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ABSTRACT

The fatty acid analysis in Pliek U and its bioinformatic studies had been carried out and reported. Herein, fatty acids were 

analyzed by gas chromatography-mass spectrometry (GC-MS), meanwhile their potential effect, based on its interaction 

on epidermal fatty acid binding protein (E-FABP), was studied by bioinformatics approach with reverse docking technique 

using palmitic acid as a control compound. For the stated purpose, two Pliek U extracts were prepared, namely ethanolic 

Pliek U extract (EPUE), and ethanolic of residue hexane of Pliek U extract (ERHPUE). The GC-MS results showed that 

lauric, myristic, palmitic, and oleic acids were predominant, followed by stearic, capric, linoleic, and caprylic acids. 

Reverse docking results showed that linoleic acid had the lowest binding affinity (-5.9 kcal/mol) and was strongly bound 
to E-FABP on the same side of amino acid GLN A98, ARG A81, TYR A22, and LYS A61. These findings indicated that linoleic 
acid has a potential utility as a drug candidate for atopic dermatitis treatment.
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ABSTRAK

Analisis asid lemak pada Pliek U dan kajian bioinformatiknya telah dijalankan dan dilaporkan. Di sini, asid lemak 

telah dianalisis menggunakan spektrometri gas kromatografi - jisim (GC-MS), sementara kesan potensinya berdasarkan 

interaksi pada epidermis asid lemak pengikat protein (E-FABP), dikaji menggunakan kaedah bioinformatik dengan teknik 

dok berbalik menggunakan asid palmitik sebagai sebatian kawalan. Untuk maksud yang dinyatakan, dua ekstrak Pliek U 

telah disediakan; ekstrak etanolik Pliek U (EPUE) dan ekstrak etanolik sisa heksana Pliek U (ERHPUE). Keputusan GC-MS 

menunjukkan asid laurik, miristik, palmitik dan oleik adalah pradominan, diikuti oleh asid stearik, caprik, linoleik dan 

caprilik. Keputusan dok berbalik menunjukkan asid linoleik mempunyai pengikat afiniti terendah (-5.9 kcal/mol) dan 
terikat dengan kuat kepada E-FABP pada sisi yang sama dengan asid amino GLN A98, ARG A81, TYR A22 dan LYS A61. 

Penemuan ini menunjukkan asid linoleik mempunyai potensi utiliti sebagai calon dadah untuk rawatan dermatitis atopik.

Kata kunci: Asid lemak; dermatitis atopik; bioinformatik; E-FABP; kromatografi gas; Pliek U

INTRODUCTION

The fatty acid is one of three mayor lipids in stratum corneum 

(Elias 2014; Jungersted et al. 2008; McCusker & Grant-Kels 

2010). Along with filaggrin, it becomes a major component 
in the lipid-protein matrix, which functions as a protective 

barrier on the skin (Sandilands et al. 2009; van Smeden et 
al. 2014)loss-of-function mutations in FLG, the human gene 

encoding profilaggrin and filaggrin, have been identified as 
the cause of the common skin condition ichthyosis vulgaris 

(which is characterised by dry, scaly skin. A deficiency of 
fatty acid in stratum corneum is one of the causes of skin 

barrier disfunction, especially in atopic dermatitis disease. 
It can be caused by a fatty acid biosynthesis problem or 
mechanical damage due to a secondary disease such as 

pruritus (Thyssen & Kezic 2014).

 A medical treatment to repair the skin barrier disfunction 
caused by fatty acid deficiency is fatty acid cream therapy. 
The cream is used as a pharmaceutical media to attach a 

fatty acid content to external disease target. Due to their 

hydrophobicity, fatty acids are virtually insoluble in body 
fluid. Their movement between cell membranes requires a 
special mechanism that involves a transport protein. The 

epidermal fatty acid binding protein (E-FABP), predominantly 

produced in the epidermis, is reported to have a role in 

transport protein process (Ogawa et al. 2011; Owada et al. 

2002).

