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ABSTRACT 

 

Recently, highly spatially dense air quality monitoring networks using low-cost sensors have been attempted worldwide. 

However, the quality of data from these sensor networks remains to be validated. This study assessed the potential of low-

cost sensors for spatially dense air quality monitoring. Thirty sets of air quality sensor nodes for CO, NO2, O3, PM2.5, and 

PM10 were custom-built to evaluate their consistency in measurement, both among the sensor nodes and between the sensor 

node and instruments that use Federal Reference/Equivalent Methods (FRMs/FEMs) in the real atmosphere under two 

distinctly differing meteorological conditions (summer and winter) in Seoul and Busan, Korea. We found that commercially 

available low-cost sensors possess great potential as monitors for short-term air quality studies in urban areas, at least for 

one-month periods, given that (1) the self-consistency among the 30 sensors was high (R2 > 0.93), (2) the consistency 

between the sensors and the FRM/FEM instruments was reasonably high (R2 > 0.87 overall for the periods of comparison), 

and (3) the consistency both among the sensors and between the sensors and the FRM/FEM instruments remained stable 

throughout the summer and the winter. However, vigorous data post-processing is needed to obtain reliable air quality data. 

For longer-term or temporally discontinuous monitoring, several issues must be addressed, including the limited lifetime of 

sensors, the degradation in sensor performance over time, and the long warm-up times for gaseous pollutant sensors. The O3 

sensors required minimal post-processing correction, and the particulate matter and CO sensors agreed well with the FEM 

instruments after appropriate scale correction, but the NO2 sensors required additional efforts to correct for the effects of 

meteorological conditions and interfering materials. Overall, our results suggest that when investigating spatiotemporally 

heterogeneous distributions of air pollutants in various urban environments, a three-dimensional sensor network can be a 

useful tool for short-term monitoring, as long as data are corrected properly. 

 

Keywords: Air quality; High-resolution pollution monitoring; Low-cost sensors; Sensor network; Spatiotemporal variations. 

 

 

 

INTRODUCTION 

 

Air pollution has become one of the major global threats to 

public health, particularly in low- and middle-income countries 

(WHO, 2018). About 4.2 million annual deaths could be 

attributed to ambient air pollution based on the updated 

global burden of disease in 2015 (Ostro et al., 2018). In 

addition, about 90% of the global population is exposed to 

high levels of air pollutants (WHO, 2018). In this respect, 

public concerns about air pollution have increased rapidly 

worldwide, leading to changing paradigms in air quality 
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monitoring, from official monitoring stations operated by 

governments to low-cost air quality sensors carried by citizen 

scientists to monitor the air quality at the location where they 

are breathing (Kumar et al., 2015).  

In developed countries, 1 air quality monitoring station 

(AQMS) operated by a government generally represents 

100,000 people (Lewis and Edwards, 2016). Seoul, South 

Korea, which is one of the most populous cities in the world, 

operates 25 urban and 18 roadside AQMSs, each of which 

covers an area of roughly 4 × 4 km and represents 227,442 

people (Bae et al., 2013; MOIS, 2019). However, air pollutants, 

particularly those emitted from vehicles in cities, are highly 

spatially heterogeneous due to the rapid dilution of vehicle 

emissions and the complex wind fields and turbulence 

created by built environments (Morawska et al., 2008; 

Karner et al., 2010; Choi et al., 2016). For example, elevated 
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concentrations of pollutants from vehicular emissions are 

diluted to ambient levels within a few hundred meters in 

daytime (Karner et al., 2010). At night when the atmosphere 

is stable, roadway plumes can reach up to 2 km, but elevated 

concentrations decrease sharply within the first several 

hundred meters (Hu et al., 2009; Choi et al., 2012). Wind fields 

and turbulence intensities are modified by the surrounding 

built environment (Kim and Baik, 2004), making ventilation 

more (or less) effective below urban canopy levels, even on 

a block scale (Pirjola et al., 2012; Choi et al., 2016; Choi et 

al., 2018).  

