
The Potential for Thread-Level Data
Speculat ion in Tight ly-Coupled

Mult iprocessors

J. Gregory Steffan

.4 Thesis submitted in conformity with the requirements

for the Degree of Master of Applied Science in the

Depart ment of Elect rical and Computer Engineering

University of Toronto

@ Copyright by J. Gregory Steffan 1997

National Library !*l of Canada
Bibliothèque natio~ale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services seivices bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa ON K1A ON4 Ottawa ON Kt A ON4

Canada Canada
Your & Votre rdlÔrenca

Our W Notre felrlreoce

The author has granted a non- L'auteur a accordé une iicence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothèque nationale du Canada de
reproduce, loan, distribute or sell reproduire, prêter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thèse sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L'auteur conserve la propriété du
copyright in this thesis. Neither the droit d'auteur qui protège cette thèse.
thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent être imprimés
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

The Potential for rrhread-Level Data

Speculation in Tight ly-Coupled

Mult iprocessors

J. Gregory Steffan

Master of Applied Science, 1997

Department of Electrical and Computer Engineering

University of Toronto

Abstract

To fully exploit the potential of single-chip multiprocessors, we must find a way to

parallelize non-numerie applications. However, compilers have had little success in

parallelizing non-numeric codes due to their complex data access patterns. This the-

sis explores the potential for using thread-level data speculution (TLDS) to overcome

this limitation by allowing the compiler to view parallelization solely as a costlbenefit

tradeoff, rather than something which may violate program correctness. Experimen-

ta1 results demonstrate that TLDS can offer significant program speedups. CVe also

demons trate t hat t hrough modest hardware extensions, a standard single-chip multi-

processor could support TLDS by augmenting the cache coherence scheme to detect

dependence violations, and by using the primary data caches to buffer speculative

state. We quant@ the impàct of this implementation on performance, and we also

evaluate the compiler support necessary to exploit TLDS.

Acknowledgement s

First and foremost, I must thank my supervisor Todd Mowry for his efforts in

this work, for his guidance and encouragement, and for going out of his way to make

the last seventeen months an invaluable experience. Thanks to everyone in the lab

(J. Alex, J. Dan, J. Derek, J. Guy, J. Mark, J. Rob, J. Steve and others) for fielding

questions, providing comic-relief and not making me eat a t Kow's very often. My

utmost gratitude goes to my room-mate Mark for broadening my convictions and

strengthening my horizons, and to al1 of my other friends for many years of not being

strangers. 1 am forever indebted to my family, the foundation of any and al1 of my

accomplishments, and to Nancy for her love and support, and for being my best

friend. Financial support from NSERC and ITRC is also gratefully acknowledged.

Contents

Abstract

Acknowledgement s

Table of Contents

List of Figures

List of Tables

iii

vii

1 Introduction 1

1.1 Thread-Level Data Speculation . 2

1.2 An Example: Compress . 4

1.3 Reiated Work . 7

1 .XI The Privatizing Doall Test . 7

1.3.2 The~lultiscalar~4rchitecture 8

1.4 Objectives and Contributions . 10

1.5 Ovel-view . 11

2 Experimental Framework 13

2.1 Finding and Simulating Speculative Regions 13

. 2 .1 . Descriptions of Speculative Regions 15

. 2.2 Performance Metrics 17

2.2.1 RunLengths . 17

. 2.2.2 CriticalPathLengths 19

3 Impact of TLDS on Thread-Level Parallelism 21

. 3.1 Relaving Memory Data Dependences 21

. 3.2 Fonvarding Data Between Epochs 24

3.2.1 Impact of the Synchronization Scheme and Scheduling 25

. 3.2.2 Impact of Communication Latency 26

. 3.3 PotentialSpeedups 28

. 3.3.1 Region Speedups 28

. 3.3.2 Program Speedups 30

. 3.4 Sunimary 31

4 Architectural Support for ~hréad-~evel Data Speculation 32

. 4.1 Shread &fanagement 33

. 4.1.1 Example 35

4.2 Extending Cache Coherence to Detect Data Dependence Violations . 36

. 4.2.1 Impact of Cache Line Size On TLDS 38

. 4.3 Using the Cache to Buffer Speculative State 39

. 4.3.1 S torage Required 40

. 4.3.2 Associativity Required to Avoid Replacement 41

4.3.3 Adding -4 Victim Cache . 43

. 4 4 Summary 44

5 Compiler Support for Thread-Level Data Speculation 45

. 5.1 Finding Speculative Regions 45

5.2 TLDS Transformations and Optimizations 46

5.3 Surnrnary . 48

6 Conclusions 49

6.1 Future Work . 50

Appendix 51

A Experimental Methodology In Depth 51

A.1 Run Lengths . 51

A.2 Critical Path Lengths . 52

. .4.3 Speedup Limits 54

.4.4 Speedups . 55

Bibliography

List of Figures

1.1 Examples of data speculation.

1.2 Esample TLDS execution.

1.3 Block diagram of a single-chip multiprocessor.

2.1 Example measiirement and execution of run Icngths.

2.2 Examples of fonvarding with coarse and fine grain synchronization. .

3.1 Average TLDS run lengths given various levels of memory dependence

optimizations.

3.2 Speedup limits due to fonvarding scalars both for mernory and register

dependences.

3.3 Speedup limits due to fonvarding for varying communication latency.

3.4 Possible region speedup on four processors.

3.5 Possible program speedup on four processors.

4.1 Example of a potential software interface for TLDS execution. . . .

4.2 Example of an augmented invalidation-based cache coherence scheme

which supports TLDS.

4.3 Impact of cache iine size on run lengths due to memory dependences.

4.4 bfaxirnum set population per epoch in a 16KB cache.

4.5 Average victims per epoch in a 16KB cache. 43

List of Tables

2.1 Integer benchmarks . 14

2.2 Benchmarks and speculative regions 15

3.1 Description of optimization levels used to relax R4W memory data

dependences . 22

3.2 Occurrence of memory data dependence types in speculative regions . 23

4.1 Average amount of storage required per epoch for buffering speculative

accesses . 41

Chapter 1

Introduction

As the number of transistors that can be integrated ont0 a single VLSI chip continues

its dramatic rate of increase, processor architects are faced with the pleasant chal-

lenge of finding the best way to translate these additional resources into improved

performance. While there have been several proposals [6, 7, 14, 15, 23, 28, 271, per-

haps one of the more compelling options is to integrate multiple processors onto a

single chip [5, 20, 17, 14, 71. Froni a VLSI perspective, single-chip multiprocessors are

attractive because their distributed nature allows the bulk of the interconnections to

be localized, thus avoiding the delays associated with long wires [20].

While single-chip multiprocessing will clearly increase cornputational throughput,

it n d l only reduce the execution time of applications that can exploit parallelism.

Hence the key question is how do we convert the applications we care about into par-

allel programs? Expecting programmers to only m i t e parallel programs from now on

is unrealistic. Instead, the preferred solution would be for the compiler to parallelize

programs automatically. Unfortunately, compilers have only been successful so far

a t parallelizing numeric applications [2, 10, 221. For single-chip multiprocessing to

have an impact on the majority of users, we must also find a way to autornatically

parallelize non-numen'c applications.

One of the prirnary challenges in automatic parallelization is determining whether

data dependences exist between two potential threads that would prevent them from

running safely in parallel. To address this problem in numeric codes, a considerable

amount of research has focused on analyzing array accesses within DO loops [IO, 16,

211. Although progress has been made in this area, the problem is considerably

more difficult for non-numeric codes due to their complex access patterns, including

pointers to heap-allocated objects and complex control flow. Given the size and

complesity of real non-nurnenc programs, autoniatic parallelization appears to be an

unrealistic goal if the compiler must statically prove that threads are independent.

Instead, we would prefer to relax the constraints on the compiler by allowing it to

view parallelization solely as a cost/benefit tradeoff-i.e. if the compiler believes it

is likely that two threads are independent, it can go ahead and parallelize them

withou t worrying about violating program correc tness. In this thesis, we quanti&

the performance advantages of a technique which provides this Bexibility: thread-

leuet data speculation.

1.1 Thread-Level Data Speculation

To maximize parallelism, we often want to perform loads early so that operations

mhich depend on them can be executed concurrently. In contrast, there is less pressure

to perform stores early, since they do not produce register r e s ~ l t s . ~ Hence it is often

desirable to move a load ahead of a n earlier store, which is safe provided that they

access different memory locations. Since it is dBcult for the compiler to precisely

'Since the goal of the compiler is to keep d u e s that wiii be used again soon in registers, stores

should typicdy ody occur when a value will not be loaded again in the near future.

-1 STORE 'p =

LOAD b = "q

1-1

(a) Original Execution (b) Instruction-Level Data Speculation

& , (P , I Ip ! = c l)

LOAD b

(c) Thread-Level Data Speculation

Figure 1.1: Examples of data speculation.

analyze load and store addresses in non-numeric appIications, a potentially attractive

option is for the compiler to speculatively move a load ahead of a store, and resolve

whether this was safe at run-time. If the speculative load turns out to have been

unsafe, then a recovery action is taken to restore the correct program state. This

technique is known as data speculatian, and it works well when the unsafe cases

are sufficiently rare that the overhead of recovery is srnall relative to the benefit of

increased parallelism.

Figure l . l(a) shows an example code fragment, and Figure l . l(b) illustrates how

it might be modified to exploit instruction-level data speculation. In this example, the

compiler is uncertain whether the pointers p and q point to the same address, but nev-

ertheless it has speculatively moved the load ahead of the store. At run-time, we can

verify the safety of this speculative operation either through a simple software check

(i.e. compare p ni th q), or with the help of hardware support such as the "mem-

ory conflict buffer" (91. Previous studies have demonstrated t hat instruction-level

data speculation can significantly increase the amount of instruction-IeveI parallelism

(ILP) withh a program [9, 121.

