The Potential for Thread-Level Data
Speculation in Tightly-Coupled

Multiprocessors

J. Gregory Steffan

A Thesis submitted in conformity with the requirements
for the Degree of Master of Applied Science in the
Department of Electrical and Computer Engineering

University of Toronto

© Copyright by J. Gregory Steffan 1997

i~

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque natiorale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your fle Votre rdlérence

Our file Notre refdrence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propnété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-28852-8

Canada

The Potential for Thread-Level Data
Speculation in Tightly-Coupled
Multiprocessors

J. Gregory Steffan
Master of Applied Science, 1997
Department of Electrical and Computer Engineering
University of Toronto

Abstract

To fully exploit the potential of single-chip multiprocessors, we must find a way to
parallelize non-numeric applications. However, compilers have had little success in
parallelizing non-numeric codes due to their complex data access patterns. This the-
sis explores the potential for using thread-level data speculation (TLDS) to overcome
this limitation by allowing the compiler to view parallelization solely as a cost/benefit
tradeoff, rather than something which may violate program correctness. Experimen-
tal results demonstrate that TLDS can offer significant program speedups. We also
demonstrate that through modest hardware extensions, a standard single-chip multi-
processor could support TLDS by augmenting the cache coherence scheme to detect
dependence violations, and by using the primary data caches to buffer speculative
state. We quantify the impact of this implementation on performance, and we also

evaluate the compiler support necessary to exploit TLDS.

ii

Acknowledgements

First and foremost, I must thank my supervisor Todd Mowry for his efforts in
this work, for his guidance and encouragement, and for going out of his way to make
the last seventeen months an invaluable experience. Thanks to everyone in the lab
(J. Alex, J. Dan, J. Derek, J. Guy, J. Mark, J. Rob, J. Steve and others) for fielding
questions, providing comic-relief and not making me eat at Kow’s very often. My
utmost gratitude goes to my room-mate Mark for broadening my convictions and
strengthening my horizons, and to all of my other friends for many years of not being
strangers. [am forever indebted to my family, the foundation of any and all of my
accomplishments, and to Nancy for her love and support, and for being my best

friend. Financial support from NSERC and ITRC is also gratefully acknowledged.

Contents

Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Thread-Level Data Speculation 2
1.2 An Example: Compresso i 4
1.3 Related Work 7
1.3.1 The Privatizing Doall Test 7

1.3.2 The Multiscalar Architecture 8

1.4 Objectives and Contributions 10

1.3 Overview.« . i e e e e e e e e e e e 11

2 Experimental Framework 13
2.1 Finding and Simulating Speculative Regions 13

v

2.1.1 Descriptions of Speculative Regions
2.2 Performance Metricso
221 RunLengths

2.2.2 Critical PathLengths.

Impact of TLDS on Thread-Level Parallelism
3.1 Relaxing Memory Data Dependences
3.2 Forwarding Data Between Epochs
3.2.1 Impact of the Synchronization Scheme and Scheduling
3.2.2 Impact of Communication Latency
3.3 Potential Speedups o
3.31 RegionSpeedups
3.3.2 Program Speedups e

3.4 SUMMALY . .« o v o e e e e e e e e e e e e e e e

Architectural Support for Thread-Level Data Speculation

4.1 Thread Managementt
4.1.1 Example

4.2 Extending Cache Coherence to Detect Data Dependence Violations
4.2.1 Impact of Cache Line Size On TLDS

4.3 Using the Cache to Buffer Speculative State
4.3.1 Storage Required,
4.3.2 Associativity Required to Avoid Replacement
4.3.3 Adding A VictimCache

44 SUMMALY . . .« . .t v i ettt e e e e e e e e e e e

5 Compiler Support for Thread-Level Data Speculation

5.1 Finding Speculative Regions
5.2 TLDS Transformations and Optimizations
53 SUMMATLY v ot e e e e e e e e e e e e e e e

6 Conclusions

6.1 Future Work o e e e e e e e

Appendix

A Experimental Methodology In Depth
Al RunLlengths.
A.2 Critical Path Lengths
A3 Speedup Limits e

Ad Speedups e e e e

Bibliography

45
45
46

48

49

50

51

94

55

57

List of Figures

1.1

1.3

!\J
—

|3
[S%]

3.1

4.3

4.4

Examples of data speculation.,
Example TLDS execution.

Block diagram of a single-chip multiprocessor.

Example measurement and execution of run lengths.

Examples of forwarding with coarse and fine grain synchronization.

Average TLDS run lengths given various levels of memory dependence
optimizations. L .. e e e e
Speedup limits due to forwarding scalars both for memory and register
dependences. e e e
Speedup limits due to forwarding for varying communication latency.

Possible region speedup on four processors.

Possible program speedup on four processors.

Example of a potential software interface for TLDS execution.
Example of an augmented invalidation-based cache coherence scheme
which supports TLDS.,
Impact of cache line size on run lengths due to memory dependences.

Maximum set population per epoch in a 16KB cache.

11

18

23

25

29

31

36

38
39

42

4.5 Average victims per epoch in a 16KB cache.

..............

List of Tables

4.1

Integer benchmarks.

Benchmarks and speculativeregions

Description of optimization levels used to relax RAW memory data

dependences. L. e

Occurrence of memory data dependence types in speculative regions.

Average amount of storage required per epoch for buffering speculative

ACCESSES. i e s

ix

Chapter 1

Introduction

As the number of transistors that can be integrated onto a single VLSI chip continues
its dramatic rate of increase, processor architects are faced with the pleasant chal-
lenge of finding the best way to translate these additional resources into improved
performance. While there have been several proposals [6, 7, 14, 15, 23, 28, 27|, per-
haps one of the more compelling options is to integrate multiple processors onto a
single chip [5, 20, 17, 14, 7]. From a VLSI perspective, single-chip multiprocessors are
attractive because their distributed nature allows the bulk of the interconnections to
be localized, thus avoiding the delays associated with long wires [20].

While single-chip multiprocessing will clearly increase computational throughput,
it will only reduce the execution time of applications that can exploit parallelism.
Hence the key question is how do we convert the applications we care about into par-
allel programs? Expecting programmers to only write parallel programs from now on
is unrealistic. Instead, the preferred solution would be for the compiler to parallelize
programs automatically. Unfortunately, compilers have only been successful so far
at parallelizing numeric applications [2, 10, 22]. For single-chip multiprocessing to

have an impact on the majority of users, we must also find a way to automatically

parallelize non-numeric applications.

One of the primary challenges in automatic parallelization is determining whether
data dependences exist between two potential threads that would prevent them from
running safely in parallel. To address this problem in numeric codes, a considerable
amount of research has focused on analyzing array accesses within DO loops [10, 16,
21]. Although progress has been made in this area, the problem is considerably
more difficult for non-numeric codes due to their complex access patterns, including
pointers to heap-allocated objects and complex control flow. Given the size and
complexity of real non-numeric programs, automatic parallelization appears to be an
unrealistic goal if the compiler must statically prove that threads are independent.
[nstead, we would prefer to relax the constraints on the compiler by allowing it to
view parallelization solely as a cost/benefit tradeoff—i.e. if the compiler believes it
is likely that two threads are independent, it can go ahead and parallelize them
without worrying about violating program correctness. In this thesis, we quantify
the performance advantages of a technique which provides this flexibility: thread-

level data speculation.

1.1 Thread-Level Data Speculation

To maximize parallelism, we often want to perform loads early so that operations
which depend on them can be executed concurrently. In contrast, there is less pressure
to perform stores early, since they do not produce register results.! Hence it is often
desirable to move a load ahead of an earlier store, which is safe provided that they

access different memory locations. Since it is difficult for the compiler to precisely

!Since the goal of the compiler is to keep values that will be used again soon in registers, stores
should typically only occur when a value will not be loaded again in the near future.

LOAD b = *q Processorl Processor2
a=£() a = £() LOAD b = *q
STORE *p = a STORE *p = 2 g(b)
a=£() (p == q) (p != q 'J_- (p == q) p '= q
STORE *p = a P d e 4 -

[LOAD b = q

g (b} |
[gtb) '
v
(a) Original Execution (b) Instruction-Level Data Speculation (c) Thread-Level Data Speculation

Figure 1.1: Examples of data speculation.

analyze load and store addresses in non-numeric applications, a potentially attractive
option is for the compiler to speculatively move a load ahead of a store, and resolve
whether this was safe at run-time. If the speculative load turns out to have been
unsafe, then a recovery action is taken to restore the correct program state. This
technique is known as data speculation, and it works well when the unsafe cases
are sufficiently rare that the overhead of recovery is small relative to the benefit of
increased parallelism.

Figure 1.1(a) shows an example code fragment, and Figure 1.1(b) illustrates how
it might be modified to exploit instruction-level data speculation. In this example, the
compiler is uncertain whether the pointers p and q point to the same address, but nev-
ertheless it has speculatively moved the load ahead of the store. At run-time, we can
verify the safety of this speculative operation either through a simple software check
(i.e. compare p with q), or with the help of hardware support such as the “mem-
ory conflict buffer” [9]. Previous studies have demonstrated that instruction-level
data speculation can significantly increase the amount of instruction-level parallelism
(ILP) within a program [9, 12].

Thread-Level Data Speculation (TLDS) is analogous to instruction-level data

speculation, except that the load and store are executed by separate threads of con-

trol which run in parallel, as illustrated in Figure 1.1(c). A given speculative load
is safe provided that its memory location is not subsequently modified by another
thread such that the store should have preceded the load in the original sequential
program. When such dependence violations are detected, a recovery action is taken
such as partially re-executing the thread which performed the failed speculative load.
Although supporting thread-level data speculation is more complicated than support-
ing instruction-level data speculation (as we discuss in detail later in Section 4.2), our
results in this thesis demonstrate that TLDS can significantly increase the amount of
thread-level parallelism (TLP) within non-numeric programs, and can be implemented

in a cost-effective manner.

1.2 An Example: Compress

We have demonstrated how TLDS works for a small code fragment. In this section,
we explore how TLDS applies to a real application, including the characteristics of
the application which make it suitable for exploiting TLDS, the support required, and
the optimizations which allow the application to obtain the full benefits of TLDS.
First, we briefly introduce some terminology. We say that TLDS extracts paral-
lelism from a speculative region, which consists of a collection of dynamic instruction
sequences cailed epochs. For example, with loop-level parallelism, we would say that
the loop is a speculative region, and the individual loop iterations would be epochs.
Since TLDS also applies to structures other than loops (e.g., recursion), we have
adopted this more general terminology. For TLDS to be effective, each epoch must
contain a reasonable amount of work so that the overheads of thread creation and

data communication will be relatively small. For TLDS to improve an application’s

(1]

execution time, the speculative regions must constitute a significant fraction of overall
execution time.

