that amphiphilic molecules embedded in the walls of Gram 

negative (e.g. lipopolysaccharides, phospholipids) and Gram positive (e.g. teichoic acid and 

lipoteichoic acid) bacteria are the first molecules involved in binding with NPs (Makin & 

Beveridge, 1996). These amphiphilic molecules have a hydrophobic and a hydrophilic region 

that are able to interact with NPs approaching the bacterial cell wall. Lipopolysaccharides 

are reported to bind to GeO2, α-Fe2O3 and α-Al2O3 surfaces (Parikh & Chorover, 2008).  
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Lipoteichoic acid is found to interact with the surface of TiO2 NPs (Rice & Wickham, 2005; 

Wickham & Rice, 2008). These interaction forces facilitate the adhesion of a NP onto the cell 

wall of bacteria, and this is followed either by the endocytic uptake of the NP or the 

formation of nanoscale pores in the cell wall (Figure 3). The latter in particular permits the 

passage of more MONPs into the interior of the bacterium where they can interact with a 

range of intracellular components such as lipids, enzymes, proteins, DNA and other 

intracellular organelles (Raghunath & Perumal, 2017). Pores also allow leakage of 

intracellular components to the extracellular milieu. All these effects together result in the 

death of the bacterium (Raghunath & Perumal, 2017). MONPs with a positive surface charge 

are taken up to a greater extent than other NPs due to the prevalence of negative charges 

at the cell wall. This might be responsible for the selective action of some MONPs (Chung et 

al., 2004). 

 

 

3.1.2. Production of reactive oxygen species  

As noted above, ROS production is thought to be the principal mechanism underlying the 

antimicrobial activity of MONPs (Raghunath & Perumal, 2017). ROS comprise superoxide 

anions (O2
-), hydroxyl radicals (OH.), hydrogen peroxide (H2O2) and organic hydroperoxides. 

ROS are normally neutralized or deactivated by the protective mechanisms present in 

bacterial cells, either enzymatically (catalase or superoxide dismutase) or by reducing 

substances such as thiol or sulphur containing compounds (e.g. glutathione) (Fatma 

Vatansever et al., 2014; Slavin, Asnis, Häfeli, & Bach, 2017a). However, these are limited in 

their effects and can be overwhelmed by very high ROS concentrations as discussed earlier.   

 

MONPs dissolve and release metal ions (e.g. Fe3+, Co2+, Mn2+ and Cu2+) both in the medium 

surrounding the bacteria and in the cytoplasm. Thus, after endocytic uptake of a NP into the 

bacteria, a certain quantity of metal ions is released into the cytoplasm. Metal ions can also 

easily diffuse through the cell wall of the bacterium. These two processes result in the 

generation of ROS inside the cell (Pereira & Oliveira, 2012). When ROS production 

overwhelms the cellular antioxidant defence system, oxidative stress results (Imlay, 2003; 

Imlay & Linn, 1988; Paravicini & Touyz, 2006; Storz & Imlay, 1999). This is associated with 

damage of many key biomolecules inside a micro-organism, including carbohydrates, 

proteins, lipids, and genetic materials (Figure 3). Oxidative stress can also lead to depletion 

of reduced glutathione (Jahnke et al., 2016; Madl, Plummer, Carosino, & Pinkerton, 2015), a 

compound which has an important role in scavenging and detoxifying ROS molecules 

(Ramalingam, Parandhaman, & Das, 2016). For instance, exposure of E. coli to ZnO and TiO2 

resulted in depletion of reduced glutathione (Ashutosh, Pandey, Singh, Shanker, & Dhawan, 

2011). 

 

The amount of ROS produced is controlled by the physicochemical properties of NPs, 

including their surface area, diffusibility and electrophilic nature (Raghunath & Perumal, 

2017). For example, Cu2O NPs have higher antibacterial activity than CuO NPs, indicating 

that the oxidation state of the metal plays a role in toxicity (Meghana et al., 2013). In this 

case, O2 can oxidise Cu+
 in Cu2O to Cu2+, which can in turn react with superoxide (O2

−), 

leading to sustained oxidative stress (Meghana et al., 2013). Superoxide molecules may 
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reduce Cu2+ to Cu+, thereby generating H2O2. The latter can react with Cu+ to generate OH− 

(Nieto-Juarez, Sienkiewicz, & Kohn, 2010; Slavin, Asnis, Häfeli, & Bach, 2017b). Higher 

concentrations of OH− have been detected in cells treated with CuO NPs than those treated 

with Cu2O NPs (Slavin et al., 2017b). 

 

In addition to the production of ROS via the metal ions released from their surfaces, MONPs 

frequently have electron donating surfaces (Sawai et al., 1996). This endows them with the 

ability to generate ROS upon exposure to UV light and/or oxygen. This can lead to bacterial 

death via a process termed photokilling. Photokilling is a mechanism particularly 

characteristic of MONPs containing transition metals (Hongjun & Lianzhou, 2014), but ROS 

can be also generated from non-transition metal based materials upon exposure to light 

(Fatma Vatansever et al., 2014; Sawai et al., 1996). After exposure to light, the ROS 

produced lead to the disruption of the cell membrane, loss of permeability, damage to 

proteins and DNA, and damage to enzymes. Complete killing of bacteria was reported after 

exposure to titanium oxide (TiO2) NP under UV light for 50 min (Tsuang et al., 2008).  

 

3.1.3. Disturbance in metal/metal ion homeostasis 

Metal ions are essential to regulate the metabolic activity of micro-organisms (Gaballa & 

Helmann, 1998). Excess metal ions disrupt homeostatic processes and therefore metabolic 

activity (Raghunath & Perumal, 2017). Excess metal ions can further bind with and cross-link 

genetic material either between or within DNA strands, and hence disrupt the helical nature 

of DNA (Raghunath & Perumal, 2017). Inside bacteria, NPs are constantly undergoing 

dissolution because of the electrochemical potential in solution, leading to a uniform 

distribution in the cell. In contrast, NPs that interact with the cell wall produce a high local 

concentration of ions, causing more toxicity (Hood & Skaar, 2013; Skaar & Raffatellu, 2015).  
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Figure 3: Mechanisms of action involved when metal oxide nanoparticles act as antibacterial agents.  

 

3.1.4. Genotoxicity 

MONPs are reported to damage both chromosomal DNA (single circular strands carrying the 

genetic material essential for daily metabolic activity) and plasmid (not essential for daily 

survival, but important at times of stress) DNA in bacteria. Such damage results in DNA 

oxidation and fragmentation (Giannousi, Lafazanis, Arvanitidis, Pantazaki, & Dendrinou-

Samara, 2014), and has been noted with E. coli and Bacillus subtillis exposed to Cu2O NPs 

(Giannousi et al., 2014).   

