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Abstract

Production of bacteriocins is a potential probiotic feature of many lactic acid bacteria (LAB)

as it can help prevent the growth of pathogens in gut environments. However, knowledge

on bacteriocin producers in situ and their function in the gut of healthy animals is still limited.

In this study, we investigated five bacteriocin-producing strains of LAB and their isogenic

non-producing mutants for probiotic values. The LAB bacteriocins, sakacin A (SakA), ped-

iocin PA-1 (PedPA-1), enterocins P, Q and L50 (enterocins), plantaricins EF and JK (plan-

taricins) and garvicin ML (GarML), are all class II bacteriocins, but they differ greatly from

each other in terms of inhibition spectrum and physicochemical properties. The strains

were supplemented to mice through drinking water and changes on the gut microbiota com-

position were interpreted using 16S rRNA gene analysis. In general, we observed that over-

all structure of the gut microbiota remained largely unaffected by the treatments. However,

at lower taxonomic levels, some transient but advantageous changes were observed.

Some potentially problematic bacteria were inhibited (e.g., Staphylococcus by enterocins,

Enterococcaceae by GarML, and Clostridium by plantaricins) and the proportion of LAB

was increased in the presence of SakA-, plantaricins- and GarML-producing bacteria.

Moreover, the treatment with GarML-producing bacteria co-occurred with decreased tri-

glyceride levels in the host mice. Taken together, our results indicate that several of these

bacteriocin producers have potential probiotic properties at diverse levels as they promote

favorable changes in the host without major disturbance in gut microbiota, which is impor-

tant for normal gut functioning.

Introduction

With more than 1,000 bacterial species residing in the gastrointestinal tract [1], the gut micro-

biota is expected to have developedmeans to compete with each other for common resources
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and strategies to cope with different pressures from the host [2]. Survivors are selected on the

basis of several aspects, including the ability to deal with the host diet, colonization resistance,

inhibitory agents (e.g., bile salt, defensins) and other host-mediated effects like improved bar-

rier function and altered immune response [3]. Bacteria, the most predominant members of

the gut microbiota, use different mechanisms to colonize and persist in the gut. One of these is

the production of bacteriocins,which are ribosomally synthesized antimicrobial peptides pro-

duced by numerous Gram-negative and Gram-positive bacteria [4]. Most bacteriocins have rel-

atively narrow spectra, normally targeting species or genera closely related to the producers.

Others, such as the lactococcal bacteriocinnisin, can have a much wider spectrum, including

important pathogenic or problematic species of Staphylococcus, Listeria, Enterococcus and

Streptococcus [4,5]. A large number of bacteriocins are produced by lactic acid bacteria (LAB),

which constitute a diverse group of bacteria that are frequently found in food and feed, as well

as being common inhabitants in the gut environment of a great number of animals, including

humans. LAB are therefore generally regarded as safe (GRAS) for human consumption and the

production of bacteriocins as one of the important probiotic properties. It has been shown that

bacteriocins can modulate the host immune system, as well as being able to antagonize oppor-

tunists and potential pathogens [6].

Bacteriocins produced by Gram-positive bacteria are classified into two main classes: class I,

containing heavily modified (lanthionine-containing) peptides called lantibiotics; and class II,

containing non-modifiedpeptides or peptides with minor modifications (such as disulfide

bond formation or circularization) [7]. Class II bacteriocins can be divided further into sub-

classes: class IIa, pediocin-likebacteriocins,which are typically very active against Listeria and

have a relatively narrow spectrum; class IIb, two-peptide bacteriocins,whose activity is depen-

dent on the synergy between two different peptides; class IIc, circular bacteriocins; and class

IId, the miscellaneous group which include all other bacteriocins that do not fit into any of the

aforementioned groups [7].

Mice have been successfully used as a model to unravel the connection between gut micro-

biota and a variety of health issues or environmental factors, such as obesity [8], diet [9,10] and

antibiotics [11]. Also in humans, different external and internal factors can cause changes in

the composition of gut microbiota. For instance, it is well known that diet composition can

affect distinct human enterotypes [12–14] and that the administration of antibiotics causes

drastic changes in the gut microbiota [15]. In addition, the microbiota is altered in certain

health conditions such as obesity [16–18], a variety of diseases [19] and stress [2]. However,

many changes are transient or can be reverted to normal (healthy) conditions sooner or later

dependent on the type of treatments [1].

A number of bacteriocins have been studied for their ability to inhibit pathogens in the gut,

such as Salmonella enteritidis [20], Listeria monocytogenes [21], Clostridium difficile [22] and

Staphylococcus aureus [23]. They have also been observed to eliminate multidrug- or vancomy-

cin-resistant enterococci [24,25] as well as influence some bacteria-related disorders such as

obesity [26]. Bacteriocins have several advantages over antibiotics in infection treatments

because they are more target-specific and avoid killing of commensal and beneficial cells. They

also have low or no toxicity toward eukaryotic cells and are active against both pathogens and

their derived antibiotic-resistant strains [27]. However, most studies dealing with gut micro-

biota lack a detailed assessment on how bacteriocinswith different properties affect the general

composition of the gut microbiota, and their ability to bring about probiotic effects in healthy

animals.

In this study, we performed a comparative study to examine the potential probiotic effects

of five different bacteriocinproducers on the gut microbiota and other host parameters

(including blood serumparameters and weight) in healthy mice. Most of the chosen strains are
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food-associated lactic acid bacteria, which have been isolated from a variety of food products

i.e., meat (Lactobacillus sake Lb 706), fermented sausage (Pediococcus acidilactici 347 and

Enterococcus faecium L50) and fermented vegetable (Lactobacillus plantarum C11B), while

Lactococcus garvieaeDCC43 is a gut-associated strain that has been isolated fromMallard-

duck gut. Their bacteriocins have shown great differences in terms of physicochemical proper-

ties, amino acid sequence, target specificity and width of inhibitory spectrum that would allow

us to affect the gut at different levels and in different directions. To our knowledge, this is the

first study where the probiotic values of various bacteriocins and the interplay between bacteri-

ocin producers and gut microbiota are evaluated in healthy subjects.

