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ABSTRACT

The desire to reduce gas turbine emissions drives the use of design optimization approaches within the com-

bustor design process. However, the relative cost of combustion simulations can prohibit such optimizations from

being carried out within an industrial setting. Strategies which can significantly reduce the cost of such studies can

enable designers to further improve emissions performance.

The following paper investigates the application of a multi-fidelity surrogate modelling approach to the design

optimization of a typical gas turbine combustor from a civil airliner engine. Results over three different case stud-

ies of varying problem dimensionality indicate that a multi-fidelity surrogate modelling based design optimization,

whereby the simulation fidelity is varied by adjusting the coarseness of the mesh, can indeed improve optimiza-

tion performance. These results indicate that such an approach has the potential to significantly reduce design

optimization cost whilst achieving similar, or in some cases superior, design performance.

Nomenclature

111 Vector of ones of length n

C Multi-fidelity Kriging correlation matrix

d Number of dimensions

ddd Difference vector

n Number of sample points

p Kriging smoothness parameter

RRR Correlation matrix

rrr Correlation vector

xxx Vector of design variables

YYY Combined vector of cheap and expensive data

y Objective function value

Z Gaussian process

λ Loss coefficient

θ Kriging rate of correlation decrease

φ Concentrated log-likelihood

µ̂ Kriging mean

σ̂2 Kriging variance
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ρ Multi-fidelity scaling factor

Subscript

c Cheap or low-fidelity function evaluation

d Difference between low and high fidelity

e Expensive or high-fidelity function evaluation

1 Introduction

The application of optimization techniques to combustor design has the potential to unlock improvements in combustor

performance, reduce emissions, increase turbine life and reduce fuel consumption. However, the cost of the computational

simulations required as part of such an optimization can be prohibitively expensive thereby reducing the scope of any design

study and hence the potential level of design improvement. Design optimization approaches which can reduce the cost of

such studies are, therefore, very attractive.

Surrogate modelling approaches [1], whereby a cheap analytical model which predicts how the objective function or

constraints vary with changing design variables are very useful at reducing the overall cost of such design studies. Whilst such

techniques have been applied to combustor design studies throughout the literature the application of multi-fidelity surrogate

modelling approaches to combustor design remain rare. Such an approach enables multiple levels of simulation fidelity to be

fused together to enhance the accuracy of a surrogate model. If the fidelity levels are sufficiently well correlated [2] this can

both accelerate the convergence of an optimization and reduce the total simulation cost. Whilst multi-fidelity surrogate model

based optimizations of combustors have been demonstrated within the literature in the past, the current paper represents the

first time this has been performed for the optimization of emissions on a geometry of a fidelity similar to that employed

during a typical industrial design process.

Formal design optimization approaches have been applied to the design of gas turbine combustion systems throughout

the literature with the fidelity of the simulations employed in such studies varying considerably from simple aerothermal

network models, to 2D axisymmetric and 3D CFD simulations. Of course, the choice and fidelity of simulation will depend,

very much, on the design stage at which the optimization is performed.

Aerothermal network based design optimizations, given their relative inexpense, tend to be performed at the conceptual

design stage. Rogero and Rubini [3], for example, employed an aerothermal network model and an evolutionary optimiza-

tion algorithm to optimize for 22 performance targets while minimizing cooling flow and NOx emissions. Wyse et al. [4]

employed a similar network model of a combustion system to minimise NOx and CO through a Tabu search while, more

recently, Saboohi et al. [5] employed a chemical network model within a multi-objective optimization attempting to also

reduce NOx and CO.

Other researchers have employed 2D axisymmetric CFD simulations within multi-objective combustor optimizations.

As these simulations represent a considerable cost increase over an aerothermal network model, direct optimization using

the objective function becomes infeasible and surrogate modelling strategies are employed to reduce the optimization cost.

Torkzadeh et al. [6], for example, employed a surrogate modelling approach in combination with NSGA-II [7] to optimize a

combustor for efficiency, NOx and CO. Recently Amani et al. [8] employed a similar surrogate modelling base strategy in a

four variable optimization of a combustor for minimum NOx production.

