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Greenhouse gas emissions from global agriculture are increasing at around 1% per 

annum, yet substantial cuts in emissions are needed across all sectors
1
. The challenge of 

reducing agricultural emissions is particularly acute, because the reductions achievable 

by changing farming practices are limited
2,3

 and are hampered by rapidly rising food 

demand
4,5

. Here we assess the technical mitigation potential offered by land sparing - 

increasing agricultural yields, reducing farmland area and actively restoring natural 

habitats on the land spared
6
. Restored habitats can sequester carbon and can offset 

emissions from agriculture. Using the United Kingdom as an example, we estimate net 

emissions in 2050 under a range of future agricultural scenarios. We find that a land-

sparing strategy has the technical potential to achieve significant reductions in net 

emissions from agriculture and land-use change. Coupling land sparing with demand-

side strategies to reduce meat consumption and food waste can further increase the 

technical mitigation potential, however economic and implementation considerations 

might limit the degree to which this technical potential could be realised in practice.  

We projected the mitigation potential of land sparing in the United Kingdom with reference 

to its binding commitment to reduce emissions by 80% by 2050 (relative to 1990 levels)
7
. We 

began by identifying a technically plausible range in the future yields of all major crop and 

livestock commodities produced in the UK, based on historic trends and future potential. We 

define yields as the annual tonnage of production per hectare for crops and the feed 

conversion ratio (feed consumed per kilogram of production) for livestock. Future yields 

could vary across a wide range, driven by a number of biophysical, technical and 

socioeconomic factors
8–11

. We assessed the likely bounds of this range based on an 

assessment of technical potential and reflect this in our projections, which span yield declines 

through to sustained long-term growth averaging 1.3% per annum across all commodities 
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(Table 1; Supplementary Fig. 1; Supplementary Discussion). For the avoidance of doubt, we 

do not equate our lower yielding scenarios with ‘land sharing’. 

We next projected emissions attributable to UK agricultural production out to 2050, 

quantifying all sources of emissions that would be affected by a land-sparing strategy. We 

therefore quantified not only emissions reported under ‘Agriculture’ in the UK’s greenhouse 

gas inventory
12

, but also emissions related to agriculture but reported in other sectors (e.g. 

farm energy use, agro-chemical production and land-use change), and emissions arising 

overseas due to imported feed for livestock (see Supplementary Table 1 for all emissions 

sources quantified). Our projections assumed that agricultural production increases from 

present levels in proportion to projected demand growth (Supplementary Table 2). In certain 

scenarios, projected UK farming capacity does not keep pace with demand growth. In such 

cases we assumed an increase in imports and accounted for the overseas emissions associated 

with those imports. 

Next we formulated a land-sparing strategy. As yields increase, the area of farmland required 

for a given level of production declines, allowing land to be spared. Our definition of land 

sparing includes the active restoration of habitats on spared land and our main scenario 

assumed the restoration of wet peatland (on spared organic soils) and native broadleaved 

forest (on spared mineral soils) (Supplementary Table 3). We quantified the greenhouse gas 

fluxes from the soils and biomass of these habitats, drawing on the UK’s carbon accounting 

methodology
12

 and IPCC guidelines
13

.  

The fourth step in our calculation was to combine emissions from farming with emissions 

from land-use change and compare projected net emissions in 2050 with the equivalent 

baseline emissions in 1990 (Supplementary Table 1). We find that there is significant scope 

to mitigate emissions through land sparing (Fig. 1a). At the lower-bound of our yield 
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projections, emissions are projected to increase relative to current levels, reflecting increased 

agricultural production in 2050. In contrast, if yield growth towards the upper-bound of our 

projections could be realised, emissions from farming are lower (due primarily to more 

efficient livestock production; Fig. 1b) and the active restoration of habitats on spared land 

leads to significant carbon sequestration. The upper-bound of technical potential approaches a 

decline in net emissions of 80% relative to the 1990 baseline (the UK’s greenhouse gas 

reduction target), though economic and implementation considerations are likely to limit the 

degree to which that technical potential could be realised in practice. 