 

3.2. Antiviral activity 

MONPs are reported to act as antiviral agents through the attachment of the particles to the 

surface of the virus (Aderibigbe, 2017). This interferes with the interactions between 

binding sites at the exterior of the virus and specific receptors on the surface of the host 

cell, and therefore inhibits virus entry into the cell (Figure 4). For example, an in vitro study 

showed that Cu2O NPs interacted with the surface of hepatitis C, inhibiting its entry into 

Huh7.5.1 cells and consequently inhibit viral replication (Hang et al., 2015). In addition, 

MONPs can be used for the delivery of a therapeutic agent (either chemically or physically 

attached onto the NP surface). This has been exemplified for IONPs, which were employed 

as targeted delivery systems carrying a DNAzyme for the treatment of hepatitis C  (Ryoo, 

Jang, Kim, Lee, Bo, et al., 2012). In vivo studies on mice showed that the IONPs accumulated 

in the hepatocytes and macrophages in the liver, suggesting they have potential for the 

treatment of hepatitis C (Ryoo, Jang, Kim, Lee, Bo, et al., 2012).  
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Figure 4: Mechanisms of action of metal oxide nanoparticles as antiviral agents.  

 

3.3. Antiparasitic activity 

The antiparasitic activity of MONPs involves the production of sufficiently large amounts of 

ROS to overcome the defence systems of the parasite. The production of ROS is initiated by 

metal ions released from the NPs (Aderibigbe, 2017) as previously discussed in Section 3.1.2. 

For instance, in vitro treatment of Gigantocotyle explanatum with different concentrations 

of ZnO NPs was found to kill the parasite via this route (Khan et al., 2015a). An increase in 

ROS has been associated with an increase of the activity of protective enzymes such as 

superoxide dismutase (Sawai et al., 1996), but at high concentrations of ZnO NPs (240 μg 
/ml), this protective system appeared to be disrupted, possibly due to the saturation of 

enzymes as a result of over production of hydroxyl ions and other ROS rendering the 

detoxification mechanism ineffective (Khan et al., 2015a).   

 

4- TRANSLATION OF MONPS TO THE CLINIC 

There are currently no MONPs formulations for antimicrobial applications in the list of FDA-

approved nanomedicines (Bobo et al., 2016), despite the very significant amount of research 

work that has been undertaken (Table 1). To date, IONPs are the only MONPs approved by 

the FDA, with applications for both imaging and the treatment of iron deficiency (Anselmo & 

Mitragotri, 2015, 2016; Bobo et al., 2016). However, most of these IONP formulations were 

withdrawn and discontinued for use in the clinic (Anselmo & Mitragotri, 2015). This might 

be a result of several associated side-effects (e.g. severe lower back pain and life 

threatening hypersensitivity reactions) or lower imaging efficacy compared to other MRI 

agents (Yi-Xiang, 2015). FDA approval of these IONP formulations involved many 

physicochemical and biological tests at the preclinical and clinical stages. However, these did 

not fully guarantee biological safety and efficacy, and consequently additional tests might 

be required in the future. This could place obstacles to the development of MONPs for 
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antimicrobial activity. However, there are potentially low-hanging fruit: Ferumoxytol, which 

contains IONP coated with polyglucose sorbitol carboxymethylether, is an extremely safe 

material currently used in the clinic (Anselmo & Mitragotri, 2015; Spinowitz et al., 2008; 

Spinowitz et al., 2005). Given that IONPs have been shown to have antibacterial, antiviral 

and anti-parasite activity, the antimicrobial activity of Ferumoxytol would appear to be 

worthy of investigation. 

 

The limited number of MONPs being processed into FDA approval might be a result of a lack 

of attention being paid to the biological and technical perspectives essential for translation 

to the pre-clinical and clinical stages. Key questions to be considered comprise biological 

challenges such as: 

(1) Are the MONPs stable in the blood plasma? 

(2) Can they cross key biological barriers such as the epithelium layer, and 

survive the gastrointestinal pH and high ionic strength of physiological fluids?  

(3) Can they be selectively targeted to and taken up by an infected organ/cell? 

(4) Do they initiate an immune response? If so, is this beneficial or detrimental? 

(5) Can they be eliminated safely from humans after treatment? 

(6) What are the potential biotoxicities associated with long-term 

administration?   

 

A number of technical questions also need to be taken into account:  

(1) What issues might be faced in large scale production? 

(2) What physicochemical properties tests (in-process and final product) are 

required to allow reproducible production of MONPs? 

 

These issues will be discussed in turn below. 

 

4.1. Biological challenges 

4.1.1. Biological barriers 

There are several barriers which must be overcome by MONPs in vivo in order for them to 

have a pharmacological effect. These barriers differ according to the route of 

administration. This review will consider the key biological barriers encountered by NPs 

after application by intravenous, oral, and topical routes of administration (Figure 5). 

 

Intravenous administration of NPs has the advantage of delivering the NP directly into the 

blood stream. However, many barriers must still be overcome to reach a particular desired 

organ. For example, plasma proteins are quickly adsorbed onto NP surfaces in the blood, 

forming a protein corona in a process known as opsonization (Garnett & Kallinteri, 2006). 

Adsorption is associated with conformational changes of the proteins, and this enhances NP 

recognition and elimination by macrophages of the reticuloendothelial system (RES), a part 

of the immune system localized in the lymph nodes, liver and spleen (Garnett & Kallinteri, 

2006). Removal of NPs by the RES is very sensitive to their size. Particles greater than 200 

nm are rapidly cleared by the RES of the liver and spleen (Faraji & Wipf, 2009; Kulkarni & 

Feng, 2013; Luís, Barros, Tsourkas, Saboury, & Cardoso, 2012). However, smaller particles 

are able to avoid RES uptake, and the literature reports that there is an inverse relationship 
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between particle size and uptake by the RES: particles of smaller sizes persist for a longer 

time in the systemic circulation than larger particles (Hoshyar, Gray, Han, & Bao, 2016). This 

has been noted for example with Au NPs (Hoshyar et al., 2016). Uptake by the RES can 

further be ameliorated by NP surface modification prior to administration: for instance, the 

attachment of polyethylene glycol (PEG) is reported to reduce protein adsorption and 

increase the circulation time (Stolnik, Illum, & Davis, 1995). IONPs coated with PEG 

accumulate to a lesser extent in the liver and spleen than their naked analogues, making 

them more available in the systemic circulation to be taken up by other organs (Fong-yu, Su, 

Yang, & Yeh, 2005).  

 

 
 
 Figure 5: Challenges potentially facing NPs after oral, topical, and IV administration 

 

The next obstacle faced by the NP will be the need to transit across the endothelium layer of 

the blood vessels into the extracellular fluid (Figure 5). The endothelial cells of the blood 

vessel membrane are tightly adhered to each other, with a gap of less than 2 nm between 

them (Garnett & Kallinteri, 2006). Additionally, they are supported on a basement 

membrane which only allows the passage of particles smaller than 15 nm. This further 

reduces the possibility of extravasation of NPs across the vascular endothelium (Garnett & 

Kallinteri, 2006). In some organs, such as the liver, the endothelium layer is more permeable 

and particles up to 100 nm in size can pass through (Braet et al., 2007). The spleen is also 

more accessible to larger particles (200 to 250 nm) (Cataldi, Vigliotti, Mosca, & Cammarota, 

2017; Moghimi et al., 2017; Moghimi, Hunter, & Andresen, 2012). This means that if NPs are 

able to enter the systemic circulation, they are likely to accumulate in the liver and spleen. 