 The fatty acid source to supply a drug requirement 
can be obtained from animal or plant (Jumat et al. 2010), 
one of them is coconut. In Indonesia, coconut is one of the 

prominent agricultural commodities. In Bireuen District, 

Aceh Province, coconut meat is traditionally processed 

through natural fermentation to produce fermented-

coconut oil called Pliek U Oil. This process also produces a 

secondary product called Pliek U (fermented coconut meat) 

(Vaughn 2018). Pliek U is commonly used as an ingredient 

in the traditional culinary by the local people (Arpi 2013), 
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whereas the fatty acid content in this coconut product has a 

potential to be used as a pharmacy resource.
 It is important to know the detail fatty acid content 

in coconut product when it is used to medical purposes. 

Every fatty acid gives different drug activities depending 

on the fit between the fatty acid structure and the protein 
receptor. In another hand, the geographic factor always 

influences the fatty acid content in coconut cultivated from 
different locations, varieties of crop (Laureles et al. 2002), 

times of harvesting (Carandang 2008) and age of nuts 

(Balleza & Sierra 1976). Gas chromatography analysis has 

been reported as a good method to analyze fatty acid of 
coconut meat product. Non-volatile property of fatty acid 

was resolved with derivatization of its extract to be volatile 
compounds (Azeez 2007; Jumat et al. 2014; Laureles et al. 

2002).

 A drug activity of fatty acid in case of atopic dermatitis 

treatment is assessed firstly with E-FABP protein. This protein 

transports the fatty acid to drug target (filaggrin) in stratum 
corneum. So that, the best fit of fatty acid content with 
E-FABP will affect the drug activity of fatty acid to treat atopic 

dermatitis. To study the drug activity, a virtual screening 

method using molecular docking has been proposed. This 
computational method gives the way to minimize several bio 
laboratory experiments (Hurle et al. 2013). In the laboratory, 
the interaction between a compound with protein is studied 
through spectroscopy approach such as UV-Vis absorption 
that involve chemical materials and chemical process 

(Suhartono et al. 2018). Whereas the computational method 

is performed through modeling using chemical structure 

database, therefore, the research becomes more time saving 
and cost-efficient.
 In this research, the fatty acids of Pliek U were analyzed 

by gas chromatography-mass spectrometry (GC-MS) and the 

potential drug activities of fatty acids to E-FABP were studied 

by reverse docking technique.

MATERIALS AND METHODS

SAMPLE EXTRACTION

Samples were purchased from Pliek U home industry in 

Matang Subdistrict, Bireuen District, Aceh Province. Pliek 

U was selected based on purposive sampling technique, 
with the criterium to be newly produced. Afterward, Pliek 

U was prepared to produce ethanolic Pliek U extract (EPUE) 

and ethanolic hexane residue Pliek U extract (EHRPUE).

 As much as 250 g Pliek U was macerated with 1.5 L 

ethanol 96%. The mixture was put in a shaker at 130 rpm 
and 28°C for 48 h. It was filtered using vacuum filtration 
to obtain the macerate and residue. The obtained residue 
was re-extracted twice using separating funnel with 300 
mL ethanol 96%. The filtrate was mixed with macerate 
and concentrated with rotary evaporator at 50°C. This 

procedure gives a result to ethanolic Pliek U extract 

(EPUE).

 As much as 250 g Pliek U was macerated with 1.5 

L n-hexane. The mixture was put in a shaker at 130 rpm 

and 28°C for 48 h. It was filtered using vacuum filtration 
to obtain the macerate and residue. The obtained residue 
was re-extracted twice using separating funnel with 300 
mL n-hexane. The obtained residue was remacerated using 
separating funnel with 1.5 L ethanol 96%. All macerate and 

filtrate were mixed and concentrated with rotary evaporator 
at 50°C. This procedure gives a result to ethanolic hexane 

residue Pliek U extract (EHRPUE).