The compress application in the SPEC92 benchmark suite is a good candidate for
exploiting TLDS.? Over 99% of execution time is spent in a single while loop which
reads each input character and performs the compression. The control low within the
loop body is quite complicated, and on average takes 89 dynamic instructions. While
this may appear to be an abundant source of data parallelism, a compiler cannot
statically prove that loop iterations are independent because they are not. The
input characters are used to index a hash table which is modified; hence when two
character sequences hash to the same entry, there is a true read-after-write (RAW)
data dependence. Figure 1.2(a) shows a pseudo-code representation of this code.
Fortunately, due to the nature of a hash table, consecutive characters rarely access
the same hash table entry—therefore there is an opportunity to extract parallelism
during the iterations between actual dependences. Since a single-chip multiprocessor
has a relatively small number of processors, we do not need a large gap between
data-dependent iterations to keep the machine busy.

Figure 1.2(b) illustrates how compress can be parallelized using TLDS, where
each epoch (i.e. loop iteration) is executed as a separate thread. Since the threads
are speculative, they must buffer any stores to memory until they are certain that
it is safe to commit their results. If a RAW dependence violation is detected, the
thread can recover by re-executing its epoch. As we can see in Figure 1.2(b), the
number of epochs between RAW data dependences dictates the amount of parallel
speedup that can be achieved—we will quantify this number for compress and other

applications later in Chapter 3.

?The same is true for the SPEC95 versicn of compress, which behaves quite similarly.

Processorl Processor2 Processor3 Processord
Epoch | Epoch 2
- Epoch 3
. T--- Epoch 4
'Hhile (COntinue-COnd){ Rashidl * hash{19) F. hash(311} T"'
oo Violatdon?! = hash(10)
ot . Bash(10) & 7o o
x = hash(indexl1); " s hash(0) « nash(25) =
. s ACCempt_coammit () attespt_commit() ;‘: { X4
N L ~ empt_commit()
hash(index2) = Vi j. J_u:-c_c_zn(l é
Epodl-‘) Redo
} Epoch § « hash(10)
E 6
X3 m Em’ "o
« hash{io) m heor hash{25) =
- 3
= hash(27) v
oo J-Attwt-wﬁ [}
; : : g
(a) Compress Pseudo-Code (b) TLDS Execution of Compress

Figure 1.2: Example TLDS execution.

In addition to the hash table accesses, compress contains several other sources of
RAW data dependences, but fortunately they can be eliminated with the proper com-
piler support. For example, the in_count variable is incremented on each iteration to
count total input characters—the compiler can recognize this as an induction variable,
and eliminate it since it is implicit in the epoch number. Loop-carried dependences
also exist inside getchar() and putchar () —these could also be eliminated through
parallel implementations of the /O routines.? The out_count variable is condition-
ally incremented inside the loop to count total output characters; since it is not used
otherwise within the loop, the compiler could recognize this as a reduction operation
and optimize it accordingly (i.e. each processor’s partial sum is added together at
the end of the loop). Two other variables are sometimes modified within the loop

and their values are often used: offset, which is a scalar, and bp, which is a pointer

3While parallel input routines are straightforward, parallel output routines are somewhat trickier.
To reconstruct the output stream correctly, the epoch number may be passed to the putchar()
routine to provide a total ordering.

used to index a buffer. The compiler should be able to recognize the scalar data
dependence, and with proper hardware support could forward this value directly to
consuming threads whenever it is modified. While the pointer dependence could also
be forwarded, recognizing it would be more difficult for the compiler.

Thus we see that a range of different compiler optimizations, with varying degrees
of complexity, are useful for getting the full benefit of TLDS—we will break down

the importance of each of these techniques later in Chapter 3.

1.3 Related Work

While instruction-level data speculation has received much attention [9, 12, 26], there
has been relatively little work so far on thread-level data speculation. In this section,
we briefly discuss the two most relevant works to this study, the privatizing doall

test [22] and the Wisconsin multiscalar architecture {7, 27].

1.3.1 The Privatizing Doall Test

Padua et al. [22] have devised a method of parallelizing loops for numeric codes in the
presence of ambiguous data dependences. Their approach, called the privatizing doall
(PD) test is entirely software-based, allowing the compiler to parallelize loops without
fully disambiguating all memory references. For a given loop, the PD test is performed
on each shared variable with ambiguous references by creating corresponding shadow
arrays to track read and write accesses. At the end of the parallel execution of the
loop, the shadow arrays are examined. If any cross-iteration data dependences were
violated, the loop is re-executed sequentially. Otherwise, we know that the parallel

execution of the loop was correct.

Although a purely software-based approach is attractive, there are two shortcom-
ings to the PD test. First, the PD test requires the creation of shadow storage for all
shared data, and is therefore not applicable to most non-numeric codes due to their
complex data structures and extensive use of heap-allocated objects. Second, the PD
test does not extract any parallelism in the presence of a single cross-iteration RAW
dependence, since the loop is re-executed sequentially in such cases. Because of this,

the PD test is only effective in parallelizing a narrow class of loops.

1.3.2 The Multiscalar Architecture

The most relevant work to this study is the Wisconsin multiscalar architecture [7,
27, 8]. This architecture performs aggressive control and data speculation through
the use of devoted hardware structures and complex forwarding mechanisms. This
section describes the multiscalar architecture and how it executes an application,
beginning with the compilation process.

During compilation for multiscalar execution, a program is broken up into small
tasks. A task may consist of a only few instructions or perhaps several basic blocks.
The compiler inserts a bit-vector called the create mask into every task denoting
which registers are live at the end of the task. Hardware then uses this information
to forward register values between tasks.

The multiscalar architecture speculatively executes tasks in parallel, performing
control speculation by executing target tasks before the corresponding branches have
been resolved. Data speculation is also supported, allowing tasks which are possibly
data-dependent to be executed in parallel. We now discuss the hardware mechanisms
which support these features.

Processors in the multiscalar architecture are arranged in a ring, and each proces-

sor is tightly-coupled with its two neighbouring processors. At any given time during
execution, one of the processors is considered the head of the ring. This is the pro-
cessor which is executing the oldest task, and its work is not considered speculative
since it cannot depend on previous tasks.

There are two main benefits to the ring architecture. First, the ordering between
tasks is implied by the order of the processors in the ring, thus making it trivial for the
task manager to terminate the appropriate tasks when a data dependence violation
occurs. Second, the tight-coupling of adjacent processors in the ring simplifies register
forwarding, since register values must be forwarded between consecutive tasks which
are executed by consecutive processors.

Register values are forwarded between tasks by hardware using the create mask
described earlier. The last definition of each register which is live at the end of the
task is forwarded to the next processor in the ring. In the receiving processor, each
register has a busy bit which is set when the register value arrives, thus synchronizing
the communication of register values between tasks.

In order to support data speculation, the multiscalar architecture inciudes the
address resolution buffer (ARB) [8] which performs dynamic memory disambigua-
tion. The ARB sits between the processors and the first-level cache, and all memory
accesses are filtered through it. When a store to memory occurs, the store address
and the value are kept in one of the ARB’s associative entries for the corresponding
processor. When a memory access occurs, the ARB is searched for accesses to the
same address—if the ARB notices that a store and load to the same address occur out
of sequence, then all speculative tasks including and beyond the violating task are
terminated. This mechanism allows tasks to be executed in parallel such that either

memory dependences are satisfied or speculation fails.

10

Although the multiscalar paradigm allows control and data speculation, it does so
at the cost of an architecture which is devoted to that mode of execution. The ring
layout of processors is beneficial for forwarding data between consecutive tasks, but
it would not be efficient in executing a conventional parallel program. The ARB is a
large and complex structure. Since an associative search must be performed for most
memory accesses, latency through the ARB will be longer than that of an ordinary
first-level cache. This means that the multiscalar architecture will not be efficient
at executing multiprogramming workloads or even conventional parallel programs.
However, experimental results for the multiscalar architecture show that speculative
execution is a promising way to improve the performance of non-numeric applications
using multiple processors. An important question is whether speculative execution
may be supported in a non-devoted architecture which is also effective on other types

of workloads.

1.4 Objectives and Contributions

Given a “generic” single-chip multiprocessor as a starting point, where processors
share a second-level cache and the individual primary caches are kept coherent (as
shown in Figure 1.3), this study attempts to answer the following questions. First,
does adding support for TLDS significantly improve the performance of non-numeric
applications through increased thread-level parallelism? We quantify this answer
through a detailed study of integer applications taken from the SPEC92 and SPEC95
benchmarks suites, and find that significant improvements can be achieved. Second,
can we provide the necessary hardware support for TLDS in a cost-effective manner—

i.e. without a centralized structure such as the ARB? We propose a simple extension

11

Single Chip or Multi-Chip Module

@ @ @ @ ' Processors

.S L1 L1 L1 L1 3 First-Level Caches

Shared L2 ' Second-Level Cache

Figure 1.3: Block diagram of a single-chip multiprocessor.

to an invalidation-based cache coherence protocol which allows us to detect unsafe
speculation, and we rely on software (rather than just hardware) to recover the correct
program state in such cases. We also propose using the cache to buffer speculative
writes, and find that this is a feasible approach. Finally, what compiler support
is needed to effectively exploit TLDS? We provide a detailed breakdown of what

transformations are necessary, and how much they help performance.

1.5 Overview

The remainder of this thesis is organized as follows. Chapter 2 describes the ex-
perimental methodology. Chapter 3 quantifies the potential performance impact of
TLDS on idealized hardware, and investigates the minimum compiler and hardware
support required to properly exploit TLDS.

Chapter 4 presents possible hardware support for TLDS, including thread man-
agement issues, extending the cache coherence mechanism to detect RAW dependence
violations, and using the cache to buffer speculative state. The impact of this im-

plementation on the results for idealized hardware is also discussed. The compiler

12

support required to exploit TLDS is given in Chapter 5-basic transformations and
support are described, as well as performance-improving optimizations.

Finally, Chapter 6 concludes the thesis by summarizing the potential for extract-
ing parallelism with TLDS in tightly-coupled multiprocessors, and describing possible

future work for TLDS.

Chapter 2

Experimental Framework

This section describes our experimental methodology, including the applications we
study, our method of finding speculative regions, the simulation environment, and

the performance metrics we measure.