Thread-Level Data Speculation (TLDS) is analogous to instruction-level data

speculation, except that the load and store are executed by separate threads of con-

trol which run in parallel, as illustrated in Figure l.l(c). A given speculative load

is safe provided that its rnemory location is not subsequently modified by another

thread such that the store should have preceded the load in the original sequential

program. When such dependence violations are detected, a recovery action is taken

such as partially re-executing the thread which performed the failed speculative load.

Although supporting thread-level data speculation is more complicated than support-

ing instruction-level data speculation (as we discuss in detail later in Section 4.2), our

results in this thesis demonstrate that TLDS can significantly increase the arnount of

thread-leuel parallelism (TLP) within non-numeric programs, and can be implemented

in a cost-effective manner.

1.2 An Example: Cornpress

FVe have demonstrated how TLDS works for a small code fragment. In this section,

we esplore how TLDS applies to a real application, including the characteristics of

the application which make it suitable for exploiting TLDS, the support required, and

the optimizations which allow the application to obtain the full benefits of TLDS.

First, we briefly introduce some terminology. We Say that TLDS extracts paral-

lelism from a speculative region, which consists of a collection of dynamic instruction

sequences cailed epochs. For euample, nrith looplevcl parallelism, we would say that

the loop is a speculative region, and the individual loop iterations would be epochs.

Since TLDS also applies to structures other than loops (e.g., recursion), we have

adopted this more general terminology. For TLDS to be effective, each epoch must

contain a reasonable amount of work so that the overheads of thread creation and

data communication d l be relatively small. For TLDS to improve an application's

execution time, the speculative regions must constitute a significant fraction of overall

execution time.

The compress application in the SPEC92 benchmark suite is a good candidate for

exploiting TLDS.? Over 99% of execution time is spent in a single while loop which

reads each input character and performs the compression. The control flow within the

loop body is quite complicated, and on average takes 89 dynarnic instructions. CVhile

this may appear to be an abundant source of data parallelism, a compiler cannot

statically prove that loop iterations are independent because they are not. The

input characters are used to index a hash table which is modified; hence when two

character sequences hash to the sarne entry, there is a true read-ufier-zun'te (R4W)

data dependence. Figure 1.2(a) shows a pseudo-code representation of this code.

Fortunately, due to the nature of a hash table, consecutive characters rarely access

the same hash table entry-t herefore there is an opportunity to extract parallelism

during the iterations between actual dependences. Since a single-chip multiprocessor

has a relatively small number of processors, vie do not need a large gap between

clata-dependent iterations to keep the machine busy.

Figure 1.2(b) illustrates how compress can be parallelized using TLDS, where

each epoch (i.e. loop iteration) is executed as a separate thread. Since the threads

are speculative, they must buffer any stores to memory until they are certain that

it is safe to commit their results. If a M W dependence violation is detected, the

thread can recover by re-executing its epoch. As we can see in Figure 1.2(b), the

number of epochs between R4W data dependences dictates the amount of parallel

speedup that can be achieved-we di quantdy this number for compress and other

applications later in Chapter 3.

?The same W true for the SPEC95 version of compress, which behaves quite similady.

while (cont hue-cond) {

(a) Compress Pseudo-Code (b) TLDS Execution of Compress

Figure 1.2: Example TLDS execution.

In addition to the hash table accesses, cornpress contains several other sources of

RW data dependences, but fortunately they can be eliminated with the proper com-

piler support. For example, the in-count variable is incremented on each iteration to

count total input characters-the compiler can recognize this as an induction variable,

and eliminate it since it is implicit in the epoch number. Loop-carried dependences

also exist inside get char O and put char O -these could also be eliminated through

parallel implementations of the I/O routine^.^ The out -count variable is condition-

ally incremented inside the loop to count total output characters; since it is not used

ot hemise within the loop, the compiler could recognize this as a reduction operation

and optimize it accordingly (i.e. each processor's partial sum is added together at

the end of the loop). Two other variables are sometimes modified within the loop

and their values are often used: of f set, which is a scalar, and bp, which is a pointer

While pardel input routines are straightfotward, pardel output routines are somewhat trickier.
To reconstruct the output Stream correctly, the epoch number may be passed to the putchar0
routine to provide a total ordering.

used to index a buffer. The compiler should be able to recognize the scalar data

dependence, and with proper hardware support could fonvard this value directly to

consurning threads rvhenever it is modified. While the pointer dependence could also

be forwarded, recognizing it would be more difficult for the compiler.

Thus we see that a range of different compiler optimizations, with varying degrees

of complexity, are useful for getting the Full benefit of TLDS-we will break d o m

the importance of each of these techniques later in Chapter 3.

1.3 Related Work

While instruction-Ievel data speculation has received much attention [9, 12, 261, there

has been relatively little work so far on thread-level data speculation. In this section,

we briefly discuss the two rnost relevant works to this study, the priuatizing doall

test [22] and the Wisconsin rnultiscalar architecture [7, 271.

1.3.1 The Privatizing Doall Test

Padua et al. [22] have devised a method of parallelizing loops for numeric codes in the

presence of ambiguous data dependences. Their approach, called the privatizing doall

(PD) test is entirely software-based, allowing the compiler to parallelize loops without

fully disambiguating al1 memory references. For a given loop, the PD test is performed

on each shared variable with ambiguous references by creating corresponding shadow

a n a y s to track read and wnte accesses. ,4t the end of the parallel execution of the

loop, the shadow arrays are examined. If any cross-iteration data dependences were

violated, the loop is re-executed sequentiaily. Othenvise, nTe knom that the parallel

execution of the loop mas correct.

Although a purely software-based approach is attractive, there are two shortcom-

ings to the PD test. First, the PD test requires the creation of shadow storage for ail

shared data, and is therefore not applicable to most non-numeric codes due to their

complex data structures and extensive use of heap-allocated objects. Second, the PD

test does not extract any parallelism in the presence of a single cross-iteration R4W

dependence, since the loop is re-executed sequentially in such cases. Because of this,

the PD test is only effective in parallelizing a narrow class of ioops.

1.3.2 The Multiscalar Architecture

The most relevant work to this study is the Wisconsin multiscalar architecture (7,

27, 81. This architecture performs aggressive control and data speculation through

the use of devoted hardware structures and complex fonvarding mechanisms. This

section describes the multiscalar architecture and how it executes an application,

beginning wit h the compilation process.

During compilation for rnultiscalar execution, a program is broken up into srnall

tasks. A task may consist of a only few instructions or perhaps several basic blocks.

The compiler inserts a bit-vector called the create mask into every task denoting

which registers are live at the end of the task. Hardware then uses this information

to fonvard register values between tasks.

The multiscalar architecture speculatively executes tasks in parallel, performing

control speculation by executing target tasks before the corresponding branches have

been resolved. Data speculation is also supported, allolving tasks which are possibly

data-dependent to be executed in parallel. We now discuss the hardware mechanisms

which support these features.

Processors in the multiscalar architecture are ananged in a ring, and each proces-

sor is tightly-coupled with its two neighbouring processors. .4t any given time during

execution, one of the processors is considered the head of the ring. This is the pro-

cessor which is executing the oldest task, and its work is not considered speculative

since it cannot depend on previous tasks.

There are two main benefits to the ring architecture. First, the ordering between

tasks is implied by the order of the processors in the ring, thus making it trivial for the

task manager to terminate the appropriate tasks when a data dependence violation

occurs. Second, the tight-coiiplirig of adjacent processors in the ring simplifies register

forwarding, since register values must be forwarded between consecutive tasks which

are executed by consecut ive processors.

Register values are fonvarded between tasks by hardware using the create mask

described earlier. The last definition of each register which is live at the end of the

task is fonvarded to the next processor in the ring. In the receiving processor, each

register has a busy bit which is set when the register value arrives, thus synchronizing

the communication of register values between tasks.

In order to support data speculation, the multiscalar architecture inciudes the

address resolution bufler (ARB) [SI which performs dynamic mernory disambigua-

tion. The ARB sits between the processors and the first-level cache, and al1 memory

accesses are filtered through it. When a store to memory occurs! the store address

and the value are kept in one of the XRB's associative entries for the corresponding

processor. When a memory access occurs, the ARB is searched for accesses to the

same address-if the AR8 notices that a store and load to the same address occur out

of sequence, then al1 speculative tasks including and beyond the violating task are

terminated. This mechanism d o m tasks to be executed in parallel such that either

memory dependences are satisfied or speculation fails.

Although the multiscalar paradigm allows control and data speculation, it does so

at the cost of an architecture which is devoted to that mode of execution. The ring

Iayout of processors is beneficial for fonvarding data between consecutive tasks, but

it would not be efficient in executing a conventional parallel program. The ARB is a

large and complex structure. Since an associative search must be performed for most

memory accesses, latency through the ARE! will be longer than that of an ordinary

first-level cache. This means that the multiscalar architecture will not be efficient

at executing multiprogramrning workloads or even conventional parallel programs.

However, experimental results for the multiscalar architecture show that speculative

execution is a promising way to improve the performance of non-numeric applications

using multiple processors. An important question is whether speculative execution

may be supported in a non-devoted architecture which is also effective on other types

of workloads.

1.4 Objectives and Contributions

Given a "generic" single-chip multiprocessor as a starting point, where processors

share a second-level cache and the individual primary caches are kept coherent (as

s h o w in Figure 1.3), this study attempts to answer the following questions. First,

does adding support for TLDS signincantly improve the performance of non-numeric

applications through increased thread-level parailelism? We quantify this answer

through a detailed study of integer applications taken from the SPEC92 and SPEC95

benchmarks suites, and find that significant improvements can be achieved. Second,

can we provide the necessary hardware support for TLDS in a cost-effective manner-

i.e. without a centralized structure such as the ARB? We propose a simple extension

Single Chip or Multi-Chip Module

,
I , Shared L2
I *

Processors

First-Level Caches

Second-Level Cache

Figure 1.3: Block diagram of a single-chip multiprocessor.

to an invalidation-based cache coherence protocol which allows us to detect unsafe

speculation, and we rely on software (rather than just hardware) to recover the correct

program state in such cases. CVe also propose using the cache to buffer speculative

writes, and find that this is a feasible approach. Finally, what compiler support

is needed to effectively exploit TLDS? CVe provide a detailed breakdown of what

transformations are necessary, and how much they help performance.