SAMPLE PREPARATION FOR GC-MS ANALYSIS

Samples were weighed 1 g (EPUE and EHRPUE). Four mL 

n-hexane p.a was added into each sample and vortexed for 

2 min. The clear hexane extract was taken and transferred 

to the derivation tube, then dried with nitrogen bursts. Two 
mL of 2% NaOH (NaOH in methanol), sealed tightly and 

heated at 90°C for 5 min. After left to cool down, 2 mL 

of BF3 in methanol, it was sealed tightly and reheated for 

30 min. Then it was left until cold, before being extracted 
with 3 mL n-hexane p.a. The upper phase (n-hexane) was 
taken for GC-MS analysis.

GC-MS DATA ANALYSIS

The fatty acid compounds were analyzed by the peaks of 
the chromatogram based on MS data analysis. The area 

percentage (%) of each peak was used to determine the content 

percentage of fatty acid, which later was employed in the 

determination of predominant fatty acid within each sample.

PROCESS OF DOCKING

Prior to docking, the determination of the control 

compound, palmitic acid (C
16

H32O2
), is required. After 

that, the 3D structure of target compounds was downloaded 
from PubChem database, meanwhile the 3D structure of 
the protein is downloaded from the database of Protein 
Data Bank (GDP). Then, the natural ligand on target 

protein was cut using PyMOl application (https://pymol.

en.softonic.com/?ex=DSK-1262.10). After all information 

were collected, the docking process between the control 
compound and prediction compound of the target protein 

using PyRx computer application (https://pyrx.sourceforge.

io/downloads) was carried out.

VISUALIZATION OF DOCKING RESULT

Visualization of docking result was carried out by two 
software, namely PyMol and Discovery Studio (https://

www.3dsbiovia.com/products/collaborative-science/

biovia-discovery-studio/visualization-download.php).

RESULTS AND DISCUSSION

FATTY ACIDS ANALYSIS OF PLIEK U BY GC-MS 

GC-MS analysis showed that the predominant fatty acid 

content in both ethanolic extract (EPU) and ethanolic 

residual hexane (ERHPUE) extract was similar. Each sample 
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had a different percentage of fatty acids (Table 1). Lauric 
acid was the highest fatty acid contained in samples (EPUE = 

35, 68% and ERHPUE = 29.70%), and followed by myristic 
acid (EPUE = 21.48% and ERHPUE = 25.06%), palmitic acid 

(EPUE = 13.72% and ERHPUE = 16.04%), oleic acid (EPUE 

= 11.98% and ERHPUE = 10.40%), stearic acid (EPUE = 

5.17% and ERHPUE = 4.42%), capric acid (EPUE = 4.02% 

and ERHPUE = 4.94%), linoleic acid (EPUE = 3.68% and 
ERHPUE = 2.07%), and caprylic acid (EPUE = 3.32% and 
ERHPUE = 3.84%). Other fatty acid contents were detected 
less than 1%.

 Based on GC-MS data, the predominant fatty acid 

contents in Pliek U was similar to the predominant fatty 

acid contents in coconut oil. The fatty acid contents in 

coconut oil were also dominated by lauric acid, mirystic 
acid and caprylic acid (Orsavova et al. 2015; Lin et al. 

2018). Therefore, Pliek U had the potential to be used for 
medical purposes, especially as a medical resource in drug 

therapy to treat atopic dermatitis.

MOLECULAR DOCKING STUDY BASED                                        

ON BINDING AFFINITY VALUE

Molecular docking was performed using the 3D structure 
of the target E-FABP protein with ligands (caprylic acid, 

capric acid, lauric acid, linoleic acid, myristic acid, and 

oleic acid) and a control ligand (palmitic acid). The results 

of common virtual docking using PyRx software is the 

affinity binding value of each ligand presented in Table 2.

 The binding affinity between palmitic acid (control 
ligand) and E-FABP was -5.8 Kcal/mol. Based on the binding 
affinity between ligand and E-FABP, only linoleic acid had 

a lower binding affinity compared to the control ligand 
(-5.9 Kcal/mol). The binding affinity value is important 
to identify the molecular and macromolecular interaction 

because it is the first role to facilitate the discovery and 
development of new drugs (Cournia et al. 2017; Du et 

al. 2016; Rufaidah et al. 2017). The low binding affinity 
allows linoleic acid to have the great potential to bind 
E-FABP (target protein) with less energy, whereas it was 

not found in other fatty acids.