2.1 Finding and Simulating Speculative Regions

To quantify the potential for TLDS in non-numeric codes, we examine a set of real
non-numeric applications in which potential speculative regions are identified by hand.
Table 2.1 summarizes the ten non-numeric applications studied, which are taken
from the SPEC92 [4], SPEC95 [3], and NAS Parallel [1] benchmark suites. These
applications were compiled with -02 optimization using the standard MIPS compilers
under [RIX 5.3, and the source code and resulting object files were not modified in
any way.

Table 2.2 lists the speculative regions analyzed in this study. To locate speculative
regions, the IRIX prof utility was used to identify regions that account for a large

portion of total execution time. These regions were then inspected by hand to de-

13

Table 2.1: Integer benchmarks.

Input
Data Set
Suite Benchmark | (size:name) Description
SPEC92 compress ref:in Performs data compression
gece ref:stmt.i C compiler
espresso ref:bca.in Boolean function minimizer
i refli-input.lisp | Lisp interpreter
sC ref:loadal Spreadsheet calculator
SPEC95 m88ksim test:ctl.raw Simulator for a 88100 microprocessor
ijpeg train:vigo.ppm | Jpeg image processor
perl test:primes.pl Perl script interpreter
go train:2stoned.in | Plays the game “go” against itself
NAS Parallel | buk N = 65536 Implementation of the bucket-sort algorithm

termine whether they were good candidates for exploiting TLDS. If so, these regions
were explicitly identified to the simulator through their instruction addresses. The
simulator reads sequential execution traces generated by the MIPS pixie utility [25]
to measure the exact data dependences between epochs in each speculative region.
For the sake of simplicity and simulation speed, instructions are assumed to execute
on an ideal single-issue processor-in other words, we assume that one instruction is
issued every cycle.

Since identifying speculative regions by hand was a time-consuming process, we
were not able to explore all possible regions, particularly in large programs such as
gce (notice in Table 2.2 that the two regions in gee account for only 12% of execution
time). We believe that an automated feedback-directed tool would have located a
larger set of speculative regions, thus improving the overall effectiveness of TLDS in

improving performance.

Table 2.2: Benchmarks and speculative regions

Average % of
Dynamic Total
Region Description Instrs Dynamic

Benchmark | Region | (src_file:function():loop_type, src.line) per Epoch Instrs
compress rl compress.c:compress():while, line 784 89 99.9
PPPECC rl reloadl.c:reload():for, line 421 1092 8.1
r2 flow.c:life_analysis():for, line 680 1593 4.0

espresso rl compl.c:compl.lift():for, line 269 32 19.4
li rl xldmem.c:sweep():for, line 417 19 21.9
T xldmem.c:vmark():for, line 399 286 51.2

sc rl interp.c:RealEvalAll():for, line 1001 36 69.3
m8&8ksim rl go.c:goexec():while, line 118 1232 99.3
ijpeg rl jecolor.c:rgh.ycc.convert():while, line 132 7514 10.0
perl rl regexec.c:regmatch();while, line 544 67 35.8
[.06) rl g29.c:getefflibs():for, line 636 80 6.8
buk rl buk.f:bucksort():do, line 137 26 16.5
r2 buk.f:bucksort():do, line 124 18 11.4

2.1.1 Descriptions of Speculative Regions

To gain a better understanding of the types of regions which are suitable for TLDS,

we now give a brief description of each speculative region.

compress.rl: This speculative region is the main while loop in the compress()
routine, comprising 99.9 % of overall execution time, as described earlier in
Section 1.2. The loop performs data compression using hash tables to maintain

the compressed patterns.

gcc.ri: This for loop traverses a list of instructions to check for registers that may

be available to use for re-loading spilled pseudo registers.

gcc.r2: This for loop traverses the basic block list, solving the live variable analysis
dataflow problem. This implies that only iterations which propagate changes
between basic blocks will have many data dependences between them. As the

algorithm converges, data dependences become more sparse and the amount of

parallelism available between data dependences increases.

espresso.rl: This region is a for loop which performs boolean set operations on
a data space which is partitioned into two arrays of “cubes”. A read-only
operation is performed on each cube from one list, the result of which determines
if the current cube from the other list is modified. Because of these cross-

iteration RAW dependences, known methods are not be able to parallelize this

loop.

sc.rl: This region is a for loop which calculates a value for each cell in a spread-
sheet. Since it is not known at compile-time which cells are data dependent,

the calculation of cells may not be parallelized using known techniques.

m88ksim.r1: M88ksim is an architecture simulator, and this while loop simulates the
data path, calling the Data_path() function each simulated cycle and checking
for interrupts and errors. Containing 99.3 % of overall execution time, this
region of code operates mostly on statically allocated objects although there

are several pointer dereferences which would be hard to disambiguate statically.

ijpeg.ri: Thiswhile loop converts rows of “rgb” samples to the JPEG colourspace.
Although most of the data structures accessed in the loop are arrays, the use
of indirection in the array subscript expressions prevents the loop from being

parallelized using known techniques.

perl.ri: The regmatch() function matches regular expressions using this while

loop, which occasionally calls regmatch() recursively to parse parentheses.

go.r1: This for loop checks board positions and performs some list operations. Since

the lists are allocated dynamically, parallelization is not possible through known

17

techniques.

buk.ri: This region is a do loop which computes the rank for each key in a set of key
values stored in an array. The array which stores the ranks is indexed indirectly,

thus making its accesses difficult to disambiguate.

buk.r2: This region is a do loop which counts the occurrence of each key in an array
of key values, but may not be parallelized due to the indirection in the array

subscript expressions.

Although parallelism is available in many of these regions, it is evident that known
techniques are not effective in parallelizing them due to complex data structures, am-
biguous array subscript expressions, or the possibility of cross-iteration data depen-
dences. In Chapter 3. we demonstrate that TLDS can exploit the available parallelism

in these situations.

2.2 Performance Metrics

To estimate the potential performance gain resulting from TLDS, our simulator col-
lects two performance metrics—run lengths and critical path lengths-which are de-

scribed below.

2.2.1 Run Lengths

As illustrated earlier in Figure 1.2, TLDS can exploit parallelism whenever gaps
exist between data-dependent epochs. We quantify this potential by computing the
run lengths, which are the number of consecutive epochs within a speculative region
delimited by performance-limiting read-after-write (RAW) data dependences. Write-

after-read (WAR) and write-after-write (WAW) dependences between epochs may

RAWd =5,d>=T RAW Violation

(00000000 “Sgers s

—~—— T TTr———
Run-Lengths: 2 3 4
REDO | B | B
Threshold T = 4
Average Run Length =3
(a) Measurement of Run Lengths (b) Execution on Four Processors

Limited By Run Lengths

Figure 2.1: Example measurement and execution of run lengths.

also exist, but these may be satisfied through memory renaming, and hence should
not limit performance.

While RAW dependences can potentially disrupt parallelism (forcing a processor
to re-execute an epoch), this is not always the case. Given that a single-chip multi-
processor will only support T outstanding speculative threads, we know that when
we are executing epoch E;, any epoch E; where j < (i —T) must have committed its
state already. Hence a RAW dependence of distance d, where d > T, will not limit
our ability to exploit parallelism. For example, assuming that T = 4 in Figure 2.1(a),
the RAW data dependence shown between epoch Eg and epoch F3 will not limit
performance. Therefore there are only two performance-limiting data dependences
within these nine epochs, thus resulting in run lengths of two, three, and four. The
average run length size of three corresponds roughly to the maximum speedup we
might expect to see on four processors, as illustrated in Figure 2.1(b). Hence we will

use average run length as a metric for the potential thread-level parallelism.

19

2.2.2 Critical Path Lengths

In some cases, we may find that RAW data dependences always exist between con-
secutive epochs, thus limiting the run lengths to one. For example, a scalar variable
might be modified and used during each epoch such that it is neither an induction
variable, reduction operation, nor anything else that the compiler can optimize away.
Although the epochs cannot be fully overlapped in such cases, we may still be able to
partially overlap their execution by directly forwarding the dependent values between
epochs.!

Forwarding data requires both a data transfer mechanism and also some form
of synchrenization, so that the receiving processor knows when the value is ready.
Data transfer can occur either through memory or through registers {7, 27], and syn-
chronization can be performed either explicitly using wait/signal or implicitly using
full/empty bits [6, 14, 24]. If multiple values are to be forwarded, the synchronization
can occur at either a coarse granularity (once per epoch) or a fine granularity (once
per value), as illustrated in Figure 2.2.

The performance of a speculative region that requires forwarding is limited by
the critical path length, which is the sum of the non-overlapped portions of each
epoch plus the latency of forwarding these values between epochs. With course-grain
synchronization, the critical path length is straightforward to compute, as illustrated
in Figure 2.2(a). With fine-grain synchronization, there can be multiple critical paths
through the epochs, as shown in Figure 2.2(b). In this latter case, the critical path for
the epoch is simply the longest of these critical paths (e.g., the critical path for A in
Figure 2.2(b)). Roughly speaking, the maximum potential speedup for a speculative

region in the presence of forwarding can be computed by dividing the total sequential

'In numeric applications, this is referred to as “doacross” parallelism.

20

STCRE B
SIGMAL

“a Forwarded Value
[J Critical Path

B Computation overlap

(a) Coarse-Grain Synchronization (b) Fine-Grain Synchronization

Figure 2.2: Examples of forwarding with coarse and fine grain synchronization.

execution time of all epochs by the overall critical path length.

Chapter 3

Impact of TLDS on Thread-Level

Parallelism

In this chapter, we present the experimental results which quantify the potential
parallelism that can be achieved using TLDS. We begin by focusing on how TLDS
can relax memory data dependences. Next, we examine how forwarding data be-
tween epochs affects performance. Finally, these numbers are translated into overall

program speedups.

3.1 Relaxing Memory Data Dependences

To fully exploit TLDS, we should first apply compiler optimizations to eliminate RAW
data dependences whenever possible. Table 3.1 describes the optimizations that we
consider in these experiments, all of which are described in more detail in Chapter 5.
The optimizations in Table 3.1 are listed roughly in ascending order of complexity.
The base case (B) observes all RAW dependences, and represents the inherent run

lengths due to memory dependences in the original code. The induction variables

21

22

Table 3.1: Description of optimization levels used to relax RAW memory data de-
pendences.

