
The Potential for Thread-Level Data 
Speculat ion in Tight ly-Coupled 

Mult iprocessors 

J. Gregory Steffan 

.4 Thesis submitted in conformity with the requirements 

for the Degree of Master of Applied Science in the 

Depart ment of Elect rical and Computer Engineering 

University of Toronto 

@ Copyright by J. Gregory Steffan 1997 



National Library !*l of Canada 
Bibliothèque natio~ale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services seivices bibliographiques 

395 Wellington Street 395. rue Wellington 
Ottawa ON K1A ON4 Ottawa ON Kt A ON4 

Canada Canada 
Your & Votre rdlÔrenca 

Our W Notre felrlreoce 

The author has granted a non- L'auteur a accordé une iicence non 
exclusive licence allowing the exclusive permettant a la 
National Library of Canada to Bibliothèque nationale du Canada de 
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou 
copies of this thesis in microform, vendre des copies de cette thèse sous 
paper or electronic formats. la forme de microfiche/film, de 

reproduction sur papier ou sur format 
électronique. 

The author retains ownership of the L'auteur conserve la propriété du 
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. 
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels 
may be printed or otherwise de celle-ci ne doivent être imprimés 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation. 



The Potential for rrhread-Level Data 

Speculation in Tight ly-Coupled 

Mult iprocessors 

J. Gregory Steffan 

Master of Applied Science, 1997 

Department of Electrical and Computer Engineering 

University of Toronto 

Abstract 

To fully exploit the potential of single-chip multiprocessors, we must find a way to 

parallelize non-numerie applications. However, compilers have had little success in 

parallelizing non-numeric codes due to their complex data access patterns. This the- 

sis explores the potential for using thread-level data speculution (TLDS) to overcome 

this limitation by allowing the compiler to view parallelization solely as a costlbenefit 

tradeoff, rather than something which may violate program correctness. Experimen- 

ta1 results demonstrate that TLDS can offer significant program speedups. CVe also 

demons trate t hat t hrough modest hardware extensions, a standard single-chip multi- 

processor could support TLDS by augmenting the cache coherence scheme to detect 

dependence violations, and by using the primary data caches to buffer speculative 

state. We quant@ the impàct of this implementation on performance, and we also 

evaluate the compiler support necessary to exploit TLDS. 
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Chapter 1 

Introduction 

As the number of transistors that can be integrated ont0 a single VLSI chip continues 

its dramatic rate of increase, processor architects are faced with the pleasant chal- 

lenge of finding the best way to translate these additional resources into improved 

performance. While there have been several proposals [6, 7, 14, 15, 23, 28, 271, per- 

haps one of the more compelling options is to integrate multiple processors onto a 

single chip [5, 20, 17, 14, 71. Froni a VLSI perspective, single-chip multiprocessors are 

attractive because their distributed nature allows the bulk of the interconnections to 

be localized, thus avoiding the delays associated with long wires [20]. 

While single-chip multiprocessing will clearly increase cornputational throughput, 

it n d l  only reduce the execution time of applications that can exploit parallelism. 

Hence the key question is how do we convert the applications we care about into par- 

allel programs? Expecting programmers to only m i t e  parallel programs from now on 

is unrealistic. Instead, the preferred solution would be for the compiler to parallelize 

programs automatically. Unfortunately, compilers have only been successful so far 

a t  parallelizing numeric applications [2, 10, 221. For single-chip multiprocessing to 

have an impact on the majority of users, we must also find a way to autornatically 



parallelize non-numen'c applications. 

One of the prirnary challenges in automatic parallelization is determining whether 

data dependences exist between two potential threads that would prevent them from 

running safely in parallel. To address this problem in numeric codes, a considerable 

amount of research has focused on analyzing array accesses within DO loops [IO, 16, 

211. Although progress has been made in this area, the problem is considerably 

more difficult for non-numeric codes due to their complex access patterns, including 

pointers to heap-allocated objects and complex control flow. Given the size and 

complesity of real non-nurnenc programs, autoniatic parallelization appears to be an 

unrealistic goal if the compiler must statically prove that threads are independent. 

Instead, we would prefer to relax the constraints on the compiler by allowing it to 

view parallelization solely as a cost/benefit tradeoff-i.e. if the compiler believes it 

is likely that two threads are independent, it can go ahead and parallelize them 

withou t worrying about violating program correc tness. In this thesis, we quanti& 

the performance advantages of a technique which provides this Bexibility: thread- 

leuet data speculation. 

1.1 Thread-Level Data Speculation 

To maximize parallelism, we often want to perform loads early so that operations 

mhich depend on them can be executed concurrently. In contrast, there is less pressure 

to perform stores early, since they do not produce register r e s ~ l t s . ~  Hence it  is often 

desirable to move a load ahead of a n  earlier store, which is safe provided that they 

access different memory locations. Since it is dBcult for the compiler to precisely 

'Since the goal of the compiler is to keep d u e s  that wiii be used again soon in registers, stores 

should typicdy ody occur when a value will not be loaded again in the near future. 
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Figure 1.1: Examples of data speculation. 

analyze load and store addresses in non-numeric appIications, a potentially attractive 

option is for the compiler to speculatively move a load ahead of a store, and resolve 

whether this was safe at run-time. If the speculative load turns out to have been 

unsafe, then a recovery action is taken to restore the correct program state. This 

technique is known as data speculatian, and it works well when the unsafe cases 

are sufficiently rare that the overhead of recovery is srnall relative to the benefit of 

increased parallelism. 

Figure l . l(a) shows an example code fragment, and Figure l . l(b) illustrates how 

it might be modified to exploit instruction-level data speculation. In this example, the 

compiler is uncertain whether the pointers p and q point to the same address, but nev- 

ertheless it has speculatively moved the load ahead of the store. At run-time, we can 

verify the safety of this speculative operation either through a simple software check 

(i.e. compare p ni th q), or with the help of hardware support such as the "mem- 

ory conflict buffer" (91. Previous studies have demonstrated t hat instruction-level 

data speculation can significantly increase the amount of instruction-IeveI parallelism 

(ILP) withh a program [9, 121. 

Thread-Level Data Speculation (TLDS) is analogous to instruction-level data 

speculation, except that the load and store are executed by separate threads of con- 



trol which run in parallel, as illustrated in Figure l.l(c). A given speculative load 

is safe provided that its rnemory location is not subsequently modified by another 

thread such that the store should have preceded the load in the original sequential 

program. When such dependence violations are detected, a recovery action is taken 

such as partially re-executing the thread which performed the failed speculative load. 

Although supporting thread-level data speculation is more complicated than support- 

ing instruction-level data speculation (as we discuss in detail later in Section 4.2), our 

results in this thesis demonstrate that TLDS can significantly increase the arnount of 

thread-leuel parallelism (TLP) within non-numeric programs, and can be implemented 

in a cost-effective manner. 

1.2 An Example: Cornpress 

FVe have demonstrated how TLDS works for a small code fragment. In this section, 

we esplore how TLDS applies to a real application, including the characteristics of 

the application which make it suitable for exploiting TLDS, the support required, and 

the optimizations which allow the application to obtain the full benefits of TLDS. 

First, we briefly introduce some terminology. We Say that TLDS extracts paral- 

lelism from a speculative region, which consists of a collection of dynamic instruction 

sequences cailed epochs. For euample, nrith looplevcl parallelism, we would say that 

the loop is a speculative region, and the individual loop iterations would be epochs. 

Since TLDS also applies to structures other than loops (e.g., recursion), we have 

adopted this more general terminology. For TLDS to be effective, each epoch must 

contain a reasonable amount of work so that the overheads of thread creation and 

data communication d l  be relatively small. For TLDS to improve an application's 



execution time, the speculative regions must constitute a significant fraction of overall 

execution time. 

The compress application in the SPEC92 benchmark suite is a good candidate for 

exploiting TLDS.? Over 99% of execution time is spent in a single while loop which 

reads each input character and performs the compression. The control flow within the 

loop body is quite complicated, and on average takes 89 dynarnic instructions. CVhile 

this may appear to be an abundant source of data parallelism, a compiler cannot 

statically prove that loop iterations are independent because they are not. The 

input characters are used to index a hash table which is modified; hence when two 

character sequences hash to the sarne entry, there is a true read-ufier-zun'te (R4W) 

data dependence. Figure 1.2(a) shows a pseudo-code representation of this code. 

Fortunately, due to the nature of a hash table, consecutive characters rarely access 

the same hash table entry-t herefore there is an opportunity to extract parallelism 

during the iterations between actual dependences. Since a single-chip multiprocessor 

has a relatively small number of processors, vie do not need a large gap between 

clata-dependent iterations to keep the machine busy. 

Figure 1.2(b) illustrates how compress can be parallelized using TLDS, where 

each epoch (i.e. loop iteration) is executed as a separate thread. Since the threads 

are speculative, they must buffer any stores to memory until they are certain that 

it is safe to commit their results. If a M W  dependence violation is detected, the 

thread can recover by re-executing its epoch. As we can see in Figure 1.2(b), the 

number of epochs between R4W data dependences dictates the amount of parallel 

speedup that can be achieved-we di quantdy this number for compress and other 

applications later in Chapter 3. 