In contrast, other organs such as the brain are highly inaccessible to NPs, with very tight 

junctions between their endothelial cells, and thus are extremely difficult to target (Greene, 
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Campbell, Greene, & Campbell, 2016). However, metal-containing NPs which are able to 

cross the blood brain barrier (BBB) in animal models have been designed. One example of 

such a formulation comprises PEGylated gold NPs with particle size of 5 nm (Cheng et al., 

2014). More examples of inorganic NP that are able to cross BBB can be found in a recent 

review by Zhou et al. (Zhou, Peng, Seven, & Leblanc, 2018).  
 

If NPs manage to overcome the previous barriers to reach their target organ or tissue, they 

now have to cross the extracellular fluid, a jelly-like fluid filled with polysaccharides, 

proteins and collagen (Garnett & Kallinteri, 2006). This contains some water channels that 

could possibly be used for NP transportation (Garnett & Kallinteri, 2006). However, the 

nature of the extracellular matrix imparts a potential problem due to the possibility of 

protein adsorption onto the surface of the NP, leading to particle aggregation (Yue-Jian et 

al., 2010). Again, this might be obviated by the grafting of PEG to the particle surfaces. 

 

After crossing the extracellular fluids, NPs are typically taken up by cells through the 

endocytic pathways (Porter, Moghimi, Illum, & Davis, 1992). MONPs must be able to 

withstand the acidic pH of the endosomes/lysosome, and/or escape into the cytoplasm of 

cells to exert their antimicrobial activity. However, IONPs comprise the only metal oxide 

system that has been extensively explored in terms of its biological fate. They were found to 

be significantly dissolved within the endosomes of stem cells in less than a month 

(Desboeufs, Michel, Pellegrino, Lalatonne, & Wilhelm, 2016). Given that a key part of the 

antibacterial activity of MONPs arises from metal ions being released into solution upon 

dissolution this may not be an issue in terms of their antimicrobial efficacy, but further 

investigations are required.   

 

Oral administration of NP is likely to be favourable compared to IV administration as it is 

patient friendly and does not require trained medical staff or close medical observation 

after administration. However, orally administrated NP face additional challenges to those 

discussed for the intravenous route (Figure 5). These include the pH variation, potential for 

enzymatic degradation and high salt concentrations in the gastrointestinal tract 

(encouraging particle aggregation), and the need to cross its endothelium to enter the 

systemic circulation. Given that inorganic compounds such as MONPs are generally not 

endogenous, there are no mammalian enzymes which can digest them. Therefore, the 

digestive impact on inorganic NPs is generally not studied as an independent variable 

(Mccracken, Zane, Knight, Dutta, & Waldman, 2013).   

 

The gastrointestinal fluids have a range of pH values ranging from acidic (in the stomach) to 

neutral and mildly alkaline pH (in the small intestine). This will affect both the surface 

charge and solubility of MONPs. For example, at acidic pH, cations neutralize the negative 

surface charge of TiO2 NPs, resulting in particle aggregation; upon moving the NP into 

alkaline pH, the negative surface charge is returned and the particles disaggregate 

(Finnegan, 2006; Godinez & Darnault, 2010; Guiot & Spalla, 2012; Romanello & Cortalezzi, 

2013).  These effects can be mitigated though coating the NP; for instance, coating TiO2 NPs 

with natural organic matter (phenolic and carboxylic compounds) was found to be efficient 

in stabilizing them against aggregation (Romanello & Cortalezzi, 2013). A number of other 

MONPs have also been relevealed to aggregate when suspended in simulated biological 
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fluids (Laijin Zhong, Yu, & Lian, 2017), with the colloidal stability found to lie in the order 

Fe3O4 < CuO < TiO2 < CeO2 < ZnO in all fluids tested (Laijin Zhong et al., 2017). The 

aggregation was found to occur because of changes in surface charges and the high salt 

concentrations of simulated biological fluids (Laijin Zhong et al., 2017). NP dissolution can 

also be a problem:  γ-Fe2O3 NPs were reported to dissolve at the acidic pH of the stomach, 

relasing their metal ions into the systemic circulation (Chamorro et al., 2015).  

 

The next expected barrier for NPs applied orally is the requirement for them to penetrate 

the mucus layer and the gastrointestinal epithelium layer to be available for the systemic 

circulation. The mucus layer is a jelly-like layer composed of water and proteins (mucin) 

which acts as a semipermeable barrier between the lumen and epithelium layer (Jeong et 

al., 2010), hindering the penetration of MONPs into the latter (Fröhlich & Roblegg, 2012). 

The passage of NPs through a mucus layer depends on their size and surface charge (Avdeef 

& Testa, 2002). Generally, neutral and positively charged NPs are able to penetrate more 

easily through the mucus layer (Avdeef & Testa, 2002). However, the situation is 

complicated and the NPs may have an influence on the composition of mucus layer: silver 

NPs have been reported to induce secretion of mucus of abnormal mucin composition 

(Jeong et al., 2010). The abnormality of mucin might be indicative of pathologic regions and 

requires further investigation to explore the potential toxicity of MONPs administrated 

orally (Jeong et al., 2010). 

 

If NPs pass through the mucus layer, they next have to cross the epithelium of the 

gastrointestinal tract. The epithelial layer in the gastrointestinal tract is composed of cells 

linked together by intercellular junctions, restricting passage between them.  All epithelia 

reside on a basal membrane, which separates them from the underlying connective tissue 

containing capillaries, lymph vessels, and lymph follicles. Therefore,  MONPs have also to 

cross the basal membrane and the connective tissue to reach the systemic circulation 

(Fröhlich & Roblegg, 2012). This can be a problem: after oral administration of silver NPs 

into rats, a large number of NPs were detected in the connective tissue under the epithelial 

layer of both the small and large intestine. This was found to induce abnormal mucin 

composition in the intestinal mucosa (Jeong et al., 2010). Therefore, further investigation 

should be carried out into the pathophysiology of the gastrointestinal tract after oral 

administration of MONPs.  

 

Topical application of MONPs is another route to be considered for antimicrobial therapy 

(Figure 5). After topical application, NPs either penetrate to deep skin layers for local 

effects, or permeate to the bloodstream for systemic activity (Labouta & Schneider, 2013). 

The biological barriers to the former, for local antimicrobial activity, are likely to be less 

challenging than getting the NPs into the systemic circulation. Healthy skin is divided into 

the epidermis and the dermis. In addition, there are two physical barriers in the epidermis: 

the stratum corneum (the outmost layer of the epidermis), and tight junctions (intercellular 

junctions that seal adjacent cells forming the stratum corneum layer) (Brandner et al., 2015; 

Jatana & DeLouise, 2015). Intact healthy skin does not allow permeation of NPs, but this is 

not the case for inflamed, injured, or infected skin (Yoshioka, Kuroda, Hirai, Tsutsumi, & 

Ishii, 2017). A significant amount of research has been performed to explore the penetration 

of NPs through healthy skin, but there is still doubt regarding the therapeutic benefit of 
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their topical application in humans as most studies use animal rather than human skin 

(Yoshioka et al., 2017), and different authors have reported strikingly different observations.  