[Name Abbrev | Memory Data Dependences Removed Compiler Support Needed
Base B None (all RAW dependences observed) None
Induction I RAW dependences caused by updating Recognize induction variables and
Variables induction variables compute instead from epoch number
Library L Case “I" plus RAW dependences in 1/O Use parallel versions of library
Routines and memory allocation library routines routines instead
Reductions R Case “L” plus RAW dependences caused | Recognize reductions and localize
by reduction operations accordingly (e.g., partial sums)
Scalars S Case “R" plus RAW dependences caused | Recognize communicated scalars and
by scalars communicated across epochs forward explicitly between epochs

(I), library routines (L), and reductions (R) cases represent situations where the
compiler can realistically recognize and eliminate dependences. These cases require
only software support, and no special hardware beyond basic TLDS. Finally, in the
scalars case (S), we identify scalar dependences which cannot be optimized away, but
which can potentially be accelerated by explicitly forwarding their values between
epochs. The level of hardware support for forwarding may vary, and we consider this
issue in greater depth later in Sections 3.2 and 3.3.

Table 3.2 lists the occurrence of the different types of data dependences. Induction
variables are present in four of the thirteen regions. Dependences due to library
routines are rare, but we will demonstrate that the elimination of these dependences is
crucial to the performance of the speculative regions which contain them. Reductions
are relatively common, and scalars are abundant in several of the speculative regions.

Figure 3.1 shows the average run lengths for each region given a threshold (7')
of ten outstanding epochs.! Starting with the base case (B), we see that seven of
the thirteen regions have natural run lengths of two or more under TLDS. Of all

thirteen regions, the only one which is naturally parallel (i.e. contains no dynamic

!Note that the run length can exceed the threshold, given our definition of run length in Sec-
tion 2.2.1. Hence run length does not translate directly into speedup, which is something we take
into account later in Section 3.3 when we compute region and program speedups.

23

Table 3.2: Occurrence of memory data dependence types in speculative regions.

Induction | Library
Benchmark | Region | Variables | Routines | Reductions | Scalars
compress rl 1 4 2 2
gee rl 0 0 0 1
r2 0 1 0 5
espresso rl 0 0 0 4]
li rl 0 0 1 0
r2 0 0 0 0
sc rl 0 0 1 0
' m88ksim rl 1 0 15 36
ijpeg rl 0 0 0 0
perl rl 0 0 0 9
go rl 0 0 0 o
buk rl 1 0 0 0
r2 1 0 0 0
£ 8 % RRRRE R{RIAR 8 8 RR8% RRRR
g B
$ £ Z. | 1z
*. | ! H
R °)

Y1t - y "1"R" > F "3
et sc.r1 [Ka! 0.1 bu
mosksim.c1 Ipeg perl.r1 g buk.r1

Y

r2
espresso.ri

Figure 3.1: Average TLDS run lengths given various levels of memory dependence
optimizations (see Table 3.1).

data dependences) is ijpeg.ri—the other twelve regions would be unsafe to paral-
lelize without TLDS. Even for ijpeg.r1, it appears unlikely that the compiler could
statically prove that the epochs are independent, given the use of indirection in the
array subscript expressions; with TLDS support, however, the compiler can safely
parallelize this region despite this uncertainty.

Figure 3.1 also shows how the optimizations listed in Table 3.1 can enhance run
lengths. By eliminating induction variable dependences (I), the average run lengths in

buk.ri and buk.r2 increase dramatically from one to over twenty. Replacing common

24

library routines (e.g., getchar, putchar, etc.) with parallel versions (L) quadruples
the average run length in compress.r1 from one to four. Table 3.2 shows that RAW
dependences due to library routines are present in gcc.r2 as well, but the run lengths
indicate that they are not performance-limiting. Optimizing reduction operations (R)
provides a small but measurable improvement in compress.ri. Reductions are also
found in 1i.ri, sc.r1, and most notably in m88ksim.r1 (as shown in Table 3.2),
but scalar variables must also be optimized to increage the run lengths for these
regions. In fact, we see that scalar dependences between epochs (S) represent the final
barrier to achieving average run lengths of eight or more in compress.ri, gcc.ri,
1li.r1, m88ksim.rl, and perl.rl. Although these scalar dependences cannot be
fully eliminated (unlike the I, L, and R cases), we can potentially accelerate these
cases by explicitly forwarding the values between epochs, as is discussed in the next

section.

3.2 Forwarding Data Between Epochs

In cases where RAW dependences frequently occur between consecutive epochs and
these dependences cannot be eliminated, we can still potentially accelerate perfor-
mance by partially overlapping the epochs, as described earlier in Section 2.2.2 and
illustrated in Figure 3.2.

In addition to forwarding scalar memory dependences, we also need to forward
any register dependences. Both types of forwarding can potentially be accomplished
through the same mechanism. Although the run lengths in Figure 3.1 ignored register
dependences, we take them into account throughout the remainder of this thesis

as follows. We eliminate two classes of RAW register dependences: those due to

- £ e 2 a2 22 22] 2 2 2 ee2
E 10 a A A ' L A A A A A A A A A
3 - : z B
$ s} : b B
= <1 o e
B o K 2 1:
g [} o K K i iR
2 K : A -l
T | I i Bl NG
. o s K 3 : :
2| 2HN 3z :=:§ sl cEN =HN g e¢ A0 :HN GHN BN EH
JLAEN fal mal s8) §F i Rl R B
¢ ' s L1 ' . € ¢ [] e ' L] [f [} € ’ L] [' . < ' L € ' s c ' s € t L] c '] L3 1} .
compress.ri gee.r2 i sert fjpeg.r1 go.rt buk.r2
geeat espresso.r! fr2 masksim.r peri.r bulk.rt

Figure 3.2: Speedup limits due to forwarding scalars both for memory and register
dependences (c = coarse-grain synchronization, f = fine-grain synchronization, s =
fine-grain synchronization with aggressive instruction scheduling).

induction variables (directly analogous to the “I” case for memory), and simple cases
where a dependence was only introduced by the compiler converting a while loop
into a do-while loop to create a “landing pad”.? All other cross-epoch register
dependences are forwarded, and are similar to the “S” memory case described in

Table 3.1.

3.2.1 Impact of the Synchronization Scheme and Scheduling

The performance with forwarding depends on how aggressively we attempt to min-
imize the non-overlapped portions of each epoch. In addition to using fine-grain
rather than coarse-grain synchronization (as illustrated in Figure 3.2), we can po-
tentially improve performance further by rescheduling the code to move as many
instructions out of the non-overlapped portion of an epoch as possible. To evalu-
ate the potential benefit of improved instruction scheduling, we simulated aggressive
instruction scheduling by tracking the dynamic dependence chain depth between in-

struction pairs that consume and produce forwardable values. In other words, we

2For example, the loop test for the while loop in compress.r1 calls getchar() to get the next
character to be processed by the given iteration. When the compiler converts this while loop to a
do-while loop, getchar() is called at the end of the loop, thus causing a cross-epoch RAW data
dependence. However, this could be trivially fixed through instruction scheduling.

measured the minimum possible sizes of the non-overlapped portions within epochs.

To estimate the upper bound on speedup given forwarding, we divided the total
dynamic instructions in a speculative region by the critical path length, as described
earlier in Section 2.2.2. For our initial experiments, we assume that forwarded data
can be consumed immediately (e.g., through a shared register file); we consider more
realistic forwarding latencies in the next section.

Figure 3.2 shows the speedup limits due to forwarding. Three regions (ijpeg.r1,
buk.r1, and buk.r2) do not require any forwarding, and hence are not limited by
it. Focusing on the other ten regions, we see that coarse-grain synchronization (c)—
i.e. forwarding data once per epoch—yields speedups above 35% in only three cases
(compress.rl, sc.rl, and go.r1), and none of these speedups are above 50%. By
using fine-grain synchronization to forward values as soon as they are produced (f),
the speedup limit increases to over twofold for seven of the ten regions that re-
quire forwarding—in several of these cases, the improvement is dramatic. Finally,
by combining fine-grain synchronization with aggressive instruction scheduling (s)
to minimize non-overlapped sections within epochs, we can potentially achieve large
speedups in all regions. The benefits of rescheduling are particularly pronounced in
gcc.rl and m88ksim.r1, where speedups in the original code are limited to under
3%, but by rescheduling these relatively large epochs (over 1000 instructions each),

we can potentially achieve speedups of tenfold or more.

3.2.2 Impact of Communication Latency

In addition to the synchronization scheme, another element of forwarding which may
limit potential speedups is the communication latency. Extremely large communi-

cation latency will degrade performance, but how fast must communication be to

27

Speedup Limit

1
3
;
5
5
2
g

(b} Speedup limit for fine-grain synchronization with aggressive instruction scheduling (s)

a 9 oco acooc aaa o0 - L-XX-] - X-X-X- -E-X-] aoco Qoo
= 333 2 agse agaa 292 2222 2282 g g2 eee
T ol aia Y ey Yy 22 Yy rr Yy
3 & i3 s 4 i
- K o = ol
3 o} o K ;] g

e . Bk B k<

= : K EEN

- | 1[® Mg i

a 6) i

: I
1 o
iE
5

PR R A R R X

LTTLTIT YT CTRYCYTINNNY- 10

Anininiinian
Anniiinnnnuiunin
\"\T\ﬁ\'\\\\\\\\\\\\(\uu\

[TTTTYTY T YTTTTTTRTIINNINLY

T T T T YT LTI 10
TTTTTTL TN TTT TN YNNY Y 10
[LCOTUTE YT LYY YT YTTTTNRLING 10
AT R]

TRRTIRCRRRY

[TTTTTITTTTCTRLTATTITITINLNG 10

'a » EXXERERERRRERERTRK
)

XXX

T O TTT TN 90

&
]
o T

N EEXTEIRXNERTOCXIR KRR > 10

o [
‘o VS

j Kl ' gl el i
0
) %2%0 210 :'?1 10 10 2%0 %2%0 Ioz'w 2710 z;w 2’10 H 10
campress.ri C, ¥ L buk.r2
me 8e espresso.rt . m88ksim.r Ipeg- peri.r 90 b

Figure 3.3: Speedup limits due to forwarding for varying communication latency.

obtain reasonable performance? Since we are considering a single-chip multiproces-
sor, a range of communication mechanisms and thus latencies should be available.
Figure 3.3 shows the speedup limits for fine-grain synchronization (f) and for fine-
grain synchronization with aggressive instruction scheduling (s), each for a range of
different communication latencies. Without instruction scheduling (Figure 3.3(a)),
we see that there are three cases. For six of the regions, the communication latency is
not large relative to the overlapped portion, resulting in little change in the speedup
limit. Three of the regions show significant sensitivity to communication latency,
due to the relatively small epoch sizes of these regions (see Table 2.2). Finally, the
speedup limit due to forwarding may be large enough for communication latency not
to be an issue, which is the case for the remaining four regions. With instruction

scheduling (Figure 3.3(b)), all regions demonstrate encouraging speedup limits.

