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Primary liver cancer is one of the leading causes of cancer death worldwide. Surgical
and non-surgical treatments are optional for liver cancer therapy based on the cancer
stage. Accumulating studies show that the gut–liver axis influences the progression
of liver diseases, including liver inflammation, fibrosis, cirrhosis, and cancer. However,
the role of gut microbiota and their derived components and metabolites in liver
cancer remains to be further clarified. In this review, we discuss the roles of gut
microbiota and specific bacterial species in HCC and the strategies to modulate gut
microbiota to improve antitumor therapy. Given the limitation of current treatments, gut
microbiota-mediated therapy is a potential option for HCC treatment, including fiber diet
and vegetable diet, antimicrobials, probiotics, and pharmaceutical inhibitors. Also, gut
microbiota can be used as a marker for early diagnosis of HCC. HCC occurs dependent
on various environmental and genetic factors, including diet and sex. Furthermore,
gut microbiota impacts the immunotherapy of HCC treatment. Therefore, a better
understanding of the role of the gut–liver axis in liver cancer is critically important to
improve therapeutic efficacy.
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INTRODUCTION

Liver cancer is the fourth leading cause of cancer death worldwide (1). In the United States, there
will be approximately 42,030 new cases of primary liver cancer and intrahepatic bile duct cancer and
31,780 deaths due to these cancers in 2019, according to the American Cancer Society’s estimate1.
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer (2), and the
incidence of HCC is predicted to rise continually in the next decade (3). HCC typically results from
chronic liver disease (4), and the main risk factors causing HCC are hepatitis B or C viruses, alcohol
abuse, non-alcoholic fatty liver disease (NAFLD), diabetes, and other metabolic and genetic diseases
(5, 6). Early diagnosis of HCC in patients is critically important for treatment with good outcomes
(7). Unfortunately, the determination of HCC is often made in advanced disease stages, which are
frequently accompanied by liver dysfunction or failure (2).

There are multiple options available for HCC treatment, including surgical resection and non-
surgical therapies (8). HCC treatment options selectively depend on the stage of the disease, liver

1https://www.cancer.org/cancer/liver-cancer/about/what-is-key-statistics.html
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function, and cost of treatment. Even though the survival of
patients with HCC is prolonged, recurrence remains a major issue
for HCC treatment. In the past few years, new molecular targeting
agents have been approved for systemic treatment by the
United States Food and Drug Administration (FDA) (9, 10). In
2019, the FDA approved cabozantinib (Cabomeyx, Exelixis, Inc.)
treatment in HCC patients as the second-line2. Cabozantinib is
a multi-tyrosine kinase inhibitor primarily targeting tyrosine-
protein kinase Met (c-MET), vascular endothelial growth factor
receptor 2 (VEGFR2), and tyrosine kinase receptors AXL and
RET, which was initially approved to treat medullary thyroid
cancer or advanced renal cell carcinoma (RCC) (11, 12). Given
the complex pathogenesis of HCC, current therapies still fail to
meet the needs of patients.

Gut microbiota and gut microbiota-derived products have
been shown to play important roles in the pathogenesis of HCC
and its therapy. For instance, lipoteichoic acid (LTA, a Gram-
negative bacterial cell wall component) and deoxycholic acid
(DCA, a secondary bile acid produced by bacteria) collaboratively
induced the expression of prostaglandin-endoperoxide synthase
2 or cyclooxygenase-2 (COX-2) through Toll-like receptor 2
(TLR-2) in senescent hepatic stellate cells (HSCs) to enlarge
prostaglandin E2 (PGE2)-mediated inhibition of antitumor
immunity, resulting in HCC progression (13). It has been
reported that gut microbiota-derived products can modulate
hepatic inflammation and immunity to impact non-alcoholic
steatohepatitis (NASH) and virus-induced HCC progression (14).
HCC patients who are responsive to anti-programmed cell death
protein 1 (PD-1) immunotherapy had higher taxa richness in
fecal samples compared to non-responders (15). In addition,
Akkermansia muciniphila and Ruminococcaceae spp. are enriched
species in responder patients, while Proteobacteria increased
in non-responders.