?The same W true for the SPEC95 version of compress, which behaves quite similady. 



while (cont hue-cond) { 

(a) Compress Pseudo-Code (b) TLDS Execution of Compress 

Figure 1.2: Example TLDS execution. 

In addition to the hash table accesses, cornpress contains several other sources of 

RW data dependences, but fortunately they can be eliminated with the proper com- 

piler support. For example, the in-count variable is incremented on each iteration to 

count total input characters-the compiler can recognize this as an induction variable, 

and eliminate it since it is implicit in the epoch number. Loop-carried dependences 

also exist inside get char O and put  char O -these could also be eliminated through 

parallel implementations of the I/O  routine^.^ The out -count variable is condition- 

ally incremented inside the loop to count total output characters; since it is not used 

ot hemise within the loop, the compiler could recognize this as a reduction operation 

and optimize it accordingly (i.e. each processor's partial sum is added together at 

the end of the loop). Two other variables are sometimes modified within the loop 

and their values are often used: of f  set,  which is a scalar, and bp, which is a pointer 

While pardel  input routines are straightfotward, pardel output routines are somewhat trickier. 
To reconstruct the output Stream correctly, the epoch number may be passed to the putchar0 
routine to provide a total ordering. 



used to index a buffer. The compiler should be able to recognize the scalar data 

dependence, and with proper hardware support could fonvard this value directly to 

consurning threads rvhenever it is modified. While the pointer dependence could also 

be forwarded, recognizing it would be more difficult for the compiler. 

Thus we see that a range of different compiler optimizations, with varying degrees 

of complexity, are useful for getting the Full benefit of TLDS-we will break d o m  

the importance of each of these techniques later in Chapter 3. 

1.3 Related Work 

While instruction-Ievel data speculation has received much attention [9, 12, 261, there 

has been relatively little work so far on thread-level data speculation. In this section, 

we briefly discuss the two rnost relevant works to this study, the priuatizing doall 

test [22] and the Wisconsin rnultiscalar architecture [7, 271. 

1.3.1 The Privatizing Doall Test 

Padua et al. [22] have devised a method of parallelizing loops for numeric codes in the 

presence of ambiguous data dependences. Their approach, called the privatizing doall 

(PD) test is entirely software-based, allowing the compiler to parallelize loops without 

fully disambiguating al1 memory references. For a given loop, the PD test is performed 

on each shared variable with ambiguous references by creating corresponding shadow 

a n a y s  to track read and wnte accesses. ,4t the end of the parallel execution of the 

loop, the shadow arrays are examined. If any cross-iteration data dependences were 

violated, the loop is re-executed sequentiaily. Othenvise, nTe knom that the parallel 

execution of the loop mas correct. 



Although a purely software-based approach is attractive, there are two shortcom- 

ings to the PD test. First, the PD test requires the creation of shadow storage for ail 

shared data, and is therefore not applicable to most non-numeric codes due to their 

complex data structures and extensive use of heap-allocated objects. Second, the PD 

test does not extract any parallelism in the presence of a single cross-iteration R4W 

dependence, since the loop is re-executed sequentially in such cases. Because of this, 

the PD test is only effective in parallelizing a narrow class of ioops. 

1.3.2 The Multiscalar Architecture 

The most relevant work to this study is the Wisconsin multiscalar architecture (7, 

27, 81. This architecture performs aggressive control and data speculation through 

the use of devoted hardware structures and complex fonvarding mechanisms. This 

section describes the multiscalar architecture and how it executes an application, 

beginning wit h the compilation process. 

During compilation for rnultiscalar execution, a program is broken up into srnall 

tasks. A task may consist of a only few instructions or perhaps several basic blocks. 

The compiler inserts a bit-vector called the create mask into every task denoting 

which registers are live at  the end of the task. Hardware then uses this information 

to fonvard register values between tasks. 

The multiscalar architecture speculatively executes tasks in parallel, performing 

control speculation by executing target tasks before the corresponding branches have 

been resolved. Data speculation is also supported, allolving tasks which are possibly 

data-dependent to be executed in parallel. We now discuss the hardware mechanisms 

which support these features. 

Processors in the multiscalar architecture are ananged in a ring, and each proces- 



sor is tightly-coupled with its two neighbouring processors. .4t any given time during 

execution, one of the processors is considered the head of the ring. This is the pro- 

cessor which is executing the oldest task, and its work is not considered speculative 

since it cannot depend on previous tasks. 

There are two main benefits to the ring architecture. First, the ordering between 

tasks is implied by the order of the processors in the ring, thus making it trivial for the 

task manager to terminate the appropriate tasks when a data dependence violation 

occurs. Second, the tight-coiiplirig of adjacent processors in the ring simplifies register 

forwarding, since register values must be forwarded between consecutive tasks which 

are executed by consecut ive processors. 

Register values are fonvarded between tasks by hardware using the create mask 

described earlier. The last definition of each register which is live at  the end of the 

task is fonvarded to the next processor in the ring. In the receiving processor, each 

register has a busy bit which is set when the register value arrives, thus synchronizing 

the communication of register values between tasks. 

In order to support data speculation, the multiscalar architecture inciudes the 

address resolution bufler (ARB) [SI which performs dynamic mernory disambigua- 

tion. The ARB sits between the processors and the first-level cache, and al1 memory 

accesses are filtered through it. When a store to memory occurs! the store address 

and the value are kept in one of the XRB's associative entries for the corresponding 

processor. When a memory access occurs, the ARB is searched for accesses to the 

same address-if the AR8 notices that a store and load to the same address occur out 

of sequence, then al1 speculative tasks including and beyond the violating task are 

terminated. This mechanism d o m  tasks to be executed in parallel such that either 

memory dependences are satisfied or speculation fails. 



Although the multiscalar paradigm allows control and data speculation, it does so 

at  the cost of an architecture which is devoted to that mode of execution. The ring 

Iayout of processors is beneficial for fonvarding data between consecutive tasks, but 

it would not be efficient in executing a conventional parallel program. The ARB is a 

large and complex structure. Since an associative search must be performed for most 

memory accesses, latency through the ARE! will be longer than that of an ordinary 

first-level cache. This means that the multiscalar architecture will not be efficient 

at  executing multiprogramrning workloads or even conventional parallel programs. 

However, experimental results for the multiscalar architecture show that speculative 

execution is a promising way to improve the performance of non-numeric applications 

using multiple processors. An important question is whether speculative execution 

may be supported in a non-devoted architecture which is also effective on other types 

of workloads. 

1.4 Objectives and Contributions 

Given a "generic" single-chip multiprocessor as a starting point, where processors 

share a second-level cache and the individual primary caches are kept coherent (as 

s h o w  in Figure 1.3), this study attempts to answer the following questions. First, 

does adding support for TLDS signincantly improve the performance of non-numeric 

applications through increased thread-level parailelism? We quantify this answer 

through a detailed study of integer applications taken from the SPEC92 and SPEC95 

benchmarks suites, and find that significant improvements can be achieved. Second, 

can we provide the necessary hardware support for TLDS in a cost-effective manner- 

i.e. without a centralized structure such as the ARB? We propose a simple extension 
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Figure 1.3: Block diagram of a single-chip multiprocessor. 

to an invalidation-based cache coherence protocol which allows us to detect unsafe 

speculation, and we rely on software (rather than just hardware) to recover the correct 

program state in such cases. CVe also propose using the cache to buffer speculative 

writes, and find that this is a feasible approach. Finally, what compiler support 

is needed to effectively exploit TLDS? CVe provide a detailed breakdown of what 

transformations are necessary, and how much they help performance. 

1.5 Overview 

The remainder of this thesis is organized as follows. Chapter 2 describes the ex- 

perimental methodolog. Chapter 3 quantifies the potential performance impact of 

TLDS on idealized hardware, and investigates the minimum compiler and hardware 

support required to properly exploit TLDS. 

Chapter 4 presents possible hardware support for TLDS, including thread man- 

agement issues, ertending the cache coherence mechanism to detect R N  dependence 

violations, and using the cache to bdïer  speculative state. The impact of this im- 

plernentation on the results for idealized hardware is also discussed. The compiler 



support required to exploit TLDS is given in Chapter 5-basic transformations and 

support are described, as ive11 as performance-improving optimizations. 

Finally, Chapter 6 concludes the thesis by summarizing the potential for extract- 

ing parallelism with TLDS in tightly-coupied multiprocessors, and describing possible 

future work for TLDS. 



Chapter 2 

Experiment al Framework 

This section describes our experirnental methodology, including the applications we 

study, our method of finding speculative regions, the simulation environment, and 

the performance metrics we measure. 

2.1 Finding and Simulating Speculative Regions 

To quantify the potential for TLDS in non-numeric codes, we examine a set of real 

non-nurneric applications in mhich potential speculative regions are identified by hand. 