28

In summary, the importance of communication latency depends on the individual
speculative region, although instruction scheduling may eliminate the need for fast

communication in cases where it is an issue.

3.3 Potential Speedups

Having gained insight into how TLDS can relax memory and register data depen-
dences and exploit forwarding, we now translate the run length and critical path
metrics into an estimate of actual speedups on a single-chip multiprocessor with four
processors. To estimate speedups, we combine the limitations imposed both by mem-
ory data dependences and by forwarding data—both of these effects were shown in
isolation in Figures 3.1 and 3.2. We also account for the time required to recover from
unsuccessful speculation by adding the average time to execute an epoch for every
speculative epoch which fails. Finally, we account for the fact that parallelism cannot

exceed the number of physical processors (four, in this case) at any given time.

3.3.1 Region Speedups

Figure 3.4 shows the potential region speedups with two different forwarding latencies:
the “L2” case corresponds to forwarding data through the normal memory hierarchy
(i.e. the shared L2 cache) in ten cycles, and the “fast” case uses special forwarding
hardware support to communicate data in just two cycles.? For each forwarding
latency, we show the following five cases. Case “B” is a base case with TLDS but
no optimizations to eliminate or forward register or memory dependences. In case

“Br” (and all remaining cases), register dependences are optimized and forwarded,

3An example of fast forwarding support is the register forwarding mechanism proposed by the
Multiscalar architecture [7, 27].

29

oo » ETIOIITINIOIONTOIOY. @
" k3

HE] annerarensnezens (S M

3%l - £

323

3333 3
neinn A

[X3
12 2 EOOOANONTS
3

" m
1 ¢ XTI ROR R O &
[31] %, E
LI¥ vvreiveveeay [3] 8
00 1 Fatamms)

10 ¢ ATTTTTTITI NI LT YT TTYNNNY) ﬁ
18% t
16 CEEXXERRRNRNERR R u
0] o
o IZI v g
FrI T 2
s @

10 2 (ANTTINTTNINNYY “
102

10 I ESESESARRRE @ u
10 2 (EERER

oo ZZIIIgm

g
se ¢ ITITITTIITIITOOIOININONIONY 3 2
W L3 M
oo oY
oo iEanl &
oo o

- L] o~ - o

dapeeds uoibey

forwarding through the

special hardware support to forward in 2 cycles,

base TLDS hardware with no compiler support, Br = register dependences elim-

inated or forwarded, R = case R dependences eliminated, Sf = case S dependences

Figure 3.4: Possible region speedup on four processors (L2
shared L2 cache in 10 cycles, fast

B

eliminated and fine-grain synchronization, Ss = case S dependences eliminated and

aggressively scheduled code with fine-grain synchronization, see Table 3.1).

as described earlier in Section 3.2. Case “R” also optimizes away some memory

dependences, as described in Table 3.1. Case “Sf’ forwards memory scalars using

fine-grained synchronization, and case “Ss” also reschedules instructions to maximize

parallel overlap.

te or

imina

without any compiler support to eli

As we see in Figure 3.4, using TLDS

results in no speedup for these regions. Only

“B”)

forward data dependences (i.e. case

rl and ijpeg.rl) show improvement when register dependences are

.

two regions (sc

optimized and forwarded but memory dependences are not. Eight of the thirteen

regions enjoy significant speedups (50% or more) when memory dependences are

eliminated under case “R”. Forwarding memory scalars without rescheduling offers

but by rescheduling the code, all but one

ficant additional improvement

no signi

region potentially achieves an overall speedup of roughly twofold or more on four
Processors.

Comparing the performance with and without special hardware support for fast
forwarding of data, we see that it does make a noticeable difference in performance
in five of the thirteen regions, mainly for the “R” and “Sf’ cases. However, when
we reschedule the code to maximize parallel overlap (case “Ss”), we see that the
performance is less sensitive to the forwarding latency. Therefore aggressive compiler
scheduling can potentially eliminate the need for expensive forwarding hardware, thus

allowing us to forward data through the normal cache hierarchy.

3.3.2 Program Speedups

Given the fraction of total execution time spent in each region (shown earlier in
Table 2.2), we can estimate the potential overall speedup for each application. Fig-
ure 3.5 shows these potential speedups for the three more aggressive optimization
levels, and with both types of hardware forwarding support. To a large extent, the
overall speedup depends directly on our ability to find regions that constitute a large
fraction of overall program execution time. In four applications (compress, 1li, sc,
and m88ksim), we found regions covering roughly 70% or more of execution time, and
all of these cases can potentially enjoy speedups of twofold or more on four processors.
Three other applications (espresso, perl, and buk) achieve more modest speedups of
17-37%, and the remaining three applications improve by less than 10%. We believe
that our region coverages (and hence program speedups) are pessimistic for many
of these applications because finding regions by hand was a very time-consuming
process, and we could not begin to do justice to large applications such as gcc. We

are planning to automate this process in the future, which should help us find more

Program Speedup

L]
L2 tast 2 last 12 fiast L2 2 fam 12 fam
compress gee espresso 1] 7 mB8ksim fjpag perl go buk

Figure 3.5: Possible program speedup on four processors (L2 = forwarding through
the shared L2 cache in 10 cycles, fast = special hardware support to forward in 2
cycles, R = case R dependences eliminated, Sf = case S dependences eliminated
and fine-grain synchronization, Ss = case S dependences eliminated and aggressively
scheduled code with fine-grain synchronization, see Table 3.1).

regions.

3.4 Summary

The results in this chapter have demonstrated that TLDS can potentially provide sig-
nificant improvements in thread-level parallelism, thus accelerating the performance
of non-numeric applications. To achieve the full benefit of TLDS, the compiler should
eliminate data dependences whenever possible, explicitly forward cross-epoch depen-
dences that cannot be eliminated, and reschedule the code to minimize any non-
overlapped sequences. We have also observed that aggressive instruction scheduling
might eliminate the need for performing fast data forwarding between processors,

thus allowing us to communicate through the shared L2 cache instead.

Chapter 4

Architectural Support for

Thread-Level Data Speculation

Having demonstrated the potential performance benefits of TLDS, we now discuss
how TLDS might be implemented. Our goals are twofold. First, we would like to
support an aggressive form of TLDS while requiring only minimal hardware modifica-
tions to a single-chip multiprocessor. Second, we do not want to sacrifice performance
in single-threaded applications or applications that do not exploit TLDS—hence we
will avoid complex, centralized structures which can increase primary data cache
access times. The starting point for our design is a standard single-chip multiproces-
sor where the secondary cache is physically shared and the individual primary data
caches are kept coherent to provide a shared memory abstraction.

We begin by discussing the issues involved in managing threads, including soft-
ware’s interface to the TLDS hardware support. Next, we illustrate how cache co-
herence protocols can be extended to detect data dependence violations. Finally, we
demonstrate that the cache itself can be used to buffer speculative side effects until

they can be safely committed to memory.

32

4.1 Thread Management

In this section, we briefly discuss the architectural mechanisms which are required
by TLDS for managing and coordinating the parallel threads. Since there is often
flexibility in how the mechanisms might be implemented, our goal is simply to raise
the important issues and discuss tradeoffs. Although we do describe a potential
implementation of TLDS, the purpose of this is to illustrate how TLDS might be
implemented, rather than claiming that this is necessarily the optimal approach.

The first mechanism that is needed is a way to create parallel threads and sched-
ule the epochs onto them. One option is to dynamically create a new thread per
epoch, and another is to statically create one thread per processor and have them
execute multiple epochs. The disadvantage of the dynamic approach is the runtime
overhead of frequent thread creation, which may be reduced to some extent through
a lightweight fork instruction [19]. A potential advantage of associating one dynamic
thread per epoch is that it may simplify the case of having multiple outstanding (un-
committed) epochs per processor, rather than having a single thread maintain the
state of several outstanding epochs. (There are a number of subtle issues involved
with allowing a processor to have multiple outstanding uncommitted epochs, but
such an investigation is beyond the scope of this thesis.)

Since dependence violations are detected by comparing epoch numbers, a mecha-
nism is needed such that each thread’s epoch number will be visible to the hardware.
There are two important things to note. First, hardware’s representation of epoch
numbers does not necessarily need to coincide with epoch numbers in software, pro-
vided that hardware can still make the appropriate relative comparisons to detect
dependence violations. Second, in some cases software might not even need to be

aware of epoch numbers—they could instead be maintained implicitly by hardware.

34

A third mechanism is needed to distinguish speculative versus non-speculative
memory accesses. Only speculative loads must be checked for RAW dependence vio-
lations, and only speculative store results must be buffered until an epoch successfully
completes. For applications which do not exploit TLDS, all memory accesses will be
non-speculative, and hence the TLDS hardware support will not be invoked. One
possibility is to explicitly mark individual memory instructions as being speculative
or non-speculative—while this approach allows us to interleave both types of accesses,
it unfortunately requires a new flavour of memory instructions. Another approach
is to dynamically indicate whether a thread is speculative or not—when a thread is
speculative, all of its memory references will be interpreted as being speculative. A
thread should become speculative prior to its first speculative load, and can become
non-speculative again once it confirms that all of its speculative loads were safe. In
addition, the thread executing the oldest epoch must be non-speculative.

At the heart of TLDS is a mechanism for detecting RAW data dependence vi-
olations and recovering the correct program state whenever they occur. Given the
potentially large number of addresses that must be compared against each other at
the end of an epoch to determine safety, and given the fact that the exact interleaving
of accesses between threads is not known a priori since they run asynchronously, a
purely software-based approach of explicitly comparing memory addresses (18] would
appear to be impractical. Instead, we propose extending cache coherence schemes to
allow hardware to detect potential dependence violations with little overhead, and
letting software control the recovery process. We will discuss this mechanism in
greater detail later in Section 4.2.

Finally, one aspect of recovering from unsafe speculation which software cannot

perform efficiently on its own is rolling back any side effects of speculative stores on

35

memory. To do this effectively, we propose extending the cache functionality so that
hardware can buffer speculative store results until they can be safely committed to

memory. We will describe this mechanism in more detail later in Section 4.3.