To explore the scope for combining emissions reduction strategies, we next assessed two 

promising demand-side measures
14

 implemented alongside land sparing. We quantified the 

effect of replacing some animal products in the diet with vegetarian substitutes (Fig. 2a) and 

the effect of reducing food waste (Fig. 2b), in both cases maintaining the land-sparing 

strategy based on active restoration of natural habitats. Reducing meat consumption appears 

to offer greater mitigation potential than reducing food waste, but more importantly, our 

results highlight the benefits of combining measures. For example, coupling even moderate 

yield growth with land sparing and reductions in meat consumption has the technical 

potential to surpass an 80% reduction in net emissions (Fig. 2a).  

Last, we quantified the technical mitigation potential of a number of possible alternative uses 

of spared land: allowing natural regeneration (a low-cost option); establishing faster growing 

coniferous rather than native broadleaved forest; and growing bioenergy crops (which can 

mitigate emissions by displacing fossil fuels) (Fig. 3). We find that actively restoring forest 

increases the rate of carbon sequestration compared with natural regeneration, and coniferous 

woodland sequesters more carbon than native broadleaved woodland. Our results suggest that 

the mitigation potential of oilseed rape for biodiesel is negligible, and the potential of 
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Miscanthus and short-rotation coppice depends strongly on the fossil fuel being displaced, 

only outperforming natural regeneration if displacing coal. 

The scenarios we have assessed indicate that land sparing offers the technical potential for 

substantial mitigation. The degree to which that technical potential could be realised in 

practice depends on a number of factors. Our upper-bound scenario entails large, ongoing and 

environmentally sustainable increases in farm yields. A key issue, therefore, is identifying the 

mechanisms that could contribute to this outcome. Rates of yield growth in key crops have 

declined in recent years (Supplementary Fig. 1). Competing hypotheses explain the decline 

(see Supplementary Discussion). The first argues that insurmountable biophysical limits are 

constraining yield growth
9
, a situation that might be compounded by climate change

15
, and 

this outcome is reflected at the lower-bound of our yield projections. The second hypothesis 

argues that yields are well within biophysical limits, but that regulatory and market 

conditions and declines in research and development have reduced incentives to invest in 

yield growth
9–11

. These factors are controllable so under the second hypothesis there is 

significant scope for future yield growth. Our results highlight the technical potential for 

substantial mitigation if these barriers to yield growth can be overcome as part of a land-

sparing strategy.  

A large proportion of projected upper-bound mitigation arises due to assumed growth in 

livestock productivity (Fig. 1b). Our upper-bound livestock productivity gains (Table 1) 

assume that technological advancements lead to continued genetic gains through breeding, 

coupled with improved livestock health and nutrition. These gains contribute approximately 

half of the upper-bound mitigation in 2050 (Fig. 1b) but might be untenable in practice on 

economic, animal welfare or technical grounds and we note that other studies predict much 

lower future livestock productivity growth in Europe (see Supplementary Discussion). 

Encouragingly however, if even moderate productivity gains could be realised and coupled 
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with policies that encourage reduced meat diets, the technical mitigation potential is 

pronounced (Fig. 2a). Altering consumer dietary behaviour is challenging, but aided by 

expected health benefits
16

, a number of policy options are available. Taxes and subsidies in 

particular are demonstrably effective at driving diet change
17

 (see Supplementary 

Discussion).  

We have assessed the technical potential but not the economic feasibility of a land-sparing 

strategy. UK land use and production decisions are affected by global food prices
18

, so 

realising land sparing in practice requires policies that couple yield increases with habitat 

restoration on spared land. In the UK, the obvious mechanism to effect this is via reform of 

the EU’s Common Agricultural Policy
18

. Any mechanism would need to be carefully 

designed so as to function given the UK’s role in the world food economy. Leakage and 

rebound effects might reduce the mitigation achieved, and increases in global food prices 

might compromise a land-sparing strategy by creating an incentive to farm, rather than spare, 

land
19,20

. Integrating our approach with models linking the global agricultural economy, land 

use and the changing climate
21

 would enable a broader assessment of land sparing in the 

context of global markets, emissions and food security. Economic considerations will also 

inform the most appropriate use of spared land. Natural regeneration represents a low-cost 

option, so any incremental mitigation benefits from managed forestry or bioenergy should be 

balanced against the additional management costs under these options. Similarly, displacing 

fossil fuels using bioenergy might not be the best overall strategy: if the UK energy sector 

could reduce emissions by 80% using other clean energy sources (thereby limiting the 

mitigation achievable using bioenergy), using spared land to grow forests rather than 

bioenergy crops would result in greater overall mitigation. 