Table 2.1 summarizes the ten non-numeric applications studied, which are taken 

from the SPEC92 [4], SPEC95 [3], and NAS Parallel [l] benchmark suites. These 

applications were compiled with -02 optimization using the standard MIPS compilers 

under IRIX 5.3, and the source code and resulting object files were not modified in 

any way. 

Table 2.2 lists the speculative regions analyzed in this study. To locate speculative 

regions, the IRUC prof utility was used to ident& regions that account for a large 

portion of total execution time. These regions were then inspected by hand to d e  



Table 2.1: Integer benchmarks. 

termine whether they were good candidates for exploiting TLDS. If so, these regions 

were explicitly identified to the sirnulator through their instruction addresses. The 

simulator reads sequential execution traces generated by the MIPS p i x i e  utility [25] 

to mesure  the exact data dependences between epochs in each speculative region. 

For the sake of simplicity and simulation speed, instructions are assumed to execute 

on an ideal single-issue processor-in other words, we assume that one instruction is 

issued every cycle. 

Since identifying speculative regions by hand was a timoconsuming process, we 

were not able to explore al1 possible regions, particularly in large programs such as 

gcc (notice in Table 2.2 that the two regions in gcc account for only 12% of execution 

time). We believe that an automated feedback-directed tool would have located a 

larger set of speculative regions, thus irnproving the overall effectiveness of TLDS in 

improving performance. 
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SPEC92 

SPEC95 

N.4S Parailel 

Benchmark 

compress 

gcc 
espresso 

li 

SC 

m88ksim 

* ijpeg 
perl 

go 
buk 

Input 

Data Set 

(size:name) 

ref5n 

ref:stmt.i 

refibca.in 

ref.li-input .lisp 

refiloadal 

test:ctl.raw 

train:vigo.pprn 

test:primes.pl 

train:2stone9.in 

N = 65536 

Description 

Perforrns data compression 

C compiler 

Booiean function minimizer 

Lisp interpreter 

Spreadsheet calculator 

Simulator for a 88100 microprocessor 

Jpeg image processor 

PerI script interpreter 

Plays the game "go" against itself 

Irnplernentation of the bucket-sort algorit hm 



Table 2.2: Benchmarks and speculative regions 

2.1.1 Descript ions of Speculat ive Regions 

Benchmark 

cornpress 

PPPgcc 

espresso 

li 

SC 

rn88ksirn 

ijpeg 
p erl 

60 
buk 

To gain a better understanding of the types of regions which are suitable for TLDS, 

we now give a brief description of each speculative region. 

compress. ri: This speculative region is the main while loop in the compress () 

routine, comprising 99.9 % of overall execution time, as described earlier in 

Section 1.2. The loop performs data compression using hash tables to rnaintain 

the compressed patterns. 

Region 

r l  
r l  
r2 

r l  

r l  
ï2 

r l  

r l  

r l  

r l  

r l  

r l  
r2 

gcc .ri: This for loop traverses a List of instructions to check for registers that may 

be available to use for re-loading spilled pseudo registers. 

gcc . r2: This f o r  loop traverses the basic block List, solving the Live variable analysis 

dataflow problem. This implies that only iterations mhich propagate changes 

between basic blocks dl have many data dependences between them. As the 

algorithm converges, data dependences become more sparse and the amount of 

Region Description 
(src-file:function():loop,type, sn l ine)  

cornpress.c:compress():while, line 784 
reloadl .c:reload() :for, Iine 421 
flow.c:Iifearialysis() :for, line 680 

cornpl.c:compllift():for, Iine 269 

xldmem.c:sweep() :for, Line 417 
xidmem.c:vmark():for, Line 399 

interp.c:ReaiEvalAll():for, Line 1001 
go.c:goexec():while, line 118 

jccolor.c:rgb~ycc~convert () :whiIe, line 132 

rege..ec.c:regmatch() :while, line 544 

g29.c:getefflibs():for, line 636 

buk.f:bucksort():do, line 137 
buk.f:bucksort ():do, line 124 

Average 
Dynamic 
Instrs 

per Epoch 

89 

1092 
1593 

32 

19 

286 

36 
1232 

75 14 

67 

80 

26 
18 

% of 
Total 

Dynamic 

Instrs 

99.9 

8.1 
4.0 
19.4 

21.9 
5 1.2 

69.3 

99.3 

10.0 

35.8 
6.8 

16.5 
11.4 



parallelism available between data dependences increases. 

espresso. ri: This region is a for loop which performs boolean set operations on 

a data space which is partitioned into two arrays of "cubes". A read-only 

operation is performed on each cube from one List, the result of which determines 

if the current cube from the other list is modified. Because of these cross- 

iteration ROV dependences, known methods are not be able to parallelize this 

loop. 

s c .  rl: This region is a f o r  loop which calculates a value for each ce11 in a spread- 

sheet. Since it is not known at  compile-time which cells are data dependent, 

the calculation of cells rnay not be parallelized using known techniques. 

m88ksim .rl: M88ksim is an architecture simulator, and this while loop simulates the 

data pat h, calling the Datapath () function each simulated cycle and checking 

for interrupts and errors. Containing 99.3 % of overall execution time, this 

region of code operates mostly on statically allocated objects although there 

are several pointer dereferences which would be hard to disambiguate statically. 

i jpeg . rl: This while loop converts rows of "rgb" samples to the JPEG colourspace. 

Although most of the data structures accessed in the loop are arrays, the use 

of indirection in the array subscript expressions prevents the loop from being 

parallelized using known techniques. 

pe r l  .rl: The regmatch0 function matches regular expressions using this while 

loop, which occasionally calls regmatch0 recursively to parse parentheses. 

go. rl: This f o r  loop checks board positions and performs some list operations. Since 

the lists are allocated dynamicaily, parallelization is not possible t hrough known 



techniques. 

buk. ri: This region is a do loop which cornputes the rank for each key in a set of key 

values stored in an array. The array which stores the ranks is indexed indirectly, 

t hus making its accesses difficult to disambiguate. 

buk. r2: This region is a do loop which counts the occurrence of each key in an array 

of key values, but rnay not be parallelized due to the indirection in the array 

siibscript expressions. 

Although parallelism is available in many of these regions, it is evident that known 

techniques are not effective in parallelizing t hem due to complex data structures, am- 

biguous array subscript expressions, or the possibility of cross-iteration data depen- 

dences. In Chapter 3. ive demonstrate that TLDS can exploit the available parallelism 

in these situations. 

2.2 Performance Metrics 

To estimate the potential performance gain resulting from TLDS, our simulator col- 

lects two performance metrics-run lengths and critical path lengths-which are de- 

scribed below. 

As illustrated earlier in Figure 1.2, TLDS can exploit parallelism whenever gaps 

esist between data-dependent epochs. We quant@ this potential by computing the 

run lengths, mhich are the number of consecutive epochs within a speculative region 

delimited by performance-limiting read-after-mite (RAW) data dependences. Write- 

after-read (WAR) and write-after-mite (WAW) dependences between epochs may 



--- 
Run-Lengths: 7 3 4 

Threshold T = 4 

Average Run Length = 3 

(a) Measurement of Run Lengths (b) Execution on Four Processors 

Liinited By Run Lengths 

Figure 2.1: Esample measurement and execution of run lengths. 

also exist, but these may be satisfied through rnernory renaming, and hence should 

not lirnit performance. 

While RACV dependences can potentially disrupt parallelism (forcing a processor 

to re-execute an epoch), this is not always the case. Given that a single-chip multi- 

processor will only support T outstanding speculative threads, Ive know that when 

we are executing epoch Ei, any epoch Ej where j 5 (i - T) must have committed its 

statc already. Hence a R4W dependence of distance d, where d > T, will not limit 

Our ability to exploit parallelism. For example, assuming that T = 4 in Figure 2.l(a), 

the R4W data dependence s h o w  between epoch Eg and epoch E3 will not limit 

performance. Therefore there are only two performance-limiting data dependences 

Nithin these nine epochs, thus resulting in nui lengths of two, three, and four. The 

average run length size of three corresponds roughly to the maximum speedup we 

might expect to see on four processors, as illustrated in Figure 2.l(b). Hence we Nil1 

use average run length as a metric for the potential thread-level parallelism. 



2.2.2 Critical Path Lengths 

In some cases, we may find that RAW data dependences always exist between con- 

secutive epochs, thus limiting the run lengths to one. For example, a scalar variable 

might be modified and used during each epoch such that it is neither an induction 

variable, reduction operation, nor anything else that the compiler can optimize amy. 

Although the epochs cannot be fully overlapped in such cases, we may still be able to 

partiallp overlap their esecution by directly forwarding the dependent values becween 

epochs. ' 
Fonvarding data requires both a data transfer mechanism and also some form 

OF synchrcnization, so that the receiving processor knows when the vaiue is ready. 

Data transfer can occur either through memory or through registers (7, 271, and syn- 

chronization can be performed either explicitly using wait/signal or irnplicitly using 

full/empty bits (6, 14, 241. If multiple values are to be fonvarded, the synchronization 

can occiir at either a coarse granularity (once per epoch) or a fine granularitg (once 

per value), as illustrated in Figure 2.2. 