Moving up the fidelity scale, other researchers have employed 3D RANS CFD within combustor design optimization

frameworks. The work of Duchaine et al. [9] is perhaps one of the earliest examples of this with a, relatively small, by today’s

standard, 3D CFD simulation of 1.1m elements, being employed within a Kriging based surrogate model optimization for

both combustor efficiency and exit temperature profile. Motsamai et al. [10] performed a similar five variable optimization

of the exit temperature profile of a combustor using 3D RANS simulations. Laranci et al. [11] also employed 3D RANS

simulations in their optimization of exit temperature and NOx but within a simpler two variable, full factorial, DoE approach

instead of a formal optimization. Recently Briones et al. [12] and Thomas et al. [13] both optimized combustors considering

the exit temperature profile and pressure losses using 3D RANS simulations, with 9 and 15 geometry parameters respectively,

but did not consider emissions reduction.

As noted above, multi-fidelity design optimization approaches have been applied to combustor design in the past. The

work of Wankhede et al. [14] represents the first application of such an approach, however, this employed only two design

variables and optimized the exit temperature profile of a relatively simple 2D flame stabilization step. Despite the apparent

simplicity of the geometry, their work successfully demonstrated that data from steady and unsteady turbulent combustion

simulations could be fused together effectively. Employing the Prometheus combustor design system [15], Zhang et al. [16]

demonstrated that multi-fidelity optimization of a combustor could be performed using isothermal simulations to minimize

pressure losses. In this instance the fidelity of the simulation was varied by switching between a single and double sector

model of the combustor. Toal et al. [17] extended this work to include reactions within the CFD simulation. In this case their

optimization considered both the combustor exit temperature profile and pressure loss. While 3D RANS simulations were

used to calculate both the temperature profile and the pressure losses an aerothermal network prediction of the pressure loss

provided a low fidelity data set which accelerated the design optimization. Both the work of Zhang et al. [16] and Toal et
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al. [17] employed combustor geometry of a significantly greater fidelity than is typically found within the literature with the

inclusion of the prediffuser and the swirler vanes and passages.

The current article represents an improvement on the state-of-the-art through a combination of three areas. Firstly,

the fidelity of the geometry is considerably greater than the majority of the combustor design optimization examples found

within the literature through the inclusion of both the combustor and the outer and inner annuli. Feed hole flows are therefore

modelled explicitly and not defined as boundary conditions. Secondly, both NOx and soot are subjects of the presented design

optimizations and to date this has not previously been demonstrated either via a single or multi-fidelity optimization. Finally,

the multi-fidelity approach, whereby, the fidelity of the 3D CFD mesh is varied has not previously been demonstrated for a

combustor simulation.

The following paper commences by providing a brief overview of the mathematics behind both the single and multi-

fidelity surrogate modelling strategies employed within the paper. The combustor case study is then described in detail both

in terms of the parametric geometry and the simulation set-up. The differences between both simulation fidelities are also

highlighted at this point. The results for three different optimizations of increasing complexity (in terms of the number of

design variables) employing this combustor are then presented. In each case results for two single fidelity optimization strate-

gies of varying simulation cost are presented along with the results for a multi-fidelity optimization. General conclusions

from the studies are then presented.

2 Multi-fidelity Surrogate Modelling

Given the expense of the combustion CFD simulations involved, both the single and multi-fidelity design optimization

approaches presented within this paper follow a surrogate modelling philosophy. That is to say, a global optimization

algorithm is applied, not directly to the objective function calculation, but instead to a surrogate model of the objective

function. This surrogate is an analytical model which attempts to predict the variation in the objective function as the design

parameters are varied. The process commences with the definition of a sampling plan via some form of design of experiments

approach. The true objective function is determined at each of these points and used to construct an initial surrogate model.

The model is optimized based on some metric via a global optimization approach with promising designs then evaluated

using the true objective function. This data is then used to ‘update’ the surrogate model and the search performed again on

this corrected model. Constrained optimizations can be performed in exactly the same manner but with additional surrogate

models of each constraint being constructed.

In the context of the present study, CFD simulations of a set of combustor designs defined by a design of experiments are

performed the data from which is then used to construct surrogate models of NOx, soot and pressure loss. These surrogates

are then searched using a constrained global optimization for potential promising designs which are then simulated using

CFD. The results from these simulations are then used to update and correct the surrogate prediction in regions of interest.