In this review, we first summarize current therapies for liver
cancer. Then, we discuss the potential roles of gut microbiota
in liver cancer and gut microbiota-mediated treatment and
diagnosis for liver cancer, specifically focusing on the shift of gut
microbiota in HCC development and treatment.

CURRENT THERAPIES FOR LIVER
CANCER

Currently, there are several treatment options for liver cancer,
but the selection is highly dependent on the cancer stage and
remaining liver health (16, 17). Surgical resection is one of the
major curative treatment options for the primary liver tumor
or metastatic liver tumor (18, 19). However, surgical treatment
requires to be performed in the early stage of liver cancer
with a low potential incidence of metastasis. When surgical
resection is not an option, minimally invasive local therapies such
as radiofrequency ablation (RFA), microwave ablation (MWA),
high-intensity focused ultrasound (HIFU), and irreversible
electroporation (IRE) become treatable options for both primary

2https://www.fda.gov/drugs/fda-approves-cabozantinib-hepatocellular-
carcinoma

and metastatic liver tumors (20, 21). For widespread liver cancer,
chemotherapy, immunotherapy, and targeted therapy may be
preferable. For example, sorafenib, a multi-kinase inhibitor with
anti-proliferative and anti-angiogenic effects, has represented the
primary treatment for advanced HCC for a long time (22). It
was the only FDA-approved systemic therapeutic agent for HCC
treatment until the recent approval of five new agents. In newly
approved agents, lenvatinib is optional in the first-line treatment,
while regorafenib, nivolumab, pembrolizumab, and cabozantinib
are used as second-line therapies (9). All of these treatment
options could be applied according to the stage and size of
liver tumor. The treatment options for liver cancer are listed
in Table 1.

Cancer recurrence and therapeutic resistance are the main
issues that reduce the survival outcomes of cancer patients (23).
In this situation, combination therapy, treatment with two or
more therapeutic agents or options, is helpful for good outcomes.
For example, doxorubicin is a commonly used chemotherapy
drug with trans-arterial chemoembolization (TACE) in HCC
treatment (24). Tremelimumab, an immune checkpoint blocker,
in combination with tumor ablation, is beneficial for patients
with advanced HCC and viral infection as it can improve the
infiltration of CD8+ T cells and reduce viral load (25).

THE ROLES OF GUT MICROBIOTA IN
LIVER CANCER

The liver is directly exposed to gut microbial components and
metabolites via the liver portal vein (26). Increasing studies show
that the gut–liver axis influences the progression of liver diseases
such as liver inflammation, fibrosis, cirrhosis, and cancer (27,
28). For instance, high-alcohol-producing bacterium Klebsiella
pneumoniae is implicated in the pathogenesis of NAFLD in
human patients, evidenced by oral gavage of a clinically isolated
strain causing NAFLD in mice (29). Cirrhotic patients with or
without HCC had a higher abundance of genera Lactobacillus
and Bacteroides with LDA scores larger than 4.0, whereas
healthy controls had a higher abundance of Akkermansia and
Methanobrevibacter (30). Additionally, HCC patients possessed
relatively greater abundance of Bacteroides and Ruminococcaceae
and lower abundance of Bifidobacterium compared with cirrhotic
patients without HCC.

Gut microbiota impacts liver cancer by modulating different
factors, including bile acids, immune checkpoint inhibitors, and
Toll-like receptors (TLRs), among others.