 

The penetration of ZnO and TiO2 NPs through skin has been explored, but the results are 

contradictory. Some studies reported permeation, while others did not. For example, Tan 

and his colleagues observed that TiO2 NPs of 10 to 50 nm could permeate human skin in vivo 

(Tan, Commens, Burnett, & Snitch, 1996), but in another study 20 nm TiO2 NPs failed to 

penetrate human skin both in vivo and ex vivo (Pandey et al., 2014). ZnO particles < 200 nm 

in size (Durand, Habran, Henschel, & Amighi, 2009) and of 30 nm (Xinyu, Ishida, & Kiwada, 

2007) were both found to be unable to penetrate human skin in vitro, and ZnO of 80 nm was 

unable to penetrate porcine skin ex vivo (Gamer, Leibold, & Ravenzwaay, 2006). In contrast, 

Fe2O3 NPs ranging from 4.6 to 10 nm could pass through incised mouse skin in vitro (Lee et 

al., 2010). The different results reported are likely due to the use of varied experimental 

protocols, since there is no universally agreed approach for such studies: while some 

authors used intact skin, others employed incised or inflamed skin; some researchers add 

additives to their NP formulations (e.g. surfactants) but others do not; and different 

equipment was employed for qualitative and quantitative studies. Therefore, a robust 

correlation between the physicochemical properties of NP (size, material, surface charge, 

shape) and uptake is still lacking. Further, the precise role of formulation additives (e.g. 

permeation enhancers) and the condition of the skin (healthy skin versus inflamed or 

infected skin) on NP penetration needs further investigation (Labouta & Schneider, 2013; 

Yoshioka et al., 2017).  

 

There are a range of factors which can affect the penetration of MONPs: (1) skin factors (e.g. 

type of skin, animal or human skin, intact vs. incised skin, hairy skin vs. non-hairy skin); (2) 

experimental factors (e.g. concentration of NPs, application time, skin area, in vivo or in 

vitro model); (3) formulation factors (e.g. particle size, surface charge, material type, 

additives, particle stability (aggregate vs. individual particles) and the vehicle used to 

disperse the NP). All of these need to be controlled to obtain detailed insight into NP 

uptake. For more information, readers are directed to reviews written by Yoshioka et al. 

(Yoshioka et al., 2017) and Labouta and Schneider (Labouta & Schneider, 2013).  

 

Finally, it could be expected that the use of MONPs to treat topical and local antimicrobial 

activity might be more applicable than trying to target the systemic circulation via the skin, 

because microbial infections are associated with skin inflammation and increase of the 

leakiness of the vascular endothelium (Bray & Geisbert, 2005). This means there is a high 

likelihood of NP accumulation at the site of infection. However, further studies on the 

pathophysiological anatomical changes accompanying the application of MONPs is still 

required to determine their safety.   

 
4.1.2. Immune response 

The immune system can both inhibit or potentiate the antimicrobial activity of MONPs. 

Hinderance of their antimicrobial activity can arise due to opsonization as previously 

discussed in Section 4.1.1, followed by activation of the complement pathway of innate 

immunity (a set of proteins which help in the recognition of foreign particles by 
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macrophages) (Szeto & Lavik, 2017). This in turn enhances the clearance of NPs by the RES 

of the liver and spleen, as has been noted for IONPs (Jain, Reddy, Morales, Leslie-Pelecky, & 

Labhasetwar, 2008). The activation of the complement pathway can also cause or 

exacerbate life-threatening hypersensitivity reactions. For example, the administration of 

dextran coated IONPs (e.g. Sinerem, Combidex, Feridex) has been associated with 

hypersensitivity reactions as a result of complement pathway activation. This led to their 

withdrawal from the market after being approved by the FDA for MRI imaging or treatment 

of anaemia (Banda et al., 2014; Chao et al., 2013)  

 

On the other hand, both the innate and adaptive arms of the immune system have been 

reported to be activated by MONPs, which can be used as adjuvants (materials added to 

vaccines to boost the immune response) (Maughan, Preston, & Williams, 2014; Moreira, 

Neto, Kipnis, & Junqueira-kipnis, 2017). This effect of MONPs increases the possibility of 

invading pathogen removal. The activation of innate immunity involves immune cell 

recruitment and activation of antigen-presenting cells (APCs) such as monocytes, 

macrophages and dendritic cells. Activation of adaptive immunity involves activation of 

different types of T helper (Th) cells and B cells producing specific antibodies against the 

invaded pathogen (Mccomb, Thiriot, Krishnan, & Stark, 2013). This is summarized in Figure 

6.  

  

MONPs have been reported to modulate the immune system in a significant number of 

studies (Table 2) (Maughan et al., 2014). For instance, C57BL/6 mice were vaccinated with 

the model antigen ovalbumin (OVA) and Co3O4 NPs (CNP) and their efficacy compared with 

the Imject alum adjuvant. CNPs stimulated T helper cells with a more balanced Th1 (cellular 

immunity, potent against intracellular infections) to Th2 (antibody immunity, effective 

against extracellular pathogens) ratio than alum. Anti-OVA antibody production was less 

pronounced with CNP than alum, which is indicative of lower risks of allergic responses  

(Cho et al., 2012).  

 

IONPs are reported to have time and dose dependent immunomodulatory effects both in 

vitro (M2 macrophage cell line) (Rojas et al., 2016) and in vivo (BALB/c mice) (Shen, Wang, 

Liao, & Jan, 2011). In vivo immunization of mice with IONPs coated with a surface protein 

from the merozoite parasite via intramuscular, subcutaneous or intraperitoneal routes 

(Pusic et al., 2013), all resulted in activation of adaptive immunity against the pathogen (e.g. 

B cell activation, with production of a significant level of anti-parasite antibodies and 

production of splenocyte cytokines (IL-4 and IFN-γ)). In other work (Pusic et al., 2013), bone 

marrow-derived dendritic cells treated with IONPs were reported to be activated. All these 

effects indicate that the immune response could be used to ameliorate microbial infections 

via the application of metal oxide NPs. 
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Figure 6: Immune response both innate and adaptive immunity against the invaded pathogens  
 

Immunostimulatory effects have also been observed with TiO2 NPs, which activated innate 

immunity when applied to the lungs of rats in vivo (Duffin, Tran, Brown, Stone, & 

Donaldson, 2007). TiO2 NP are also reported to stimulate human macrophages (Lucarelli et 

al., 2004), and liver cells in mice after intraperitoneal injection (Cui et al., 2011). TiO2 NPs 

with different physical properties (polymorphs, particle size/shape) applied to dendritic cells 

resulted in the activation of both innate and adaptive immunity (Schanen, Karakoti, Seal, Iii, 

& Warren, 2009), (Winter et al., 2011). Zirconium dioxide (ZrO2) has also been reported to 

induce adaptive immunity (e.g. activation of T helper cells) (Hanley et al., 2009). In vivo, zinc 

oxide NPs administered with OVA generated an inflammatory response and activation of 

adaptive immunity in mice (Roy et al., 2014; Matsumura et al., 2010).  