The performance of a speculative region that requires fonvarding is limited by 

the critical path length, which is the sum of the non-overlapped portions of each 

epoch plus the latency of fonvarding these values between epochs. With course-grain 

synchronization, the critical path length is straightfonvard to compute, as illustrated 

in Figure 2.2(a). With fine-gain synchronization, there can be multiple critical paths 

through the epochs, as shown in Figure 2.2(b). In this latter case, the critical path for 

the epoch is simply the longest of these critical paths (e.g., the critical pa* for A in 

Figure 2.2(b)). Roughly speaking, the maximum potential speedup for a speculative 

region in the presence of fonvarding can be computed by dividing the total sequential 

numeric applications, this is referred to as udoacrossn pardelism. 



(a) Coarse-Grain Synchronization (b) Fine-Grain Synchronization 

\ Fonvardeû Value 

0 Criîicai Paih 

a Cornpufation ovcrlap 

Figure 2.2: Examples of Fonvarding with coarse and fine grain synchronization. 

esecution time of al1 epochs by the overall critical path length. 



Chapter 3 

Impact of TLDS on Thread-Level 

Paralleïism 

In this chapter, nTe prcsent the experimental results which quantify the potential 

parallelism that can be achieved using TLDS. We begin by focusing on how TLDS 

can relav mernory data dependences. Next, we examine how forwarding data be- 

tween epochs affects performance. Finally, these nurnbers are translated into overall 

program speedups. 

3.1 Relaxing Memory Data Dependences 

To Fully exploit TLDS, we should first apply compiler optimizations to eliminate R4tV 

data dependences whenever possible. Table 3.1 describes the optimizations that we 

consider in these experiments, al1 of which are described in more detail in Chapter 5. 

The optimizations in Table 3.1 are listed roughly in ascending order of complexity. 

The base case (B) observes all R4W dependences, and represents the inherent run 

lengths due to memory dependences in the original code. The induction variables 



Table 3.1: Description of optimization levels used to relax R4W memory data de- 

pendences. 

Name 

Base 
Induction 
Variables 
Library 

Routines 
1 Reductions 

(1), l zbraq routines (L), and reductions (R) cases represent situations where the 

compiler can realistically recognize and eliminate dependences. These cases require 

only software support, and no special hardware beyond basic TLDS. Finally, in the 

sralars case (S), we identify scalar dependences which cannot be optirnized away, but 

which can potentially be accelerated by explicitly fonvarding their values between 

epochs. The level of hardware support for forwarding may Vary, and we consider this 

issue in greater depth later in Sections 3.2 and 3.3. 

Table 3.2 lists the occurrence of the different types of &ta dependences. Induction 

variables are present in four of the thirteen regions. Dependences due to library 

routines are rare, but we M11 demonstrate that the elirnination of these dependences is 

crucial to the performance of the speculative regions which contain them. Reductions 

are relatively common, and scalars are abundant in several of the ~peculative regions. 

Figure 3.1 shows the average run lengths for each region given a threshold (T) 

of ten outstanding epochs.' Starting with the base case (B), we see that seven of 

the thirteen regions have natural mn lengths of two or more under TLDS. Of al1 

thirteen regions, the only one whkh is naturally parailel (Le. contains no dynamic 

Abbrev 

B 
1 

Mernory Data Dependences Removed 

None (al1 M W  dependences observeci) 
M W  dependences caused by updating 

-- 
Scalrus 

'Note that the run Iength can exceed the theshold, given our definition of run length in Sec- 

tion 2.2.1. Hence run length does not translate directly into speedup, which is something we take 
into account later in Section 3.3 mhen we compute region and program speedups. 

Compiler Support Necdecl 

None 
Recognize induction variables and 

L 

R 

s 

induction variables 
Case "1" plus RAW dependences in I/O 
and memory allocation library routines 
Case "L" plus RACV dependences caused 

cornpute instead from epoch number 
Use parallel versions of library 
routines instead 
Recognize reductions and localize 

by reduction operations 

44 
bv scalars cornmunicated across e ~ o c h s  

accorciingly (e.g., partial sums) 

forward explicitlv between e ~ o c h s  



Table 3.2: Occurrence of memory data dependence types in speculative regions. 

Induction Library 
Benchmark Region Variables Routines Reductions Scalars 

cornpress r l  1 4 2 2 

espresso r l  O O O O 
li r l  O O 1 O 

60 r l  O O O 5 
buk r l  1 O O O 

r2 1 O O O 

cornpnu.rl gcen k r l  a c ~  
m l l ~ r n r l  'lprg.* pri.rî 'Oxi bukrl 

b u W  
gcerl 08pnuo.rf 1I.R 

- -- - - - - - - - 

Figure 3.1: Average TLDS run lengths given various levels of rnemory dependence 

optimizations (see Table 3.1). 

data dependences) is i jpeg-ri-the other twelve regions would be unsafe to paral- 

lelize without TLDS. Even for i jpeg . ri, it appears unlikely that the compiler could 

statically prove that the epochs are independent, given the use of indirection in the 

array subscript expressions; with TLDS support, however, the compiler can safely 

parallelize t his region despite t his uncert ainty. 

Figure 3.1 also shows how the optimizations listed in Table 3.1 c m  enhance run 

lengths. By eliminating induction variable dependences (1), the average run lengths in 

buk. rl and buk . r2 increase dramatically from one to over twenty. Replacing common 



library routines (e.g., get char, pu t  char, etc.) with parallel versions (L) quadruples 

the average run length in compress .rl from one to four. Table 3.2 shows that R4W 

dependences due to 1ibrax-y routines are present in gcc .r2 as well, but the run lengths 

indicate that they are not performance-limiting. Optimizing reduction operations (R) 

provides a small but measurable irnprovement in cornpress. rl. Reductions are also 

found in li . rl, S C .  r l ,  and rnost notably in m88ksim. rl  (as shown in Table 3.2), 

but scalar variables must also be optimized to increase the run lengths for these 

regions. In fact, we see that scalar dependences between epochs (S) represent the final 

barrier to achieving average run lengths of eight or more in compress . rl, gcc . ri, 

li . r i ,  m88ksim .rl, and p e r l  . ri. Although these scalar dependences cannot be 

fully eliminated (unlike the 1, L, and R cases), we can potentially accelerate these 

cases by explicitly fonuarding the values between epochs, as is discussed in the next 

section. 

3.2 Forwarding Data Between Epochs 

In cases where RAW dependences frequently occur between consecutive epochs and 

these dependences cannot be eliminated, we can still potentially accelerate perfor- 

mance by partially overlapping the epochs, as described earlier in Section 2.2.2 and 

illustrated in Figure 3.2. 

In addition to fonvarding scalar memory dependences, we also need to fornard 

any register dependences. Both types of forwarding c m  potentially be accomplished 

through the same mechanism. Although the run lengths in Figure 3.1 ignored register 

dependences, ive take them into account throughout the remainder of this thesis 

as follows. We eliminate two classes of RAW register dependences: those due to 



Figure 3.2: Speedup limits due to forwarding scalars both for memory and register 

dependences (c = couse-grain synchronization, f = fine-grain synchronization, s = 
fine-grain synchronizat ion wit h agressive instruction scheduling) . 

induction variables (directly analogous to the "1" case for memory), and simple cases 

wliere a dependence was only introduced by the compiler converting a while loop 

into a do-while loop to create a "landing padn.* Al1 other cross-epoch register 

dependences are fonvarded, and are similar to the "Sn memory case described in 

Table 3.1. 

3.2.1 Impact of the Synchronisation Scheme and Scheduling 

The performance with fonvarding depends on how aggressively rve attempt to min- 

imize the non-overlapped portions of each epoch. In addition to using fine-grain 

rather than coarse-grain synchronization (as illustrated in Figure 3.2), we can po- 

tentially improve performance hirther by rescheduling the code to move as many 

instructions out of the non-overlapped portion of an epoch as possible. To evalu- 

ate the potential benefit of improved instruction scheduling, we simulated aggressive 

instruction scheduling by t racking the dynamic dependence chain dept h between in- 

struction pairs that consume and produce fornardable values. In other words, we 
- - - 

2For example, the loop test for the while loop in compress .rl caiis getchar O to get the next 
character to be processed by the given iteration. When the compiler converts this while loop to a 
do-uhile loop, getcharo is caiied at  the end of the loop, thus causing a cross-epoch R4CV data 

dependence. However, this could be triviaüy fixed through instruction scheduling. 



measured the minimum possible sizes of the non-overlapped portions within epochs. 

To estimate the upper bound on speedup given forwarding, we divided the total 

dynamic instructions in a speculative region by the critical path length, as described 

earlier in Section 2.2.2. For our initial experiments, we assume that fonvarded data 

can be consumed immediately (e.g., through a shared register file); we consider more 

realistic forwarding latencies in the next section. 

