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Abstract. Some special cases of the potential for a homogeneous cylinder in a

cylindrical coordinate system may be treated by virtue of simple integrals, for ex-

ample, the potential for a straight rod or wire segment and that for a homogeneous

cylinder at the point on its axis. However, because of the involved mathematical

operations, the analytical formula of the potential for a homogeneous cylinder at an

arbitrary point has not been seen from others. In order to solve the problem, the au-

thor has taken the following steps: (1) expanding Green's function elk],x -r'/|r'-r| in

the cylindrical coordinate system; (2) transforming Green's function elk'r _r|/|r' - r|

into Green's function l/|r' - r| by setting the wave number k to be zero and inte-

grating the separated azimuthal function cos"(</>'-</>); (3) using the integral recursion

relation for the function r'2m+1/[(z' - z)2 + r'2 + r2](4m+I)/2 with respect to r and

those for the functions l/[(z'-z)2 + r2](2m_1)/2 and l/[(z/-z)2-i-r2-(-a2](4m_2/_1)/'2

with respect to z , then we can complete the integrals for the function 1 /1 r' — r| and

obtain the analytical expression of the potential for the cylinder in the cylindrical

coordinate system. For numerical comparison, we have calculated the potentials for

the cylinder and the prolate or oblate spheroid with equivalent volume and same high

aspect ratio at far field point. The results are satisfactory.

1. Introduction. For simplicity and convenience, in the text we adopt the unit mass

density of a cylinder and designate (see Fig. 1)

z{= z + h, (1.1)

z2 = z - h , (1.2)

r, = (zj + r2)1/2, (1.3)

r2 = (z2 + r2)1/2, (1.4)

ra = (r2 + a2)[/2, (1.5)

P\ = (ZJ + ra)1/2> (1-6)
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/ 2 , 2.1/2 ,, _,
Pi = (^2 a) ' (L7)

Z = Z — Z , (1.8)

R0 = (Z2 + r2)i/2, (1.9)

Ra = (z2 + dl/2' (U°)

R = (Z2 + r'2 + r2)1/2, (1.11)

H =-2r'r cos(4>'- (p), (1-12)

where r ,r, z , z, and </>', <fi are the radial, axial, and azimuthal coordinates of the

volume element of the cylinder and the field point, respectively, a and 2h are the

radius and the length of the cylinder.

Fig. 1. A homogeneous cylinder. The radius is a , the half-length is

h . The element of the cylinder is denoted by (r , z), the field point

by (r, z) .

The potential for a straight rod at the point (r, z) in the rod-centered system is

[1]

V = ln zx +rl

z2 + r2 j
= In

r, + r2 + 2 h

r, + r2 - 2 h (2)

The potential for a homogeneous cylinder at the point on its axis, (0, z), in the

cylindrical coordinate system is [2]

V = n { a2 In
, / 2 2.1/2z, + (z, +q ) / 2 , 2,1/2 , 2 , 2,1/2 , . I ,,,+ z1(z1+a)/ -z2(z2 + a)' + ^ > (3)

Z2 + (^2 + (2 )

in which the term A is given by

-4 zh if z>h (exterior point), (3.1)

A = •{ - 2z2 - 2/?2 if h > z > -h (interior point), (3.2)

+ 4 zh if -h>z (exterior point). (3.3)



[r2 + r2 - 2 r r cos(<p' - 4>)] ^2
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In the cylindrical coordinate system, Green's function l/|r' - r| may be written in

the form

l/|r - r| = [(z' - z)2 + r 2 + r1 - 2r'rcos{<j>' - 0)]_1/2 = (R2 + , (4)

where r' and r are the positional vectors of the volume element and the field point.

It is much more difficult to expand Eq. (4) in the cylindrical coordinate system than

the expression [r'2 + r2 - 2r'rcos((/>' - 2 in the spherical coordinate system, the

latter can be easily expanded as

E~0 ^rPn(cos(tf>' ~ <t>)) if r <r, (5.1)

EZo PH(cos(<f>' - <t>)) if r > r, (5.2)

where r and r are the radial distances of the volume element and the field point.