Both the single and multi-fidelity surrogate modelling approaches employed here are based upon variants of the popular

method known as Kriging [18]. Within such a model the assumption is that sample points close together within the design

space are more highly correlated than those further apart. This correlation is modelled through a correlation matrix RRR with

entries given by,

RRRi j = exp

(

−
d

∑
l=1

10θθθ(l)‖xxx
(l)
i − xxx

(l)
j ‖ppp(l)

)

, (1)

where θ describes the rate of correlation decrease and p describes a smoothness parameter. An additional parameter λ is

often appended to the diagonal of this matrix to enable the resulting model to regress [19], something which is very important

when constructing a model from simulations containing noise. All of the models constructed within the current paper include

such a regressing term.

Including the regression term there are a total of 2d+1 hyperparameters which must be determined, where d represents

the number of input variables. Within the following paper a maximum likelihood approach is taken to determine these

parameters with an optimization of the likelihood function,

φ =−
n

2
ln(σ̂2)−

1

2
ln(|RRR|), (2)

where the variance is defined by,

σ̂2 =
1

n
(yyy−111µ̂)T RRR−1(yyy−111µ̂), (3)
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and the mean by,

µ̂ =
111T RRR−1yyy

111T RRR−1111
, (4)

being performed by a hybridized particle swarm algorithm [20] which exploits an adjoint of the likelihood function to

accelerate convergence [21].

Having determined an appropriate set of hyperparameters the model can be used to predict either the objective function

or constraint value at an unknown point via,

y(xxx∗) = µ̂+ rrrT RRR−1(yyy−111µ̂), (5)

where rrr represents a vector of correlations between the known sample points and an unknown point xxx∗. Although the current

paper employs only the Kriging predictor it is worth pointing out that the Kriging model’s error prediction enables other

metrics to be derived including, for example, expected improvement and probability of improvement. The interested reader

can find more information on these approaches in the work of Jones [18].

In order to include data from differing levels of simulation fidelity the approach outlined by Kennedy and O’Hagan [22],

referred to here as co-Kriging, is adopted. Here the assumption is that a Gaussian process of only the low fidelity data can

be scaled by ρ and appended to a second Gaussian process of the difference between the low and high fidelity data. This

combination,

Ze(xxx) = ρZc(xxx)+Zd(xxx), (6)

results in a Gaussian multi-fidelity prediction of the high fidelity data.

The construction of such a model commences with the construction of a single fidelity Kriging model of the low fidelity

data using the method outlined above. A second Kriging model is then constructed of the differences between the low and

high fidelity data with these differences given by,

ddd = yyye −ρyyyc(XXXe). (7)

Once again a maximum likelihood approach is taken to determine the hyperparameters of this second model but unlike the

low fidelity model the additional scaling parameter, ρ, must also be determined. As with the single fidelity Kriging model

the hyperparameters for both the low fidelity and difference models are optimized using a hybrid particle swarm. A modified

version of the adjoint of the likelihood function is employed to calculate the derivative of the scaling parameter ρ, further

details of which can be found in Toal et al. [23].

With the two sets of hyperparameters determined a prediction of the high fidelity response at an unknown point can be

calculated via,

ye(xxx
∗) = µ̂+ cccTCCC−1(yyy−111µ̂), (8)

where the correlation matrix CCC is defined as,

CCC =

(

σ2
cRRRc(XXXc,XXXc) ρσ2

cRRRc(XXXc,XXXe)
ρσ2

cRRRc(XXXe,XXXc) ρ2σ2
cRRRc(XXXe,XXXe)+σ2

dRRRd(XXXe,XXXe)

)

, (9)

the mean is given by,

µ̂ =
111TCCC−1YYY

111TCCC−1111
, (10)
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and the vector of correlations, ccc, between the observed and unobserved point, xxx∗, given by,

ccc =

[

ρσ̂2
cRRRc(XXXc,xxx

∗)
ρ2σ̂2

cRRRc(XXXe,xxx
∗)+ σ̂2

dRRRd(XXXe,xxx
∗)

]

. (11)

As per the single fidelity model the multi-fidelity Kriging model also offers a useful prediction of the error in the model from

which other updating metrics, such as expected improvement can be calculated but in the following optimizations only the

predictor is employed. In the following optimizations all updates are located by searching either the single or multi-fidelity

surrogate model using a genetic algorithm, in this case a version of NSGA-II [7].