Materials and Methods

Animals and housing conditions

Six to eight weeks old BALB/C female mice were grouped into 11 different cages (1 control

cage with n = 10, 5 cages treated with bacteriocin-producingstrains with n = 9 and 5 cages

treated with their isogenic non-producing strains with n = 9) and mice were ear-labelled for

individual tracking. Before treatments, mice were left in cages for about 10 days for adaptation

to the environment after they were brought to the facility. All mice had ad libitum access to

water and feed and their health status was carefully observedduring the entire experimental

process. The mice were provided by the Animal Production section of Central Service for

Experimental Research (SCSIE) in University of Valencia. All animal work and procedures

were approved by the institutional Ethics Committee of the CSIC and University of Valencia

and performed following the principles of laboratory animal care (as mandatory by European

Union Law and 2010/63/EU and Spanish Government RD 53/2013 on the protection of ani-

mals used for scientific purposes).

Experimental design and sampling scheme

Bacteriocin-producingand non-producing (isogenicmutants) strains of LAB were adminis-

trated to mice via drinkingwater (Table 1). The wildtype bacteriocinproducers were: L. sake

Lb 706 producing SakA [28], P. acidilactici 347 producing PedPA-1 [29], E. faecium L50 pro-

ducing enterocins P, Q and L50 [30], L. plantarum C11B producing plantaricins EF and JK

[31] and L. garvieaeDCC43 producing GarML [32]. For each bacteriocin system, a pair of bac-

terial strains was used: a wildtype producer and an isogenic non-producing mutant, except for

one isogenicmutant producing fewer bacteriocins compared to the wildtype strain (Table 1).

The isogenicmutant strains were used as negative controls for bacteriocinproduction. E.

Table 1. Administrated bacterial strains and bacteriocins.

Bacterial strain Bacteriocins in treatments Class of bacteriocins Stock Culture (cfu/mL) References

L. sake Lb 706 Sakacin A (+) Class IIa 0.16x1011 [28]

L. sake Lb 706B Sakacin A (-) 0.2x1011

P. acidilactici 347 Pediocin PA-1 (+) Class IIa 2.6x1011 [29]

P. acidilactici 347 Pediocin PA-1 (-) 2.5x1011

E. faecium L50 Enterocins P, Q and L50 (+) Class IIb (EntL50) Class IId (EntQ) 0.6x1011 [30]

E. faecium L50/14-2 Enterocin P (+) but Q and L50 (-) 0.5x1011 [33]

L. plantarum C11B Plantaricins EF and JK (+) Class IIb 2.6x1011 [31]

L. plantarum C11D3 Plantaricins EF and JK (-) 2.3x1011 [34]

L. garvieae DCC43 Garvicin ML (+) Class IIc 1.7x1011 [32]

L. garvieae DCC43 Garvicin ML (-) 1.7x1011 [35]

doi:10.1371/journal.pone.0164036.t001
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faecium L50 is a multi-bacteriocinproducer and its mutant strain has reduced bacteriocinpro-

duction capacity, i.e., still producing enterocin P but not enterocins Q and L50 (Table 1).

Therefore, its isogenicmutant strain was used as negative control for the enterocins Q and L50.

Bacterial strains were grown overnight in brain-heart infusion (BHI) medium. Cells were

harvested by centrifugation and washed twice with phosphate buffered saline (PBS) before

being frozen as stock cultures in 15% glycerol in PBS at -80°C. To prepare bacteria-containing

drinkingwater, each frozen culture was thawed and diluted to give 100 ml water containing

about 109 cells/mL, which was then given to each cage (Table 1). The drinkingwater (with or

without bacteria) was renewed on daily basis. The bacterial administration was carried out for

15 days followed by another two more weeks with bacteria-freewater. For survival assessment,

bacterial cells in drinkingwater were counted by plating just after dilution and after 24h; this

was done once during the first week and once during the second week of the bacterial adminis-

tration regime. All mice from the same cage shared the same water bottle, and water intake was

measured daily for each cage. Fecal samples were collected from each mouse once a week dur-

ing the four-week experiment. The first sample was taken on day 0 (time zero) just before expo-

sure of mice to bacteria-containing drinkingwater, thus these samples served as base line. The

following fecal samples were collected on day 7, day 14, day 21 and day 28 and kept at -80°C

until further analysis. Mice were weighed everyweek on fecal collection day. Blood samples

were collected from the facial vein, without anticoagulants, from 4 to 5 randomizedmice from

each cage on day 15, which was the last day of bacteria administration. Samples were kept on

ice after collection and centrifuged at 1,500 g for 10 min, at 4°C, to separate serumwhich was

collected and kept at -80°C prior to analysis. The samples were analyzed for their triglycerides,

total cholesterol, HDL and LDL contents with an Olympus AU400 photometric auto analyzer

(Olympus, Tokyo) with the reagents provided by the manufacturer.