 Gibbs energy theory states that the smaller the energy 
generated from a bond between the ligand and its receptor, 
the more stable the bond is. Therefore, the low binding 
affinity increases the stability of interaction between fatty 
acid and E-FABP (Lukitaningsih et al. 2015). The research 

on mice that did not have E-FABP, as reported by Ogawa et 

al. (2011), showed a reduction of linoleic acid compared 

to other fatty acids. This ascribes that linoleic acid is the 
main fatty acid that interacts with E-FABP. 

VISUALIZATION OF INTERACTION BETWEEN                      

FATTY ACID AND E-FABP 

Using pyMOL software, interactions between predicted 
ligand (fatty acids) and target protein (E-FABP) were 

visualized side by side. The interactions were compared 
to the interaction between control ligand (palmitic acid) 

TABLE 1. Fatty acids analysis from EPUE and ERHPUE by GC-MS

Component EPUE ERHPUE

Caprylic acid

Capric acid

Lauric acid

Methylestertridecanoic acid 

Myristic acid

Methylesterpentadecanoic acid

Palmitoleic acid

Palmitic acid

Linoleic acid

Oleic acid

Elaidic acid

Stearic acid

Methylestereicosenoic acid

Arakat acid

Lignoceric acid

3.23%
4.02%

35.68%
-

21.48%

-

-

13.72%
3.68%
11.98%

0.71%

5.17%

-

-

-

3.84%
4.94%

29.70%

0.06%

25.06%

0.06%

0.29%

16.04%

2.07%

10.40%

0.42%

4.42%

0.05%

0.11%

0.10%

TABLE 2. Binding affinity between predictive ligands and E-FABP 

No Ligands Binding Affinity (Kcal/mol)
1

2

3
4

5

6

7

Capric acid

Caprylic acid

Lauric acid

Linoleic acid

Mirystic acid

Oleic acid

Palmitic acid

-4.8

-4.9

-5.1

-5.9

-5.7

-5.8

-5.8
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and E-FABP. The best interaction was justified based on 
the similarity of interaction between predicted ligand and 
E-FABP with control ligand and E-FABP. It was known that 

palmitic acid bound to E-FABP on amino acid residues of 

TYR A22, ARG A81, GLN A98, and LYS A61. The interaction 

visualizations of each ligand to E-FABP were described as 
follows:

Visualization of the interaction between Capric acid and 

E-FABP   

The visualization of capric acid and E-FABP interaction 

(Figure 1) showed the presence of hydrogen bonds and 
hydrophobic interactions. Hydrogen bonds occurred in the 
amino acid of ARG A81, while hydrophobic interactions 
occurred in amino acids of MET A23 and PHE A19. It can be 
concluded that the capric acid and palmitic acid bounded 
the same sides of E-FABP on amino acid ofARG A81.

Visualization of the interaction between Lauric acid and 

E-FABP   

The visualization of lauric acid and E-FABP interaction 

(Figure 3) showed the presence of hydrogen bonds and 
hydrophobic interactions. Hydrogen bonds occurred in 
amino acids of TYR A22, and GLN A98, meanwhile the 

hydrophobic interactions occurred in amino acids of ALA 

A78 and PHE A19. It can be concluded that lauric acid and 
palmitic acid bounded the same sides of E-FABP on amino 

acids of TYR A22 and GLN A98.

FIGURE 1. The docking result of capric acid and palmitic 

acid with E-FABP. (a) 3D visualization: capric acid (red) and 
palmitic acid (blue) and (b) 2D visualization: amino acid 

residues in capric acid and palmitic acid

 (a) (b)

Visualization of the interaction between Caprylic acid 

and E-FABP   

The visualization of caprylic acid and E-FABP interaction 

(Figure 2) showed the presence of hydrogen bonds and 
hydrophobic interactions. Hydrogen bonds occurred 
in amino acids of GLN A98, ARG A81, and TYR A22, 

meanwhile the hydrophobic interaction occurred in amino 
acids of TYR A131, ARG A129 and VAL A118. It can be 
concluded that caprylic acid and palmitic acid bounded 
the same sides of E-FABP on amino acids of GLN A98, ARG 

A81, and TYR A22.