All of the surrogate modelling and optimization algorithms employed within the current paper are embedded within the

proprietary Rolls-Royce optimization package OPTIMATv3.

3 Combustor Case Study

The gas turbine combustor geometry considered as part of the current study is representative of that found within a

typical modern civil airliner engine. Illustrated in Figure 1, the geometry includes the combustor along with the inner and

outer annuli. Geometry upstream of the meterpanel, such as the prediffuser, fuel spray nozzle and swirler passages has been

excluded from the model.

Fig. 1. An illustration of an example combustor CFD fluid volume.

A parametric version of this combustor geometry has been implemented within Siemens NX and is capable of adjusting

the individual positions and dimensions of each of the ports present on the walls of the combustor.

In all cases an unstructured tetrahedral mesh with hexahedral core conversion is constructed using the commercial

meshing package Ansys ICEM CFD. In the present study the size of the CFD mesh is varied in order to vary the fidelity

of the simulation. The baseline high fidelity CFD mesh consists of approximately 16.7M elements whereas the low fidelity

CFD mesh consists of approximately 3.6M elements. The 16.7M element meshing strategy was developed as a result

of a standard mesh convergence study while the 3.6M element meshing strategy was the result of a study balancing cost

reduction over the 16.7M element mesh and correlation between the resulting design spaces for the two variable case study

detailed in Section 5. As outlined by Toal [2] the choice of low fidelity model is important to the success of a multi-

fidelity optimization, with poorly correlated models potentially misleading the optimization and fidelities of a similar expense

negating any improvement in optimization cost.

Each combustor design is simulated using the proprietary Rolls-Royce CFD package PRECISE-UNS [24]. The K-ε
realizable turbulence model is used with simulations running for a total of 5000 iterations where fuel is introduced into the

model after 500 iterations and ignition occurring after 600. Combustion is modelled via the flamelet-generated manifold

technique. A set of inlet velocity profiles are used to define the flow at the inlets to both annuli and at the exit of each of

the swirler passages. Each of these profiles remains constant as the geometry is varied. All simulations are performed at a

condition representative of 100% throttle for a large civil airliner gas turbine engine.

All simulations are carried out using 16 compute cores on the University of Southampton Spitfire cluster with up to 50

simulations being performed in parallel. Given the considerable reduction in element count between the two fidelities a single

low fidelity simulation can be completed in approximately 21.6% of the time taken to perform a high fidelity simulation.

This is inclusive of the time take to generate the mesh.

Post-processing routines within PRECISE-UNS are used to calculate emissions indices for NOx and soot while Paraview

is used to calculate the inner and outer wall losses.
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4 Case Study Overview

Given the expense of each CFD simulation it becomes difficult to perform enough optimizations to gain an appreciation

of the average performance of each strategy. There is always, a possibility that a member of the initial sampling plan locates

the global optimum or a design very close to the global optimum which can skew any conclusions; the so-called ‘getting

lucky’ scenario. In the current paper the performance of each optimization strategy is assessed in two ways.

The first two case studies do not employ actual CFD simulations as part of the optimization. Instead a globally accurate

surrogate model is constructed for the objective function and all constraints from a relatively large initial sampling plan.

The number of samples lying between 40 and 80 times the number of design variables. This model is then called instead of

a CFD simulation as part of the design optimizations thereby enabling many such optimizations to be carried out within a

reasonable time frame and statistics to be taken over multiple initial sampling plans. However, it should be observed that as

no CFD simulation of the final design is actually carried out the quoted improvements in performance may not actually be

realizable and depend entirely on the accuracy of the original surrogate model.

The third and final case study however, is performed as it would be in reality with CFD simulations being used directly

within the initial sampling plan and subsequent updates to the surrogates. While statistics cannot be calculated using this

case it introduces a considerable level of realism with both optimization strategies now having to cope with noise in the

responses and failed simulations.