LAB counting and bacteriocin activity

Total LAB cells in fecal samples at day 14 were counted for three randomly selectedmice per

cage. LAB counting and bacteriocinplate assay were performed as follows: Each fecal pellet

was dissolved and serially diluted in 0.9% NaCl. Cells (100μL) from each dilution were mixed

with 4 mL of MRS soft agar (0.8%), poured onto an MRS agar plate and then covered by

another 4 ml of cell-free soft agar (to prevent cells growing on the surface). Plates were incu-

bated anaerobically at 30°C overnight before being covered with another layer of soft agar con-

taining 100-fold diluted overnight culture of a suitable indicator. The plates were again

incubated overnight, and total colony forming units (CFUs) and CFUs of bacteriocinproduc-

ers that formed inhibition zones were scored. The following indicator strains were used: E. fae-

cium P21 (LMG 2783) for SakA and PedPA-1, P. damnosus (LMG 3397) for enterocins, L.

plantarum 965 (LMG 2003) for plantaricins, and L. lactis IL1403 (LMG2705) for GarML.

DNA extraction

A total of 495 (99 mice x 5 time points) fecal samples were collected during the course of the

experiment. DNA from each fecal sample was extracted using Realpure SSS kit (Real Life-Sci-

ence Solutions, Durviz, Spain) with addition of a bead-beating step. The DNA was quantified

using Qubit1 fluorometer with Qubit1 dsDNA HS Assay Kit (Invitrogen, Eugene, OR,

USA). The DNA samples at each time point from the mice sharing same cage were normalized

and pooled prior to the amplicon sequencing, giving rise to 55 pooled samples. DNA samples

from three randomly selectedmice from the control cage at day 0, day 14 and day 28 were also

sequenced to observe the individual variation on fecal microbiota over time.

Impact of Class II Bacteriocins on Gut Microbiota
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16S rRNA gene amplification and sequencing

Library preparation for 16S rRNA gene amplicon sequencing was performed as described in

the Illumina 16S metagenomic sequencing library preparation protocol [36]. Briefly, the

V3-V4 region of bacterial 16S rRNA gene [37] was amplified using forward and reverse prim-

ers with Illumina overhang adaptors, 5’-TCG TCGGCAGCGTCA GAT GTG TAT AAG

AGA CAG CCTACG GGNGGCWGC AG-3’ and 5'-GTC TCG TGG GCT CGGAGA TGT

GTA TAA GAG ACA GGA CTA CHVGGG TAT CTA ATC C-3’, respectively. PCR products

were cleaned up using AMPure XP beads (BeckmanCoulter Genomics, USA). A second PCR

was carried out for sample specific dual indexing using the Nextera XT Index kit (Illumina, San

Diego, California, USA) that contains index primers with 8-base indices adjacent to the P5 or

P7. Cleaning-up of indexing PCR products was performed again using AMPure XP beads

(BeckmanCoulter Genomics, USA). Purified product concentrations were measured by Qubit

using Qubit1 dsDNA HS Assay Kit (Invitrogen, Eugene, OR, USA) and quality was checked

by gel electrophoresis (1% agarose gel). Libraries were normalized and pooled. The pool was

quantified with rt-PCR using PerfeCta NGS library quantification kit for Illumina Sequencing

platforms (Quanta BioSciences,Maryland, USA). The quantified pool was denaturated prior to

loading of samples into the MiSeqmachine. Loading of libraries to the sequencer was per-

formed usingMiSeq v3 reagent kit (Illumina, San Diego, California, USA). The fastq files have

been deposited in the SRA (Bioproject ID: PRJNA310414 and Accession number: SRP069889).

Analysis of sequencing data

The raw Illumina reads were filtered and de-multiplexed using the IlluminaMiSeq Reporter

system software version 2. The paired-endMiSeq reads were processed using UPARSE pipeline

[38] implemented in USEARCH [39] (version 7.0.1090). Paired-ends were merged and quality

filtering was applied using maximum expected error (maxee) value of 1.0. Sequences were

dereplicated, singletons were discarded. Sequences were clustered into OTUs using 97%

sequence identity threshold, chimeric sequences were filtered from clustered OTUs using

UCHIME [40] and an OTU table was created. OTUs were processed further using Quantitative

Insights Into Microbial Ecology (QIIME) version 1.8.0. The representative OTUs were picked

and aligned against the Greengenes core set database [41] using PyNAST [42] with a minimum

identity of 75%. Taxonomy was assigned to aligned sequences using The RibosomalDatabase

Project (RDP) classifier program [43] with a confidence of 0.8. The OTU table was subsampled

to normalize the sequence number among samples based on the sample with lowest number of

sequences. A phylogenic tree was built using Fast Tree [44] from aligned sequences after the fil-

tration step in order to remove highly variable regions and positions that were all gaps. This

tree was used to calculate alpha and beta diversities. Rarefaction curves and Shannon indexes

were calculated. Unweighted UniFrac distance metrics [45] were generated and principle coor-

dinate analysis (PCoA) was used to visualize the metrics.

Statistics

The comparisons of Shannon indexes (S2 Table) between the treatments were performed in R

using an ANCOVA that considered time as a continuous dependent variable with significance

at P< 0.05. The distances between treatments in PCoA plots were compared in QIIME using a

two-sided Student’s t-test, and the nonparametric p-values were calculated with 1,000 Monte

Carlo permutations using Bonferroni correction.Mixed model ANOVA was performed in R

for the comparison of weights where mice were random factor and time points (within subject)

and treatments (between subjects) were fixed factors in the model. The changes in relative

abundance of taxa in treatments were compared to the changes in CON using ANOVA.
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Relative abundance at day 0 was taken as basis within each treatment and the change corre-

sponding to day 0-relative abundances were compared to the changes in CONmice. The

changes on day 7 and day 14 were together considered to represent the bacteria administration

(treatment) period,while day 21 and day 28 represented the post-treatment period. P-values

smaller than 0.1 were considered as significant for the relative abundance comparisons when

the effect size of testing was high (R2
> 0.84). Serumparameters were compared pairwise

between the cages treated with bacteriocin-producingand non-producing strains with two-

sided Student’s t-test in R using fdr correction and the plots were generated for the significantly

different parameters using STAMP [46]. Pearson correlations (P< 0.05) between serum

parameters and the relative abundance of OTUs in treatments were calculated using CoNet

[47] and visualized using Cytoscape 3.1.1 [48].