Bile Acids
Bile acids (BAs) consist of primary and secondary bile acids.
Primary BAs such as cholic acid (CA) and chenodeoxycholic acid
(CDCA) are synthesized in hepatocytes from cholesterol, while
secondary BAs such as deoxycholic acid (DCA) and lithocholic
acid (LCA) are synthesized by the intestinal bacteria using the
primary BAs (31, 32). While BAs play pivotal roles in glucose
metabolism (33) and vitamin and lipid absorption (34), an
overabundance of BAs can cause hepatocyte DNA damage to
promote carcinogenesis by promoting the alteration of tumor
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TABLE 1 | Current treatment options for liver cancer.

Treatments Conditions Examples References

Surgical therapy Surgical resection is an option for patients with early-stage HCC and preserved
liver function. Surgical resection is commonly applied in solitary tumors ≤5 cm
in size or ≤3 cm without gross vascular invasion and portal hypertension. Liver
transplantation is a curative therapy for end stage liver disease.

Surgical resection, liver transplantation. (19, 86–88)

Ablation Ablation is a therapy to locally destroy the tumor cells with heat, rapid cooling,
etc. It is applied in scattered small liver tumors. It is an effective treatment for
patients with advanced primary or secondary liver tumors.

Radiofrequency ablation (RFA),
microwave ablation (MWA).

(89–91)

Embolization therapy An effective therapy for unresectable tumors by blocking or reducing the tumor
blood circulation. Gene embolization selectively transfers viruses or vector
embolized with cytokines (e.g., TNF-α and IFN-γ) or p53 genes.

Transarterial embolization (TAE)
Transarterial chemoembolization (TACE)

(92–94)

Radiation therapy High-energy rays or beams of intense energy are used to kill cancer cells. It can
offer local treatment for unresectable HCC, but may not be a good option for
some patients whose liver has been greatly damaged by diseases such as
hepatitis or cirrhosis.

Photon-based intensity-modulated
radiation therapy (IMRT),
three-dimensional conformal
radiotherapy (3D-CRT).

(95–97)

Targeted therapy Medicines that specifically target some proteins can reach almost all parts of
the body, which makes them potentially useful against cancers with metastasis.
It is optional for tumors that are not very sensitive to chemotherapy.

Tyrosine kinase inhibitors: sorafenib
(Nexavar) and cabozantinib
(Cabometyx).

(98, 99)

Immunotherapy Immunotherapy uses the self-immune system to fight cancer. However, cancer
cells sometimes use certain checkpoints to avoid being attacked by the
immune system. By blocking immune checkpoint protein PD-1, the drugs can
improve the immune response against cancer cells. This treatment can shrink
or slow tumor growth.

Pembrolizumab (Keytruda) and
nivolumab (Opdivo).

(100–102)

Chemotherapy Antitumor medicines to kill fast-growing cancer cells are an option for people
whose liver cancer cannot be treated with surgery and is not responsive to local
therapies such as ablation or embolization, or targeted therapy. Medicines for
chemotherapy and targeted treatment can reach almost all parts of the body.

Oxaliplatin (Eloxatin), mitoxantrone
(Novantrone).

(103, 104)

suppressor genes and oncogenes (34). Ma et al. reported that the
conversion of primary to secondary BAs impacted the infiltration
of hepatic natural killer T cells (NKT cells), which controlled
the progression of liver cancer in mouse (35). The accumulation
of hepatic CXCR6+ NKT cells was mediated by the expression
of CXCL16 in liver sinusoidal endothelial cells (LSECs). In
human samples, the presence of primary bile acid CDCA was
positively correlated with CXCL16 expression, with which the
expression of secondary bile acid GLCA was inversely correlated
(36). The bile acid biotransformation was influenced by gut
microbial community (37), such as bacterial species Clostridium
(35). These findings indicate that modulating gut microbiota can
change the components of BAs to improve antitumor immunity.
Furthermore, BA receptors, farnesoid X receptor (FXR), and G
protein-coupled bile acid receptor 1 (TGR5) are the potential
regulators for BA homeostasis and carcinogenic effects in liver
cancer (34).