Failed simulations in this particular optimization problem tend to stem from either a failure of the meshing process

resulting in poor quality elements and therefore a divergence of the CFD simulation, or from a lack of convergence of the

CFD simulation. Typically, 10% of the simulations performed as part of the DoE will fail due to one of these errors. Whilst

the results from failed simulations are not included in the construction of any of the surrogate models the design variables

corresponding to these simulations are used as a constraint within the search stage to ensure that any updates are at least

1% away from a previously evaluated design. This prevents the optimization from entering into a loop where it continually

attempts to evaluate a design which results in a meshing or simulation failure.

In all of the case studies the minimization of NOx is considered as the objective function with change in wall pressure

losses constrained to be within 15% of that of the baseline combustor. There are two ‘flavours’ of this basic optimization, one

where a constraint on soot production is included and one where it is ignored. This particular constraint limits the production

of soot to be no greater than that of the baseline design. It’s inclusion has the impact of severely limiting the level of NOx

improvement possible as a reduction in NOx is often met with an increase in soot production.

5 2D Case Study

The first, and simplest, case study involves a two variable design optimization. In this case the inner and outer ports are

grouped together and permitted to move axially along the length of their respective walls.

As already noted above both the single and multi-fidelity optimizations will be performed on an initial surrogate model

constructed from a relatively large sampling plan. In this case 81 combustor designs are simulated throughout the two

variable design space comprising of the baseline design and an 80 point optimal space filling sampling plan. An identical

sampling plan is employed for both the low and high fidelity simulations with Kriging surrogate models of NOx, soot and

wall pressure losses constructed for both fidelities.

Tables 1 and 2 below indicate the accuracy of the resulting surrogate models for each quantity for both fidelities. Sur-

rogate accuracy, in this instance, is determined via a leave one out cross-validation from which Pearson’s r2 correlation,

percentage root mean square error (RMSE) and percentage maximum absolute error (MAE) can be calculated. In all cases

the correlation between the surrogate and CFD results are relatively high and the magnitudes of the errors relatively low with

significant differences between CFD and prediction a result of noise in the CFD result.

Table 1. High fidelity 2D surrogate model accuracy

Parameter r2 %RMSE %MAE

NOx 0.941 5.52 21.6

Soot 0.880 8.09 32.0

Inner ∆P 0.896 7.22 40.3

Outer ∆P 0.963 5.63 34.8

The work of Toal [2] demonstrated the importance of a relatively high level of correlation between different levels

of simulation fidelity in order for a multi-fidelity approach to be effective. Low levels of correlation can, for example,
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Table 2. Low fidelity 2D surrogate model accuracy

Parameter r2 %RMSE %MAE

NOx 0.926 6.22 14.8

Soot 0.725 11.0 35.8

Inner ∆P 0.918 5.94 28.1

Outer ∆P 0.976 4.91 23.6

result in the low fidelity data distorting the prediction of the high fidelity response and considerably hampering optimization

performance. To that end Table 3 presents the level of correlation between the two fidelities in terms of both the Kriging

models constructed using the 81 sample points and between the 81 sample points themselves.

Table 3. Correlations between low and high fidelity models across the two variable design space

Parameter r2 (surrogates) r2 (simulations)

NOx 0.920 0.880

Soot 0.879 0.766

Inner ∆P 0.962 0.940

Outer ∆P 0.990 0.976

Rather unsurprisingly, given the previous results of Toal et al. [17], the wall pressure losses exhibit a relatively high level

of correlation between the two simulation fidelities. The level of correlation between simulation fidelities in terms of both

the NOx and soot responses is also relatively high while the correlations between the surrogate models are very similar to

those between the raw simulation data.

(a) (b)

Fig. 2. High (a) and low (b) fidelity percentage variations in NOx, relative to the baseline design.

To further illustrate the similarity between the NOx and soot responses both the high and low fidelity surrogate models

are presented below, where x1 and x2 denote the normalized variation in the position of the inner and outer ports respectively.

Figure 2 compares the contours of percentage variation in NOx relative to the baseline design obtained from both the high

and low fidelity models. While the responses are by no means identical one can clearly observe a considerable similarity

between them. Figure 3 compares the contours of percentage variation in soot production relative to the baseline design
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(a) (b)

Fig. 3. High (a) and low (b) fidelity percentage variations in soot, relative to the baseline design.

obtained from both fidelities. Again, whilst there are clear differences in terms of the magnitude, the overall trend is very

similar.