To expand Eq. (4), we will start from the expansion of e,fc'r_r'/|r' - r| in the

cylindrical coordinate system and then set the wave number k to be zero in Green's

function and its expansion.

2. Expansion of Green's function e'k\r' - r|/|r' - r| in the cylindrical coordinate

system [3]. From Lommel's expansion [4], we can separate the argument (R2 + H)1^2

into the arguments R and H such that

[k(R2 + H)1,2f1,2Jl/2(k(R2 + H)1/2) = f; fc2B(~^l2)n (kR)-{n+l,2]Jn+l/2(kR),

n=0

(6.1)

[k(R2 + H)ll2fl/2J_[/2(k(R2 + H)1/2) = f; k~,{"/2)n (kR)-{n+1/2)J_n_l/2(kR),

n=0

for \H\ < R2, (6.2)

wherein the Bessel functions Jn+\n{x) and J_n_l,2(x) can be converted to the

spherical Bessel and Neumann functions of order n : \J2x/njn{x) and (-1)"+1

x y/2x/7tnn(x). The inequality required in Eq. (6.2) is in accordance with the

following inequalities:

R2 = {z - z)2 + r'2 + r2 > r'2 + r2 > 2r r > \ - 2r'rcos{(p' - <j>)\ = \H\ (6.3)

except the point with z — z , r = r , and (j> — <j> = 0 or n , which is the removable

singularity or ordinary point in the integral for cos- <f>) which appears in the

subsequent Eq. (7).

Further simplifications (similar to those used in [3]) for the combination of Eqs.

(6.1) and (6.2) lead to

c'«y-l , ^ k2"(r'rf^\kR) ,,A,
»<-mn costf-0)- (71

1 1 n=0 v '

where h{nu is the spherical Hankel function of the first kind of order n .
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3. Green's function l/|r' - r| and its integral with respect to (<f>' - <j>). Setting

k — 0 on both sides of Eq. (7) and using the form for h^\kR) at kR = 0, we may

obtain the expression

1 1 ^ 2T(« + I)rn r'n n/J ^
 = —7= >   i—r cos (6 -(b), (8)

r'-r 0* „ n\ R2n+1 ^ rj, \ >
1 1 n=0

where the T-function is introduced.

The integral for cos"(0' - 0) with respect to (<f>' - <f>) shows

r2n _ . , f 0 if n = 2m + 1,
/ cos = \ ,2m)\ if„ m = 0,1,2,
Jo \2njk^ rfn = 2m.

Hence, the potential for the cylinder may be expressed in the form of

h,2 m rr i2m+1
V-2Ji£n2m+\r

h (m!)2 jj R
(10)

4. Integral for the function rum+ /R m+ with respect to r . From the partial

integral for the function r,2m+l /R4m+l (m ^ 0), it can be proven that

'2mra ra JLm / i
r arn+i 4m+i d/ = _ r r  dfl

Jo Jo (4m-1) \R4rr>(Am - 1) \R4m~l

a2m

(4m - 1)(/? )4m_1
a

2m r ̂
/ '2m-1 , _4m— 1 . ' ,, , ,J] J r !R dr > (n)

(Am

from the recursion formula then we can deduce that

2m—21
r ,2m+i , D4m+i , / A 21,+\Am - 21 - 2)! (2m)! ml

/* ^ = -E(4m)!(2
1=0

+ 22m+1(2m)!(2rn - 2)!m!

a

L(i?a)4m-2/-l

(JR0)2m_1 (12)(4m)\ (m - 1)!