1.5 Overview

The remainder of this thesis is organized as follows. Chapter 2 describes the ex-

perimental methodolog. Chapter 3 quantifies the potential performance impact of

TLDS on idealized hardware, and investigates the minimum compiler and hardware

support required to properly exploit TLDS.

Chapter 4 presents possible hardware support for TLDS, including thread man-

agement issues, ertending the cache coherence mechanism to detect R N dependence

violations, and using the cache to bdïer speculative state. The impact of this im-

plernentation on the results for idealized hardware is also discussed. The compiler

support required to exploit TLDS is given in Chapter 5-basic transformations and

support are described, as ive11 as performance-improving optimizations.

Finally, Chapter 6 concludes the thesis by summarizing the potential for extract-

ing parallelism with TLDS in tightly-coupied multiprocessors, and describing possible

future work for TLDS.

Chapter 2

Experiment al Framework

This section describes our experirnental methodology, including the applications we

study, our method of finding speculative regions, the simulation environment, and

the performance metrics we measure.

2.1 Finding and Simulating Speculative Regions

To quantify the potential for TLDS in non-numeric codes, we examine a set of real

non-nurneric applications in mhich potential speculative regions are identified by hand.

Table 2.1 summarizes the ten non-numeric applications studied, which are taken

from the SPEC92 [4], SPEC95 [3], and NAS Parallel [l] benchmark suites. These

applications were compiled with -02 optimization using the standard MIPS compilers

under IRIX 5.3, and the source code and resulting object files were not modified in

any way.

Table 2.2 lists the speculative regions analyzed in this study. To locate speculative

regions, the IRUC prof utility was used to ident& regions that account for a large

portion of total execution time. These regions were then inspected by hand to d e

Table 2.1: Integer benchmarks.

termine whether they were good candidates for exploiting TLDS. If so, these regions

were explicitly identified to the sirnulator through their instruction addresses. The

simulator reads sequential execution traces generated by the MIPS p i x i e utility [25]

to mesure the exact data dependences between epochs in each speculative region.

For the sake of simplicity and simulation speed, instructions are assumed to execute

on an ideal single-issue processor-in other words, we assume that one instruction is

issued every cycle.

Since identifying speculative regions by hand was a timoconsuming process, we

were not able to explore al1 possible regions, particularly in large programs such as

gcc (notice in Table 2.2 that the two regions in gcc account for only 12% of execution

time). We believe that an automated feedback-directed tool would have located a

larger set of speculative regions, thus irnproving the overall effectiveness of TLDS in

improving performance.

Suite

SPEC92

SPEC95

N.4S Parailel

Benchmark

compress

gcc
espresso

li

SC

m88ksim

* ijpeg
perl

go
buk

Input

Data Set

(size:name)

ref5n

ref:stmt.i

refibca.in

ref.li-input .lisp

refiloadal

test:ctl.raw

train:vigo.pprn

test:primes.pl

train:2stone9.in

N = 65536

Description

Perforrns data compression

C compiler

Booiean function minimizer

Lisp interpreter

Spreadsheet calculator

Simulator for a 88100 microprocessor

Jpeg image processor

PerI script interpreter

Plays the game "go" against itself

Irnplernentation of the bucket-sort algorit hm

Table 2.2: Benchmarks and speculative regions

2.1.1 Descript ions of Speculat ive Regions

Benchmark

cornpress

PPPgcc

espresso

li

SC

rn88ksirn

ijpeg
p erl

60
buk

To gain a better understanding of the types of regions which are suitable for TLDS,

we now give a brief description of each speculative region.

compress. ri: This speculative region is the main while loop in the compress ()

routine, comprising 99.9 % of overall execution time, as described earlier in

Section 1.2. The loop performs data compression using hash tables to rnaintain

the compressed patterns.

Region

r l
r l
r2

r l

r l
ï2

r l

r l

r l

r l

r l

r l
r2

gcc .ri: This for loop traverses a List of instructions to check for registers that may

be available to use for re-loading spilled pseudo registers.

gcc . r2: This f o r loop traverses the basic block List, solving the Live variable analysis

dataflow problem. This implies that only iterations mhich propagate changes

between basic blocks dl have many data dependences between them. As the

algorithm converges, data dependences become more sparse and the amount of

Region Description
(src-file:function():loop,type, sn l ine)

cornpress.c:compress():while, line 784
reloadl .c:reload() :for, Iine 421
flow.c:Iifearialysis() :for, line 680

cornpl.c:compllift():for, Iine 269

xldmem.c:sweep() :for, Line 417
xidmem.c:vmark():for, Line 399

interp.c:ReaiEvalAll():for, Line 1001
go.c:goexec():while, line 118

jccolor.c:rgb~ycc~convert () :whiIe, line 132

rege..ec.c:regmatch() :while, line 544

g29.c:getefflibs():for, line 636

buk.f:bucksort():do, line 137
buk.f:bucksort ():do, line 124

Average
Dynamic
Instrs

per Epoch

89

1092
1593

32

19

286

36
1232

75 14

67

80

26
18

% of
Total

Dynamic

Instrs

99.9

8.1
4.0
19.4

21.9
5 1.2

69.3

99.3

10.0

35.8
6.8

16.5
11.4

parallelism available between data dependences increases.

espresso. ri: This region is a for loop which performs boolean set operations on

a data space which is partitioned into two arrays of "cubes". A read-only

operation is performed on each cube from one List, the result of which determines

if the current cube from the other list is modified. Because of these cross-

iteration ROV dependences, known methods are not be able to parallelize this

loop.

s c . rl: This region is a f o r loop which calculates a value for each ce11 in a spread-

sheet. Since it is not known at compile-time which cells are data dependent,

the calculation of cells rnay not be parallelized using known techniques.

m88ksim .rl: M88ksim is an architecture simulator, and this while loop simulates the

data pat h, calling the Datapath () function each simulated cycle and checking

for interrupts and errors. Containing 99.3 % of overall execution time, this

region of code operates mostly on statically allocated objects although there

are several pointer dereferences which would be hard to disambiguate statically.

i jpeg . rl: This while loop converts rows of "rgb" samples to the JPEG colourspace.

Although most of the data structures accessed in the loop are arrays, the use

of indirection in the array subscript expressions prevents the loop from being

parallelized using known techniques.

pe r l .rl: The regmatch0 function matches regular expressions using this while

loop, which occasionally calls regmatch0 recursively to parse parentheses.

go. rl: This f o r loop checks board positions and performs some list operations. Since

the lists are allocated dynamicaily, parallelization is not possible t hrough known

techniques.

buk. ri: This region is a do loop which cornputes the rank for each key in a set of key

values stored in an array. The array which stores the ranks is indexed indirectly,

t hus making its accesses difficult to disambiguate.

buk. r2: This region is a do loop which counts the occurrence of each key in an array

of key values, but rnay not be parallelized due to the indirection in the array

siibscript expressions.

Although parallelism is available in many of these regions, it is evident that known

techniques are not effective in parallelizing t hem due to complex data structures, am-

biguous array subscript expressions, or the possibility of cross-iteration data depen-

dences. In Chapter 3. ive demonstrate that TLDS can exploit the available parallelism

in these situations.

2.2 Performance Metrics

To estimate the potential performance gain resulting from TLDS, our simulator col-

lects two performance metrics-run lengths and critical path lengths-which are de-

scribed below.

As illustrated earlier in Figure 1.2, TLDS can exploit parallelism whenever gaps

esist between data-dependent epochs. We quant@ this potential by computing the

run lengths, mhich are the number of consecutive epochs within a speculative region

delimited by performance-limiting read-after-mite (RAW) data dependences. Write-

after-read (WAR) and write-after-mite (WAW) dependences between epochs may

Run-Lengths: 7 3 4

Threshold T = 4

Average Run Length = 3

(a) Measurement of Run Lengths (b) Execution on Four Processors

Liinited By Run Lengths

Figure 2.1: Esample measurement and execution of run lengths.

also exist, but these may be satisfied through rnernory renaming, and hence should

not lirnit performance.

While RACV dependences can potentially disrupt parallelism (forcing a processor

to re-execute an epoch), this is not always the case. Given that a single-chip multi-

processor will only support T outstanding speculative threads, Ive know that when

we are executing epoch Ei, any epoch Ej where j 5 (i - T) must have committed its

statc already. Hence a R4W dependence of distance d, where d > T, will not limit

Our ability to exploit parallelism. For example, assuming that T = 4 in Figure 2.l(a),

the R4W data dependence s h o w between epoch Eg and epoch E3 will not limit

performance. Therefore there are only two performance-limiting data dependences

Nithin these nine epochs, thus resulting in nui lengths of two, three, and four. The

average run length size of three corresponds roughly to the maximum speedup we

might expect to see on four processors, as illustrated in Figure 2.l(b). Hence we Nil1

use average run length as a metric for the potential thread-level parallelism.

2.2.2 Critical Path Lengths

In some cases, we may find that RAW data dependences always exist between con-

secutive epochs, thus limiting the run lengths to one. For example, a scalar variable

might be modified and used during each epoch such that it is neither an induction

variable, reduction operation, nor anything else that the compiler can optimize amy.

Although the epochs cannot be fully overlapped in such cases, we may still be able to

partiallp overlap their esecution by directly forwarding the dependent values becween

epochs. '
Fonvarding data requires both a data transfer mechanism and also some form

OF synchrcnization, so that the receiving processor knows when the vaiue is ready.

Data transfer can occur either through memory or through registers (7, 271, and syn-

chronization can be performed either explicitly using wait/signal or irnplicitly using

full/empty bits (6, 14, 241. If multiple values are to be fonvarded, the synchronization

can occiir at either a coarse granularity (once per epoch) or a fine granularitg (once

per value), as illustrated in Figure 2.2.