Figure 3.2 shows the speedup limits due to forwarding. Three regions ( i j p e g . r i ,  

buk.ri, and buk.rî) do not require any forwarding, and hence are not lirnited by 

it. Focusing on the other ten regions, we see that coarse-grain synchronization (c)- 

i.e. fonvarding data once per epoch-yields speedups above 35% in only three cases 

(compress .ri, SC . r i ,  and go . r i ) ,  and none of these speedups are above 50%. By 

using fine-grain synchronization to fonvard values as soon as they are produced ( f ) ,  

the speedup limit increases to over twofold for seven of the ten regions that re- 

quire fonvarding-in several of these cases, the improvement is dramatic. Finally, 

by combining fine-grain synchronization with aggressive instruction scheduling (s) 

to minimize non-overlapped sections within epochs, we can potentially achieve large 

speedups in al1 regions. The benefits of rescheduling are particularly pronounced in 

gcc .rl and m88ksim. r i ,  where speedups in the original code are limited to under 

3%, but by rescheduling these relatively large epochs (over 1000 instructions each), 

we can potentially achieve speedups of tenfold or more. 

3.2.2 Impact of Communication Latency 

In addition to the synchronization scheme, another element of fornardhg which may 

limit potential speedups is the communication latency. Extremely large communi- 

cation latency wiU degrade performance, but how fast must communication be to 



(b) Speedup Iimit For fine-grain synchronization wit h aggressive instruction scheduling (s) 

Figure 3.3: S peedup limits due to forwarding for varying communication latency. 

obtain reasonable performance'? Since we are considering a single-chip multiproces- 

sor, a range of communication mechanisms and thus latencies should be available. 

Figure 3.3 shows the speedup limits for fine-grain synchronization ( f )  and for fine- 

grain synchronization with aggressive instruction scheduling (s), each for a range of 

different communication latencies. Without instruction scheduling (Figure 3.3(a)), 

we see that there are three cases. For six of the regions, the communication latency is 

not large relative to the overlapped portion, resulting in little change in the speedup 

limit. Three of the regions show significant sensitivity to communication latency, 

due to the relativeiy small epoch sizes of these regions (see Table 2.2). Finally, the 

speedup limit due to fonvarding may be large enough for communication latency not 

to be an issue, which is the case for the remaining four regions. With instruction 

scheduling (Figure 3.3(b)), al1 regions demonstrate encouraging speedup limits. 



In summary, the importance of communication latency depends on the individual 

speculative region, although instruction scheduling may eliminate the need for fast 

communication in cases where it is an issue. 

3.3 Potent ial Speedups 

Having gained insight into how TLDS can relax rnemory and register data depen- 

dences and exploit fonvarding, we now translate the run length and critical path 

metrics into an estimate of actual speedups on a single-chip multiprocessor with four 

processors. To estirnate speedups, we combine the limitations imposed both by mem- 

ory data  dependences and by fonvarding data-both of these effects were s h o w  in 

isolation in Figures 3.1 and 3.2. We also account for the tirne required to recover from 

unsuccessful speculation by adding the average time to execute an epoch for every 

speculative epoch which hils. Finally, we account for the fact that parallelisrn cannot 

esceed the number of physical processors (four, in this case) a t  any given time. 

3.3.1 Region Speedups 

Figure 3.4 shows the potential region speedups with two different fonvarding latencies: 

the "Le' case corresponds to fonvarding data  through the normal rnemory hierarchy 

(Le. the shared L2 cache) in ten cycles, and the "fast' case uses special fomarding 

hardware support to communicate data in just two cycles.3 For each forrvarding 

latency, ive show the following five cases. Case "B" is a base case +th TLDS but 

no optimizations to eliminate or fornard register or memory dependences. In case 

"Br" (and al1 remaining cases), register dependences are optimized and fonvarded, 

=An example of fast forwarding support is the register forwarding mechanism proposed by the 
>Iuitiscalar architecture [7, 271. 



Figure 3.4: Possible region speedup on four processors (L2 = fonvarding through the 

shared L2 cache in 10 cycles, fast = special hardware support to fonvard in 2 cycles, 

B = base TLDS hardware with no compiler support, Br = register dependences elim- 

inated or fornrarded, R = case R dependences eliminated, Sf = case S dependences 

eliminated and fine-grain synchronization, Ss = case S dependences eliminated and 

aggressively scheduled code wit h fine-gain synchronization, see Table 3.1). 

as described earlier in Section 3.2. Case "R" also optimizes away some m e m o l  

dependences, as described in Table 3.1. Case "Sf' fonvards rnernory scalars using 

fine-grained synchronization, and case "Ss" also reschedules instructions to rnavirnize 

parallel overlap. 

As we see in Figure 3.4, using TLDS without any compiler support to eliminate or 

fonvard data dependences (i.e. case "B") results in no speedup for these regions. Only 

two regions (SC.  ri and i jpeg . ri) show improvement when register dependences are 

optimized and forivarded but memory dependences are not. Eight of the thirteen 

regions enjoy significant speedups (50% or more) when memory dependences are 

eliminated under case "Rn. Forwarding memory scdars without rescheduling offers 

no significant additional improvement, but by rescheduling the code, al1 but one 



region potentially achieves an overall speedup of roughly twofold or more on four 

processors. 

Comparing the performance with and without special hardware support for fast 

fonvarding of data, we see that it does make a noticeable difference in performance 

in five of the thirteen regions, mainly for the "R" and "Sf' cases. However, when 

we reschedule the code to maximize parallel overlap (case "Ss" ), we see that the 

performance is less sensitive to the fomarding latency. Therefore aggressive compiler 

scheduling can potentially elirninate the need for expensive forwarding hardware, thus 

allotving us to forward data through the normal cache hierarchy. 

3.3.2 Program Speedups 

Given the fraction of total execution tirne spent in each region (shown earlier in 

Table 2 4 ,  we can estimate the potential overall speedup for each application. Fig- 

ure 3.5 shows these potential speedups for the three more aggressive optimization 

levels, and with both types of hardware fonvarding support. To a large extent, the 

overall speedup depends directly on our ability to find regions that constitute a large 

fraction of overall program esecution tirne. In four applications (compres s, li, SC, 

and m88ksim), we found regions covering roughly 70% or more of execution time, and 

al1 of these cases can potentiaily enjoy speedups of twofold or more on four processors. 

Three other applications (espresso, perl, and buk) achieve more rnodest speedups of 

17-37%, and the remaining three applications improve by less than 10%. We believe 

that our region coverages (and hence program speedups) are pessimistic for rnany 

of these applications because finding regions by hand was a very time-consurning 

process, and we could not begin to do justice to large applications such as gcc. We 

are planning to automate this process in the future, which should help us find more 



Figure 3.5: Possible program speedup on four processors (L2 = fonvarding through 

the shared L2 cache in 10 cycles, fast = special hardware support to fomard in 2 
cycles, R = case R dependences eliminated, Sf = case S dependences eliminated 

and fine-gain synchronization, Ss = case S dependences elirninated and aggressively 

scheduled code wi t h fine-grain synchronization, see Table 3.1). 

regions. 

3.4 Summary 

The results in this chapter have demonstrated that TLDS can potentially provide sig- 

nificant improvements in t hread-level parallelism, t hus accelerating the performance 

of non-numeric applications. To achieve the full benefit of TLDS, the compiler should 

eliminate data dependences whenever possible, explicitly fonvard cross-epoch depen- 

dences that cannot be eliminated, and reschedule the code to minimize any non- 

overlapped sequences. We have also observed t hat aggressive instruction scheduling 

might eliminate the need for performing fast data fomarding between processors, 

thus allowing us to communkate through the shared L2 cache instead. 



Chapter 4 

Architectural Support for 

Thread-Level Data Speculation 

Having dcmonstrated the potential performance benefits of TLDS, we now discuss 

how TLDS might be implemented. Our goals are twofold. First, we would like to 

support an aggressive f o m  of TLDS while requiring only minimal hardware modifica- 

tions to a single-chip multiprocessor. Second, we do not want to sacrifice performance 

in single-threaded applications or applications that do not exploit TLDS-hence we 

will avoid complex, centralized structures which can increase primary data cache 

access times. The starting point for our design is a standard single-chip multiproces- 

sor tvhere the secondary cache is physically s h e d  and the individual primary data 

caches are kept coherent to provide a shared memory abstraction. 

We begin by discussing the issues involved in rnanaging threads, including soft- 

ware's interface to the TLDS hardware support. Next, me illustrate hom cache CO- 

herence protocols can be es3ended to detect data dependence violations. Finally, we 

demonstrate that the cache itself can be used to buffer speculative side effects until 

they can be safely committed to mernory. 



4.1 Thread Management 

In this section, Ive briefly discuss the architectural mechanisrns which are required 

by TLDS for managing and coordinating the parallel threads. Since there is often 

flexibility in how the mechanisms might be implemented, our goal is simply to raise 

the important issues and discuss tradeoffs. Although we do describe a potential 

implementation of TLDS, the purpose of this is to illustrate how TLDS might be 

implemented, rather than claiming that this is necessarily the optimal approach. 