If m = 0, the integral for the function r /R yields

f r'/Rdr =Ra-R0. (13)
Jo

Thus, Eq. (10) can be written as follows:

V=V0 + 2nJ2
co 2m

r

ml
m= 1

(2m -2)! rh dz'

22m~\m - 1)! J-h (R0)2m~l

y. (4m - 21 - 2)la2m~21 rh dz'

JL 24m-2/-i(2m - / - 1)! (m - /)! J-h (Ra)4t"-2l~l
;i4. i)
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and

V0 = 2n fh(Ra-R0)dz'
J —h

r-(z-h)

= 2 n (Ra-R0)dZ
J-(z+h)

= n{rlXn ~r2{n -+-^1(^1 -ri)-^2(^2-r2)}• (l4-2)

5. Integrals for the functions l/(i?0)2m_1 and l/(i?J4m_2/_1 with respect to

z . The expression in Eq. (14.1) is still integrable with respect to z . For con-

venience, we will discuss it in the two cases.

(1) m = 1. The potential separated from the second part of Eq. (14.1) would be

V, = 2 nr2
j 1 fh dz' ^ (2-21)1 a2~21 fh

\2 LhR0 -2j23-2/[(1_/)!]2y_A^_

dz

2
= nr

and the resultant integrals are

fh _ i fh a2dz' _ [h

J-h R0 2 J_h (_rj3 J_h Ra

Vl = nr2 i In
zi+ri

z2 + r2
- In

zi +Pi

Lz2 + p2\

a2 [ z, z2

2r] \Pi P2

(15)

(16)

(2) m/1. We should investigate the integrals for the functions l/(RQ)2m~l and

1 /{Ra)4m~2 1 . Since the power indices of both functions are odd number, we just

study the integral for the function l/(Ra)2p+l .

Using variable transformation, the integral for 1 /(Ra)2p+l can be performed in

such a way that

rZi dz 1 r 2p~\ j
/ —. ,, „ ==r-—- = r- / cos a da, (17)

(Vz2 + r2 + a2)2p+l (ra)2pJai

where a, = tan" (-Zj/rJ and a2 = tan~\~z2/ra). The integral recursion relation
c 2p— 1lor cos a gives us

fJ a

2p— 1 , . p^2lk[{p-\)\)2{2p-2k-2)\ 2p-2k-2
cos a da- sina>  —  .   cos a

to [(p-k-\)\f{2p-\)\
(18)

where k is the summation index and is no longer the wave number.

With the aid of Eq. (18) and the substitutions of sinctj = -z,//>,, sina2 =

-z2/p2, coso:j = ra/p{, cosa2 = rjp2,p - 2m - I - 1 in the integral for the

function l/(Ra)4m~2l~l and those of sinaj = -z,/r,,sina2 - -z2/r2, cosqj =

r/ry, cosa2 = r/r2, p = m - 1 in the integral for the function 1 /(i?0)2m_l , we can
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finally arrive at

v = v0 + vl
oo | ( /

+ 271 2^ m\ | ?2m-2
m=2 ' I z fc=0

22k(2m - 2k - 4)!

[(m — /c - 2)!]2

^2 ' /„2m—2k-
(r

J2m—2k — ?> J2m—2k—3

2m—I—2 ~s2k,

h

yk {2m-I-2)1 y-T 2 (4m - 21 - 2k - 4)!
^24m-2,~2(m- ^ r'T™ l lr TMl2

zi

Am—21—Ik—~S Am —21—2k—3
kP 1 P 2

(19.1)

and

F0+Fj = 7T< a In
z, +/?,

+ P2 -

,2 2

+ z,(/>, - r,) - z2(/>2 - r2) - ^ ) [> • (19.2)

Eq. (19.1) reduces to the exact same form as Eq. (3) if r — 0; at the center of the

cylinder, the potential will be

V = n I a~ In
{h2 + a2)1/2 + h

{h2 + a2)1/2 - h
+ 2h(h2+ a)[/2-2h2} . (20)

Therefore, Eqs. (19.1) and (19.2) are the general expressions of the potential for the

cylinder in the cylindrical coordinate system.

By using Eqs. (19.1) and (19.2), it is also available to evaluate the potential for

the cylinder at the point on its meridian, (r, 0), as the traditional method is unable

to deal with.
It is worth pointing out that Eqs. (19.1) and (19.2) will remain the same form at

either interior or exterior point of the cylinder because of the parities of r , r and

z , z in Eq. (8).