The performance of a speculative region that requires fonvarding is limited by

the critical path length, which is the sum of the non-overlapped portions of each

epoch plus the latency of fonvarding these values between epochs. With course-grain

synchronization, the critical path length is straightfonvard to compute, as illustrated

in Figure 2.2(a). With fine-gain synchronization, there can be multiple critical paths

through the epochs, as shown in Figure 2.2(b). In this latter case, the critical path for

the epoch is simply the longest of these critical paths (e.g., the critical pa* for A in

Figure 2.2(b)). Roughly speaking, the maximum potential speedup for a speculative

region in the presence of fonvarding can be computed by dividing the total sequential

numeric applications, this is referred to as udoacrossn pardelism.

(a) Coarse-Grain Synchronization (b) Fine-Grain Synchronization

\ Fonvardeû Value

0 Criîicai Paih

a Cornpufation ovcrlap

Figure 2.2: Examples of Fonvarding with coarse and fine grain synchronization.

esecution time of al1 epochs by the overall critical path length.

Chapter 3

Impact of TLDS on Thread-Level

Paralleïism

In this chapter, nTe prcsent the experimental results which quantify the potential

parallelism that can be achieved using TLDS. We begin by focusing on how TLDS

can relav mernory data dependences. Next, we examine how forwarding data be-

tween epochs affects performance. Finally, these nurnbers are translated into overall

program speedups.

3.1 Relaxing Memory Data Dependences

To Fully exploit TLDS, we should first apply compiler optimizations to eliminate R4tV

data dependences whenever possible. Table 3.1 describes the optimizations that we

consider in these experiments, al1 of which are described in more detail in Chapter 5.

The optimizations in Table 3.1 are listed roughly in ascending order of complexity.

The base case (B) observes all R4W dependences, and represents the inherent run

lengths due to memory dependences in the original code. The induction variables

Table 3.1: Description of optimization levels used to relax R4W memory data de-

pendences.

Name

Base
Induction
Variables
Library

Routines
1 Reductions

(1), l zbraq routines (L), and reductions (R) cases represent situations where the

compiler can realistically recognize and eliminate dependences. These cases require

only software support, and no special hardware beyond basic TLDS. Finally, in the

sralars case (S), we identify scalar dependences which cannot be optirnized away, but

which can potentially be accelerated by explicitly fonvarding their values between

epochs. The level of hardware support for forwarding may Vary, and we consider this

issue in greater depth later in Sections 3.2 and 3.3.

Table 3.2 lists the occurrence of the different types of &ta dependences. Induction

variables are present in four of the thirteen regions. Dependences due to library

routines are rare, but we M11 demonstrate that the elirnination of these dependences is

crucial to the performance of the speculative regions which contain them. Reductions

are relatively common, and scalars are abundant in several of the ~peculative regions.

Figure 3.1 shows the average run lengths for each region given a threshold (T)

of ten outstanding epochs.' Starting with the base case (B), we see that seven of

the thirteen regions have natural mn lengths of two or more under TLDS. Of al1

thirteen regions, the only one whkh is naturally parailel (Le. contains no dynamic

Abbrev

B
1

Mernory Data Dependences Removed

None (al1 M W dependences observeci)
M W dependences caused by updating

--
Scalrus

'Note that the run Iength can exceed the theshold, given our definition of run length in Sec-

tion 2.2.1. Hence run length does not translate directly into speedup, which is something we take
into account later in Section 3.3 mhen we compute region and program speedups.

Compiler Support Necdecl

None
Recognize induction variables and

L

R

s

induction variables
Case "1" plus RAW dependences in I/O
and memory allocation library routines
Case "L" plus RACV dependences caused

cornpute instead from epoch number
Use parallel versions of library
routines instead
Recognize reductions and localize

by reduction operations

44
bv scalars cornmunicated across e ~ o c h s

accorciingly (e.g., partial sums)

forward explicitlv between e ~ o c h s

Table 3.2: Occurrence of memory data dependence types in speculative regions.

Induction Library
Benchmark Region Variables Routines Reductions Scalars

cornpress r l 1 4 2 2

espresso r l O O O O
li r l O O 1 O

60 r l O O O 5
buk r l 1 O O O

r2 1 O O O

cornpnu.rl gcen k r l a c ~
m l l ~ r n r l 'lprg.* pri.rî 'Oxi bukrl

b u W
gcerl 08pnuo.rf 1I.R

- -- - - - - - - -

Figure 3.1: Average TLDS run lengths given various levels of rnemory dependence

optimizations (see Table 3.1).

data dependences) is i jpeg-ri-the other twelve regions would be unsafe to paral-

lelize without TLDS. Even for i jpeg . ri, it appears unlikely that the compiler could

statically prove that the epochs are independent, given the use of indirection in the

array subscript expressions; with TLDS support, however, the compiler can safely

parallelize t his region despite t his uncert ainty.

Figure 3.1 also shows how the optimizations listed in Table 3.1 c m enhance run

lengths. By eliminating induction variable dependences (1), the average run lengths in

buk. rl and buk . r2 increase dramatically from one to over twenty. Replacing common

library routines (e.g., get char, pu t char, etc.) with parallel versions (L) quadruples

the average run length in compress .rl from one to four. Table 3.2 shows that R4W

dependences due to 1ibrax-y routines are present in gcc .r2 as well, but the run lengths

indicate that they are not performance-limiting. Optimizing reduction operations (R)

provides a small but measurable irnprovement in cornpress. rl. Reductions are also

found in li . rl, S C . r l , and rnost notably in m88ksim. rl (as shown in Table 3.2),

but scalar variables must also be optimized to increase the run lengths for these

regions. In fact, we see that scalar dependences between epochs (S) represent the final

barrier to achieving average run lengths of eight or more in compress . rl, gcc . ri,

li . r i , m88ksim .rl, and p e r l . ri. Although these scalar dependences cannot be

fully eliminated (unlike the 1, L, and R cases), we can potentially accelerate these

cases by explicitly fonuarding the values between epochs, as is discussed in the next

section.

3.2 Forwarding Data Between Epochs

In cases where RAW dependences frequently occur between consecutive epochs and

these dependences cannot be eliminated, we can still potentially accelerate perfor-

mance by partially overlapping the epochs, as described earlier in Section 2.2.2 and

illustrated in Figure 3.2.

In addition to fonvarding scalar memory dependences, we also need to fornard

any register dependences. Both types of forwarding c m potentially be accomplished

through the same mechanism. Although the run lengths in Figure 3.1 ignored register

dependences, ive take them into account throughout the remainder of this thesis

as follows. We eliminate two classes of RAW register dependences: those due to

Figure 3.2: Speedup limits due to forwarding scalars both for memory and register

dependences (c = couse-grain synchronization, f = fine-grain synchronization, s =
fine-grain synchronizat ion wit h agressive instruction scheduling) .

induction variables (directly analogous to the "1" case for memory), and simple cases

wliere a dependence was only introduced by the compiler converting a while loop

into a do-while loop to create a "landing padn.* Al1 other cross-epoch register

dependences are fonvarded, and are similar to the "Sn memory case described in

Table 3.1.

3.2.1 Impact of the Synchronisation Scheme and Scheduling

The performance with fonvarding depends on how aggressively rve attempt to min-

imize the non-overlapped portions of each epoch. In addition to using fine-grain

rather than coarse-grain synchronization (as illustrated in Figure 3.2), we can po-

tentially improve performance hirther by rescheduling the code to move as many

instructions out of the non-overlapped portion of an epoch as possible. To evalu-

ate the potential benefit of improved instruction scheduling, we simulated aggressive

instruction scheduling by t racking the dynamic dependence chain dept h between in-

struction pairs that consume and produce fornardable values. In other words, we
- - -

2For example, the loop test for the while loop in compress .rl caiis getchar O to get the next
character to be processed by the given iteration. When the compiler converts this while loop to a
do-uhile loop, getcharo is caiied at the end of the loop, thus causing a cross-epoch R4CV data

dependence. However, this could be triviaüy fixed through instruction scheduling.

measured the minimum possible sizes of the non-overlapped portions within epochs.

To estimate the upper bound on speedup given forwarding, we divided the total

dynamic instructions in a speculative region by the critical path length, as described

earlier in Section 2.2.2. For our initial experiments, we assume that fonvarded data

can be consumed immediately (e.g., through a shared register file); we consider more

realistic forwarding latencies in the next section.

Figure 3.2 shows the speedup limits due to forwarding. Three regions (i j p e g . r i ,

buk.ri, and buk.rî) do not require any forwarding, and hence are not lirnited by

it. Focusing on the other ten regions, we see that coarse-grain synchronization (c)-

i.e. fonvarding data once per epoch-yields speedups above 35% in only three cases

(compress .ri, SC . r i , and go . r i) , and none of these speedups are above 50%. By

using fine-grain synchronization to fonvard values as soon as they are produced (f) ,

the speedup limit increases to over twofold for seven of the ten regions that re-

quire fonvarding-in several of these cases, the improvement is dramatic. Finally,

by combining fine-grain synchronization with aggressive instruction scheduling (s)

to minimize non-overlapped sections within epochs, we can potentially achieve large

speedups in al1 regions. The benefits of rescheduling are particularly pronounced in

gcc .rl and m88ksim. r i , where speedups in the original code are limited to under

3%, but by rescheduling these relatively large epochs (over 1000 instructions each),

we can potentially achieve speedups of tenfold or more.

3.2.2 Impact of Communication Latency

In addition to the synchronization scheme, another element of fornardhg which may

limit potential speedups is the communication latency. Extremely large communi-

cation latency wiU degrade performance, but how fast must communication be to

(b) Speedup Iimit For fine-grain synchronization wit h aggressive instruction scheduling (s)

Figure 3.3: S peedup limits due to forwarding for varying communication latency.

obtain reasonable performance'? Since we are considering a single-chip multiproces-

sor, a range of communication mechanisms and thus latencies should be available.