4.1.1 Example

To illustrate how software might interface with these architectural mechanisms, Fig-
ure 4.1 shows how the compress benchmark (described earlier in Section 1.2) might
be modified to exploit TLDS. In this example, the loop has been modified to execute
as a chain of threads, where each thread performs the work of one epoch. Since
the hardware will only support a finite number of outstanding threads, we assume
that create_new.thread() returns a boolean value indicating whether the fork was
successful. If so, the current thread simply terminates once it completes its epoch—
otherwise, the current thread will execute the next epoch itself. In this example, we
assume that hardware implicitly maintains epoch numbers as part of thread creation.

Within the epoch, the thread switches its state to speculative just before its first
speculative load (the load of hash(index1)). At the end of the epoch, the thread
waits until it is the oldest thread to ensure that any writes from earlier threads have
been committed—hence any RAW dependence violations would have been detected
by this point. While the thread is waiting, it could potentially suspend itself, thus
freeing the processor to do other work. Finally, the thread checks whether it is safe

to commit its speculative results—if not, it recovers by re-executing the epoch.

36

EPOCH_START:
if (continue_cond) {
successful fork =
create_new_thread(EPOCH_START,params);
do {
while (continue_cond) { become_speculative();
x = hash(index1); x = hash(index1);

hash(index2) = y; hash(index2) = y;
wait_to_become_oldest_thread();
} } while (!attempt_commit());
if (successful_fork)
terminate_self();
else goto EPOCH_START;
}

else wait_to_become_oldest_thread();

(a) Pseudo-code for compress (b) TLDS version of compress

Figure 4.1: Example of a potential software interface for TLDS execution.

4.2 Extending Cache Coherence to Detect Data

Dependence Violations

A key component of TLDS support is a mechanism which detects unsafe data
speculation—i.e. whenever a cross-epoch read-after-write (RAW) data dependence
violation has occurred. To provide this support with minimal hardware cost, we
propose a straightforward extension of an invalidation-based cache coherence proto-
col. Here is the basic intuition behind our scheme. When an earlier epoch performs
a load and a subsequent epoch stores to the same address, the coherence protocol
would accept the modified cache line once the subsequent epoch commits. Similarly,

when two epochs both store to the same address, the coherence scheme will have to

37

combine the two cache lines when the later epoch commits.! The case we need to
worry about is when a store from an earlier epoch occurs after a subsequent epoch has
speculatively loaded the same address. When this store occurs (as with any store),
we must invalidate any copies of the cache line to maintain cache coherence. We
augment the functionality of the invalidation such that if it notices that the line has
been speculatively loaded into another cache, it compares the epoch numbers of the
store and the speculative load to determine whether a RAW dependence violation
has occurred.

To illustrate this mechanism, Figure 4.2 shows how it would work for the sequence
of epochs shown earlier for compress in Figure 1.2. We augment each cache line with
two bits indicating whether the line has been speculatively loaded or modified, and
we associate with each processor an epoch number and a boolean value indicating
whether a dependence violation might have occurred. During step “4” in this ex-
ample, processor 4 speculatively loads the value of hash(10), thus bringing it into
its cache and setting the speculative load bit for that line. Later, during step “5”,
processor 1 stores to hash(10) —during the subsequent invalidation of this line from
processor 4’s cache (step “6”), we notice that since the store has an earlier epoch
number (one versus four) and the line was speculatively loaded, a dependence vio-
lation may have occurred. Hence the violation bit is set for processor 4 (step “77).
When processor / subsequently attempts to commit its speculative results, it will

notice that this is unsafe and can recover by re-execute its epoch.

!'This may require a state bit per word in each cache line to mark words which have been modified.

Processorl Processor2 Processor3 Processord

1{ = hash(3) 2| = hash{19) 3| = hash({33) 4| = hash(10)

Epochs 5.7 hash(10) = 8| hash(21) = 9{ hash (30} = 10| hash(25) =
attempt_comait (){ attempt_commit ()(attempt_commit ()(attempt_commit)x
= =2 = =
L1 Caches cpoch_ngmb?r | cpoch_nfxmbf:r epoch_n}xmbf:r 3 :poch__nun'?bct 4 7 Set
no_violation no_violation no_violation violation l———
- It 2| o 1 0 1 0 1 0
£ Cache-Line*,) N P ! 0
{ | Spec-Load ! 0 !
: g M3 || helQ) h(19) h(21) h(33)| | h(30) h(10) h(25)
Spec-Store | i EL <
Dara |7 . '3 . | = & 2 & =| € &
-~ &3 & E gl 3 & 3
- x ~ &) o +| Z &
wn ®© -y o =
Shared Bus

Figure 4.2: Example of an augmented invalidation-based cache coherence scheme
which supports TLDS. (Note: the numbers next to the events indicate the order in
which they occur.)

4.2.1 Impact of Cache Line Size On TLDS

A potential drawback of tracking data dependences at a cache line rather than a
word granularity is the possibility of “false” dependence violations—i.e. when sepa-
rate parts of a line were read and written, and hence no true dependence occurred.
While these false dependences do not affect program correctness, they can reduce our
ability to exploit parallelism by invoking the recovery mechanism when it is unneces-
sary. To quantify how false dependences might affect TL.DS parallelism, we measured
how the average run lengths due to memory dependences (discussed earlier in Sec-
tion 3.1) changed at 32 and 128 byte granularities. As we see in Figure 4.3, some
applications are insensitive to changes in the dependence granularity, while others
typically experience decreased run lengths with larger line sizes.?

The compiler could potentially avoid false dependences by changing the data

*In some cases, run lengths increase somewhat with larger line sizes due to fortuitous circum-
stances where false violations alter run length boundaries relative to the ten epoch window size.

39

(a) Run lengths for optimization level “R”

Average Run-Length

(b) Run lengths for optimization level “S”

s Re & ARR g RER LE] 3 8
ol ga § oy e ;
H J El - i IE -
g i ! e 1% n o
_ I e ¥ b <% - H =
T . gt .
s 1z} H 2 B ; 44 I i il
2 Bl 222 Qi : 8 i K 3
§ e 0 MR K 12 I 12 i 3
= °T BN b 13 . B EN HER B A,
18 5. i3 e 2P 7 i Il ... HES BES
‘T B (I APEPE | : K i 15 i[5 LT =
el BN maa KEN RSN FEN O BER MHR BEW BEg ERR M
0 w_128 w_128 w_l12s w_129 w_128 w_128 w_128 w_n w_t2s w_128 w_128 w_128
n n » n 32 3 n 2 2 2 32
compress.r gee.r2 firt se.n perl.rt buk.r
gee.rt aspresso.rt L2 masksim.r go.r1 buk.r2

Figure 4.3: Impact of cache line size on run lengths due to memory dependences.

layout such that these important objects do not fall within the same cache lines.
Also, a more sophisticated hardware scheme could maintain state information on a
per-word basis to further avoid false dependences. In general, a number of refinements
on this basic scheme are possible, but the bottom line is that run lengths typically

remain long enough that this is a viable approach to detecting unsafe data speculation.

4.3 Using the Cache to Buffer Speculative State

When unsafe data speculation is detected, a thread must recover its original program
state. To simplify this process, we would like to buffer any speculative store results
until we are certain that they can be safely committed to memory. Rather than
building a separate buffer which is devoted entirely to data speculation, it would be

attractive if we could simply use the cache as our speculative buffer.

40

Intuitively, the way this would work is that speculative stores would be free to
modify the cache, but the resulting cache lines would conceptually be “locked down”
such that their side effects cannot propagate to the rest of the memory system.?
Speculatively-loaded cache lines must also remain in the cache for the duration of
the epoch to track possible RAW dependence violations. Special bits associated with
each cache line would indicate this state (e.g., the “speculative store” and “specula-
tive load” bits shown earlier in Figure 4.2). If data speculation fails, the hardware
will squash these speculative lines by marking them invalid; if the data speculation
succeeds, these stored values can be committed to memory and the lines will return
to a non-speculative state. If a line that has been speculatively modified or loaded is
forced out of the cache for any reason, its side effects (if any) will be discarded and
the violation bit will be set, indicating that the data speculation has failed.*

In this section, the capacity required to buffer all speculative accesses will be
measured, as well as the associativity required to avoid replacements. We will also

investigate the impact of adding a victim cache.

4.3.1 Storage Required

A key question that is addressed in this section is whether the cache has sufficient
capacity to hold all of the cache lines accessed by a typical epoch. As we see in
Table 4.1, all of the regions in our experiments require less than 6KB of buffering
on average. The worst case is ijpeg.r1, which also has by far the largest epoch
size (9406 instructions). With 32B cache lines, all twelve of the other regions require

less than 1.5KB of buffering. Clearly a relatively small, fully-associative cache would

3There are many ways to implement this “locked down” type of behaviour.
*Note that this will not result in deadlock, because the loads and stores of the oldest active epoch
will always be interpreted as non-speculative.

Table 4.1: Average amount of storage required per epoch for buffering speculative

41

accesses.
32B Cache Lines 128B Cache Lines
Unique Total Unique Total
Lines Storage Lines Storage
Application | Region | Accessed {(kB) Accessed (kB)
compress rl 10.6 0.33 10.0 1.25
geo rl 43.7 1.37 27.0 3.38
r2 34.2 1.07 20.3 2.54
espresso ri 4.1 0.13 3.9 0.49
[rl 1.6 0.05 1.5 0.19
r2 7.1 0.22 5.3 0.66
sc rl 4.4 0.14 3.6 0.45
m88ksim rl 46.9 1.47 30.3 3.79
ijpeg rl 139.6 4.36 45.3 5.66
perl rl 11.0 0.34 7.7 0.96
go rl 8.6 0.27 7.5 0.94
buk ri 4.0 0.13 4.0 0.50
r2 4.0 0.13 3.0 0.38
suffice.

4.3.2 Associativity Required to Avoid Replacement

An important question is whether mapping conflicts within a realistic primary data
cache with limited associativity would pose a serious problem. To answer this ques-
tion, each region was simulated using a 16KB primary data cache with 32B and 128B
cache lines. We measured the maximum number of lines accessed which map to each
set of the cache with varying associativities. If the maximum number of lines per set
exceeds the number of ways in that set, at least one of these lines will be forced out
of the cache. Figure 4.4 shows the maximum set population of any set within the
cache, both for the average epoch and for the 99th percentile case. As we increase the
associativity, there are more ways within each set, but there are also fewer sets over-
all, so the maximum set population often increases. Our goal is to find the smallest
associativity with enough ways per set to capture these set populations.