Results

Water consumption and weight gain of mice

The drinkingwater was refreshed every day and live bacterial cells were kept between 108 to 109

cells perml for bacteria administration to each cage. The water consumption in all cages was simi-

lar to that in the control cage (CON, without bacteria); i.e., mice consuming daily on average 29

ml/cage or 3.2 ml/mouse. In general, most of themice gainedweight in a relatively normal fashion

during the course of the 4-week experiment, with an average initial weight at 18.6 g and final

weight at 20 g.While mice in most cages gained weight in a fashion comparable to control mice,

mice treated with PedPA-1(+) and plantaricins(-) appeared to have higher weight gain, see Fig 1.

Total LAB and LAB bacteriocin-producers in fecal samples

LAB normally constitute a sizable group in the gastrointestinal tract.We enumerated this

group of bacteria in fecal samples to examine how the bacteriocin-positive treatments affect

Fig 1. Average weights of mice in the same treatment cage over time. ‘(+)’ represents bacteriocin producer cage while ‘(-)’
represents bacteriocin non-producer cage. Significance degree is represented with stars; p<0.05 with one star (*); p <0.01 with two stars
(**); p <0.001 with three stars (***).

doi:10.1371/journal.pone.0164036.g001

Impact of Class II Bacteriocins on Gut Microbiota

PLOSONE | DOI:10.1371/journal.pone.0164036 October 3, 2016 6 / 22



this group, compared to the bacteriocin-negative (isogenic) cages. Using conditions selective

for most LAB (MRS plates and anaerobic condition, growth at 30°C), the counts of total LAB

were around 108 cfu/g feces for the randomly selectedmice frommost of the cages (n = 3 from

each cage). However, the number of LAB in fecal samples was significantly higher in some bac-

teriocin positive cages. This is the case for mice treated with the producers of SakA (2-fold,

P< 0.01), plantaricins (3-fold, P< 0.01) and GarML (2-fold, P< 0.01) compared to their bac-

teriocin negative cages (S1 Table).

In addition to total LAB enumeration, bacteriocin-producingcolonies were counted in the

same assay using indicator bacteria that are sensitive to administrated bacteriocins (Fig 2). The

portions of bacteriocinproducers (tested against the specified indicator strains) among all LAB

in bacteriocinpositive cages were 25% in SakA(+), 5% in PedPA-1(+), 89% in enterocins(+),

89% in plantaricins(+) and 18% in GarML(+) cages. Interestingly, there were no bacteriocin-

producing colonies in the samples from the bacteriocinnegative cages, except the cage treated

with the enterocins isogenicmutant strain that has lost the genes (by plasmid curing) for the

production of enterocin Q and L50, but not the genes for the production of enterocin P (71%

bacteriocinproducing colonies) (Fig 2).

Moreover, sequencing analysis of the fecal samples showed that the relative abundances of

OTUs assigned to Pediococcus (P. acidilactici particularly), Lactococcus (L. garvieae particu-

larly), and unclassified Enterococcaceae,were significantly higher in the cages treated with

PedPA-1(+) and (-), GarML(+) and enterocins(+) respectively (S1 Fig). These increases are

expected because the bacteriocinproducers belong to these bacterial groups. However, Lacto-

bacillus had many OTUs assigned; therefore, this effect could not be observed for SakA and

plantaricins cages. These results imply that bacteriocinproduction renders the producers more

capable to establish growth in the gut environment.

Fig 2. Bacteriocin-producing LAB in the fecal samples of mice at the end of the treatment period.Representative plates from bacteriocin activity
assay were shown for each treatment. ‘(+)’ represents bacteriocin producer treatment, while ‘(-)’ represents isogenic non-producer treatment. The clear
zones around the colonies indicate bacteriocin production. The indicator strains used in the assay are: E. faecium P21 (LMG 2783) for SakA and PedPA-1,
P. damnosus (LMG 3397) for enterocins, L. plantarum 965 (LMG 2003) for plantaricins, and L. lactis IL1403 (LMG2705) for GarML treatments.

doi:10.1371/journal.pone.0164036.g002
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Community structure of fecal bacteria

The fecal bacterial community structure was assessed using 16S rRNA gene analysis. The inter-

individual variations within the cages were converged by the pooling of DNA samples from

mice in the same cage at each time point. Therefore, our results represent the average of many

mice as a group within each cage. Nearly 4.8 millionmerged and quality filtered sequences

were obtained. In total 1,168 OTUs were acquired for all samples after chimera filtering. The

community of each sample was subsampled, giving about 15,800 sequences/sample. Rarefac-

tion curves indicated that the diversity of bacterial communities was not significantly affected

by any of the treatments (S2 Table).

Further, the distance matrices were calculated by unweighted UniFrac and visualized by

PCoA plots to compare the communities of bacteriocin-positive, negative and CON cages. In

addition to the pooled samples, we also analyzed fecal samples from three randomly selected

mice at the same time points (day 0, day 14 and day 28) to examine whether there were any

major individual differences compared to the pooled communities. No significant differences

were found (S2 Fig, S3 Table). OTU compositions of all the treatment samples were similar to

that of the CON at control time point day 0 (i.e., before treatments) as expected (Fig 3), and

there was no significant divergence in the community composition over time within the differ-

ent treatments including CON (S4 Table). Moreover, the OTU compositions were not signifi-

cantly affected by the different treatments considering all time points (Fig 3 and S4 Table).