Our results are robust to uncertainties in key parameters (Supplementary Table 4; 

Supplementary Fig. 2), but need to be interpreted cautiously. Firstly, restored habitats will – 
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over a period of one hundred or more years – eventually reach a new equilibrium and net 

carbon sequestration will decline to zero
1,22

. Actively managing the carbon sink by growing 

bioenergy crops or by managing forests for fuel-wood or timber might in some circumstances 

extend the timeframe for mitigation
23

, but might also compromise biodiversity objectives. 

Secondly, climate change feedbacks might affect our findings by altering soil carbon 

dynamics and the yields of food crops, livestock, bioenergy crops and trees. However, these 

effects are likely to be reduced by adaptation measures
15,24

, and provided that non-farmed 

habitats continue to store much more carbon than farmland we think our conclusions will 

hold. Thirdly, it is essential to assess the sustainability of yield increases
25

. For example, due 

regard for animal welfare, local air and water quality and soil function is essential when 

increasing yields
8,25

. Encouragingly, the techniques we consider that increase yield also have 

the potential to reduce externalities per unit of production (Supplementary Table 5) and 

modern livestock breeding techniques allow multiple traits, including health, welfare and 

productivity, to be considered simultaneously
8
 (see Supplementary Discussion). Last, 

managing water resources in higher-yielding landscapes will require a focus on improving 

water use efficiency in crops alongside careful spatial planning of spared land. 

Land sparing would have far reaching implications for the UK countryside and would affect 

landowners, rural communities, ecosystem services and biodiversity. Our projections in Fig. 

1 would result in UK forest cover increasing from 12% to reach 30% by 2050 – close to that 

of Germany and France but still less than the European average
26

 – and the restoration of up 

to 0.7 Mha of wet peatland (Supplementary Table 3). Such large-scale restoration is likely to 

benefit ecosystem service provision, including water purification, recreation and flood 

mitigation
18,27

. Land sparing has the potential to be beneficial for biodiversity, including for 

many species of conservation concern
6,27,28

, but benefits will depend strongly on the use of 

spared land. In addition, high yield farming involves trade-offs and is likely to be detrimental 
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for wild species associated with farmland. Careful implementation – by retaining semi-

natural pastures of high conservation value, for example – will be important to minimise any 

detrimental impacts. Growing bioenergy crops on spared land (rather than land needed for 

food production) addresses concerns over indirect land-use change
1
, but compared with 

natural habitats might compromise ecosystem services and biodiversity objectives
29

. 

Finally, how relevant are our results to other parts of the world? The UK presents a 

challenging test for the implementation of a land-sparing strategy. Relatively low yield gaps 

in the UK
30

 mean that achieving yield increases into the long term will require continued 

genetic advances. This is compounded by relatively high projected demand growth in the UK 

driven by a projected population increase of 26% over the forecast period (Supplementary 

Table 2). In contrast, in many global regions, yield gaps are quite large
30

 compared with 

projected growth in agricultural demand
5
 (Supplementary Fig. 3). Clearly the technical and 

economic feasibility would need to be assessed in each location, but our findings suggest that 

land sparing may be a promising strategy for reducing greenhouse gas emissions from 

agriculture and land-use change in several parts of the world besides the UK. 
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Table 1: Scenarios of yield and feed conversion ratio 

  Yield (t ha
-1
 yr

-1
) or FCR (MJ kg

-1
)   

Average rate of 
change 2010-2050 

(% yr
-1
) 