The first mechanism that is needed is a way to create parallel threads and sched- 

ule the epochs ont0 them. One option is to dynamically create a new thread per 

epoch, and another is to statically create one thread per processor and have them 

execute multiple epochs. The disadvantage of the dynamic approach is the runtime 

overhead of frequent thread creation, rvhich rnay be reduced to some extent through 

a lightweight f ork  instruction [19]. A potential advantage of associating one dynamic 

thread per epoch is that it rnay simplify the case of having multiple outstanding (un- 

cornmitted) epochs per processor, rather than having a single thread maintain the 

state of several outstanding epochs. (There are a number of subtle issues involved 

ni th  allowing a processor to have multiple outstanding uncommitted epochs, but 

such an investigation is beyond the scope of this thesis.) 

Since dependence violations are detected by comparing epoch numbers, a mecha- 

nism is needed such that each thread's epoch number Ftill be visible to the hardware. 

There are two important things to note. Fust, hardware's representation of epoch 

numbers does not necessarily need to coincide with epoch numbers in software, pro- 

vided that hardware can still make the appropriate relative cornparisons to detect 

dependence violations. Second, in some cases software rnight not even need to be 

aware of epoch numbers-they could instead be maintained implicitly by hardware. 



A third mechanism is needed to distinguish speculative versus non-speculative 

memory accesses. Only speculative loads must be checked for RAW dependence vio- 

lations, and only speculative store results must be buffered until an epoch successfully 

completes. For applications which do not exploit TLDS, al1 memory accesses will be 

non-speculative, and hence the TLDS hardware support will not be invoked. One 

possibility is to explicitly mark individual memory instructions as being speculative 

or iion-speculative-while this approach allows us to interleave both types of accesses, 

it unfortunately requires a new flavour of memory instructions. Another approach 

is to dynarnically indicate whether a thread is speculative or not-when a thread is 

speculative, al1 of its memory references wi1l be interpreted as being speculative. A 

thread should become speculative prior to its first speculative load, and can become 

non-speculative again once it confirms that al1 of its speculative loads were safe. In 

addition, the thread executing the oldest epoch must be non-speculative. 

At the heart of TLDS is a mechanism for detecting R4W data dependence vi- 

olations and recovering the correct program state whenever they occur. Given the 

potentially large number of addresses that must be compared against each other a t  

the end of an epoch to determine safety, and @en the fact that the exact interleaving 

of accesses between threads is not k n o m  a priori since they run asynchronously, a 

purely software-based approach of explicitly comparing memory addresses [18] would 

appear to be impractical. Instead, we propose extending cache coherence schemes to  

allow hardware to detect pot ential dependence violations Mt h lit tle overhead, and 

letting software control the recovery process. We will discuss this mechanism in 

greater detail later in Section 4.2. 

Finally, one aspect of recovering from unsafe speculation which software cannot 

perform efficiently on its o m  is roiling back any side effects of speculative stores on 



rnemory. To do this effectively, we propose evtending the cache functionality so that 

hardware can buffer speculative store results until they can be safely committed to 

rnemory. PVe will describe this mechanism in more detail later in Section 4.3. 

4.1.1 Example 

To illustrate how software might interface with these architectural mechanisms, Fig- 

ure 4.1 shows how the compress benchmark (described earlier in Section 1.2) might 

be modified to exploit TLDS. In this example, the loop has been modified to execute 

as a chain of threads, where each thread perforrns the work of one epoch. Since 

the hardware will only support a finite number of outstanding threads, we assume 

that createmew-thread0 returns a boolean value indicating whether the fork was 

successful. If so, the current thread simply terminates once it completes its epoch- 

othenvise, the current thread will execute the next epoch itself. In this example, we 

assume that hardware implicitly maintains epoch numbers as part of thread creation. 

Within the epoch, the thread switches its state to speculative just before its first 

speculative Load (the Load of hash(index1)). At the end of the epoch, the thread 

waits until it is the oldest thread to ensure that any mites from earlier threads have 

been committed-hence any R4W dependence violations would have been detected 

by this point. CVhile the thread is waiting, it could potentially suspend itself, thus 

freeing the processor to do other work. Finally, the thread checks whether it is safe 

to commit its speculative results-if not, it recovers by re-executing the epoch. 



vhile (continue-cond) ( 

EPOCHSTART: 
if (cont inue-cond) { 

successful~ork = 

create~iew-thread(EPOCHSTART,params) ; 

do { 

... 
wait -to-become-oldest -t hread () ; 

} while ( ! attempt-commit ()) ; 
if (successfulf ork) 

terminateself() ; 
else goto EPOCHSTART ; 

1 
e l se  wait ,to-become-oldest -t hread() ; 

(a) Pseudo-code for compress (b) TLDS version of compress 

- - -  

Figure 4.1: Example of a potential software interface for TLDS execution. 

4.2 Extending Cache Coherence to  Detect Data 

Dependence Violations 

.\ key component of TLDS support is a mechanism which detects unsafe data 

speculation-i.e. whenever a cross-epoch read-after-write (R4W) data dependence 

violation has occurred. To provide this support with minimal hardware cost, we 

propose a straightfomard extension of an invalidation-based cache coherence proto- 

col. Here is the basic intuition behind our scheme. When an earlier epoch performs 

a load and 3 subsequent epoch stores to the same address, the coherence protocol 

would accept the modified cache Line once the subsequent epoch commits. Similarly, 

when two epochs both store to the same address, the coherence scheme FviIl have to 



combine the two cache lines when the later epoch c ~ m r n i t s . ~  The case we need to 

worry about is when a store from an earlier epoch occurs aj?er a subsequent epoch has 

speculatively loaded the same address. When this store occurs (as with any store), 

we must invalidate any copies of the cache line to maintain cache coherence. We 

augment the functionality of the invalidation such that if it notices that the line has 

been speculatively loaded into another cache, it compares the epoch numbers of the 

store and the speculative load to determine whether a RAW dependence violation 

has occurred. 

To illustrate this mechanisni, Figure 4.2 shows how it would work for the sequence 

of epochs shown earlier for compress in Figure 1.2. We augment each cache line with 

two bits indicating whether the line has been speculatively loaded or modified, and 

we associate with each processor an epoch number and a boolean value indicating 

whether a dependence violation might have occurred. During step "4" in this ex- 

ample, processor 4 speculatively loads the value of hash(lO), thus bringing it into 

its cache and setting the speculative load bit for that line. Later, during step "5"' 

processor 1 stores to hash ( 10 1 -during the subsequent invalidation of t his line from 

processor 4's cache (step "6'7, ive notice that since the store has an earlier epocli 

number (one versus four) and the line  vas speculatively loaded, a dependence vio- 

lation may have occurred. Hence the violation bit is set for processor 4 (step &7"). 

When processor 4 subsequently attempts to commit its speculative results, it will 

notice that this is unsafe and can recover by re-execute its epoch. 

'This may require astate bit per word in each cache h e  to mark words which have been modified. 



cpoch-number = 4 

violation 

Figure 4.2: Example of an augrnented invalidation-based cache coherence scheme 

which supports TLDS. (Note: the numbers next to the events indicate the order in 

which they occur.) 

4.2.1 Impact of Cache Line Size On TLDS 

A potential drawback of tracking data dependences a t  a cache line rather than a 

word granularity is the possibility of "false" dependence violations-Le. when sepa- 

rate parts of a line were read and written, and hence no tme dependence occurred. 

While these False dependences do not affect program correctness, they can reduce our 

ability to exploit parallelism by invoking the recovery mechanism when it is unneces- 

sa- To quantify horv false dependences might affect TLDS parallelism, we measured 

how the average rün lengths due to memory dependences (discussed earlier in Sec- 

tion 3.1) changed at  32 and 128 byte granularities. .4s ive see in Figure 4.3, some 

applications are insensitive to changes in the dependence granularity, while others 

typically experience decreased run lengths with larger Line sizes? 

The compiler could potentially avoid false dependences by changing the data 

'In some cases, nrn lengths increase sornewhat with Iarger line sizes due to fonuitous circurn- 
stances where false vioIations dter run length boundaries relative to the ten epoch window size. 



(a) Run lengths for optimization level "Rn 

(b) Run lengths for optimization level "S" 
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Figure 4.3: Impact of cache line size on run lengths due to memory dependences. 

layout such that these important objects do not fa11 within the same cache lines. 

Also, a more sophisticated hardware scheme could maintain state information on a 

per-word basis to further avoid faIse dependences. In general, a number of refinements 

on this basic scheme are possible, but the bottom line is that run lengths typically 

remain long enough that this is a viable approach to detecting unsafe data speculation. 

4.3 Using the Cache to  Buffer Speculative State 

When unsafe data speculation is detected, a thread must recover its original program 

state. To simplify this process, we wauld like to buffer any speculative store results 

until we are certain that they can be safely committed to memory. Rather thao 

building a separate buffer which is devoted entirely to data speculation, it would be 

attractive if we could simpiy use the cache as our speculative buffer. 



Intuitively, the way this would work is that speculative stores would be free to 

rnodify the cache, but the resulting cache lines would conceptually be "locked down" 

such that their side effects cannot propagate to the rest of the rnernory system? 