As described above, by employing an accurate set of surrogate models instead of CFD simulations to compare single

and multi-fidelity approaches, a large number of such optimizations can be performed which enables a better understanding

of the ‘average’ performance of each strategy. As part of this two variable case three different optimization strategies will

therefore be performed 50 times each commencing from a different initial sampling plan.

The first strategy employs only high fidelity data commencing from a 20 point Latin hypercube sampling plan with 10

further updates to the surrogate model performed. The second strategy also employs only high fidelity data but commences

from a smaller 10 point sampling plan which again is subject to 10 updates as the optimization progresses. The third strategy

is a multi-fidelity approach commencing with a 10 point sampling plan from which only low fidelity data is employed. This

sampling plan is identical to that used in the second strategy with an optimal, three point, space-filling sub-set of this sapling

plan used to evaluate the high fidelity data. As with the other two strategies 10 update cycles are performed but each update

point is evaluated both from the low and high fidelity model. Assuming the costs of each low and high fidelity evaluation are

equivalent to that of actual CFD simulation means that the multi-fidelity Co-Kriging approach is approximately 57% of the

cost of the 20 point single fidelity approach.

Two different optimizations are performed using each of the three strategies. The first is a minimization of NOx pro-

duction subject to a constraint on wall pressure losses, the second includes soot production as an additional constraint. The

average percentage reduction in NOx production as a result of each optimization is presented in Table 4 with the mean

optimization histories for each strategy presented in Figure 4.

Table 4. Two variable optimization strategy cost and average percentage of improvement in NOx over 50 different optimizations with and

without soot constraint included

Improvement Improvement

Strategy Cost (w/o soot) (with soot)

20pt Krig 100% 8.09% 4.09%

10pt Krig 67% 8.09% 4.03%

3+10pt Co-Krig 57% 8.08% 4.09%

Comparing the results presented in Table 4 there is little obvious difference in the performance of the final designs. All

three strategies achieve over an 8% reduction in NOx when the soot constraint is ignored and more than a 4% reduction

when the soot constraint is included. Figures 2 and 3 clearly indicate that the improvement in NOx is limited when the soot

constraint is included and this is reflected in the difference in the performance of the final designs.
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(a) (b)

Fig. 4. Mean search histories for each 2D optimization strategy (a) without soot constraint and (b) with soot constraint active.

Of course, Table 4, only presents the final best design found not how efficiently it was obtained. The search histories

in Figure 4 are presented as a function of the equivalent number of high fidelity simulations and include the cost of both

the initial design of experiments sampling plan and any subsequent updates. For the single fidelity approaches this is a

simple concept but this is complicated somewhat for the multi-fidelity optimization. Here each low fidelity evaluation is the

equivalent of 21.6% the cost of a high fidelity evaluation, the search history for the multi-fidelity optimization is therefore

shifted to the right by the equivalent of 7 low fidelity simulations to take into account the large low fidelity design of

experiments. Each subsequent update is therefore treated as 1.216 high fidelity simulations as both low and high fidelity

evaluations are made.

Included in all of the convergence history plots for both the two and eight variable case studies are the 95% bootstrap

confidence bounds in the mean of the best design for the final iteration. In most cases, these bounds are very small relative

to the overall percentage change in NOx.

Figure 4 demonstrates that regardless of the presence of the soot constraint the multi-fidelity approach convergences

towards the optimum faster than either the 20 or 10 point single fidelity strategies. This is despite the fact that the multi-

fidelity approach is considerably cheaper. Of the two optimization problems, the results indicate that convergence towards

an optimum is improved more when the soot constraint is not present.

6 8D Case Study

Consider now an eight variable combustor optimization problem. In this case the ports are placed into four distinct

groups based upon their proximity in the baseline geometry, see Figure 1. The two inner primary ports form a group, as do

the two outer primary ports, the two inner secondary ports and the two outer secondary ports. The axial position and radii of

each group of ports is controlled by a pair of design variables with the variables for each group independent of eachother. As

per the previous two variable case study, surrogate models of NOx, soot and wall pressure losses will be constructed from a

large sampling plan with multiple single and multi-fidelity design optimizations then evaluating these surrogates instead of

carrying out an actual CFD simulation.