Commodity 2010 

2050  
Lower- 
bound 

2050  
Upper- 
bound   

Lower-
bound 

Upper- 
bound

†
 

Cereals 7.0 6.5 13.0  -0.2% 1.6% 
Oilseeds 3.5 3.5 6.8  0.0% 1.7% 
Potatoes 43.7 43.7 74.0  0.0% 1.3% 
Sugar beet 68.0 68.0 113.0  0.0% 1.3% 
Fruit and vegetables 20.0 20.0 30.0  0.0% 1.0% 
Forage maize 8.1 7.1 10.7  -0.3% 0.7% 
Forage legumes 3.7 3.7 6.0  0.0% 1.2% 
Other forage crops 7.6 7.6 12.3  0.0% 1.2% 
Temporary grass* 1.0 1.0 1.8  0.0% 1.5% 
Permanent grass* 1.0 1.0 1.8  0.0% 1.5% 
Rough grazing* 1.0 1.0 1.0  0.0% 0.0% 
Beef meat 147 147 98  0.0% -1.0% 
Milk 11 11 7  0.0% -1.0% 
Pig meat 38 38 25  0.0% -1.0% 
Sheep meat 214 214 161  0.0% -0.7% 
Poultry meat 33 33 24  0.0% -0.8% 
Eggs 31 31 23  0.0% -0.8% 

 

Crop yields and livestock feed conversion ratios (FCRs) in 2010 and lower- and upper-bound 

assumptions in 2050. FCRs apply to animals producing meat, milk or eggs, not the entire 

herd; a negative change indicates improving feed conversion efficiency. *For modelling 

purposes, grassland yields are expressed relative to the 2010 yield which was set to a value of 

1. 
†
Mean upper-bound yield growth of 1.3% yr

-1
 reported in the text is the average of the 

figures shown (with FCR growth expressed as a positive quantity), weighted by the energy 

content of production of each commodity in 2010.  
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Figure legends 

Figure 1. Mitigation of greenhouse gas emissions from agriculture by land sparing.  

a. Net greenhouse gas (GHG) emissions in 2050 are shown as the sum of emissions from 

farming and emissions from land-use change (which may be positive or negative). Yields of 

all commodities in 2050 are scaled linearly between the lower- and upper-bounds shown in 

Table 1. Emissions representing an 80% reduction relative to baseline net emissions in 1990, 

and equivalent net emissions in 2010, are shown for reference (20.1 Mt CO2e yr
-1

 and 73.9 

Mt CO2e yr
-1

 respectively, see Supplementary Table 1). b. Contribution of crop yield and 

livestock feeding efficiency gains to projected upper-bound mitigation in 2050. Projected net 

emissions in 2050 with yields, FCRs and ruminant diets at 2010 levels (left-hand bar; see 

Table 1); the effect of upper-bound assumptions (Table 1) on emissions from farming and 

land-use change emissions (intermediate bars); and the cumulative effect of all changes, 

giving projected net emissions in 2050 under upper-bound yield assumptions (right-hand 

bar).  
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Figure 2: Greenhouse gas mitigation by coupling land sparing with demand 

management. a. Reduction in the consumption of animal products. Shading and contours 

indicate net greenhouse gas (GHG) emissions in 2050 as a function of the per capita 

reduction in calories from animal products by 2050 relative to 2010 (vertical axis; see 

Supplementary Methods) and yields in 2050 (horizontal axis; scaled linearly between the 

lower- and upper-bounds shown in Table 1). Emissions representing an 80% reduction 

relative to baseline net emissions in 1990 (thick blue contour; 20.1 Mt CO2e yr
-1

), equivalent 

net emissions in 2010 (thick black contour; 73.9 Mt CO2e yr
-1

) and zero net emissions (thick 

orange contour) are also shown for reference. The enclosed dashed region indicates the 

mitigation potential of coupling moderate reductions in meat consumption with moderate 

yield increases under land sparing. b. Reduction in food waste. As for (a) but the vertical axis 

represents the per capita reduction in post-harvest food waste by 2050 relative to 2010 (see 

Supplementary Methods). 
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Figure 3: Upper-bound mitigation potential in 2050 under different uses of spared land. 

Results assume upper-bound yield increases and different uses of spared land: natural 

regeneration; broadleaved woodland (the main scenario presented in Fig. 1); coniferous 

woodland; and bioenergy crops. Miscanthus and short-rotation coppice (SRC) are shown 

assuming three different fossil fuel displacement pathways: coal, the current UK electricity 

grid average, and natural gas. The nature of mitigation is different depending on the use of 

spared land. Mitigation under natural regeneration and forestry is primarily due to carbon 

sequestered in the soils and biomass of restored habitats and would normally be reported in 

the ‘Land use, land-use change and forestry’ sector. For bioenergy crops, the mitigation arises 

primarily due to avoided emissions from displaced fossil fuels, and would normally be 

reported in the energy sector. 

 