Figure 3.3 shows the speedup limits for fine-grain synchronization (f) and for fine-

grain synchronization with aggressive instruction scheduling (s), each for a range of

different communication latencies. Without instruction scheduling (Figure 3.3(a)),

we see that there are three cases. For six of the regions, the communication latency is

not large relative to the overlapped portion, resulting in little change in the speedup

limit. Three of the regions show significant sensitivity to communication latency,

due to the relativeiy small epoch sizes of these regions (see Table 2.2). Finally, the

speedup limit due to fonvarding may be large enough for communication latency not

to be an issue, which is the case for the remaining four regions. With instruction

scheduling (Figure 3.3(b)), al1 regions demonstrate encouraging speedup limits.

In summary, the importance of communication latency depends on the individual

speculative region, although instruction scheduling may eliminate the need for fast

communication in cases where it is an issue.

3.3 Potent ial Speedups

Having gained insight into how TLDS can relax rnemory and register data depen-

dences and exploit fonvarding, we now translate the run length and critical path

metrics into an estimate of actual speedups on a single-chip multiprocessor with four

processors. To estirnate speedups, we combine the limitations imposed both by mem-

ory data dependences and by fonvarding data-both of these effects were s h o w in

isolation in Figures 3.1 and 3.2. We also account for the tirne required to recover from

unsuccessful speculation by adding the average time to execute an epoch for every

speculative epoch which hils. Finally, we account for the fact that parallelisrn cannot

esceed the number of physical processors (four, in this case) a t any given time.

3.3.1 Region Speedups

Figure 3.4 shows the potential region speedups with two different fonvarding latencies:

the "Le' case corresponds to fonvarding data through the normal rnemory hierarchy

(Le. the shared L2 cache) in ten cycles, and the "fast' case uses special fomarding

hardware support to communicate data in just two cycles.3 For each forrvarding

latency, ive show the following five cases. Case "B" is a base case +th TLDS but

no optimizations to eliminate or fornard register or memory dependences. In case

"Br" (and al1 remaining cases), register dependences are optimized and fonvarded,

=An example of fast forwarding support is the register forwarding mechanism proposed by the
>Iuitiscalar architecture [7, 271.

Figure 3.4: Possible region speedup on four processors (L2 = fonvarding through the

shared L2 cache in 10 cycles, fast = special hardware support to fonvard in 2 cycles,

B = base TLDS hardware with no compiler support, Br = register dependences elim-

inated or fornrarded, R = case R dependences eliminated, Sf = case S dependences

eliminated and fine-grain synchronization, Ss = case S dependences eliminated and

aggressively scheduled code wit h fine-gain synchronization, see Table 3.1).

as described earlier in Section 3.2. Case "R" also optimizes away some m e m o l

dependences, as described in Table 3.1. Case "Sf' fonvards rnernory scalars using

fine-grained synchronization, and case "Ss" also reschedules instructions to rnavirnize

parallel overlap.

As we see in Figure 3.4, using TLDS without any compiler support to eliminate or

fonvard data dependences (i.e. case "B") results in no speedup for these regions. Only

two regions (SC. ri and i jpeg . ri) show improvement when register dependences are

optimized and forivarded but memory dependences are not. Eight of the thirteen

regions enjoy significant speedups (50% or more) when memory dependences are

eliminated under case "Rn. Forwarding memory scdars without rescheduling offers

no significant additional improvement, but by rescheduling the code, al1 but one

region potentially achieves an overall speedup of roughly twofold or more on four

processors.

Comparing the performance with and without special hardware support for fast

fonvarding of data, we see that it does make a noticeable difference in performance

in five of the thirteen regions, mainly for the "R" and "Sf' cases. However, when

we reschedule the code to maximize parallel overlap (case "Ss"), we see that the

performance is less sensitive to the fomarding latency. Therefore aggressive compiler

scheduling can potentially elirninate the need for expensive forwarding hardware, thus

allotving us to forward data through the normal cache hierarchy.

3.3.2 Program Speedups

Given the fraction of total execution tirne spent in each region (shown earlier in

Table 2 4 , we can estimate the potential overall speedup for each application. Fig-

ure 3.5 shows these potential speedups for the three more aggressive optimization

levels, and with both types of hardware fonvarding support. To a large extent, the

overall speedup depends directly on our ability to find regions that constitute a large

fraction of overall program esecution tirne. In four applications (compres s, li, SC,

and m88ksim), we found regions covering roughly 70% or more of execution time, and

al1 of these cases can potentiaily enjoy speedups of twofold or more on four processors.

Three other applications (espresso, perl, and buk) achieve more rnodest speedups of

17-37%, and the remaining three applications improve by less than 10%. We believe

that our region coverages (and hence program speedups) are pessimistic for rnany

of these applications because finding regions by hand was a very time-consurning

process, and we could not begin to do justice to large applications such as gcc. We

are planning to automate this process in the future, which should help us find more

Figure 3.5: Possible program speedup on four processors (L2 = fonvarding through

the shared L2 cache in 10 cycles, fast = special hardware support to fomard in 2
cycles, R = case R dependences eliminated, Sf = case S dependences eliminated

and fine-gain synchronization, Ss = case S dependences elirninated and aggressively

scheduled code wi t h fine-grain synchronization, see Table 3.1).

regions.

3.4 Summary

The results in this chapter have demonstrated that TLDS can potentially provide sig-

nificant improvements in t hread-level parallelism, t hus accelerating the performance

of non-numeric applications. To achieve the full benefit of TLDS, the compiler should

eliminate data dependences whenever possible, explicitly fonvard cross-epoch depen-

dences that cannot be eliminated, and reschedule the code to minimize any non-

overlapped sequences. We have also observed t hat aggressive instruction scheduling

might eliminate the need for performing fast data fomarding between processors,

thus allowing us to communkate through the shared L2 cache instead.

Chapter 4

Architectural Support for

Thread-Level Data Speculation

Having dcmonstrated the potential performance benefits of TLDS, we now discuss

how TLDS might be implemented. Our goals are twofold. First, we would like to

support an aggressive f o m of TLDS while requiring only minimal hardware modifica-

tions to a single-chip multiprocessor. Second, we do not want to sacrifice performance

in single-threaded applications or applications that do not exploit TLDS-hence we

will avoid complex, centralized structures which can increase primary data cache

access times. The starting point for our design is a standard single-chip multiproces-

sor tvhere the secondary cache is physically s h e d and the individual primary data

caches are kept coherent to provide a shared memory abstraction.

We begin by discussing the issues involved in rnanaging threads, including soft-

ware's interface to the TLDS hardware support. Next, me illustrate hom cache CO-

herence protocols can be es3ended to detect data dependence violations. Finally, we

demonstrate that the cache itself can be used to buffer speculative side effects until

they can be safely committed to mernory.

4.1 Thread Management

In this section, Ive briefly discuss the architectural mechanisrns which are required

by TLDS for managing and coordinating the parallel threads. Since there is often

flexibility in how the mechanisms might be implemented, our goal is simply to raise

the important issues and discuss tradeoffs. Although we do describe a potential

implementation of TLDS, the purpose of this is to illustrate how TLDS might be

implemented, rather than claiming that this is necessarily the optimal approach.

The first mechanism that is needed is a way to create parallel threads and sched-

ule the epochs ont0 them. One option is to dynamically create a new thread per

epoch, and another is to statically create one thread per processor and have them

execute multiple epochs. The disadvantage of the dynamic approach is the runtime

overhead of frequent thread creation, rvhich rnay be reduced to some extent through

a lightweight f ork instruction [19]. A potential advantage of associating one dynamic

thread per epoch is that it rnay simplify the case of having multiple outstanding (un-

cornmitted) epochs per processor, rather than having a single thread maintain the

state of several outstanding epochs. (There are a number of subtle issues involved

ni th allowing a processor to have multiple outstanding uncommitted epochs, but

such an investigation is beyond the scope of this thesis.)

Since dependence violations are detected by comparing epoch numbers, a mecha-

nism is needed such that each thread's epoch number Ftill be visible to the hardware.

There are two important things to note. Fust, hardware's representation of epoch

numbers does not necessarily need to coincide with epoch numbers in software, pro-

vided that hardware can still make the appropriate relative cornparisons to detect

dependence violations. Second, in some cases software rnight not even need to be

aware of epoch numbers-they could instead be maintained implicitly by hardware.

A third mechanism is needed to distinguish speculative versus non-speculative

memory accesses. Only speculative loads must be checked for RAW dependence vio-

lations, and only speculative store results must be buffered until an epoch successfully

completes. For applications which do not exploit TLDS, al1 memory accesses will be

non-speculative, and hence the TLDS hardware support will not be invoked. One

possibility is to explicitly mark individual memory instructions as being speculative

or iion-speculative-while this approach allows us to interleave both types of accesses,

it unfortunately requires a new flavour of memory instructions. Another approach

is to dynarnically indicate whether a thread is speculative or not-when a thread is

speculative, al1 of its memory references wi1l be interpreted as being speculative. A

thread should become speculative prior to its first speculative load, and can become

non-speculative again once it confirms that al1 of its speculative loads were safe. In

addition, the thread executing the oldest epoch must be non-speculative.

At the heart of TLDS is a mechanism for detecting R4W data dependence vi-

olations and recovering the correct program state whenever they occur. Given the

potentially large number of addresses that must be compared against each other a t

the end of an epoch to determine safety, and @en the fact that the exact interleaving

of accesses between threads is not k n o m a priori since they run asynchronously, a

purely software-based approach of explicitly comparing memory addresses [18] would

appear to be impractical. Instead, we propose extending cache coherence schemes to

allow hardware to detect pot ential dependence violations Mt h lit tle overhead, and

letting software control the recovery process. We will discuss this mechanism in

greater detail later in Section 4.2.

Finally, one aspect of recovering from unsafe speculation which software cannot

perform efficiently on its o m is roiling back any side effects of speculative stores on

rnemory. To do this effectively, we propose evtending the cache functionality so that

hardware can buffer speculative store results until they can be safely committed to

rnemory. PVe will describe this mechanism in more detail later in Section 4.3.