The underlying surrogate models are constructed from a large 640 point optimal Latin hypercube sampling plan the

accuracies of which are presented in Tables 5 and 6. Once again, the accuracy of each model is calculated via a leave-one-

out cross-validation. The results indicate that the high and low fidelity predictions of NOx and wall pressure losses correlate

well with the simulations but there is a drop in accuracy for the surrogate model of soot production.

Table 7 illustrates the level of correlation between the low and high fidelity surrogate models and the 640 CFD simulation

results used in their construction. As with the two variable case study the correlations between the different fidelity surrogates

are similar to those from the CFD simulations in the majority of cases. The exception being soot production which indicates

a much poorer level of correlation between the simulations that the surrogates. This coupled with the reduction in surrogate

accuracy points to a considerable level of noise being present within the soot response which the surrogate models are

struggling to represent. This reduction in accuracy raises some questions about the validity of any results employing the soot

constraint but as before optimizations both with and without this constraint are considered.

Once again three optimization strategies are considered, two single fidelity and one multi-fidelity. The two single fidelity

approaches employ, respectively, 80 and 40 point sampling plans with both then subject to a total of 40 update cycles. The
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Table 5. High fidelity 8D surrogate model accuracy

Parameter r2 %RMSE %MAE

NOx 0.805 7.33 51.4

Soot 0.632 10.5 78.4

Inner ∆P 0.894 7.74 80.5

Outer ∆P 0.946 5.52 76.7

Table 6. Low fidelity 8D surrogate model accuracy

Parameter r2 %RMSE %MAE

NOx 0.803 7.00 31.4

Soot 0.522 11.5 87.1

Inner ∆P 0.980 3.29 62.3

Outer ∆P 0.968 4.14 82.3

Table 7. Correlations between low and high fidelity models across the eight variable design space

Parameter r2 (surrogates) r2 (simulations)

NOx 0.892 0.840

Soot 0.778 0.513

Inner ∆P 0.994 0.932

Outer ∆P 0.995 0.984

multi-fidelity approach employs a 40 point sampling plan of the low fidelity data and a 10 point sampling plan of the high

fidelity data. The 40 point sampling plan is an optimal space-filling subset of the 80 point plan and the 10 point sampling

plan is an optimal space-filling subset of the 40 point plan. Relative costs of both strategies are presented in Table 8 along

with the percentage reduction in NOx obtained on both optimization problems for each of the three strategies.

Table 8. Eight variable optimization strategy cost and average percentage of improvement in NOx over 50 different optimizations with and

without soot constraint included

Improvement Improvement

Strategy Cost (w/o soot) (with soot)

80pt Krig 100% 22.8% 9.9%

40pt Krig 67% 22.7% 8.7%

10+40pt Co-Krig 56% 22.6% 7.9%

When the soot constraint is ignored all three strategies achieve a very similar level of reduction in NOx production of

22.6-22.8%. However, when one observes the convergence histories for this particular problem presented in Figure 5(a) the

multi-fidelity approach clearly converges more rapidly towards this optimum than either of the single fidelity approaches.

When the soot constraint is included there is a more pronounced difference in final level of NOx reduction achieved

across the three strategies. The more expensive 80 point single fidelity strategy achieves a further 2% reduction upon that

obtained with the multi-fidelity approach and a 1.2% reduction over the 40 point single fidelity approach. While the final

reduction in NOx is not as great, Figure 5(b) indicates that the multi-fidelity approach converges more rapidly than either
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(a) (b)

Fig. 5. Mean search histories for each 8D optimization strategy (a) without soot constraint and (b) with soot constraint active.

single fidelity approach, at least initially. By the end of the optimization it is only marginally ahead of the 40 point single

fidelity approach.

7 16D Case Study

The final case study extends the dimensionality of the optimization problem to 16 variables. In this instance the axial

position and radius of each of the eight individual ports can be controlled independently. Unlike the previous case studies the

following optimizations will be performed directly on the CFD simulations instead of evaluations of large surrogate models.

While a more realistic test, as it introduces noise and simulation failures into the optimization the cost of carrying out the

CFD simulations prohibits averaging of the performance of each strategy over a number of different optimization runs. Each

optimization is therefore performed only once.