These observations together support the general idea that the gut microbiota is relatively

resilient in healthy animals (see discussion below).

Taxa at phylum level

Similar to the OTU compositions, the relative abundances of bacteria phyla were not strongly

affected by bacteriocinproducers/non-producers. Overall, the microbiota of mice were domi-

nated by the phyla Bacteroidetes (average of 57% in different treatment groups), Firmicutes

(average of 29%) and Verrucomicrobia (average of 10%) (Fig 4). Phyla with a relative abun-

dance of less than 2% were Actinobacteria, Proteobacteria, TM7 (candidate division), Teneri-

cutes and a number of unclassified bacteria. Only a few of the low abundant taxa were

predicted to be affected by bacteriocinproducers/non-producers. For instance, TM7 (candidate

division) decreased in the presence of the SakA(+), SakA(-) and GarML(-) strains, and Proteo-

bacteria by the SakA(+) strain. On the other hand, the Actinobacteria population increased in

samples with the SakA(-) treatment compared to CON.

Changes at lower taxonomic levels

When analyzing at lower taxonomic levels (i.e., family and genus) we found a number of

changes that co-occurred in the presence of bacteriocinproducers (Table 2), thus these changes

were likely due to bacteriocin effects.Mice that were treated with the producers of SakA and

GarML were observed to have increased Leuconostocaceaepopulations during the treatment

period (S3 Fig). The producers of PedPA-1 and plantaricins co-occurredwith increases and

decreases of the Clostridiaceaepopulation respectively, particularly the genus Clostridium,

with persistent effects observedduring both treatment and post-treatment periods (Fig 5). The

Enterococcaceae family population was observed to increase by the producer of enterocins dur-

ing the treatment period, but this effect disappeared during the post-treatment period (S3 Fig).

Unlike enterocins, the producer of GarML was predicted to inhibit the Enterococcaceae family

over the entire course of the experiment. The population of Streptococcaceae (particularly Lac-

tococcus) was observed to increase in the presence of the GarML producer during the treatment

period.On the contrary, this family (particularly Streptococcus) became less abundant in mice

Impact of Class II Bacteriocins on Gut Microbiota
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that were treated with the enterocins producer (Fig 5 and S3 Fig). Moreover, the enterocins

producer was predicted to reduce the Staphylococcaceae family, particularly the Staphylococcus

genus (Fig 5), which is normally associated with various infections and diseases.

In some cases, we also observed similar changes caused by both bacteriocinproducers and

the isogenicmutants (Table 2). For instance, mice with P. acidilactici 347 and the isogenic bac-

teriocin non-producing mutant were observed to have reduced Enterococcaceae (during the

treatment period) and Streptococcus levels (during the entire course of experiment). Both

strains co-occurredwith significantly increased Pediococcus populations and reduced Lactoba-

cillus populations during the treatment period,while the family they are affiliated to, Lactoba-

cillaceae, was not significantly affected. Similarly, E. faecium L50 and its isogenicmutant L50/

14-2 co-occurredwith reduced Lactobacillus. Moreover, L. plantarum C11B (bacteriocinpro-

ducer) during the course of the post-treatment, and its isogenicmutant strain L. plantarum

Fig 3. Comparison of bacteria composition of treatments. Principle coordinate analysis (PCoA) plot was generated based on the calculated distances
in an unweighted UniFrac matrix. Samples were grouped by color in terms of treatment group they belong to (see legend). (For statistics see S4 Table).

doi:10.1371/journal.pone.0164036.g003
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C11D3 during the whole experiment, showed a significant adverse effect on the Staphylococca-

ceae population (S3 Fig).

It is well known that Gram-negative bacteria as well as Gram-positive bacteria that are more

distantly related to the bacteriocinproducers are generally not sensitive to LAB bacteriocins.

We observed that some populations of these bacterial groups were affected, e.g., Firmicutes

affiliated-populations: Erysipelotrichaceae,Lachnospiraceae and Ruminococcaceae.However,

most of these changes were likely not due to bacteriocinproduction as both the bacteriocin

producers and their isogenicmutants gave similar effects (S5 Table). Only the GarML

Fig 4. Relative abundances of bacterial phyla in every sample. Different colored bars represent different phyla with size showing relative abundance of
this phylum. Labels contain name of treatments and time with day numbers: 0 (day 0), 7 (day 7), 14 (day 14), 21 (day 21) and 28 (day 28).

doi:10.1371/journal.pone.0164036.g004

Table 2. Significant modifications of the relative abundance of LAB and bacteriocin-targeted bacterial groups in response to the treatments.

SakA PedPA-1 enterocins plantaricins GarML

Bacteriocin-associated effect Leuconostocaceae " Clostridium "* Enterococcaceae " Clostridium #* Leuconostocaceae "

Streptococcus # Lactococcus "

Staphylococcus #* Enterococcaceae #*

Total LAB " Total LAB " Total LAB "

Non-bacteriocin-associated effect Pediococcus " Lactobacillus #

Lactobacillus #

Streptococcus #

Enterococcaceae #

* Bacteriocin-associated modifications that were persistent throughout the experimental period.

doi:10.1371/journal.pone.0164036.t002
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producer, but not the isogenic strain, co-occurredwith increased Ruminococcaceaepopula-

tions in the post-treatment period (S5 Table).