Speculatively-loaded cache lines rnust also rernain in the cache for the duration of 

the epoch to track possible R4W dependence violations. Special bits associated with 

each cache line would indicate this state (e.g., the "speculative store" and "specula- 

tive load" bits shown earlier in Figure 4.2). If data speculation fails, the hardware 

will squash these speculative lines by marking them invalid; if the data speculation 

succeeds, these stored values can be committed to memory and the lines will return 

to a non-speculative state. If a line that has been speculatively modified or loaded is 

forced out of the cache for any reason, its side effects (if any) will be discarded and 

the vioLation bit will be set, indicating that the data speculation has failed." 

In this section, the capacity required to buffer al1 speculative accesses will be 

measured, as well as the associativity required to avoid replacements. We will also 

investigate the impact of adding a victim cache. 

4.3.1 Storage Required 

A key question that is addressed in this section is whether the cache has sufficient 

capacity to hold al1 of the cache lines accessed by a typical epoch. As we see in 

Table 4.1, al1 of the regions in our experiments require less than 6KB of buffenng 

on average. The worst case is ijpeg.rl, which also has by far the largest epoch 

size (9406 icstructions). With 32B cache lines, ali twelve of the other regions require 

less than 1.5KB of buffering. Clearly a relativeiy s m d ,  My-associative cache would 

3There are many ways to implement this "locked down" type of behaviour. 
"ote that this wiii not resdt in deadock, because the loads and stores of the oldest active epoch 

d dways be interpreted as non-spedative. 



Table 4.1: Average amount of storage required per epoch for buffering speculative 

accesses. 

Application 

suffice. 

4.3.2 Associativity Required to Avoid Replacement 

cornpress 

34.2 1.07 20.3 2.54 
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An important question is whether mapping conflicts within a realistic primary data 

cache with limited associativity would pose a serious problem. To answer this ques- 

tion, each region was simulated using a 16KB primary data cache with 32B and 128B 

cache lines. We measured the maximum number of lines accessed which map to each 

set of the cache with varying associativities. If the maximum number of lines per set 

exceeds the number of ways in that set, at  least one of these lines will be forced out 

of the cache. Figure 4.4 shows the maximum set population of any set nrithin the 

cache, both for the average epoch and for the 99th percentile case. As we increase the 

associativity, there are more ways within each set, but there are also fewer sets over- 

dl ,  so the maximum set population often increases. Our goal is to fmd the smallest 

associativity with enough ways per set to capture these set populations. 

As we see in Figure 4.4, a direct-mapped cache does not appear to be SUE- 
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(a) 32B cache lines 

(b) 128B cache lines 

Figure 4.4: Maximum set population per epoch in a 16KB cache (numbers below the 

bars indicate the associativity). 

cient to capture the set populations. A trvo-way set associative cache is much more 

successful-with 32B lines, the 99th percentile case is two or Iess for nine of thir- 

teen regions, and the average is almost always less than two. With four-way and 

eight-way associativit ies, the average set populations are captured for al1 regions. 

For eight-wvay associativity, even the 99th percentile case is always less than eight for 

al1 regions. However, associativities of four and eight may increase cache access time 

significantly, hindering the performance of applications which do not exploit TLDS. 

Therefore, two-way associativity is perhaps the most attractive option. 
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Figure 4.5: Average victims per epoch in a 16KB cache (numbers below the bars 

indicate the associativity). 

4.3.3 Adding A Victim Cache 

Rather than giving up as soon as a speculatively accessed line is forced out of the 

cache, another possibility is to capture these spilled lines wïthin a small victirn 

cache [13]. Figure 4.5 shows the maximum number of victim entries necessary to 

capture al1 speculatively loaded or modified lines that would be ejected from a 16KB 

cache of various associativities. For the direct-mapped strategy, a large vice im cache 

would be needed LO capture the 99th percentile case, which may increase overall cache 

access time. -4 four-entry victirn cache combined with a two-way set-associative cache 

would capture the 99th percentile case for ail regions but i jpeg . rl for 32-byte cache 

lines, and al1 but three regions for 128-byte cache lines. 



4.4 Summary 

CVe have seen that it is feasible to support TLDS through rnodest hardware s u p  

port by extending the cache coherence algorithm to detect unsafe data speculation, 

involving software in the recovery process, and enhancing the role of the primary 

data cache to buffer speculative accesses. A 16KB, two-way set associative cache 

used in conjunction with a four-entry victim cache would be sufficient for buffering 

speculative state to sirnplify recovery. 



Chapter 5 

Compiler Support for 

Thread-Level Data Speculat ion 

The compiler clearly plays a crucial role in evploiting TLDS. In addition to selecting 

regions of the code to speculatively parallelize and inserting the appropriate TLDS 

primitives, we have also seen that tiie compiler has an important role in optimizzng 

the code by removing data dependences and maximizing parallel overlap if we are to 

achieve the full potential of TLDS. Some of these compiler issues are briefly discussed 

in this chapter. 

5.1 Finding Speculat ive Regions 

The first step in compiling for TLDS is choosing the appropriate speculative regions 

to parallelize. We performed this step by hand in our experiments as follows: ive 

used profiling feedback to i d e n t e  where the program was spending its time, and me 

then attempted to find the largest surrounding regions which did not have obvious 

data dependences that would prevent TLDS fiom working. The compiler could also 



use feedback information to focus on the important regions of the code, and could 

statically analyze data dependences where possible. By performing a cost-benefit 

analysis, i t could choose the most promising regions to speculat ively parallelize. Once 

the program is actually running, the rate a t  which unsafe speculation occurs could 

be measured and fed back into the compiler again to further refine its choice of 

speculative regions. 

5.2 TLDS Transformations and Optimizations 

Once speculative regions have been chosen, the compiler shouid perform the op- 

timizations described earlier in Section 3.1 (and Table 3.1) to eliminate memory 

dependences. We will now briefly describe honr these optimizations would work. 

Dependences due to induction variables [29] may be eliminated, given that there is 

a mapping between each epoch number (described in Section 4.1) and the value of the 

induction variable for that epoch. This is the case if epoch numbers are consecutive 

integers, and they are sornehow visible to software. The hardware epoch numbers 

rnay be made visible to software, or software may maintain separate epoch numbers. 

Certain library routines rnay cause U P V  dependences between epochs, such as 

input and output (110) routines like get char O and put char O. However, it rnay be 

possible for the compiler to replace calls to these routines with calls to new parallel 

versions, thus eliminating the data dependences between the calls. 110 routines may 

Ge parallelized by using epoch nurnbers to impose an ordering on input and output 

characters. Chamcter input would use the epoch number to index the input buffer, 

and return the appropriate character. The output buffer for character output can be 

extended to store an epoch number wîth each output character. CaUs to the character 



output routine may then be made out-of-order as 

by the epoch numbers when the buffer is flushed. 

long as the characters are sorted 

Memory allocation library routines may also cause RAW dependences between 

epochs. These routines would be trivial to parallelize, since each processor could 

maintain a free list of its own portion of available shared memory. 

Reductions [29] are another source of frequent RAW data dependences between 

epochs, and must be optimized to fully exploit TLDS. Since a reduction applies an 

associative operation to a variable, the order in which the operation is applied by 

different epochs does not rnatter. R4bV dependences due to the reduction rnay then 

be eliminated by giving each thread a local copy of the variable and combining the 

local copies a t  the end of the speculative region. Another possibility would be to 

maintain one central copy of the variable in mernory, and for each epoch to operate 

on it atomically or through some form of lock mechanism. 

Finally, the compiler may optimiza scalar variables. .4n important characteristic 

of a scalar is that accesses to it are not ambiguous, since it is always referred CO by its 

exact location in mernoryl The value of a given scalar rnay therefore be fonvarded 

between epochs, if the scalar is the cause of frequent MW dependence violations. It is 

important to note that scalar values do not have to be fonvarded to preserve program 

correctness, but the performance of TLDS may be improved by doing so. Fonvarding 

a scalar value involves the insertion of synchronization whenever the scalar is accessed, 

and arranging the communication of the value through shared memory or some faster 

means such as a shared register He. The compiler should also aggressively schedule 

the code to minimize any non-overlapped portions within epochs. 

Once data  dependences have been optimized, the compiler must then insert caI1s 
- 

lThis may be a static memoty address or a location relative to the cunent position of the stack 

pointer. 



to the TLDS primitives and create recovery code, such as the example in Figure 4.l(b) 

illustrates. The compiler can potentially reduce overheads by rninimizing the amount 

of recovery code-e.g., rather t han re-executing the entire epoch, only re-execute 

the portion that depends on speculative loads. The compiler may also optimize 

regions which have a small number of dynarnic instructions per epoch by combining 

consecutive epochs. This wodd decrease the relative costs of TLDS overheads and 

would give the compiler more instructions to work with when scheduling the code. 

Summary 

TLDS allows the compiler to focus on parallelism as a performance tradeoff rather 

than something which is likely to break program correctness. Although compiling 

and optimizing for TLDS is still a non-trivial task, we believe that for non-numeric 

codes it is much more feasible than atternpting to statically prove that threads are 

independent. 