 

Such activation of the immune system by MONPs could offer an alternative route to 

microbial eradication. However, further studies should be performed to develop a 

formulation that could activate the immune system without causing hypersensitivity 

reactions. Further investigations are also required to explore how chemical and physical 

properties such as material composition, size, shape, surface charge and hydrophobicity 

impact the immune system, as there is limited literature regarding this. This is particularly 

important because it is difficult to change one parameter without affecting others: for 

example, it is hard to change particle size without affecting the surface charge (Labouta & 

Schneider, 2013; Pasquale, Preiss, Silva, & Garçon, 2015). 
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Table 2: Immunomodulatory effects of metal oxide nanoparticles 

Name Study details 
Immunomodulatory 

effect 
Reference 

Co3O4 combined with an 

antigen model, OVA 

In vivo immunization 

with C57Bl/6 Mice 

Induces adaptive 

immunity e.g. induction 

of different types of T 

helper (Th) cells (Th1, 

Th2 and Th17 cells) 

Low level of antigen 

antibodies e.g. IgE and 

IgG1 

(Cho et al., 2012) 

IONPs 

(Fe3O4) 

In vitro test on M2 

macrophages 

Time dependant 

immunomodulatory 

effects with increased 

production of interleukin 

(IL) 10 

(Rojas et al., 2016) 

IONPs 

(Fe3O4) 

In vivo test on BALB/c 

mice 

Decrease of the 

production of splenocyte 

cytokines (IL-4 and IFN-

γ) 

(Shen et al., 2011) 

IONPs (Fe3O4) coated 

with Merozoite surface 

protein 1 

In-vivo immunization of 

mice 

Higher production of IL-4 

compared to IFN-γ; 
increase production of 

anti-parasite antibodies 

(Pusic et al., 2013) 

IONPs 

(Fe3O4) 

In vitro tests on bone 

marrow-derived 

dendritic cells (BMDCs) 

Activate APCs 

increased IL-6, TNF-α, 
IFN-γ, and IL-12 

production, 

upregulation of dendritic 

cells 

(Pusic et al., 2013) 

TiO2 In vivo test on mice 

Increases influx of 

neutrophil into lung of 

mice 

(Duffin et al., 2007) 

TiO2 

In vitro test on human 

macrophages, PMA-

differentiated 

myelomonocytic U-937 

cells 

Induction of Toll-like 

receptors (TLRs), 

proteins with a major 

role in the immune 

system 

(Junqueira-Kipnis, 

Marques Neto, & Kipnis, 

2014) 

TiO2 

In vitro tests on 

denderitic cells derived 

from human umbilical 

vein endothelial cells 

Induces proliferation of  

naïve CD4+ T cells, 

enhance Th1 response 

increase IFN-γ and TNF-α 
production 

(Schanen et al., 2009) 

TiO2 

In vitro tests with bone 

marrow derived 

dendritic cells 

Induction of surface 

proteins important in 

immunity (MHCII and 

CD80) 

(Winter et al., 2011) 

ZrO2 

In vitro test with human 

macrophages, PMA-

differentiated 

myelomonocytic U-937 

cells 

Induction of TLRs (Lucarelli et al., 2004) 

ZnO 

In vitro tests with 

peripheral blood 

mononuclear cells 

Induced IFN-γ, TNF-α, 
and IL-12 

(Hanley et al., 2009) 
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ZnO 
In vivo test with BALB/c 

mice 
Induction of TLRs (Roy et al., 2014) 

ZnO 
In vivo imuunization test 

on BDA/1J mice 

Increased levels of IL-4, 

IL-5 and IL-13 

Activation of Th2 cells 

(Matsumura et al., 2010) 

ZnO 
In vivo immunization 

with mice (BALB/c) 

High levels of IgG1 and 

IgE 

Induction of IL-2, IL-4, IL-

6 and IL-17 

Lower levels of while IL-

10 and tumour necrosis 

factor-α. Increased 
number of eosinophils 

and mast cells. High 

level of Th2 cells 

(Roy et al., 2013) 

  
4.1.3. Targeting of MONPs into infected organs 

Selective delivery of NP into the site of microbial infection can be passive, depending on the 

properties of the blood vessels at the site of infection as previously discussed in section 

4.1.1, or active (via coating the NP with specific ligands targeting receptors at the cell 

surface). Although active targeting strategies have been widely explored in the literature 

there are to date no nanomedicine products with active targeting abilities that have been 

approved by the FDA for the treatment of any type of disease (Bobo et al., 2016; Kamalya, 

Xiaoa, Pedro M. Valenciab, & Farokhzad, 2009; Ventola, 2017a). This reveals the challenges 

faced in targeting MONPs to infected organs while avoiding harmful effects due to 

accumulation in off-target organs. One example of a targeted nanoscale formulation that is 

being investigated is SGT-53 (SynerGene Therapeutics), which contains an anti-transferrin 

antibody fragment that binds with a transferring glycoprotein receptor on cancer cells (Bobo 

et al., 2016). This agent is in Phase 1 and 2 clinical trials for the treatment of solid tumours, 

glioblastoma, and metastatic pancreatic cancer (Ventola, 2017a).  

 

4.1.4. Elimination 

It is generally a prerequisite for any formulation to be eliminated from the human body 

after administration to avoid the hazards of long term toxicity due to accumulation in the 

tissues (Ionescu & Caira, 2005). MONPs are not a target for enzymatic degradation (as 

discussed in Section 4.1.1). This means that controlling particle size is essentially the only 

strategy that can be employed to enhance their elimination through the kidneys (this 

requires particle size < 10 nm), especially in long term administration. NPs containing 

essential metals such as IONPs are reported to be reused as a nutritional source by the 

body; this is accompanied by an increase in iron ion levels, but these return to normal levels 

within three weeks after intravenous administration (Jain et al., 2008). This results in lower 

cytotoxicity at the therapeutic dose (Bassett, Halliday, & Powell, 1986) than might be the 

case where non-endogenous metals are used. The biological fate of MONPs needs further 

study however (Desai, 2012), particularly in terms of their potential toxicological effects 

during short and long term administration.   
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4.1.5. Toxicology  

MONPs can be synthesized either through traditional chemical methods or green/biogenic 

methods (using plant extracts or micro-organisms). The toxicological properties of some 

chemically synthesized MONPs were studied, and these were reported to be toxic both in 

vitro and in vivo due to the release of ROS and damage of intracellular components such as 

proteins, enzymes and DNA, and interference with the respiratory chain of the mitochondria 

in human cells (Seabra & Durán, 2015). It was speculated that the green synthesis of MONPs 

might be associated with lower toxicity to human cells due to (1) the absence of residues 

from toxic organic solvents and additives (e.g. surfactants) required for traditional chemical 

synthesis and (2) the possibility of the particles produced being coated with proteins or 

other components from the biogenic synthesis, forming a corona that might be more bio-

compatible than toxic materials adsorbed in the chemical synthesis (Seabra & Durán, 2015). 

Table 3 summarizes the cytotoxicity of some MONPs synthesized by both chemical and 

biogenic methods.   