As we see in Figure 4.4, a direct-mapped cache does not appear to be suffi-

42

(a) 32B cache lines

c
2
s 1w}
a 99th Percantlle
& 8} Average
& sl
€ -
2 -
% ‘ ™ L] an ” ” "o nen
; 2l «ull I! DL u«ul unul II I ~~u| «u'l Nwl NN
L1 _ I!II i L 0 Q00Y QEEE e
124 V., l[f_:l' T 4 . ' , 4) 4 1,4
compress.ri T 0.71 buk.ra
P gee.r1 upnuo.rl lr2 masksim.ri Ipog. perl.r1 g buk.r1

(b) 128B cache lines

Maximum Set Population

[[Xg] [X
gee.rl espresso.ri r2 méaksim.r1 periri

Figure 4.4: Maximum set population per epoch in a 16KB cache (numbers below the
bars indicate the associativity).

cient to capture the set populations. A two-way set associative cache is much more
successful—with 32B lines, the 99th percentile case is two or less for nine of thir-
teen regions, and the average is almost always less than two. With four-way and
eight-way associativities, the average set populations are captured for all regions.
For eight-way associativity, even the 99th percentile case is always less than eight for
all regions. However, associativities of four and eight may increase cache access time
significantly, hindering the performance of applications which do not exploit TLDS.

Therefore, two-way associativity is perhaps the most attractive option.

43

(a) 32B lines

2
z 3 1
> 0 99th Percentiie
251 Average
201
151
10}
st
0 Qoo "ooo oooa
|2‘.r1|24. tzdn. 1,4, 1“241. Yoty a8, 'ty '124. Vats Yats '2%s a%s
Al . 1 .r
comprass.rl cert 9% espressont 2 " mesksmet PO e 9° puksr U2
(b) 128B lines
£ sl
g 35
> 30} S0 Percantite
25# Average
20 |
15¢ =) 2
10F I
5 i Ll
0 I oo ~oca
1
2

Y24 e Tats Tats 2ty Tat's Tats T2ty T2Y's T2ty T2'e "2 T2Y
compress.r1 gee.r2 et sc.r lpeg.r1 gout buk.r2
gee.rn e3pressa.ri .r2 magksim.r1 peri.rl buk.ri

Figure 4.5: Average victims per epoch in a 16KB cache (numbers below the bars
indicate the associativity).

4.3.3 Adding A Victim Cache

Rather than giving up as soon as a speculatively accessed line is forced out of the
cache, another possibility is to capture these spilled lines within a small victim
cache [13]. Figure 4.5 shows the maximum number of victim entries necessary to
capture all speculatively loaded or modified lines that would be ejected from a 16KB
cache of various associativities. For the direct-mapped strategy, a large victim cache
would be needed to capture the 99th percentile case, which may increase overall cache
access time. A four-entry victim cache combined with a two-way set-associative cache
would capture the 99th percentile case for all regions but ijpeg.r1 for 32-byte cache

lines, and all but three regions for 128-byte cache lines.

4.4 Summary

We have seen that it is feasible to support TLDS through modest hardware sup-
port by extending the cache coherence algorithm to detect unsafe data speculation,
involving software in the recovery process, and enhancing the role of the primary
data cache to buffer speculative accesses. A 16KB, two-way set associative cache

used in conjunction with a four-entry victim cache would be sufficient for buffering

speculative state to simplify recovery.

Chapter 5

Compiler Support for

Thread-Level Data Speculation

The compiler clearly plays a crucial role in exploiting TLDS. In addition to selecting
regions of the code to speculatively parallelize and inserting the appropriate TLDS
primitives, we have also seen that the compiler has an important role in optimizing
the code by removing data dependences and maximizing parallel overlap if we are to
achieve the full potential of TLDS. Some of these compiler issues are briefly discussed

in this chapter.

5.1 Finding Speculative Regions

The first step in compiling for TLDS is choosing the appropriate speculative regions
to parallelize. We performed this step by hand in our experiments as follows: we
used profiling feedback to identify where the program was spending its time, and we
then attempted to find the largest surrounding regions which did not have obvious

data dependences that would prevent TLDS from working. The compiler could also

45

46

use feedback information to focus on the important regions of the code, and could
statically analyze data dependences where possible. By performing a cost-benefit
analysis, it could choose the most promising regions to speculatively parallelize. Once
the program is actually running, the rate at which unsafe speculation occurs could
be measured and fed back into the compiler again to further refine its choice of

speculative regions.

5.2 TLDS Transformations and Optimizations

Once speculative regions have been chosen, the compiler should perform the op-
timizations described earlier in Section 3.1 (and Table 3.1) to eliminate memory
dependences. We will now briefly describe how these optimizations would work.
Dependences due to induction variables [29] may be eliminated, given that there is
a mapping between each epoch number (described in Section 4.1) and the value of the
induction variable for that epoch. This is the case if epoch numbers are consecutive
integers, and they are somehow visible to software. The hardware epoch numbers
may be made visible to software, or software may maintain separate epoch numbers.
Certain library routines may cause RAW dependences between epochs, such as
input and output (I/O) routines like getchar() and putchar(}. However, it may be
possible for the compiler to replace calls to these routines with calls to new parallel
versions, thus eliminating the data dependences between the calls. I/O routines may
be parallelized by using epoch numbers to impose an ordering on input and output
characters. Character input would use the epoch number to index the input buffer,
and return the appropriate character. The output buffer for character output can be

extended to store an epoch number with each output character. Calls to the character

output routine may then be made out-of-order as long as the characters are sorted
by the epoch numbers when the buffer is flushed.

Memory allocation library routines may also cause RAW dependences between
epochs. These routines would be trivial to parallelize, since each processor could
maintain a free list of its own portion of available shared memory.

Reductions {29] are another source of frequent RAW data dependences between
epochs, and must be optimized to fully exploit TLDS. Since a reduction applies an
associative operation to a variable, the order in which the operation is applied by
different epochs does not matter. RAW dependences due to the reduction may then
be eliminated by giving each thread a local copy of the variable and combining the
local copies at the end of the speculative region. Another possibility would be to
maintain one central copy of the variable in memory, and for each epoch to operate
on it atomically or through some form of lock mechanism.

Finally, the compiler may optimize scalar variables. An important characteristic
of a scalar is that accesses to it are not ambiguous, since it is always referred to by its
exact location in memory.! The value of a given scalar may therefore be forwarded
between epochs, if the scalar is the cause of frequent RAW dependence violations. It is
important to note that scalar values do not have to be forwarded to preserve program
correctness, but the performance of TLDS may be improved by doing so. Forwarding
a scalar value involves the insertion of synchronization whenever the scalar is accessed,
and arranging the communication of the value through shared memory or some faster
means such as a shared register file. The compiler should also aggressively schedule
the code to minimize any non-overlapped portions within epochs.

Once data dependences have been optimized, the compiler must then insert calls

I'This may be a static memory address or a location relative to the current position of the stack
pointer.

to the TLDS primitives and create recovery code, such as the example in Figure 4.1(b)
illustrates. The compiler can potentially reduce overheads by minimizing the amount
of recovery code—e.g., rather than re-executing the entire epoch, only re-execute
the portion that depends on speculative loads. The compiler may also optimize
regions which have a small number of dynamic instructions per epoch by combining
consecutive epochs. This would decrease the relative costs of TLDS overheads and

would give the compiler more instructions to work with when scheduling the code.

5.3 Summary

TLDS allows the compiler to focus on parallelism as a performance tradeoff rather
than something which is likely to break program correctness. Although compiling
and optimizing for TLDS is still a non-trivial task, we believe that for non-numeric
codes it is much more feasible than attempting to statically prove that threads are

independent.

Chapter 6

Conclusions

To enable a potential breakthrough in the compiler’s ability to automatically par-
allelize non-numeric applications, we have investigated thread-level data speculation
(TLDS)—a technique which allows the compiler to safely parallelize code in cases
where it believes that dependences are unlikely, but cannot statically prove that they
do not exist. Our experimental results demonstrate that with realistic compiler sup-
port, TLDS can potentially offer compelling performance improvements—i.e. overall
program speedups ranging from 17% to nearly fourfold on four processors in seven of
ten cases—for applications where automatic parallelization would otherwise appear
infeasible. Since our hand analysis was not exhaustive, we believe that even larger
speedups may be possible by applying TLDS more extensively.

To translate the potential of TLDS into reality, we have investigated and quan-
tified the tradeoffs in providing hardware and compiler support for TLDS. We find
that only modest hardware modifications to a standard single-chip multiprocessor are
needed: the cache coherence protocol can be extended to detect RAW dependence
violations and inform software when they occur to invoke recovery actions; the cache

itself can be used to buffer speculative memory accesses; and although extremely

49

50

fast inter-processor communication offers some benefit, we can still achieve good
performance by communicating through a shared L2 cache. Due to the distributed
nature of this hardware support, we do not expect it to degrade the performance of
applications which do not exploit TLDS. We have also discussed and evaluated the
compiler optimizations which are necessary to effectively exploit TLDS. Based on the
encouraging results in this study, we advocate that future single-chip multiprocessors

provide the modest support necessary for TLDS.

6.1 Future Work

We have described possible architectural and compiler support for TLDS. Future re-
search efforts should be made to fully support TLDS in a compiler, and to devise a
working architectural implementation. For the compiler, this will involve automating
the process of finding speculative regions and implementing the optimizations de-
scribed in Section 5.2. In addition, the possibility of using TLDS to parallelize new
types of speculative regions such as recursive calls should be investigated. The archi-
tectural implementation outlined in Chapter 4 should be refined. This will involve
defining an exact set of TLDS primitives, and developing a precise cache coherence
scheme for detecting RAW dependence violations.

We have explored the potential for TLDS in non-numeric codes, since they have
previously been difficult to parallelize. Knowing that TLDS will be an effective
way to parallelize non-numeric codes, it would also be interesting to measure the
impact of TLDS on the simpler case of numeric codes. The complexity of the array
subscript expressions in some loops of numeric codes prevents parallelization using

known methods, while TLDS should prove to be effective.

Appendix A

Experimental Methodology In

Depth

This appendix describes our experimental methodology in greater detail. The meth-
ods used to track data dependences and run lengths are given, and the removal of
data dependences is described. We then present the equations for calculating speedup
limits due to forwarding, communication latency, recovery and run lengths. Finally,

we describe how these are used to compute region and program speedups.