Immune Checkpoints
Immune checkpoint inhibitors are promising treatable options
for HCC treatment or applied as an adjunct therapy (38). Cancer
development is associated with immune suppression since cancer
cells can activate different immune checkpoint pathways to
inhibit antitumor therapies (39). Antibodies or inhibitors that
block cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4),
PD-1, programmed cell death 1 ligand 1 (PD-L1), and CD24
show promising therapeutic effects on cancer treatment (39–
41). Tremelimumab, a monoclonal antibody that blocks CTLA-4,
was first tested in patients with HCC and hepatitis C virus
infection (42, 43). The results indicated that tremelimumab

treatment showed not only anti-HCC effect but also enhanced
anti-HCV immunity.

Further clinical trials demonstrated the reliable adjunct
antitumor effect of tremelimumab with the combination of
subtotal RFA or chemoablation in patients with advanced
HCC (25). The combination of anti-PD-1/PD-L1 with anti-
CTLA-4 antibodies and the synergistic application of immune
checkpoint inhibitors with other antitumor therapies are being
evaluated at different stages of clinical trials. The results
suggest that an anti-PD-1 antibody in combination with
locoregional therapy or other targeted therapy is an effective
treatment for HCC (44, 45). Immune checkpoint inhibitors
have been shown to prolong the survival time in HCC
patients (46). Therefore, Nivolumab, a monoclonal antibody
that blocks the PD-1 receptor on T cells, was approved
by the United States FDA for liver cancer treatment in
2017. Pembrolizumab (Keytruda), another immune checkpoint
inhibitor for PD-1, was approved by the United States FDA for
HCC treatment in 2018.

Importantly, increasing evidence shows that gut microbiota
influences the efficacy of immune checkpoint antibodies, as
antibiotic treatment can diminish their effectiveness by depletion
of gut microbiome, while the presence of specific gut microbes
increases this efficacy (47). Clinical studies have shown that
some of the bacterial species enhanced the efficacy of immune
checkpoint therapy (48), such as the effect of Bacteroides caccae
on anti-CTLA-4 and anti-PD-1 in melanoma (49), and the impact
of A. muciniphila on anti-PD-1 in non-small-cell lung carcinoma
(NSCLC) and renal cell carcinoma (RCC) (50). Therefore,
modulating gut microbial components to improve the antitumor
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effect of immune checkpoint inhibitors is a potential strategy
for HCC treatment.

TLRs
Toll-like receptors are the most well-studied family of pattern
recognition receptors (PRRs) (51). TLRs can recognize pathogen-
associated molecular patterns (PAMPs) and endogenous damage-
associated molecular patterns (DAMPs) like tumor-derived
antigens to activate the innate immune responses (52, 53). Gut
dysbiosis, the disruption of the balance of gut microbiome,
impacts the hepatic immune response through the gut-derived
components like LPS and unmethylated CpG DNA, which can
activate the TLR-signaling pathway (54). Even though the role
of TLRs varies in different cancers (55), a series of studies have
shown that targeting TLRs is a promising strategy for cancer
immunotherapy (56, 57). In the liver, TLR4 and TLR9 play
essential roles in the liver inflammation–fibrosis–cancer axis,
as TLR4−/− or TLR9−/− Tak11Hep mice experience reduced
spontaneous HCC development compared to Tak11Hep mice
(58). Clinical investigations also show TLR4, the ligand of Gram-
negative bacteria membrane component lipopolysaccharide
(LPS) that plays a pathogenic role in chronic inflammation, a
causative factor in human HCC (59). The expression of TLR9, the
ligand of which is unmethylated CpG DNA in bacteria or viruses,
has been positively associated with human colorectal cancer and
liver metastasis (60). Thus, modulating gut microbiota to change
TLR activity may serve as a therapeutic strategy for HCC therapy.