4.1.1 Example

To illustrate how software might interface with these architectural mechanisms, Fig-

ure 4.1 shows how the compress benchmark (described earlier in Section 1.2) might

be modified to exploit TLDS. In this example, the loop has been modified to execute

as a chain of threads, where each thread perforrns the work of one epoch. Since

the hardware will only support a finite number of outstanding threads, we assume

that createmew-thread0 returns a boolean value indicating whether the fork was

successful. If so, the current thread simply terminates once it completes its epoch-

othenvise, the current thread will execute the next epoch itself. In this example, we

assume that hardware implicitly maintains epoch numbers as part of thread creation.

Within the epoch, the thread switches its state to speculative just before its first

speculative Load (the Load of hash(index1)). At the end of the epoch, the thread

waits until it is the oldest thread to ensure that any mites from earlier threads have

been committed-hence any R4W dependence violations would have been detected

by this point. CVhile the thread is waiting, it could potentially suspend itself, thus

freeing the processor to do other work. Finally, the thread checks whether it is safe

to commit its speculative results-if not, it recovers by re-executing the epoch.

vhile (continue-cond) (

EPOCHSTART:
if (cont inue-cond) {

successful~ork =

create~iew-thread(EPOCHSTART,params) ;

do {

...
wait -to-become-oldest -t hread () ;

} while (! attempt-commit ()) ;
if (successfulf ork)

terminateself() ;
else goto EPOCHSTART ;

1
e l se wait ,to-become-oldest -t hread() ;

(a) Pseudo-code for compress (b) TLDS version of compress

- - -

Figure 4.1: Example of a potential software interface for TLDS execution.

4.2 Extending Cache Coherence to Detect Data

Dependence Violations

.\ key component of TLDS support is a mechanism which detects unsafe data

speculation-i.e. whenever a cross-epoch read-after-write (R4W) data dependence

violation has occurred. To provide this support with minimal hardware cost, we

propose a straightfomard extension of an invalidation-based cache coherence proto-

col. Here is the basic intuition behind our scheme. When an earlier epoch performs

a load and 3 subsequent epoch stores to the same address, the coherence protocol

would accept the modified cache Line once the subsequent epoch commits. Similarly,

when two epochs both store to the same address, the coherence scheme FviIl have to

combine the two cache lines when the later epoch c ~ m r n i t s . ~ The case we need to

worry about is when a store from an earlier epoch occurs aj?er a subsequent epoch has

speculatively loaded the same address. When this store occurs (as with any store),

we must invalidate any copies of the cache line to maintain cache coherence. We

augment the functionality of the invalidation such that if it notices that the line has

been speculatively loaded into another cache, it compares the epoch numbers of the

store and the speculative load to determine whether a RAW dependence violation

has occurred.

To illustrate this mechanisni, Figure 4.2 shows how it would work for the sequence

of epochs shown earlier for compress in Figure 1.2. We augment each cache line with

two bits indicating whether the line has been speculatively loaded or modified, and

we associate with each processor an epoch number and a boolean value indicating

whether a dependence violation might have occurred. During step "4" in this ex-

ample, processor 4 speculatively loads the value of hash(lO), thus bringing it into

its cache and setting the speculative load bit for that line. Later, during step "5"'

processor 1 stores to hash (10 1 -during the subsequent invalidation of t his line from

processor 4's cache (step "6'7, ive notice that since the store has an earlier epocli

number (one versus four) and the line vas speculatively loaded, a dependence vio-

lation may have occurred. Hence the violation bit is set for processor 4 (step &7").

When processor 4 subsequently attempts to commit its speculative results, it will

notice that this is unsafe and can recover by re-execute its epoch.

'This may require astate bit per word in each cache h e to mark words which have been modified.

cpoch-number = 4

violation

Figure 4.2: Example of an augrnented invalidation-based cache coherence scheme

which supports TLDS. (Note: the numbers next to the events indicate the order in

which they occur.)

4.2.1 Impact of Cache Line Size On TLDS

A potential drawback of tracking data dependences a t a cache line rather than a

word granularity is the possibility of "false" dependence violations-Le. when sepa-

rate parts of a line were read and written, and hence no tme dependence occurred.

While these False dependences do not affect program correctness, they can reduce our

ability to exploit parallelism by invoking the recovery mechanism when it is unneces-

sa- To quantify horv false dependences might affect TLDS parallelism, we measured

how the average rün lengths due to memory dependences (discussed earlier in Sec-

tion 3.1) changed at 32 and 128 byte granularities. .4s ive see in Figure 4.3, some

applications are insensitive to changes in the dependence granularity, while others

typically experience decreased run lengths with larger Line sizes?

The compiler could potentially avoid false dependences by changing the data

'In some cases, nrn lengths increase sornewhat with Iarger line sizes due to fonuitous circurn-
stances where false vioIations dter run length boundaries relative to the ten epoch window size.

(a) Run lengths for optimization level "Rn

(b) Run lengths for optimization level "S"

5 z'
16

a

i! l2
e

4

O W 12. W lm W 11. w 12. W 12. W (2. W lm W 12, W 121 W 121 W 121 W lt.
tl tl 32 J2 tl 32 n J2 J2 32 Y l

compn8a.rl gccR
a

gccr1
1i.d lLn w.rl

mprruo.rl
p.rl.tl

mâûblmr l bukrl @o.fl b u k R

Figure 4.3: Impact of cache line size on run lengths due to memory dependences.

layout such that these important objects do not fa11 within the same cache lines.

Also, a more sophisticated hardware scheme could maintain state information on a

per-word basis to further avoid faIse dependences. In general, a number of refinements

on this basic scheme are possible, but the bottom line is that run lengths typically

remain long enough that this is a viable approach to detecting unsafe data speculation.

4.3 Using the Cache to Buffer Speculative State

When unsafe data speculation is detected, a thread must recover its original program

state. To simplify this process, we wauld like to buffer any speculative store results

until we are certain that they can be safely committed to memory. Rather thao

building a separate buffer which is devoted entirely to data speculation, it would be

attractive if we could simpiy use the cache as our speculative buffer.

Intuitively, the way this would work is that speculative stores would be free to

rnodify the cache, but the resulting cache lines would conceptually be "locked down"

such that their side effects cannot propagate to the rest of the rnernory system?

Speculatively-loaded cache lines rnust also rernain in the cache for the duration of

the epoch to track possible R4W dependence violations. Special bits associated with

each cache line would indicate this state (e.g., the "speculative store" and "specula-

tive load" bits shown earlier in Figure 4.2). If data speculation fails, the hardware

will squash these speculative lines by marking them invalid; if the data speculation

succeeds, these stored values can be committed to memory and the lines will return

to a non-speculative state. If a line that has been speculatively modified or loaded is

forced out of the cache for any reason, its side effects (if any) will be discarded and

the vioLation bit will be set, indicating that the data speculation has failed."

In this section, the capacity required to buffer al1 speculative accesses will be

measured, as well as the associativity required to avoid replacements. We will also

investigate the impact of adding a victim cache.

4.3.1 Storage Required

A key question that is addressed in this section is whether the cache has sufficient

capacity to hold al1 of the cache lines accessed by a typical epoch. As we see in

Table 4.1, al1 of the regions in our experiments require less than 6KB of buffenng

on average. The worst case is ijpeg.rl, which also has by far the largest epoch

size (9406 icstructions). With 32B cache lines, ali twelve of the other regions require

less than 1.5KB of buffering. Clearly a relativeiy s m d , My-associative cache would

3There are many ways to implement this "locked down" type of behaviour.
"ote that this wiii not resdt in deadock, because the loads and stores of the oldest active epoch

d dways be interpreted as non-spedative.

Table 4.1: Average amount of storage required per epoch for buffering speculative

accesses.

Application

suffice.

4.3.2 Associativity Required to Avoid Replacement

cornpress

34.2 1.07 20.3 2.54

espresso 0.13 0.49

1.6 0.05 1.5 0.19
r2 0.22 5.3 0.66

Region

5.66

0.96

0.94

0.50

0.38

ijpeg
perl

60
buk

An important question is whether mapping conflicts within a realistic primary data

cache with limited associativity would pose a serious problem. To answer this ques-

tion, each region was simulated using a 16KB primary data cache with 32B and 128B

cache lines. We measured the maximum number of lines accessed which map to each

set of the cache with varying associativities. If the maximum number of lines per set

exceeds the number of ways in that set, at least one of these lines will be forced out

of the cache. Figure 4.4 shows the maximum set population of any set nrithin the

cache, both for the average epoch and for the 99th percentile case. As we increase the

associativity, there are more ways within each set, but there are also fewer sets over-

dl , so the maximum set population often increases. Our goal is to fmd the smallest

associativity with enough ways per set to capture these set populations.

As we see in Figure 4.4, a direct-mapped cache does not appear to be SUE-

r 1

rl

r 1
r l
r2

32B Cache Lines
Unique
Lines

Accessed

128B Cache Lines

139.6

11.0

8.6

4 .O

4 .O

Tot al
Storage

(kB)

Unique
Lines

Accmed

Total
Storage

(kB)

4.36 1 45.3

0.34

0.27

O. 13
0.13

7.7
7.5
4.0

3.0

--

(a) 32B cache lines

(b) 128B cache lines

Figure 4.4: Maximum set population per epoch in a 16KB cache (numbers below the

bars indicate the associativity).

cient to capture the set populations. A trvo-way set associative cache is much more

successful-with 32B lines, the 99th percentile case is two or Iess for nine of thir-

teen regions, and the average is almost always less than two. With four-way and

eight-way associativit ies, the average set populations are captured for al1 regions.

For eight-wvay associativity, even the 99th percentile case is always less than eight for

al1 regions. However, associativities of four and eight may increase cache access time

significantly, hindering the performance of applications which do not exploit TLDS.

Therefore, two-way associativity is perhaps the most attractive option.