 

The biogenic synthesis route was found to decrease the cytotoxicity of Co3O4 in terms of 

biocompatibility with human red blood cells and macrophages (Khalil et al., 2017). However, 

biogenically synthesized Fe3O4 NPs produced in Magnetospirillum gryphiswaldense were 

compared with Fe3O4 synthesized by a standard co-precipitation method for their 

cytotoxicity to L929 mouse fibroblast cells, and both showed comparable cytotoxicity (Han 

et al., 2007). This is contrary to another study (Yaaghoobi, Emtiazi, & Roghanian, 2012) 

where cell lysis of human peripheral blood cells after exposure to commercially produced 

Fe3O4  was noted, while there was no cytotoxicity or morphological changes observed with 

Fe3O4 NPs synthesized with a green method (Yaaghoobi et al., 2012).   

 

In vivo, TiO2 synthesized by a green method was reported to show no cytotoxic effect on 

Wistar rats (Wang & Fan, 2014), while chemically synthesized TiO2 NPs were highly toxic in 

mice, resulting in spleen damage, immune dysfunction, alteration of gene expression, and 

apoptosis (Babitha & Korrapati, 2013). Other studies revealed that biogenically synthesized 

NPs were also associated with cytotoxicity: for example, Co3O4 NPs synthesized by green 

(Cho et al., 2012) and chemical (Papis et al., 2007; Ponti et al., 2009) methods have both 

been found to be cytotoxic. Therefore, the safety profile of MONPs generated biogenically is 

still controversial, and further investigation is necessary to understand their toxicological 

properties. For more information on the toxicology of MONPs, readers are directed to a 

recent book chapter (Saquib, Faisal, & Abdulrahman, 2018).  
 

Table 3: Cytotoxicity studies on metal oxide nanoparticles 

Nanoparticle 

composition 

Chemical methods Biogenic methods 

In vitro/ 

In vivo test 

Toxicity 
Reference 

In vitro/ 

In vivo test 

Toxicity Reference 

Aluminium 

oxide (Al2O3) 

L929 and 

BJ* cells  

 

No cytotoxic 

effects 

(Radziun 

et al., 

2011) 

No available cytotoxicity studies 

Antimony 

trioxides 

(Sb2O3) 

Seven types 

of human 

cell lines  

No cytotoxic 

effects 
(Cooper & 

Harrison, 

2009) 

 

No available cytotoxic studies 
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Calcium oxide 

(CaO) 
 Rats 

Areas of 

necrosis,  and 

haemorrhages 

in liver, kidney 

and brain 

(Butt, 

Ejaz, 

Baron, 

Ikram, & 

Ali, 2015) 

No available cytotoxicity studies 

Cobalt oxide 

(Co3O4) 

Human 

lymphocytes 

 

Morphological 

transformation 

and 

genotoxicity 

 

(Papis et 

al., 2007); 

(Ponti et 

al., 2009) 

 

Instilled 

into lung 

of Wistar 

rats 

 

Immuno-

inflammatory 

response 

associated with 

lung damage 

(Cho et al., 

2012) 

 

Cobalt oxide 

(Co3O4) 

Balb 3T3* 

cells 

 

DNA damage, 

inflammatory 

responses 

 

(Chattopa

dhyay et 

al., 2015) 

Human 

RBCs and 

macrophag

es 

Biocompatible 

with no marked 

toxicity 

 

 

(Khalil et 

al., 2017) 

Cobalt oxide 

(Co3O4) 

BEAS-2B* 

cells 

Production of 

ROS 

(Ortega et 

al., 2014) 
Further cytotoxicity studies are required 

Copper oxide 

(CuO) 

A549, lung 

epithelial 

cell line 

 

DNA damage 

 

(Karlsson, 

Cronholm, 

Gustafsso

n, & 

Möller, 

2008) 

 

AMJ-13 

and SKOV-

3 cancer 

cell line 

Cell growth arrest 

 

(Sulaiman, 

Tawfeeq, 

& Jaaffer, 

2018) 

 

Copper oxide 

(CuO) 

MCF-7 cells, 

human 

breast 

cancer cells 

line 

 

Dose and time 

dependant  

autophagy 

(Laha et 

al., 2014) 

 

Dermal 

fibroblast 

cell line 

Cell apoptosis 

(Sulaiman 

et al., 

2018) 

 

Copper oxide 

(CuO) 

Mice 

 

Dose dependent 

apoptosis, 

damage to the 

immune system  

(Siddiqui 

et al., 

2013) 

 

Further cytotoxicity studies are required 

Copper oxide 

(CuO) 

Human 

blood 

lymphocytes 

 

Decreased cell 

viability in a  

conc dependant 

pattern 

(Assadian 

et al., 

2017) 

 

Further cytotoxicity studies are required 

Iron oxide 

(Fe3O4) 

Human 

peripheral 

blood cells 

 

Lysis of cells 
(Yaaghoo

bi et al., 

2012) 

Human 

peripheral 

blood cells 

No morphological 

changes 

(Yaaghoobi 

et al., 

2012) 

Iron oxide 

(Fe3O4) 

L929 mouse 

fibroblast 

cell line 

Viability of cells 

was around 85% 
(Han et 

al., 2007) 
L929 

Viability of cells 

was around 90% 

(Han et al., 

2007) 

Titanium 

dioxide 

(TiO2) 

mice 

Spleen damage, 

immune 

dysfunction, 

alteration of 

gene 

expression, 

apoptosis 

(Wang & 

Fan, 2014) 
Wistar rats 

No cytotoxic 

effects recorded 

 

 

 

 

(Babitha & 

Korrapati, 

2013) 
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Zinc oxide 

(ZnO) 

A549 cells 

 

Decreased cell 

viability 

 

(Cho et 

al., 2012) 

*neuro2A 

cells 

Decreased cell 

viability 

 

(Darroudi 

et al., 

2014). 

*Balb 3T3 cells, immortalized cells developed from primary mouse embryonic fibroblasts; BEAS-2B cells, human 

airway epithelium cells; neuro2A cells, a fast-growing mouse neuroblastoma cell line; BJ cells, normal human 

cells, skin fibroblasts 

 

 

4.2. Technical challenges 

In the pharmaceutical industry, reproducible production of a dosage form is crucial. For the 

nanomedicine field, this requires additional tests to those needed for conventional dosage 

forms and involves determination of NP size, size distribution, surface charge, release of 

active ingredients, purity and surface functionalization (ligands for active targeting) (Desai, 

2012). The stability of the nanomedicine at both the pre-clinical and clinical stages will also 

be vital (Desai, 2012). These properties of NPs are crucial in determining their 

pharmacological effects, which has led the FDA to propose a series of key tests which must 

be undertaken on any new nanomedicine (Table 4).  

 

These tests are essential as they quantify the physicochemical properties of NPs, which in 

turn control their interactions with cells and other biological components and therefore the 

ultimate therapeutic outcome (Lina, Wanga, & Sridharb, 2014). For example, size regulates 

the circulation and navigation of nanomaterials in the bloodstream, penetration across 

physiological membranes, site- and cell-specific localization, and even the induction of 

cellular responses (Feng, 2004; Ferrari, 2008): smaller silver NPs cause greater apoptotic 

effects with certain cell lines (Kim et al., 2012; Sosenkova & Egorova, 2011).  