Modulation of Gut Microbiota for Cancer
Therapy
The composition of human gut microbiota can be modulated
by various factors such as diet (61), lifestyle (62), antimicrobials
(63, 64), environment (65), and diseases (66). Currently,
probiotics and Fecal Microbiome Transplantation (FMT) are
being investigated in cancer treatment as an adjuvant strategy
to increase the efficacy of chemotherapy and immunotherapy
(67). There are 80 recruiting or completed microbiota study trials
associated with liver diseases on the website ClinicalTrials.gov
with the keywords liver disease and microbiota, including
NAFLD, NASH, fatty liver disease (FLD), alcoholic liver
disease (ALD), HCC, liver encephalopathy, hepatitis, liver
transplantation (LT), or resection. The strategies to affect change
in the gut microbiota in those trials are summarized in Figure 1.

Overtake of soluble dietary fiber (e.g., Pectin and
Fructooligosaccharide) that can be metabolized to short-
chain fatty acids (SCFAs) by gut microbiota may cause
cholestasis and HCC in mice, specifically with gut overgrowth
of fiber-fermenting bacteria like Clostridium cluster XIVa (68).
The authors also showed that administration of antibiotic
metronidazole reduced butyrate-producing bacteria and the
incidence of HCC in TLR5 knockout (KO) mice fed soluble fiber
inulin-containing diet. Another study showed that vancomycin
could prevent the development of HCC by selectively depleting
Gram-positive bacteria Lachnospiraceae (Clostridium cluster
XIVa), Ruminococcaceae, and Bifidobacteria, which ferment
fiber and generate secondary bile acids (69). Feeding tomato

FIGURE 1 | The strategies to change gut microbiota to prevent or ameliorate
liver diseases in clinical trials. There are multiple strategies to restore the
balance of gut microbiota such as fecal microbiota transplantation (FMT), drug
therapy such as antibiotics (e.g., rifaximin) and proton pump inhibitor,
pro/prebiotic, prebiotics or probiotics, change of lifestyle, and others including
diet, drink, fatty acids, surgery, and genetic modification.

powder (TP) could impede HFD plus diethylnitrosamine (DEN,
injected once at 2 weeks of age)-induced HCC development
in β-Carotene-15, 15′-oxygenase (BCO1), and β-carotene-
9′, 10′-oxygenase (BCO2) double knockout mice (70). In
addition, TP feeding altered the richness and diversity of
gut microbiota, accompanying a significant decrease in the
abundance of genera Clostridium and Mucispirillum. Another
study reported that probiotics composed of Lactobacillus
rhamnosus GG, viable probiotic Escherichia coli Nissle
1917, and heat-inactivated VSL#3 (1:1:1) could shift the gut
microbiota to increase beneficial bacteria such as Prevotella
and Oscillibacter, resulting in a reduction of HCC growth and
Th17 cell differentiation (71). VSL#3 contains Streptococcus
thermophilus, Bifidobacterium breve, Bifidobacterium longum,
Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus
plantarum, Lactobacillus paracasei, and Lactobacillus delbrueckii
subsp. Combined (synbiotic) prebiotic B. infantis and probiotic
milk oligosaccharide treatment reverses Western diet (WD)-
induced NASH in FXR knockout mice (72). Moreover, bariatric
surgery, such as Roux-en-Y gastric bypass and laparoscopic
sleeve gastrectomy, can induce the shift of gut microbiota to
reduce obesity and weight loss (73), showing a promise in
NAFLD and NASH (74). Thus, it may be a potent treatment
option for early stage of NASH-HCC patients.