 (a) (b)
FIGURE 2. The docking result of caprylic acid and palmitic 

acid with E-FABP. (a) 3D visualization of caprylic acid (blue) 
and palmitic acid (red) and (b) 2D visualization of amino acid 

residues in caprylic acid and palmitic acid

 (a) (b)
FIGURE 3. The docking results of lauric acid and palmitic acid 
with E-FABP. (a) 3D visualization of lauric acid (yellow) and 
palmitic acid (blue) and (b) 2D visualization of amino acid 

residues in lauric acid and palmitic acid

Visualization of the interaction between Myristic acid 

and E-FABP  

The visualization of myristic acid and E-FABP interaction 

(Figure 4) indicated the presence of hydrogen bonds and 
hydrophobic interactions. Hydrogen bonds occurred in the 
amino acids of THR A56 and ARG A809, while hydrophobic 
interactions occurred in the amino acids of MET A23 
and PHE A19. It can be concluded that myristic acid and 
palmitic acid did not bind E-FABP to any same side.

 (a) (b)
FIGURE 4. The docking result of myristic acid and palmitic acid 

with E-FABP. (a) 3D visualization of myristic acid (red) and 
palmitic acid (blue) and (b) 2D visualization of amino acid 

residues in myristic acid and palmitic acid

Visualization of the interaction between Oleic acid and 

E-FABP 

The visualization of oleic acid and E-FABP (Figure 5) 

interaction indicated the presence of hydrogen bonds and 
hydrophobic interactions. Hydrogen bonds occurred in 
the amino acid of TYR A56, and hydrophobic interactions 
occurred in the amino acids of MET A23, LEU A56, and PHE 

A19. It can be concluded that oleic acid and palmitic acid 
did not bind E-FABP to any same side. 
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Visualization of the interaction between Linoleic acid and 

E-FABP   

The visualization of linoleic acid and E-FABP interaction 

(Figure 6) showed the presence of hydrogen bonds and 
hydrophobic interactions. Hydrogen bonds occurred in the 
amino acids of TYR A22, ARG A81, and GLN A98, while 

hydrophobic interactions occurred in the amino acids of 
PRO A41, LYS A61, and ALA A39. It can be concluded that 
linoleic acid and palmitic acid bounded the same sides of 
E-FABP on amino acids of GLN A98, ARG A81, TYR A22, 

and LYS A61.

to stratum corneum where filaggrin, the drug target, was 
located. Linoleic acid content in both EPUE and EHRPUE 
extracts showed that Pliek U had a great potential to be 
used as a drug resource and natural active ingredient for 

atopic dermatitis cream therapy.

 This result was also in line with the research, reported 

by Ogawa et al. (2011), that E-FABP deletion resulted in a 

decrease of cellular linoleic acid, followed by a decrease 
of linoleic acid derivative, 13-hydroxyoctadecadienoic acid 
(13-HODE), the major metabolite of linoleic acid in the skin. 
Whereas, arachidonic and linolenic acids content remained 

unchanged suggesting that E-FABP and linoleic acid bound 
each other with higher affinity in keratinocytes (Ogawa 
et al. 2011). Furthermore, E-FABP induces keratinocyte 

differentiation and enhances the transcriptional activity 

of peroxisome proliferator-activated receptors (PPARs) by 
directly targeting fatty acid to PPARß (Owada et al. 2002).

CONCLUSION

Pliek U extracts had been successfully analyzed by GC MS. 

The analysis result showed that lauric, myristic, palmitic, 

and oleic acids were predominant and followed by stearic, 
capric, linoleic, and caprylic acids. Based on molecular 

docking analysis, linoleic acid showed stable interaction 
and the best orientation of interaction to interact with 
E-FABP. Therefore, linoleic acid had the best potential as a 
drug candidate for atopic dermatitis treatment.
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