 

The surface composition determines the surface charge and energy. The latter is relevant to 

the dissolution, aggregation and accumulation of nanomaterials. Surface charge affects 

receptor binding and physiological barrier penetration, governs NP dispersion stability or 

aggregation and is generally estimated in terms of the zeta potential (Lina et al., 2014). For 

example, the high ionic strength of physiological fluids enhances aggregate formation and 

therefore affects the interactions of NPs with cells. Zebrafish embryos were reported 

(Truong, Zaikova, Richman, Hutchison, & Tanguay, 2012) to be  extremely sensitive to gold 

NPs under conditions of low ionic strength, in which the NPs disperse, but not at high ionic 

strength. The surface charge and composition of NPs further affects the composition of the 

protein corona formed after the introduction of NPs into a biological system, which in turn 

influences their interactions with cells (Huinan & Webster, 2007; Lina et al., 2014). The 

chemical composition of a NP has a number of effects in terms of dissolution and cellular 

interactions, all of which alter the viability and functionality of cells. For example, a sub-

lethal pro-inflammatory response was reported with Al2O3 NPs in a murine macrophage cell 

line, while ZnO NPs induced a lethal genotoxic effect (Ralloa et al., 2015).  

 

The shape of a nanomaterial affects cellular uptake, biocompatibility and retention in 

tissues and organs (George et al., 2014; Pal, Tak, & Song, 2007). It was also reported that 

modulation of the shape of NPs can alter their flow in the systemic circulation, adhesion 
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properties with cells, and circulation time (Doshi, Prabhakarpandian, Rea-Ramsey, Pant, & 

Shivshankar Sundaram, 2014; Geng et al., 2009). 

 

In addition to the technical challenges encountered during the manufacture of NPs, other 

obstacles are faced during the evaluation of the pharmacological activity of the 

administrated material, since the simple pharmaco-equilibrium theory used for 

conventional dosage forms (measuring the drug concentration in the blood to reflect 

therapeutic efficacy) cannot be applied (Desai, 2012). The pharmacological activity of 

nanomedicines depends on (1) NP accumulation at the target site, and (2) achieving a high 

efficacy/risk ratio compared to conventional dosage forms (Havel et al., 2016). The 

measured plasma concentrations after nanomedicine application reflect the nature/number 

of circulating NPs and this cannot be directly correlated to pharmacological or toxicological 

effects. 

 

Scaling up NP production is another technical challenge. There are four major methods used 

for the manufacture of MONPs: dry or wet milling, vapour, liquid and solid phase synthesis 

(Tsuzuki, 2009). The milling and vapour phase methods have the disadvantages of producing 

NPs of broad size distribution and in aggregated form, while the liquid method produces 

particles of narrow size distribution but with a high degree of agglomeration. The solid 

phase method gives a product with a uniform size, shape and low level of agglomeration 

(Tsuzuki, 2009). To date the vapour and liquid phase syntheses have been most widely used 

for the synthesis of MONPs. Suitable gas-based techniques include physical vapour 

deposition, chemical vapour deposition, flame pyrolysis, spray pyrolysis, laser ablation, gas 

condensation, and electro-explosion. Liquid approaches found to be effective are, inter alia, 

sol-gel, hydrothermal, solvothermal, sono-chemical, reverse micelle, colloidal and  

microwave syntheses (Tsuzuki, 2009).  

 

Large scale production of MONPs could be performed using batch or continuous flow 

reactors. The latter are likely to be more applicable industrially, owing to batch-to-batch 

variation arising in batch processes. Continuous flow reactors can produce nanoparticles on 

an industrial scale with a high degree of reproducibility (Kwon et al., 2018). Two types of 

continuous flow systems, tubular and spinning disc reactors, have both been found to be 

effective for the synthesis of MONPs (Kwon et al., 2018). However, continuous flow reactors 

tend to result in the production of MONPs with a broader size distribution than those 

synthesized in batch reactors and hence require further optimization. Nevertheless, the 

continuous flow reactor has very high productivity (Kwon et al., 2018), and thus is expected 

to be the industry choice for large scale MNOP synthesis. For more detail, the readers are 

directed to two detailed review papers (Kwon et al., 2018; Tsuzuki, 2009). 

 

Additionally, MONPs are known to aggregate in simulated biological fluids (Laijin Zhong et 

al., 2017) and further investigations are still required to stabilize them in vivo. Often, the 

integration of different components (e.g. polymer, drug, organic solvent, non-solvent, 

surfactant, etc) in the nanomedicine is necessary to achieve the desired performance. In 

some cases, decoration of MONPs using a ligand for targeting purposes might be required, 

and this imparts additional challenges such as determining a reproducible pattern of spatial 

orientation and distribution of the ligand molecules on the surface of the NP (Desai, 2012).   
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Sterilization imparts another challenge for nanomedicines production. The sterilization 

methods applied for conventional pharmaceutical dosage forms (autoclaving, gas 

sterilisation, γ-radiation etc) cannot be applied to nanomedicines because they cause 

particle aggregation and consequently affect pharmacological activity (Bozdag, Dillen, 

Vandervoort, & Ludwig, 2005; Kempner, 2001; Özcan, Bouchemal, Segura-Nchez, Özer, 

2009; Qindeel, 2017). Instead, filtration might be a good choice for nanomedicine 

sterilization (Desai, 2012; Qindeel, 2017). All these technical challenges must be carefully 

considered by scientists developing MONPs for antimicrobial therapy. This requires 

additional experimental work to control the size, size distribution and surface characteristics 

of MONPs at both the pre-clinical and clinical stages. 

 
Table 4: Suitable analytical techniques for determining the physicochemical properties of metal oxide NPs 

(Ali et al., 2016; Lina et al., 2014) 

Physicochemical 

properties 

Technique 

used 

Advantages Restrictions 

Size (hydrodynamic 

size) 

DLS 

Non-destructive analysis 

method  

Rapid and reproducible 

measurement 

Measures in any liquid media, 

solvent of interest 

Hydrodynamic sizes accurately 

determined for monodisperse 

samples 

Modest cost of apparatus 

Insensitive correlation of size fractions 

with a specific composition 

Influence of small numbers of large 

particles 

Limit in polydisperse sample measures 

Limited size resolution 

Assumption of spherical shape samples 

Hydrodynamic 

dimension, 

binding kinetics 

FCS 

High spatial and temporal 

resolution 

Low sample consumption 

Specificity for fluorescent 

probes 

Method for studying chemical 

kinetics, molecular diffusion, 

concentration effect, and 

conformation dynamics 

Limit in fluorophore species 

Limited applications and inaccuracy 

due to lack of appropriate models 

Hydrodynamic size and 

size distribution 

(indirect analysis), 

conformation change 

of protein–NP 

conjugate, structural, 

chemical and 

electronic properties 

SERS 

RS 

TERS 

Enhanced spatial resolution. 