Surprisingly, some bacteriocinproducers and their isogenicmutants behaved differently

toward the Gram-negative bacteria (S5 Table). The Bacteroidaceae population was observed to

increase in the presence of the SakA producing strain during the treatment period but the iso-

genic mutant (bacteriocinnegative) during the post-treatment period. The Prevotellaceae and

Rikenellaceae populations were significantlymore abundant in the samples treated with the

Fig 5. Changes in relative abundance of LAB and bacteriocin-targeted bacterial groups at genus level during treatment and post-treatment
periods.Changes in relative abundances of genera in treatments, obtained with respect to time 0, were compared to that in CON. Significance degree is
represented as following: P < 0.1 with dot (.); P < 0.05 with one star (*); P < 0.01 with two stars (**).

doi:10.1371/journal.pone.0164036.g005
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producer of GarML compared to CON samples, while no change was observed in those treated

with the isogenic strain of GarML. Nevertheless, there were also cases where both the bacterio-

cin producers and their isogenicmutants were predicted to cause the same changes (S5 Table).

F16 (affiliated to TM7 candidate division) levels were reduced in the presence of both the pro-

ducer and non-producer strains of plantaricins, while Desulfovibrionaceae,which is a sub-

group of Proteobacteria, was increased in mice fed by both the producers and non-producers

of SakA and PedPA-1.

Blood serum components

Next, we focused on the blood serum components at the end of the treatment period, i.e., the

levels of triglycerides, total cholesterol, HDL and LDL, which can be used to estimate the risk

of some health disorders, such as heart diseases and obesity. A significant decrease in the level

of triglycerides,which is considered beneficial to host, was observed in mice treated with

GarML(+), compared to bacteriocinnegative treatment (Fig 6).

Correlations betweenOTUs and the level of the blood serum components were also investi-

gated. Significant correlations were found for some OTUs of the families Rikenellaceae, S24-7

(Bacteroidales subgroup), Ruminococcaceae,Lachnospiraceae, Coriobacteriaceae,Dehalobac-

teriaceae, Unclassified RF39 (Tenericutes subgroup), Bacteroidaceae, Clostridiaceae and Erysi-

pelotrichaceae (P< 0.05) (Fig 7). The most remarkable correlations were found with OTUs

affiliated to the S24-7. They were mostly negatively correlated with serumLDL and triglycer-

ides levels. On the other hand, the OTUs of Erysipelotrichaceae family were positively corre-

lated with the levels of triglycerides.The Bacteroidaceae population was also positively

correlated with the level of triglycerides,while one OTU belonging to Rikenellaceae showed a

negative correlation. Moreover, the correlation of Ruminococcaceaewith the measured serum

levels was more OTU-specific.

Discussion

Production of bacteriocins by LAB has generally been considered as a potential probiotic trait.

The target specificity of the bacteriocins against a number of pathogenic or antibiotic-resistant

bacterial strains has been of great interest in many research groups [20–25]. However, only a

few studies have assessed the in situ effect of bacteriocinproducing LAB on the normal gut

microbiota in live animals. For example, L. salivarius UCC118 producing bacteriocinAbp118

has been shown to cause significant but subtle changes on the murine and pig intestinal micro-

biota [49]. The impact of the combination of probiotics including one bacteriocin-producing

strain (a L. salivarius strain producing salivaricin P) was evaluated in pig model and the pre-

dominance of the bacteriocinproducing strain has been observed [50]. Another study showed

a shift in the fecal bacterial structure in humans caused by the probiotic strain, L. plantarum P-

8, and this shift has been suggested to be due to the putative plantaricin production by this

strain [51]. Nevertheless, all these studies have assessed only one bacteriocinproducer at a time

and most of the times without an isogenic bacteriocin-negative strain as control. The lack of

such control strains makes it difficult to attribute the observed changes to bacteriocinproduc-

tion itself or to other unknown non-bacteriocin activities.

In our study, LAB producers of various class II bacteriocins (i.e., SakA, PedPA-1, enterocins

(Q and L50), plantaricins (EF and JK) and GarML) were assessed for potential probiotic prop-

erties in healthy mice. All these producers were accompanied with a set of corresponding iso-

genic strains whose bacteriocinproduction is deleted or reduced, to serve as reference strains.

The bacteriocins produced are categorized into different subclasses with different physico-

chemical properties, structures and antimicrobial spectra (S6 Table) [52], thus allowing us to
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study how different bacteriocins affect the gut microbiota. Moreover, the samples were col-

lected during both the treatment period and the post-treatment period so that we could evalu-

ate the persistence of the effects over time. Some of the bacteriocins used herein have

antimicrobial activity against pathogenic strains at least in vitro, for example, SakA and

PedPA-1 against Listeria spp., enterocins against S. aureus (S6 Table) and GarML against sev-

eral pathogens including Listeria and Clostridium spp. [32].

In general, our results indicate that the main structure of the gut bacterial composition in

mice was relatively resilient to the administration of LAB producers or non-producers. How-

ever, at lower taxonomic levels (at genus level) we could observe some modifications and these

changes varied in a manner related to the in vitro antimicrobial activities of the bacteriocins,

Fig 6. Significant serum level modifications by Garvicin ML. The pairwise comparisons between bacteriocin positive
and negative treatments were performed using Student’s t-test. The boxplot shows the significant comparison with
P < 0.05. GarML: Garvicin ML, (+): bacteriocin producing strain, (-): bacteriocin non-producing isogenic strain treatments.

doi:10.1371/journal.pone.0164036.g006
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i.e., the narrow-spectrumbacteriocins SakA, PedPA-1 and plantaricins showing less impact on

bacterial communities compared to the wider-spectrumbacteriocins enterocins and GarML.