Gut Microbiota as a Non-invasive
Biomarker for HCC
Early diagnosis of HCC comes with multiple treatment options
and typically leads to good outcomes. Biomarkers including
Alpha-fetoprotein (AFP), Lens culinaris agglutinin A-reactive
fraction of alpha-fetoprotein (AFP-L3), and des-gamma-carboxy
prothrombin (DCP) have been established as HCC-specific
tumor markers (75, 76). New potential biomarkers, such as
Aldo-keto reductase family 1 member 10 (AKR1B10) (77), are
being investigated for the diagnosis and prognosis of HCC.
Changes in the gut microbiome may also serve as biomarkers of
disease as they have been associated with the progression of liver
diseases, from fibrosis/cirrhosis to cancer (78, 79). For example,
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FIGURE 2 | The development of liver cancer and gut microbiota-mediated therapy. Chronic liver diseases including viral infections, fatty liver disease (FLD), alcoholic
liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and cirrhosis without effective treatments can lead to liver cancer.
Dysbiosis of gut microbiota promotes the progression of this process by leakage of gut microbial products such as deoxycholic acid (DCA), lipopolysaccharide
(LPS), and unmethylated CpG DNA. These bacterial products promote liver inflammation, fibrosis, and cirrhosis. Modulation of gut microbiota by applying probiotics,
prebiotics, and antibiotics, or using antagonists of bacterial products, can improve gut barrier and reduce the progression of the liver
inflammation–fibrosis–cirrhosis–cancer axis. BAs, bile acids; TLR, Toll-like receptor.

the abundance of fecal Enterobacteriaceae and Streptococcus
is increased in patients with cirrhosis, while the abundance
of Akkermansia is reduced. In HCC patients, Bacteroides
and Ruminococcaceae were increased, while Bifidobacterium
was reduced. Further study showed that Akkermansia and
Bifidobacterium were inversely correlated with inflammatory
marker calprotectin (30). These results indicated that during
the development of HCC, a group of bacteria are associated
with different stages of disease and tumor progression. A better
understanding of the association of gut microbiota with liver
cancer leads to a therapy option. Potent gut microbiota-mediated
liver cancer therapies are summarized in Figure 2.

DISCUSSION

Liver cancer is a leading cause of cancer deaths worldwide.
Liver resection or transplantation is the curative treatment
for HCC, but late diagnosis and lack of donor organs reduce
the survival rate. Given these limitations, many non-surgical
treatment options are available for advanced stages of HCC.
However, the cost for some current treatments like sorafenib is
relatively high, which may be associated with adverse or variable
effects (80). Modulating gut microbiome is a potential option
for liver cancer treatment and diagnosis. HCC occurs about
three times more in men than in women (81). Therefore, sex
is also another consideration when choosing gut microbiota-
mediated treatment. In a streptozotocin–high-fat diet (STZ-
HFD)-induced NASH-HCC murine model, male mice possessed
a higher abundance of some specific genera than female mice,
including Clostridium, Corynebacterium, Bacillus, Desulfovibrio,
and Rhodococcus, which were associated with higher HCC
incidence (82). Data from prospective cohort studies indicate that
intake of vegetables reduces the risk of liver cancer development,

especially for men (83). LT can also alter gut microbial
profile. The abundance of bacteria, such as Actinobacillus,
Escherichia, and Shigella, decreased post-LT compared to pre-LT,
whereas the abundance of bacteria, such as Micromonosporaceae,
Desulfobacterales, the Sarcina genus of Eubacteriaceae, and
Akkermansia increased (84). Furthermore, features of the gut
microbiota are also associated with hepatitis virus- and non-
hepatitis virus-related HCC, evidenced by the fact that hepatitis
B-HCC patients harbor much more pro-inflammatory bacteria
such as Escherichia/Shigella and Enterococcus, but less amount of
Faecalibacterium, Ruminococcus, and Ruminoclostridium relative
to healthy controls (85). Therefore, precise analysis of the
change of gut microbiota of each individual in the development
of HCC is critically essential for modified treatment. Those
recent findings suggest that microbiome-mediated therapeutic
options can be applied to treat liver cancer as well as the
early stage of chronic liver diseases, which may conquer the
drawbacks of current therapies, such as the presence of metastasis
and liver dysfunction. However, more clinical trials evaluating
gut microbiota-mediated therapies are necessary to improve
outcomes of HCC treatment.
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