No need for sample 

preparation. 

Complementary data to IR 

No requirement for sample 

preparation 

Potential of detecting tissue 

abnormality 

Increased spatial resolution 

(SERS) 

Topological information of 

nanomaterials (SERS, TERS) 

Limited spatial resolution (only to 

micrometers) 

Extremely small cross section 

Interference of fluorescence 

Irreproducible measurement (SERS) 

Size and shape of 

nanomaterials 

NSOM 

Simultaneous fluorescence and 

Spectroscopy measurement 

Nano-scaled surface analysis at 

ambient conditions 

Assessment of chemical 

information and interactions at 

nano-scale resolution 

Long scanning time 

Small specimen area analyzed 

Incident light intensity insufficient to 

excite weak fluorescent molecules 

Difficulty in imaging soft materials 

Analysis limited to the nanomaterial 

surface 

Molecular weight, 

composition/structure, 

and surface properties 

MS 

High accuracy and precision in 

measurement. 

High sensitivity to detection (a 

Expensive equipment. 

Lack of complete databases for the 

identification of molecular species. 
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very small amount of sample 

required). 

Limited application to date in studying 

nanomaterial bioconjugates. 

Structure and 

conformation of 

bioconjugate, 

surface properties  

IR 

ATR-FTIR 

Fast and inexpensive 

measurement 

Minimal or no sample 

preparation 

requirement (ATR– 

FTIR) 

Improving reproducibility 

(ATR–FTIR) 

Independence of sample 

thickness 

(ATR–FTIR) 

Complicated sample preparation (IR) 

Interference and strong absorbance of 

H2O (IR) 

Relatively low sensitivity in nanoscale 

analysis 

Size and size 

distribution, 

shape, 

aggregation, and 

dispersion 
SEM 

ESEM 

Direct measurement of the 

size/size distribution and 

shape of nanomaterials 

High resolution images of 

biomolecules in natural state  

provided using ESEM  

Conducting sample or coating 

conductive materials required 

Dry samples required 

Sample analysis in non-physiological 

conditions (except ESEM) 

Biased statistics of size distribution in 

heterogeneous samples 

Expensive equipment 

Cryogenic method required for most 

NP-bioconjugates 

Reduced resolution in ESEM 

Shape heterogeneity, 

size and size, and 

dispersion 

 

TEM 

Direct measurement of the 

size/size distribution and 

shape of nanomaterials with 

higher spatial resolution than 

SEM 

Several analytical methods 

coupled 

with TEM for investigation of 

electronic structure and 

chemical 

composition of nanomaterials 

Ultra-thin samples in required 

Samples in non-physiological 

conditions 

Sample damage/alternation 

Poor sampling 

Expensive equipment. 

Size and size 

distribution, 

shape, structure, 

dispersion, and 

aggregation 

STM 

Direct measurement 

High spatial resolution at 

atomic 

scale 

Conductive surface required 

Surface electronic structure and 

surface  

topography 

 

Size and size 

distribution, 

shape, structure, 

sorption, dispersion, 

aggregation 

Surface properties 

AFM 

3D sample surface mapping 

Sub-nanoscaled topographic 

resolution 

Direct measurement of 

samples in dry, 

aqueous or ambient 

environment. 

Overestimation of lateral dimensions 

Poor sampling and time consuming 

Analysis in general limited to the 

exterior of nanomaterials 

Size (indirect analysis), 

structure 

Composition 

Purity 

Conformational 

change 

NMR 

Non-destructive/ non-invasive 

method 

Little sample preparation 

Low sensitivity 

Time consuming 

Relatively large amount of sample 

required 

Only certain nuclei NMR active 

Size, shape and 

structure for 

crystalline materials  XRD 

Well-established 

technique 

High spatial resolution at 

atomic 

scale 

Limited applications in crystalline 

materials 

Only single conformation/ binding 

state of sample 

 

Size/size distribution, 

shape 

structure 

SAXS 

Non-destructive method 

Simplification of sample 

preparation 

Low resolution. 
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Amorphous materials and 

sample in solution  

accessible 

Surface charge and 

particle stability  Zeta -sizer 

Simultaneous measurement of 

many particles (using ELS) 

Electro-osmotic effect 

Lack of precise and repeatable 

measurement 

Abbreviations: AFM, atomic force microscopy; ATR, attenuated total reflection; DLS, dynamic light scattering; ESEM, 

environmental SEM; FCS, fluorescence correlation spectroscopy; FTIR, Fourier transform infrared; IR, infrared; MS, 

mass spectroscopy; NM, nanomaterial; NMR, nuclear magnetic resonance; NPs, nanoparticles; NSOM, near-field 

scanning optical microscopy; RS, Raman scattering; SAXS, small-angle X-ray scattering; SEM, scanning electron 

microscopy; SERS, surface-enhanced Raman scattering; TEM, transmission electron microscopy; TERS, tip-enhanced 

Raman spectroscopy; XRD, X-ray diffraction. 

 

CONCLUSION 

This review explores the potential application of metal oxide nanoparticles (MONPs) for 

antimicrobial applications. We first consider the burden caused by microbial infections 

globally, and then survey the literature investigating the potential of MONPs to ameliorate 

these. There is extensive evidence to show that MONPs are effective in the treatment of 

bacterial infections, although the majority of this comes from in vitro studies. There is also 

promising evidence that MONPs will also be effective against viral and parasite-caused 

diseases. In large part, this efficacy is attributable to MONPs’ mechanism of action involving 

the production of reactive oxygen species, which can circumvent the issue of antimicrobial 

resistance by simultaneously attacking multiple targets on a target organism.  

 

We next consider the potential obstacles which MONP-based medicine will face in vivo, and 

how these might be overcome. Such challenges include delivering the NPs to the 

appropriate part of the body, the cellular response to them in vivo, and difficulties in large 

scale production and ensuring reproducibility in synthesis. The potential toxicity of the NPs 

to healthy cells is considered, as is the ability of MONPs to trigger an immune response in 

vivo. The latter could have both benefits and disbenefits in antimicrobial therapy, and there 

exists the possibility of using MONPs to stimulate the immune system to attack invading 

pathogens. In terms of synthesis, we evaulate routes to achieve high-throughput and high-

reproducibility synthesis of MONPs, as well as the use of “green” synthetic approaches to 
ameliorate off-target toxicity. Finally, we discuss the technical and regulatory challenges 

which need to be overcome for MONP-based antimicrobial medicines to reach the clinic. 

Overall, it is clear that MONPs have great potential as antimicrobial agents, and there are 

potentially some “quick wins” from the repurposing of already-approved nanoparticle-based 

medicines (e.g. those based on iron oxide nanoparticles). There remain however a number 

of hurdles, both technical and biological, to the clinical translation of new MONP-based 

formulations. Future research needs to focus on: i) obtaining a more detailed understanding 

of how MONPs behave in vivo (in terms of their location in the body, pharmacokinetics, 

pharmacodynamics and toxicity); ii) new routes to high-reproducibility synthesis on the 

industrial scale; and, iii) developing a robust panel of quality control assays to produce 

systems appropriate for use in patients. 
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