(a) 32B lines

R
5 3 0 -

25 -
20 -
15 - .r - -
10 - 0

-
5 - , - CI

ooo 0 0 - 0 0 0 oooo Naoo Nooo o - 0 0 0 Noao Cooo oooo
O 4 ! 1.4 1 4 1 4 7 4 7 4 ! 4 4 1 4 1 4

2 1 2 1 2 8 2 0 2 8 2 0 2 8 2 8 2 8 2 8 2 8 2 1 2 1

(b) 128B lines

Figure 4.5: Average victims per epoch in a 16KB cache (numbers below the bars

indicate the associativity).

4.3.3 Adding A Victim Cache

Rather than giving up as soon as a speculatively accessed line is forced out of the

cache, another possibility is to capture these spilled lines wïthin a small victirn

cache [13]. Figure 4.5 shows the maximum number of victim entries necessary to

capture al1 speculatively loaded or modified lines that would be ejected from a 16KB

cache of various associativities. For the direct-mapped strategy, a large vice im cache

would be needed LO capture the 99th percentile case, which may increase overall cache

access time. -4 four-entry victirn cache combined with a two-way set-associative cache

would capture the 99th percentile case for ail regions but i jpeg . rl for 32-byte cache

lines, and al1 but three regions for 128-byte cache lines.

4.4 Summary

CVe have seen that it is feasible to support TLDS through rnodest hardware s u p

port by extending the cache coherence algorithm to detect unsafe data speculation,

involving software in the recovery process, and enhancing the role of the primary

data cache to buffer speculative accesses. A 16KB, two-way set associative cache

used in conjunction with a four-entry victim cache would be sufficient for buffering

speculative state to sirnplify recovery.

Chapter 5

Compiler Support for

Thread-Level Data Speculat ion

The compiler clearly plays a crucial role in evploiting TLDS. In addition to selecting

regions of the code to speculatively parallelize and inserting the appropriate TLDS

primitives, we have also seen that tiie compiler has an important role in optimizzng

the code by removing data dependences and maximizing parallel overlap if we are to

achieve the full potential of TLDS. Some of these compiler issues are briefly discussed

in this chapter.

5.1 Finding Speculat ive Regions

The first step in compiling for TLDS is choosing the appropriate speculative regions

to parallelize. We performed this step by hand in our experiments as follows: ive

used profiling feedback to i d e n t e where the program was spending its time, and me

then attempted to find the largest surrounding regions which did not have obvious

data dependences that would prevent TLDS fiom working. The compiler could also

use feedback information to focus on the important regions of the code, and could

statically analyze data dependences where possible. By performing a cost-benefit

analysis, i t could choose the most promising regions to speculat ively parallelize. Once

the program is actually running, the rate a t which unsafe speculation occurs could

be measured and fed back into the compiler again to further refine its choice of

speculative regions.

5.2 TLDS Transformations and Optimizations

Once speculative regions have been chosen, the compiler shouid perform the op-

timizations described earlier in Section 3.1 (and Table 3.1) to eliminate memory

dependences. We will now briefly describe honr these optimizations would work.

Dependences due to induction variables [29] may be eliminated, given that there is

a mapping between each epoch number (described in Section 4.1) and the value of the

induction variable for that epoch. This is the case if epoch numbers are consecutive

integers, and they are sornehow visible to software. The hardware epoch numbers

rnay be made visible to software, or software may maintain separate epoch numbers.

Certain library routines rnay cause U P V dependences between epochs, such as

input and output (110) routines like get char O and put char O. However, it rnay be

possible for the compiler to replace calls to these routines with calls to new parallel

versions, thus eliminating the data dependences between the calls. 110 routines may

Ge parallelized by using epoch nurnbers to impose an ordering on input and output

characters. Chamcter input would use the epoch number to index the input buffer,

and return the appropriate character. The output buffer for character output can be

extended to store an epoch number wîth each output character. CaUs to the character

output routine may then be made out-of-order as

by the epoch numbers when the buffer is flushed.

long as the characters are sorted

Memory allocation library routines may also cause RAW dependences between

epochs. These routines would be trivial to parallelize, since each processor could

maintain a free list of its own portion of available shared memory.

Reductions [29] are another source of frequent RAW data dependences between

epochs, and must be optimized to fully exploit TLDS. Since a reduction applies an

associative operation to a variable, the order in which the operation is applied by

different epochs does not rnatter. R4bV dependences due to the reduction rnay then

be eliminated by giving each thread a local copy of the variable and combining the

local copies a t the end of the speculative region. Another possibility would be to

maintain one central copy of the variable in mernory, and for each epoch to operate

on it atomically or through some form of lock mechanism.

Finally, the compiler may optimiza scalar variables. .4n important characteristic

of a scalar is that accesses to it are not ambiguous, since it is always referred CO by its

exact location in mernoryl The value of a given scalar rnay therefore be fonvarded

between epochs, if the scalar is the cause of frequent MW dependence violations. It is

important to note that scalar values do not have to be fonvarded to preserve program

correctness, but the performance of TLDS may be improved by doing so. Fonvarding

a scalar value involves the insertion of synchronization whenever the scalar is accessed,

and arranging the communication of the value through shared memory or some faster

means such as a shared register He. The compiler should also aggressively schedule

the code to minimize any non-overlapped portions within epochs.

Once data dependences have been optimized, the compiler must then insert caI1s
-

lThis may be a static memoty address or a location relative to the cunent position of the stack

pointer.

to the TLDS primitives and create recovery code, such as the example in Figure 4.l(b)

illustrates. The compiler can potentially reduce overheads by rninimizing the amount

of recovery code-e.g., rather t han re-executing the entire epoch, only re-execute

the portion that depends on speculative loads. The compiler may also optimize

regions which have a small number of dynarnic instructions per epoch by combining

consecutive epochs. This wodd decrease the relative costs of TLDS overheads and

would give the compiler more instructions to work with when scheduling the code.

Summary

TLDS allows the compiler to focus on parallelism as a performance tradeoff rather

than something which is likely to break program correctness. Although compiling

and optimizing for TLDS is still a non-trivial task, we believe that for non-numeric

codes it is much more feasible than atternpting to statically prove that threads are

independent.

Chapter 6

Conclusions

To enabie a potential breakthrough in the compiler's ability to automatically par-

allelize non-numeric applications, we have investigated thread-level data speculation

(TLDS)-a technique which allows the compiler to safely parallelize code in cases

where it believes that dependences are uniikely, but cannot statically prove that they

do not exist. Our experimental results demonstrate that with realistic compiler s u p

port, TLDS can potentially offer compelling performance improvements-Le. overall

program speedups ranging from 17% to nearly fourfold on four processors in seven of

ten cases-for applications where automatic parallelization would otherwise appear

infeasible. Since Our hand analysis was not e.xhaustive, we believe that even larger

speedups may be possible by applying TLDS more extensively.

To translate the potential of TLDS into reality, we have investigated and quan-

tified the tradeoffs in providing hardware and compiler suppon for TLBS. We find

that only modest hardware modifications to a standard single-chip multiprocessor are

needed: the cache coherence protocol c m be e-xtended to detect R O V dependence

violations and inform software when they occur to invoke recovery actions; the cache

itself can be used to buEer speculative memory accesses; and although e-xtremely

fast inter-processor communication offers some benefit, we can still achieve good

performance by communicating through a shared L2 cache. Due to the distributed

nature of this hardware support, we do not expect it to degrade the performance of

applications which do not exploit TLDS. We have also discussed and evaluated the

compiler optimizations which are necessary to effectively exploit TLDS. Based on the

encouraging results in this study, we advocate that future single-chip rnultiprocessors

provide the modest support necessary for TLDS.

6.1 Future Work

CVe have described possible architectural and compiler support for TLDS. Future re-

search efforts should be made to fully support TLDS in a compiler, and to devise a

working architectural implementation. For the compiler, this will involve automat ing

the process of finding speculative regions and implementing the optimizations de-

scribed in Section 5.2. In addition, the possibility of using TLDS to parallelize new

types of speculative regions such as recursive calls should be investigated. The archi-

tectural implementation outlined in Chapter 4 should be refined. This will involve

defining an exact set of TLDS primitives, and developing a precise cache coherence

scheme for detecting R4W dependence violations.

We have esplored the potential for TLDS in non-numeric codes, since they have

previously been difficult to parallelize. Knowing that TLDS will be an effective

way to parallelize non-numeric codes, it would also be interesting to measure the

impact of TLDS on the simpler case of numen'c codes. The complexity of the array

subscript expressions in some loops of numenc codes prevents parallelization using

b o a methods, while TLDS should prove to be effective.

Appendix A

Experimental Met hodology In

Depth

This appendix describes our experimental methodolog in greacer detail. The meth-

ods used to track data dependences and run lengths are given, and the removal of

data dependences is described. We then present the equations for calculating speedup

limits due to forwarding, communication latency, recovery and run lengths. Finally,

we describe how these are used to compute region and program speedups.

A S Run Lengths

Our sirnulator uses a hash table (indesed by data address) to record the nurnber of

the epoch which performed each load and store for al1 memory locations accessed

within a speculative region, allonring us to track al1 R4W dependences. Using this

information about RAW dependences and the rules given in Section 2.2.1, we may

compute the run lengths for a given speculative regiod

Note that the threshold value T used for aii experiments was 10.

-4s discussed in Section 3.1 and Section 5.2, the compiler may rernove data de-

pendences due to induction variables, certain library routines, and reductions. Scalar

variables may also be optimized such that they do not limit the run lengths. We

removed these data dependences in Our simulations as follows. First, we used the

simulator to profile each speculative region, which gave us the program counter (PC)

pairs for all cross-epoch RAW dependences. We then used the output of the disas-

sembler (which includes source line numbers) to find the corresponding computation

in the source code. For each PC pair which suffered frequent RAW dependence viola-

tions, we examined the corresponding source code to decide whether this dependence

could be eliminated by the compiler. If so, then this PC pair was included in a list

of PC pairs which mas explicitly passed to the simulator, such that it would ignore

any data dependences a t runtime caused by a PC pair in the list.