As with the previous two studies, optimizations with and without the soot constraint is considered along with three

different optimization strategies: two single fidelity approaches employing an 80 and 40 point initial sampling plan along

with a multi-fidelity approach employing a 20 point initial high fidelity sampling plan combined with a 92 point low fidelity

sampling plan. In all cases a total of 20 update cycles are performed. Table 9 describes the relative cost of each strategy

and the best design found by each for the two optimisation problems. The multi-fidelity approach, in this instance, is an

equivalent cost to the 40 point single fidelity approach.

Table 9. 16 variable optimization strategy cost and improvement in NOx with and without soot constraint included

Improvement Improvement

Strategy Cost (w/o soot) (with soot)

80pt Krig 100% 2.94% 0.38%

40pt Krig 60% 0.78% 4.16%

20+92pt Co-Krig 60% 4.76% 5.25%

With or without the soot constraint present the multi-fidelity approach out performs both the 40 and 80 point single

fidelity optimizations in terms of the overall improvement in NOx. A result reinforced by the optimization histories presented

in Figure 6. Without the soot constraint the multi-fidelity approach converges to a better design considerably faster than the

more expensive 80 point optimization which struggles to locate any designs which improve NOx and satisfy the pressure loss

constraint in any of the updates after the initial sampling plan. It’s only on the penultimate CFD simulation that it achieves

any real improvement in performance.

With the soot constraint present the multi-fidelity optimization performs even better. Rather counter-intuitively it is able

to locate a design which, despite the presence of the soot constraint, reduces NOx further beyond that obtained without the
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soot constraint. The 80 point single fidelity approach is unable to locate a design better than that found during it’s initial

sampling plan despite 20 further CFD simulations in locations of potentially good designs. The 40 point single fidelity

optimization, however, actually out performs the more costly 80 point single fidelity optimization in this instance.

Of course, these results are only for a single optimization for each strategy and such optimizations can be heavily

dependent on the initial design of experiments sampling plan. This is even more the case when the true function to be

optimization is the result of some sort of physics based simulation and therefore potentially subject to considerable levels

of noise due to, for example, the discretization scheme, poor convergence, etc. The inclusion of such ‘bad’ data within the

construction of a surrogate model can result in a model which misleads the optimization strategy into exploring the wrong

region. The model will, of course, correct itself over time as additional samples are made within this region but this will

naturally impact the rate of convergence.

(a) (b)

Fig. 6. Search histories for each 16D optimization strategy (a) without soot constraint and (b) with soot constraint active.

A similar phenomena was encountered by Zhang et al. [16] in their combustor design optimization where an initial

poorly converged outlying simulation close to the optimum resulted in a delay in convergence as the model corrected itself.

The above results, particularly for the case with the soot constraint included demonstrate the hallmarks of a similar situation

occurring where one or more anomalous results present within the larger 80 point sampling plan are actually hampering

convergence towards an optimum. By chance these points are not present within the smaller 40 point sampling plan, which

is a subset of the 80 point plan.

8 Conclusions

The current paper represents the first time that a multi-fidelity optimization approach has been employed in the mini-

mization of combustor emissions. It is the first time that any multi-fidelity combustor optimization has employed a variation

in mesh density in order to change the fidelity of a reacting flow simulation. Previously varying levels of geometry fidelity

(single vs. double sector) or solution fidelity (RANS vs. URANS CFD or an aerothermal network model) have been used to

alter the fidelity. The complexity of the geometry employed within the optimization is also much greater than that typically

employed within design studies in the literature and is of a level comparable to that typically employed within industrial

design studies.

The results presented above for each of the three case studies demonstrate the potential of a multi-fidelity surrogate

modelling based approach applied to the minimization of combustor emissions. In all of the case studies the multi-fidelity

approach has either achieved similar or greater reductions in NOx compared to a more expensive single fidelity approach.

This holds true whether or not a constraint on the level of soot production is present within the problem definition.

These results indicate that a multi-fidelity approach may offer considerable cost savings in terms of the number of

simulations performed as part of a design study. Alternatively a multi-fidelity approach may enable larger studies with

greater geometric freedom to be performed in a similar total time thereby potentially unlocking greater emission reductions.
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