A.1 Rwun Lengths

Our simulator uses a hash table (indexed by data address) to record the number of
the epoch which performed each load and store for all memory locations accessed
within a speculative region, allowing us to track all RAW dependences. Using this
information about RAW dependences and the rules given in Section 2.2.1, we may

compute the run lengths for a given speculative region.t

INote that the threshold value T used for all experiments was 10.

a1

As discussed in Section 3.1 and Section 5.2, the compiler may remove data de-
pendences due to induction variables, certain library routines, and reductions. Scalar
variables may also be optimized such that they do not limit the run lengths. We
removed these data dependences in our simulations as follows. First, we used the
simulator to profile each speculative region, which gave us the program counter (PC)
pairs for all cross-epoch RAW dependences. We then used the output of the disas-
sembler (which includes source line numbers) to find the corresponding computation
in the source code. For each PC pair which suffered frequent RAW dependence viola-
tions, we examined the corresponding source code to decide whether this dependence
could be eliminated by the compiler. If so, then this PC pair was included in a list
of PC pairs which was explicitly passed to the simulator, such that it would ignore

any data dependences at runtime caused by a PC pair in the list.

A.2 Critical Path Lengths

Scalar values and registers may be forwarded between epochs as described in Sec-
tion 2.2.2. To compute the critical path lengths, we specify the PCs of all loads
and stores of each forwarded variable to the simulator, and then measure the critical

paths for different synchronization schemes:

coarse-grain synchronization: The critical path length for each epoch e in a spec-
ulative region r for this method of synchronization (C Pf3°"¢-#7%") is the number
of cycles between the first load of any of the forwarded values in the epoch and

the last store to any of the forwarded values in the epoch (see Figure 2.2(a)).

fine-grain synchronization: For this synchronization scheme, we first compute the

critical path length for each forwarded variable v, which is the number of cycles

53

between the first load of the variable and the last store of the variable. The

critical path length for the epoch e in a speculative region r is then given by

CP,{;’ne__qrain —_ %%K (CPfiﬂC-y"ain)’ (A,]_)

e

where we find the maximum of the critical path lengths for all forwarded vari-

ables in that epoch (as illustrated by Figure 2.2(b)).

fine-grain synchronization with aggressive instruction scheduling: To esti-
mate an aggressive instruction schedule, we first find the number of dynamic
instructions in the dependence chain for each forwarded variable.? For each
forwarded variable v in an epoch e and speculative region r, the critical path
length is the length of the dependence chain between the first load and the last
store to that variable in the epoch (CP/ine-grainscheduled) The critical path

for each epoch e and speculative region r with fine-grain synchronization and

aggressive instruction scheduling is therefore

Jfine_grain_scheduled _ fine_graein_scheduled :
CPr,e - I'I'\lf?,,.‘((CPr.e,v): (AQ)

the maximum of the critical path lengths for all forwarded variables in that

epoch.

The critical path length for a speculative region r and synchronization/scheduling
scheme S may then be computed from the sum of the critical path lengths for all

epochs in that region:

CP? =% CP:, (A.3)
Ve

2A dynamic instruction is part of the dependence chain for a given value if the instruction uses
that value, or if it uses the result of a dynamic instruction already in the dependence chain for that
value.

54
A.3 Speedup Limits

Having demonstrated how the critical path lengths are computed, we now discuss
how the speedup limits due to forwarding, communication latency, recovery and run
lengths are computed. The number of cycles spent communicating for a region r is
given by
Comm, = NEPochs eomm (A.4)

where the number of epochs in the region (NVeP¢h¢) is multiplied by the number of
cycles to communicate between two epochs (7°°™™). This assumes that there is
communication between all consecutive epochs.

We may also estimate the number of cycles to recover from failed speculation for
a speculative region r:

_ S
T,- CP,- x N:un_lcngths’ (A5)

Recover, =
NEPehs ¢ 9

First, we find the average amount of non-overlapping computation per epoch. For a
given epoch which causes a RAW dependence violation, the initial segment of non-
overlapping computation will limit the speedup of the speculative region-we estimate
this initial segment to be half of the average amount of non-overlapping computation
per epoch. We multiply this amount by the number of run lengths for the speculative
region (Nrun-lengths the number of times recovery must occur) to compute the number
of cycles spent recovering,.

Now we may calculate the speedup limit due to forwarding, communication la-
tency, and recovery by adding the critical path, the communication cycles and the
recovery cycles for the speculative region, and dividing the sum into the total number
of cycles for the speculative region:

Limit ’}: orward.comme_recover __ Tf (AG)

~ CPS + Comm, + Recover,”

95

An orthogonal speedup limit may be computed from the run lengths, by mapping
the run lengths onto a fixed number of processors P (in our experiments, P was set
to four). First, we estimate the average number of cycles per epoch in a given region
r by dividing the number of cycles in the speculative region (7)) by the number of

epochs in the speculative region (/NeP°¢hs):

T,

Tuug..cpoch —
r Zvepachs :
»

(A7)

We may estimate the number of cycles required to execute a given run length r{ in
parallel on P processors given the number of epochs in the run length (N°™) as

follows:
epochs

Tr = T209-2P0ch « ceiling(ir—‘P—). (A.8)

Here, we assume that P epochs will always be executed concurrently until the run
length end is reached, or until there are less than P epochs left in the run length. We
also assume that each new run length begins on P free processors.

Using the number of cycles to execute each run length in a speculative region as
computed by equation (A.8), we may estimate the limit to speedup due to the run

lengths for that speculative region:

_ I
ZVrl Tr,rl '

: o sprunlength __
Limit] =

(A.9)

A.4 Speedups

Speedup limits due to forwarding, communication latency, recovery and run lengths
may be combined to calculate a realistic speedup for a given speculative region.
This is computed by finding the minimum of the limit to speedup due to forwarding,

communication latency and recovery, and the limit to speedup due to the run lengths:

Speedup, = min(Limit[orword-comm.recovery [i srun-lengthy (A.10)

Using equation (A.10), and given the percentage of total execution time of each
speculative region, we may estimate the number of cycles required to execute all

speculative regions in parallel with

%Ezec,

Tparallel = Tariginnl_program X g Speedupr < 100 (A.ll)
Given that
Twith_’TLDS = Tpa.rauc! + nequentiah (A-]-Q)

where Tiequentiat is the number of cycles to execute the sequential portion of the

application. We may then use Amdahl’s law [11] to compute program speedup:

Toriginal_program (A.13)

SCEduppragram_with_TLDS = T T .
parallel + sequential

o6

Bibliography

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS Parallel Benchmarks.

3]

4]
(5]

[6]

Technical Report RNR-91-002, NASA Ames Research Center, August 1991.

E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam.
Compiler-directed page coloring for multiprocessors. In Proceedings of the Seu-
enth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 244-255, October 1996.

Standard Performance Evaluation Corporation. The spec95int benchmark suite.

Technical report. http://www.spechbench.org.
K. M. Dixit. New cpu benchmark suites from spec. In COMPCON, Spring 1992.

M. Farrens, G. Tyson, and A. R. Pleszkun. A study of single-chip proces-
sor/cache organizations for large numbers of transistors. In Proceedings of the
21st Annual International Symposium on Computer Architecture, pages 338-347,

April 1994.

M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich, and
W. S. Lee. The m-machine multicomputer. In Proceedings of the 28th Annual

International Symposium on Microrchitecture, December 1995.

57

[7]

(8]

[9]

[10]

[13]

M. Franklin. The Multiscalar Architecture. PhD thesis, University of Wisconsin

- Madison, 1993.

M. Franklin and G. S. Sohi. Arb: A hardware mechanism for dynamic reordering

of memory references. IEEE Transactions on Computers, 45(5), May 1996.

D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W.
Hwu. Dynamic memory disambiguation using the memory conflict buffer. In
Proceedings of the 6th International Conference on Architecture Support for Pro-

gramming Languages and Operating Systemns, pages 183-195, October 1994,

G. Goff, K. Kennedy, and C. W. Tseng. Practical dependence testing. In Proceed-
ings of the ACM SIGPLAN’91 Conference on Programming Language Design

and Implementation, pages 15-29, June 1991.

John L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,

31(5):532-533, May 1988.

A. S. Huang, G. Slavenburg, and J. P. Shen. Speculative disambiguation: A
compilation technique for dynamic memory disambiguation. In Proceedings of
the 21st Annual Internationael Symposium on Computer Architecture, pages 200-

210, April 1994.

N. P. Jouppi. Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 364-373, May

1990.

99

[14] S. W. Keckler and W. J. Dally. Processor coupling: Integrating compile time

[15]

16]

[17]

18]

[19]

21]

and runtime scheduling for parallelism. In Proceedings of the 19th Annual Inter-

national Symposium on Computer Architecture, pages 202-213, May 1992.

J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A multithreading tech-
nique targeting multiprocessors and workstations. In Proceedings of the Sizth
International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 308-318, October 1994.

D. E. Maydan. Accurate Analysis of Array References. PhD thesis, Stanford

University, September 1992.

B. A. Nayfeh, L. Hammond, and K. Olukotun. Evaluation of design alterna-
tives for a multiprocessor microprocessor. In Proceedings of the 23rd Annual

International Symposium on Computer Architecture, pages 67-77, May 1996.

A. Nicolau. Run-time disambiguation: coping with statically unpredictable de-

pendencies. [EEE Transactions on Computers, 38:663-678, May 1989.

R. S. Nikhil and Arvind. Can dataflow subsume von Neumann computing. In
Proceedings of the 16th Annual International Symposium on Computer Architec-

ture, pages 262-272, May 1989.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case
for a single-chip multiprocessor. In Proceedings of the Tth Annual International
Symposium on Architectural Support for Programming Languages and Operating

Systems, October 1996.

W. Pugh. A practical algorithm for exact array dependence analysis. Commu-

nications of the ACM, August 1992.

[22]

[23]

28]

[29]

60

L. Rauchwerger and D. Padua. The Irpd test: Speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization. In Proceedings
of the ACM SIGPLAN ’95 Conference on Programming Language Design and

Implementation, pages 218-232, June 1995.

A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the memory wall: The case for
processor/memory integration. In Proceedings of the 23rd Annual International

Symposium on Computer Architecture, May 1996.

B. J. Smith. Architecture and applications of the HEP multiprocessor computer

system. SPIE, 298:241-248, 1981.

M. D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Stanford

University, November 1991.

M. D. Smith. Support for Speculative Ezecution in High-Performance Processors.

PhD thesis, Stanford University, November 1992.

G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In Pro-
ceedings of the 22nd Annual International Symposium on Computer Architecture,

pages 414-425, June 1995.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 392-403, June 1995.

Michael Wolfe. Optimizing supercompilers for supercomputers. The MIT Press,

Cambridge, Massachusetts, 1989.

1.6

1

VWA N INJ I

TEST TARGET (QA—=3)
14

_
—

150mm

.

125

I

e9 e W o V 7

£ieg,
wizid
28825 =
2iil g
il !
5 g
r
X