6. Numerical comparison and discussion. Since we do not have another analytic

formula to calculate the potential for a homogeneous cylinder at an arbitrary point

so as to make the comparison, the numerical results of the potentials for prolate and

oblate spheroids with equivalent volume and same high aspect ratio of the cylinders

(at high aspect ratio, the spheroid and the cylinder appear to be alike) have been used

for this purpose.

For an elongated prolate spheroid, we assume that the semimajor axis as = 6.1 ,

the semiminor axis bs = 1.1 , hence the semifocal distance / = (as - b2)l/1 = 6.0.

The radius of the equivalent-volume calculated elongated cylinder, a = bs^J\, and

the half-length of the cylinder h = a x ajbs. The spheroidal radial and angular

coordinates of the field point, £ and t], are taken as £ = and rj = 0.8. Thus,

the cylindrical coordinates of the point will be r = /(£2 - 1) 1/2( 1 - ff)1/2 = 26.88
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and z = l£r] = 36.16. The potential for the prolate spheroid at the point (r, z), if

the unit mass density is adopted, can be calculated by [5]

V = \nasb]/1 x [Go(f) - G2«W/)] = 0.687324684284... , (21)

where Qq(€) and Q2(£) are the Legendre functions of the second kind,

Qo(() = \ In
£+1

i-i
and Q2(O = Q0(i)P2(O-U. (22)

The computation of the potential for the cylinder at the point (r, z) quickly con-

verges on 12th place while the summation index m > 3 :

V = 0.687643849782... . (23)

For a flattened oblate spheroid, we assume the same as, bs, and I. The radius of

equivalent-volume calculated disk, a = as\J\, and the half-length, h = a x bjas.

The spheroidal radial and angular coordinates of the field point are given by £ =

112/15 and 17 = 0.8 . Therefore, r = /(£2 + 1)1/2(1 - r/2)1/2 = 27.12 and z = l^r\ =

35.84 . The potential for the oblate spheroid is

V = i\na]bjl x [Q0(i£) - Q2(i^)P2(rj)] = 3.808547455474... , (24)

where

Q0(/« = /[tan-,{-|] and Q2(/0 = Q0(iZ)P2(it) - j(i(). (25)

The computation of the potential for the disk at the field point (r, z) converges on

12th place while m > 5 :

V = 3.808902776405... . (26)

The tiny differences after 4th place between the potentials for the prolate or oblate

spheroid and the cylinders at high aspect ratio in Eqs. (21) and (23) or Eqs. (24) and

(26) are in the expectation in the view of their different geometrical shapes; certainly,

their potentials at low aspect ratio would be quite different.

It has been shown in the numerical computations that the convergence for the

expressions of Eqs. (19.1) and (19.2) upon the summation index m at any field point

(r, z) is very fast. In the practical calculation of the potential for a homogeneous

cylinder, it is enough to take the upper limit of m being 2 ~ 3 in order to keep the

result accurate up to 4 ~ 5th place.

Figures 2, 3, and 4 show the contour plots of the homogeneous cylinders with

radius a = 1.0 and aspect ratio 2h/a = 1,2, and 5, respectively. The equipotential

surfaces are as like as spheroidal, evolved from oblate ones to prolate ones. As is

expected, all the equipotential surfaces become spherical at far field. For example,

the values of potential remain same till 3rd place on the sphere of radius |r| = 15

(where |r| = (r2 + z2)1/2) in 2h/a = 1 case, |r| = 12 for Ih/a = 2, and |r| = 24

for 2h/a = 5 .



170 W.-X. WANG

Fig. 2. Equipotential surfaces for the cylinder with aspect ratio

2h/a = 1 and a = 1.0 .

Fig. 3. Equipotential surfaces for the cylinder with aspect ratio

Ih/a = 2 and a = 1.0 .
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Fig. 4. Equipotential surfaces for the cylinder with aspect ratio

2h/a = 5 and a = 1.0 .
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