The populations of Gram-positive bacteria, particularly LAB such as lactobacilli, lactococci,

enterococci, streptococci, leuconostoc, and pediococcias well as some other niche competing

bacteria like staphylococci, listeria and clostridia are often the targets of LAB-produced bacteri-

ocins [53]. As expected, these populations were altered mostly whenmice were treated with

bacteriocinproducers. Some of these changes can be favorable to the host, such as the reduc-

tion in population size of streptococci, staphylococci, and clostridia. However, it should be

underlined that pathogenicity of an organism can vary greatly between species within a genus,

Fig 7. Correlation network of relative abundances of OTUs at day 14 and serum levels. The correlations were calculated using Pearson’s correlation in
CoNet and the significant ones (P < 0.05) were shown on the network. All serum values are shown by one color (grey) while OTUs belonging to different
families are represented by different colors (see legend). Positive correlations are displayed with green edges and negative correlations with red edges.
OTUs on the nodes were represented with OTU numbers or genus names they belong to and serum values were labelled as Trig: triglycerides, HDL: high-
density lipoprotein, Chol: total cholesterol and LDL: low-density lipoprotein.

doi:10.1371/journal.pone.0164036.g007
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or even between strains within a species. For instance, some members of clostridia are known

to be beneficial for the host contributing to the maintenance of the gut homeostasis [54], espe-

cially for ruminants (polygastric hosts) improving digestion of complex organic matter such as

cellulose [55]. On the other hand, some species of this genus are often associated with diverse

infections and diseases in monogastric animals, as well as being regarded as opportunists in

humans (e.g.,C. perfringens) [56]. The same is true for the Enterococcus faecalis and Escherichia

coli species, which include probiotic strains, as well as renown pathogenic strains implicated in

serious diseases [57]. Some examples of the pathogenic members of the aforementioned bacte-

rial groups are Streptococcus bovis [58], S. aureus [59], C. difficile [56]. However, due to the lim-

ited resolution of 16S rRNA gene sequencing, the species-level identification of these bacterial

groups could not be conducted in this study.

In addition to modification of specific taxa, some bacteriocinproducers (SakA, plantaricins

and GarML) co-occurredwith significantly increased the counts of total LAB. This is interest-

ing since LAB can have probiotic value via the production of various molecules (e.g., short

chain fatty acids, conjugated linoleic acids, exopolysaccharides, fructooligosaccharidesand

selenoproteins) and favor the production of butyrate and propionate of other mutualistic bac-

teria [60]. LAB are also involved in regulating host metabolism and immune system, control-

ling infections and modulating inflammation [61].

In spite of several direct correlations, some of the in vitro antimicrobial activities of bacterio-

cins were not observed in the gut communities in mice. For example, the class IIa bacteriocins,

SakA and PedPA-1, were seemingly effective against Enterococcus strains and GarML against

Lactobacillus strains in vitro; however, these bacteriocins did not inhibit the growth of these

populations in vivo. These discrepancies between in vitro and in vivo effects are not surprising

because several factors can affect bacteriocinproduction in vivo and even the bacteriocin activ-

ity. For example, the bacteriocinproduction can be regulated by cues from the environment,

such as signal transduction systems (quorum-sensing) known to be involved in SakA and plan-

taricins biosynthesis, and temperature-dependent regulation in enterocins biosynthesis [33,62–

65]. In addition, niche competition between bacteria, other antimicrobial compounds that are

produced by LAB (e.g., organic acids, hydrogen peroxide, antifungal peptides) and the host

responses can influence the environment [66,67].

The fecal populations of Enterococcus and Lactococcus increased in cages treated with the

enterococcal enterocins and the lactococcalGarML, respectively. It is likely that a significant

proportion of the reads corresponding to these bacterial groups would correspond to the bacte-

riocin producers themselves and that their colonization in gut was facilitated by bacteriocin

production. This later notion is supported by the fact that the corresponding isogenicmutants

did not result in an increase of these populations. However, the Pediococcus population was

enhanced in the presence of both the PedPA-1 producer and its isogenicmutant; therefore, this

enhancement could not be linked only to the bacteriocinproduction.Moreover, there was no

obvious increase in the Lactobacillus population in cages treated with SakA or plantaricins

(bacteriocins produced by lactobacilli). The detection of changes in the relative abundance of

this population was challenging due to the large number of affiliatedOTUs. However, it is

likely that the growth of native Lactobacillus strains was triggered or they were replaced by the

administrated bacteriocin-producingLactobacillus strains as suggested before [25].

Bacteriocinsmay also help the producer invade a new niche by competitive exclusion of

other inhabitants, which usually are closely related bacteria, such as LAB in this study. This

competition can lead to modifications of other bacterial populations connected in the micro-

bial network [25]. This might explain the increase of Prevotellaceae in the presence of plantari-

cins and GarML, and the effect of GarML on Ruminococcaceae and other Bacteroidetes

affiliated bacteria (e.g., Rikenellaceae).Members of these Gram-negative families are known to

Impact of Class II Bacteriocins on Gut Microbiota

PLOSONE | DOI:10.1371/journal.pone.0164036 October 3, 2016 15 / 22



produce short chain fatty acids beneficial for host [68–70]. Moreover, we observed that the

populations of Bacteroidetes phylotypes S24-7, Bacteroidaceae, Rikenellaceae, Ruminococca-

ceae, Erysipelotrichaceae,Coriobacteriaceae,Lachnospiraceae and Clostridium were correlated

in an OTU-specificmanner with the serum parameters.