Chapter 6 

Conclusions 

To enabie a potential breakthrough in the compiler's ability to automatically par- 

allelize non-numeric applications, we have investigated thread-level data speculation 

(TLDS)-a technique which allows the compiler to safely parallelize code in cases 

where it believes that dependences are uniikely, but cannot statically prove that they 

do not exist. Our experimental results demonstrate that with realistic compiler s u p  

port, TLDS can potentially offer compelling performance improvements-Le. overall 

program speedups ranging from 17% to nearly fourfold on four processors in seven of 

ten cases-for applications where automatic parallelization would otherwise appear 

infeasible. Since Our hand analysis was not e.xhaustive, we believe that even larger 

speedups may be possible by applying TLDS more extensively. 

To translate the potential of TLDS into reality, we have investigated and quan- 

tified the tradeoffs in providing hardware and compiler suppon for TLBS. We find 

that only modest hardware modifications to a standard single-chip multiprocessor are 

needed: the cache coherence protocol c m  be e-xtended to detect R O V  dependence 

violations and inform software when they occur to invoke recovery actions; the cache 

itself can be used to buEer speculative memory accesses; and although e-xtremely 



fast inter-processor communication offers some benefit, we can still achieve good 

performance by communicating through a shared L2 cache. Due to the distributed 

nature of this hardware support, we do not expect it to degrade the performance of 

applications which do not exploit TLDS. We have also discussed and evaluated the 

compiler optimizations which are necessary to effectively exploit TLDS. Based on the 

encouraging results in this study, we advocate that future single-chip rnultiprocessors 

provide the modest support necessary for TLDS. 

6.1 Future Work 

CVe have described possible architectural and compiler support for TLDS. Future re- 

search efforts should be made to fully support TLDS in a compiler, and to devise a 

working architectural implementation. For the compiler, this will involve automat ing 

the process of finding speculative regions and implementing the optimizations de- 

scribed in Section 5.2. In addition, the possibility of using TLDS to parallelize new 

types of speculative regions such as recursive calls should be investigated. The archi- 

tectural implementation outlined in Chapter 4 should be refined. This will involve 

defining an exact set of TLDS primitives, and developing a precise cache coherence 

scheme for detecting R4W dependence violations. 

We have esplored the potential for TLDS in non-numeric codes, since they have 

previously been difficult to parallelize. Knowing that TLDS will be an effective 

way to parallelize non-numeric codes, it would also be interesting to measure the 

impact of TLDS on the simpler case of numen'c codes. The complexity of the array 

subscript expressions in some loops of numenc codes prevents parallelization using 

b o a  methods, while TLDS should prove to be effective. 



Appendix A 

Experimental Met hodology In 

Depth 

This appendix describes our experimental methodolog in greacer detail. The meth- 

ods used to track data dependences and run lengths are given, and the removal of 

data dependences is described. We then present the equations for calculating speedup 

limits due to  forwarding, communication latency, recovery and run lengths. Finally, 

we describe how these are used to compute region and program speedups. 

A S  Run Lengths 

Our sirnulator uses a hash table (indesed by data address) to record the nurnber of 

the epoch which performed each load and store for al1 memory locations accessed 

within a speculative region, allonring us to track al1 R4W dependences. Using this 

information about RAW dependences and the rules given in Section 2.2.1, we may 

compute the run lengths for a given speculative regiod 

Note that the threshold value T used for aii experiments was 10. 



-4s discussed in Section 3.1 and Section 5.2, the compiler may rernove data de- 

pendences due to induction variables, certain library routines, and reductions. Scalar 

variables may also be optimized such that they do not limit the run lengths. We 

removed these data dependences in Our simulations as follows. First, we used the 

simulator to profile each speculative region, which gave us the program counter (PC) 

pairs for all cross-epoch RAW dependences. We then used the output of the disas- 

sembler (which includes source line numbers) to find the corresponding computation 

in the source code. For each PC pair which suffered frequent RAW dependence viola- 

tions, we examined the corresponding source code to decide whether this dependence 

could be eliminated by the compiler. If so, then this PC pair was included in a list 

of PC pairs which mas explicitly passed to the simulator, such that it would ignore 

any data dependences a t  runtime caused by a PC pair in the list. 

A.2 Critical PathLengths 

Scalar values and registers may be fonvarded between epochs as described in Sec- 

tion 2.2.2. To compute the critical path lengths, we specify the PCs of al1 loads 

and stores of each fonvarded variable to the simulator, and then measure the criticai 

paths for different synchronization schemes: 

coarse-grain synchronization: The critical path length for each epoch e in a spec- 

ulative region r for this method of synchronization (CP,",D'Segain ) is the number 

of cycles between the first load of any of the fonvarded values in the epoch and 

the last store to any of the fonvarded values in the epoch (see Figure 2.2(a)). 

fine-grain synchronization: For this synchronization scheme, we first compute the 

critical path length for each fomarded variable v, which is the number of cycles 



between the first load of the variable and the last store of the variable. The 

critical path length for the epoch e in a speculative region r is then given by 

(A. 1) 

ivhere we find the maximum of the critical path lengths for al1 fonvarded vari- 

ables in that epoch (as illustrated by Figure 2.2(b)). 

fine-grain synchronization with aggressive instruction scheduling: To esti- 

mate an aggressive instruction schedule, we first find the number of dynamic 

instructions in the dependence chain for each forwarded ~ a r i a b l e . ~  For each 

forwarded variable v in an epoch e and speculative region r, the critical path 

length is the length of the dependence chain between the first load and the last 

store to that variable in the epoch (CP{~,"-~rain-rcheduled ) The critical path 

for each epoch e and speculative region r with fine-grain synchronization and 

aggressive instruction scheduling is t herefore 

the maximum of the cntical path lengths for al1 fomarded variables in that 

epoch. 

The critical path lengt h for a speculative region r and synchronization/scheduling 

scheme S may then be computed from the sum of the critical path lengths for al1 

epochs in that region: 

dynamic instruction is part of the dependence diain for a given value if the instruction uses 
that value, or if it uses the result of a dpamic instruction already in the dependence chin for that 

value, 



A.3 Speedup Limits 

Having demonstrated how the critical path lengths are computed, we now discuss 

how the speedup limits due to fornrarding, communication latency, recovery and run 

lengths are computed. The number of cycles spent communicating for a region r is 

given by 

where the number of epochs in the region (Nyochs) is multiplied by the number of 

cycles to communicate between two epochs (Tc-"). This assumes that there is 

communication between al1 consecutive epochs. 

CVe may also estimate the nurnber of cycles to recover from failed speculation for 

a speculative region r:  

First, we find the average amount of non-overlapping computation per epoch. For a 

given epoch which causes a R4W dependence violation, the initial segment of non- 

overlapping computation will limit the speedup of the speculative region-we estimate 

this initial segment to be half of the average amount of non-overlapping computation 

per epoch. We multiply tliis amount by the number of run lengths for the speculative 

region (N~unJm9ths, the number of times recovery must occur) to cornpute the number 

of cycles spent recovering. 

Noow we may calculate the speedup b i t  due to forwarding, communication la- 

tency, and recovery by adding the critical path, the communication cycles and the 

recovery cycles for the speculative region, and dividing the sum into the total number 

of cycles for the speculative region: 



An orthogonal speedup limit may be computed from the run lengths, by mapping 

the run lengths ont0 a fixed number of processors P (in our experiments, P was set 

to four). First, we estimate the average number of cycles per epoch in a given region 

r by dividing the number of cycles in the speculative region (T,) by the number of 

epochs in the speculative region (1v;poCh3) : 

(A. 7 )  

We may estimate the number of cycles required to execute a given run length rl in 

parallel on P processors given the number of epochs in the run length ( 1 ~ ~ ~ ~ ~ ~ )  as 

follows: 

Here, Ive assume that P epochs will always be executed concurrently until the run 

Length end is reached, or until there are Less than P epochs left in the run length. We 

also assume that each new run length begins on P free processors. 

Using the number of cycles to execute each run length in a speculative region as 

computed by equation ( A B ) ,  we may estimate the limit to speedup due to the run 

lengths for that speculative region: 

A.4 Speedups 

Speedup limits due to fonvarding, communication latency, recovery and nin 

rnay be combined to calculate a realistic speedup for a given speculative 

lengt hs 

region. 

This is computed by finding the minimum of the limit to  speedup due to fonvarding, 

communication latency and recovem and the Limit to speedup due to the run lengths: 

Speedupr = m i n ( ~ i m i t J ~ " d - ~ m ~ e ~ e ~  ~ i ~ i t l ' U n J e n g t h  r 1- (-4.10) 



Using equation (.4.10), and given the percentage of total execution time of each 

speculative region, we rnay estimate the number of cycles required to execute al1 

speculative regions in parallel with 

(A. 11) 

Given that 

where Tsepuential is the number of cycles to execute the sequential portion of the 

application. We may then use Xmdahl's law [Il] to compute program speedup: 
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