A.2 Critical PathLengths

Scalar values and registers may be fonvarded between epochs as described in Sec-

tion 2.2.2. To compute the critical path lengths, we specify the PCs of al1 loads

and stores of each fonvarded variable to the simulator, and then measure the criticai

paths for different synchronization schemes:

coarse-grain synchronization: The critical path length for each epoch e in a spec-

ulative region r for this method of synchronization (CP,",D'Segain) is the number

of cycles between the first load of any of the fonvarded values in the epoch and

the last store to any of the fonvarded values in the epoch (see Figure 2.2(a)).

fine-grain synchronization: For this synchronization scheme, we first compute the

critical path length for each fomarded variable v, which is the number of cycles

between the first load of the variable and the last store of the variable. The

critical path length for the epoch e in a speculative region r is then given by

(A. 1)

ivhere we find the maximum of the critical path lengths for al1 fonvarded vari-

ables in that epoch (as illustrated by Figure 2.2(b)).

fine-grain synchronization with aggressive instruction scheduling: To esti-

mate an aggressive instruction schedule, we first find the number of dynamic

instructions in the dependence chain for each forwarded ~ a r i a b l e . ~ For each

forwarded variable v in an epoch e and speculative region r, the critical path

length is the length of the dependence chain between the first load and the last

store to that variable in the epoch (CP{~,"-~rain-rcheduled) The critical path

for each epoch e and speculative region r with fine-grain synchronization and

aggressive instruction scheduling is t herefore

the maximum of the cntical path lengths for al1 fomarded variables in that

epoch.

The critical path lengt h for a speculative region r and synchronization/scheduling

scheme S may then be computed from the sum of the critical path lengths for al1

epochs in that region:

dynamic instruction is part of the dependence diain for a given value if the instruction uses
that value, or if it uses the result of a dpamic instruction already in the dependence chin for that

value,

A.3 Speedup Limits

Having demonstrated how the critical path lengths are computed, we now discuss

how the speedup limits due to fornrarding, communication latency, recovery and run

lengths are computed. The number of cycles spent communicating for a region r is

given by

where the number of epochs in the region (Nyochs) is multiplied by the number of

cycles to communicate between two epochs (Tc-"). This assumes that there is

communication between al1 consecutive epochs.

CVe may also estimate the nurnber of cycles to recover from failed speculation for

a speculative region r:

First, we find the average amount of non-overlapping computation per epoch. For a

given epoch which causes a R4W dependence violation, the initial segment of non-

overlapping computation will limit the speedup of the speculative region-we estimate

this initial segment to be half of the average amount of non-overlapping computation

per epoch. We multiply tliis amount by the number of run lengths for the speculative

region (N~unJm9ths, the number of times recovery must occur) to cornpute the number

of cycles spent recovering.

Noow we may calculate the speedup b i t due to forwarding, communication la-

tency, and recovery by adding the critical path, the communication cycles and the

recovery cycles for the speculative region, and dividing the sum into the total number

of cycles for the speculative region:

An orthogonal speedup limit may be computed from the run lengths, by mapping

the run lengths ont0 a fixed number of processors P (in our experiments, P was set

to four). First, we estimate the average number of cycles per epoch in a given region

r by dividing the number of cycles in the speculative region (T,) by the number of

epochs in the speculative region (1v;poCh3) :

(A. 7)

We may estimate the number of cycles required to execute a given run length rl in

parallel on P processors given the number of epochs in the run length (1 ~ ~ ~ ~ ~ ~) as

follows:

Here, Ive assume that P epochs will always be executed concurrently until the run

Length end is reached, or until there are Less than P epochs left in the run length. We

also assume that each new run length begins on P free processors.

Using the number of cycles to execute each run length in a speculative region as

computed by equation (A B) , we may estimate the limit to speedup due to the run

lengths for that speculative region:

A.4 Speedups

Speedup limits due to fonvarding, communication latency, recovery and nin

rnay be combined to calculate a realistic speedup for a given speculative

lengt hs

region.

This is computed by finding the minimum of the limit to speedup due to fonvarding,

communication latency and recovem and the Limit to speedup due to the run lengths:

Speedupr = m i n (~ i m i t J ~ " d - ~ m ~ e ~ e ~ ~ i ~ i t l ' U n J e n g t h r 1- (-4.10)

Using equation (.4.10), and given the percentage of total execution time of each

speculative region, we rnay estimate the number of cycles required to execute al1

speculative regions in parallel with

(A. 11)

Given that

where Tsepuential is the number of cycles to execute the sequential portion of the

application. We may then use Xmdahl's law [Il] to compute program speedup:

Bibliography

[l] D. Bailey, J. Barton, T. Lasinski, and K. Simon. The NAS Parallel Benchmarks.

Technical Report RNR-91-002, NASA Ames Research Center, August 1991.

[2] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam.

Compiler-directed page coloring for multiprocessors. In Proceedings of the Sev-

enth International Conference on Architectural Support for Programrning Lan-

pages and Operating Sgstems, pages 244-255, October 1996.

[3] Standard Performance Evaluation Corporation. The spec95 int benchmark suite.

Technical report. ht tp://w~vw.spechbençh.org.

[4] K. M. Dixit. New cpu benchmark suites from spec. In COMPCON. Spring 1992.

[5] M. Farrens, G. Tyson, and A. R. Pleszkun. A study of single-chip proces-

sor/cache organizations for large numbers of transistors. In Proceedings of the

2lst Annual Intemutional Symposium on Cornputer Architecture, pages 338-347,

April 1994.

161 M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich, and

W. S. Lee. The m-machine multicomputer. In Proceedings of the 28th Annual

International Symposium on Microrchitecture, December 1995.

[7] M. Franklin. The Multiscalar Architecture. P hD t hesis, University of Wisconsin

- Madison, 1993.

[8] M. Franklin and G. S. Sohi. Arb: -4 hardware mechanism for dynamic reordering

of rnemory references. IEEE Transactions on Cornputers, 45(5), May 1996.

[9] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W.

Hwu. Dynamic rnemory disambiguation using the memory conflict buffer. In

Pmceedings of the 6th International Conference on Architecture Support for Pro-

prnming Languages and Operating Systems, pages 183-195, Octo ber 1994.

[IO] G. Goff, K. Kennedy, and C. W. Tseng. Practical dependence testing. In Proceed-

ings of the ACM SIGPLANY9L Conference on Progmmming Language Design

and Implementation, pages 15-29, June 1991.

[I l] John L. Gustafson. Reevaluating Arndahl's law. Communications of the A CM,

31(5):532-533, May 1988.

[12] A. S. Huang, G. Slavenburg, and J. P. Shen. Speculative disambiguation: -4

compilation technique for dynamic mernory disambiguation. In Proceedings of

the 21st Annual International Symposium on Cornputer Architecture, pages 200-

210, April 1994.

[13] N. P. Jouppi. Irnproving direct-mapped cache performance by the addition of

a small fully-associative cache and prefetch buffers. In Proceedings O/ the 17th

Annual International Symposium on Computer Architecture, pages 364-373, May

1990.

[l4] S. W. Keckler and W. J. Dally. Processm coupling: Integrating compile time

and runtime scheduling for parallelism. In Proceedings of the 19th Annual Inter-

national Symposium on Computer Architecture, pages 202-213, May 1992.

(151 J. Laudon, .A. Gupta, and M. Horowitz. Interleaving: -4 multithreading tech-

nique targeting multiprocessors and workstations. In Proceedings of the Sixth

International Conference on Architectural Support !or Programming Languages

and Operating Systems, pages 308-318, October 1994.

[16] D. E. Maydan. Accurate Annlysis of Array References. PhD thesis, Stanford

University, Septernber 1992.

1171 B. A. Nayfeh, L. Hammond, and K. Olukotun. Evaluation of design alterna-

tives for a multiprocessor microprocessor. In Proceedings of the 23rd Annuul

international Sgmposium on Computer Architecture, pages 67-77, May 1996.

[lS] A. Nicolau. Run-tirne disambiguation: coping with statically unpredictable de-

pendencies. IEEE Transactions on Cornputers, 38:663-678, May 1989.

[19j R. S. Nikhil and Arvind. Can dataflow subsume von Neumann computing. In

Proceedings of the 16th Annual International Symposium on Computer Architec-

ture, pages 262-272, May 1989.

[20] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case

for a single-chip multiprocessor. In Proceedings of the 7th Annual International

Sgmposium on Architectural Support for Programrning Languages and Operating

Systems, October 1996.

[21] W. Pugh. .A practical algorithm for exact array dependence analysis. Commu-

nications of the ACM, August 1992.

[22] L. Rauchwerger and D. Padua. The lrpd test: Speculative run-time paralleliza-

tion of loops with privatization and reduction parallelization. In Proceedings

of the ACM SIGPLAN '95 Conference on Programming Language Design and

Implementation, pages 218-232, June 1995.

[23] .4. Saulsbury, F. Pong, and -4. Nowatzyk. Missing the rnemory wall: The case for

processor/rnemory integration. In Proceedings of the 23rd Annual International

Sgrnposium on Computer Architecture, May 1996.

[24] B. J. Smith. -4rchitecture and applications of the HEP multiprocessor computer

system. SPIE, 298941-248, 1981.

[25] M. D. Smith. Tracing with pkie. Technical Report CSGTR-91-497, S tanford

University, November 1991.

[26] M. D. Srnit h. Support for Speculatiue Execution in High-Perfonnance Processors.

PhD thesis, Stanford University, November 1992.

[27] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In Pro-

ceedings of the 22nd Annual International Symposium on Computer Architecture,

pages 414-425, June 1995.

[28] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading:

Llauimizing on-chip parallelism. In Proceedings of the 22nd Annual International

Sgmposiurn on Computer Architecture, pages 392-403, June 1995.

[29] Michael Wolfe. Optimiting supercompilers for supercornputers. The MIT Press,

Cambridge, Massachusetts, 1989.

APPLIED f lN14GE. lnc
1653 East Main Street - -. - Rochester. NY 14609 USA -- -- - - Phone: 71 U482.0300 -- -- - - Fax: 71 6128û-5989