Weight gain is one of the parameters to measure host health. The treated mice gained

weight in a manner comparable to or better than the CON cage, indicating that the bacterio-

cin/bacteria treatments did not have a negative impact on the normal growth of mice. The pro-

ducer of PedPA-1 significantly increased the body weight of mice compared to CON, in

contrast to its corresponding isogenicmutant. On the other hand, both producer and its iso-

genic non-producer of GarML and enterocins had a positive impact on weight in the treatment

period (GarML isogenic strain also in the post-treatment period), implying that the effects

were seemingly due to the strains, independently of the bacteriocinphenotype. Variation in

weight gain in response to administration of bacteriocins or certain strains has been observed

before [49,71]. Blood serum levels of triglycerideswere significantly decreased by the producer

of GarML. This change is potentially positive for the host because the blood level of triglycer-

ides is a physiological indicator of the risk of some health disorders such as heart diseases and

obesity. However, it is of future interest to correlate the effects of bacteriocins on host physiol-

ogy to gut microbiota modifications.

The gut environment is a complex niche where numerous and diverse bacteria are thriving

and competing fiercely for common resources. The successful survivorsmust therefore have

developed strategies to coexist with other gut inhabitants and with the host in an interactive net-

work. This network is presumably quite resilient as well as dynamic in order to deal withmany

different chemical challenges during the daily traffic along the intestinal tract (e.g., ingested food

or medicines) and to maintain the diverse functions the gut play (processing the ingested food,

producing nutrients, vitamins, immune-stimulation, gut emptying, etc.). Such a resilient and

dynamic nature of the healthy gut can be seen in our present study. Firstly, the overall structure of

microbiota remained largely unaffected by the administration of bacteriocinproducers and non-

producers of different genera. Secondly, significant changes were observedat lower taxonomic lev-

els in the gut of treated mice, depending on the bacteriocinproduced. However, many of these

changes disappeared or were disappearing at the end of the 4-week course of experiment. In

terms of probiotic use, these properties are highly appreciated because probiotics are meant to

transiently affect the gut microbiota to promote health-bringing conditions for host (inhibition of

potential pathogens, enhanced growth of beneficial bacteria, increase of beneficial blood serum

parameters, etc.) without disturbing the gut’s main microbial structure and function.

Nevertheless, although probiotics have beenmuch studied worldwide in recent years and

there are numerous studies showing different probiotic effects from LAB and other bacteria,

this research field is still, at best, in its infancy, especially with regard to the limited understand-

ing at the molecular and cellular levels. Further, it is important to underline that the use of pro-

biotics to achieve favorable values in animals is a rather complex and unpredictable process as

many unknown hurdles along the GIT can deteriorate or repress the probiotic properties.

Some probiotic properties can even vary dependently on a number of host parameters, includ-

ing animals tested, genetic background, age and gender [72]. Thus, to fully and safely appreci-

ate their health bringing values, probiotics must be critically and carefully assessed in the

relevant models and settings.
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S1 Fig. Relative abundances of OTUs at genus level.Different colored bars represent different

genera with size showing relative abundance of this genus. Labels contain name of treatments
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and time with day numbers: 0 (day 0), 7 (day 7), 14 (day 14), 21 (day 21) and 28 (day 28).

(TIF)

S2 Fig. Comparison of bacterial composition of pooled fecal samples and fecal samples

from individualmice in CON cage. Principle coordinate analysis (PCoA) plot was generated

based on the calculated distances in an unweighted UniFrac matrix. Samples were grouped by

color and shape such that pool of fecal samples at indicated time point (red circle), day 0

(T = 0) individual mice samples (blue square), day 14 individual mice samples (green square)

and day 28 individual mice samples (orange square). Individual mice were indicated with num-

bers: M5, M7 and M10. (For statistics see S3 Table).

(TIF)

S3 Fig. Changes in relative abundance of LAB and bacteriocin-targetedbacterial groups at

family level during treatment and post-treatment periods.Change in relative abundances of

families corresponding to day 0 of treatments were compared to CON. Significance degree is

represented as followings: P<0.1 with dot (.); P<0.05 with one star (�); P<0.01 with two stars

(��).

(TIF)

S1 Table. Lactic acid bacteria count in treatment samples. �The log values in bacteriocinpos-

itive and negative treatments were compared pairwise using two-sided Student's t-test for each

bacteriocin group.

(XLSX)

S2 Table. Shannon indexes calculatedas mean of ten iterations at equal subsampling size

of 15,840.

(XLSX)

S3 Table. Comparisonof UniFrac distances of pooledand individual samples.The statistical

significances of differences in unweighted UniFrac distances in terms of groups (pooled vs

individual samples) and time were shown. The non-parametric p-values were calculated per-

forming two-sample t-tests for the pairs of the groups with Monte Carlo permutations

(n = 1,000) and correctedwith Bonferronimethod.

(XLSX)

S4 Table. Comparison of UniFrac distances between treatments.The statistical significances

of differences in unweighted UniFrac distances between treatments and time points were

shown. The treatments that were compared for each bacteriocin group included control, bacte-

riocin positive and bacteriocinnegative treatments. The nonparametric p-values were calcu-

lated performing two-sample t-tests for the pairs of the groups with Monte Carlo permutations

(n = 1,000) and correctedwith Bonferronimethod.

(XLSX)

S5 Table. Comparison of relative abundance change of families by administrated strains

compared to CON in treatment and post-treatment periods.The difference of the relative

abundances from time 0 within each treatment was calculated. The changes at day 7 and day

14 were analyzed as “treatment”, while day 21 and day 28 were analyzed as “post-treatment”

data. ANOVA was performed on the relative abundance changes in control, bacteriocin-pro-

ducer and bacteriocin-non-producergroups. '(+)' indicates increase and '(-)' indicates decrease

compared to CON and significance degree is represented as followings: P<0.1 with dot (.);

P<0.05 with one star (�); P<0.01 with two stars (��).

(XLSX)
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S6 Table. In vitro antimicrobial activity assay of bacteriocins against the indicator strains

listed.
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