The high spatiotemporal heterogeneity of pollutant 

distributions in urban areas requires spatially dense air quality 

monitoring in near real time to control exposure (Kumar et 

al., 2015). In addition, as public concern over air pollution 

has grown recently, the market for low-cost air quality sensors 

has also grown rapidly. The reasons for using low-cost air 

pollution sensors are diverse, from warning systems for gas 

leakage and occurrence of high-pollution events to high-

density air quality monitoring in cities (Lewis and Edwards, 

2016). This study focused on assessing the potential of low-

cost sensors for spatially dense air quality monitoring. 

Numerous recent studies have evaluated the performance 

of low-cost sensors for their specific purposes under both 

laboratory and field conditions (Morawska et al., 2018). 

Bart et al. (2014) compared semiconductor O3 sensors with 

a ratified reference instrument over 48 h and showed strong 

agreement between them, with a standard error of 3 ppb in 

the ambient O3 range (0–50 ppb). Moltchanov et al. (2015) 

compared 2 pairs of electrochemical NO2 and O3 sensors at 

four different sites, including an AQMS. They reported good 

correlations between the 2 sensors at all sites, with r > 0.92 

and 0.78 for O3 and NO2, respectively. They also found good 

correlations between the sensors and reference instruments at 

the AQMS site. However, the relationship between the sensor 

and reference instrument differs among individual sensors. 

Masson et al. (2015) conducted a long-term comparison 

between an electrochemical NO sensor and the Federal 

Reference Method (FRM) instrument and reported good 

agreement, with a root mean square error of 14.6 ppb after 

correcting for sensitivity and offset, which was improved to 

13.6 ppb with additional corrections using multivariate 

analysis, although they did not discuss signal attenuation effects 

over time. Mead et al. (2013) carried out comprehensive 

testing of the performance of NO, NO2, and CO sensors and 

quantified the effects of meteorological conditions and 

interfering materials on sensor outputs, suggesting the 

necessity for sophisticated data correction. They deployed 

46 sensor nodes in Cambridge, United Kingdom, and suggested 

that low-cost sensors have great potential for high-density 

air quality monitoring. In addition, they reported that the 

degradation of NO sensor performance was negligible over 

1 year. Nonetheless, their sensor reproducibility tests were 

limited to 2 pairs of sensor nodes over short time periods. 

Zicoba et al. (2017) carried out intercomparison tests of 66 

infrared LED-based dust sensors for PM2.5 and the Grimm 

instrument in both indoor and outdoor settings. The correlations 

among the sensors were R2 > 0.9, showing excellent sensor 

reproducibility. However, the correlations between the sensors 

and the Grimm instrument were not satisfactory, with R2 = 0.53 

and 0.22 in indoor and outdoor environments, respectively.  

Although many studies have evaluated sensor performance, 

most have used a limited number of sensors for comparison 

with a ratified reference instrument, and results from 

intercomparison tests among large numbers of sensors, which 

are essential for quantifying the spatial heterogeneity of air 

pollutants on a fine scale, are lacking. In addition, despite 

their promising applications, the quality of data obtained 

from low-cost sensors remains in doubt (Cross et al., 2017). 

This data quality issue should be carefully addressed before 

low-cost sensor networks are used in practice, as the spread 

of unreliable information may cause further confusion among 

the public, irrational anxiety or relief about air quality, and 

the establishment of inappropriate strategies for exposure 

reduction (Masiol et al., 2018).  

In this study, we investigated the performance of low-cost 

sensors under different meteorological conditions, comparing 

ambient concentrations of air pollutants among a large 

number of sensors (30 sets of sensor assemblies to examine 

inter-sensor variations within a sensor network) and 

between the sensors and the instruments used in FRMs (to 

determine the accuracy and sensitivity of the sensor as well 

as meteorological or temporal effects on sensor characteristics). 

Piedrahita et al. (2014) suggested that correcting sensor data 

from collocation calibrations produced more reliable 

concentrations than laboratory calibrations. Based on 

experimental results, we discuss the potential of sensor 

networks for actual air quality monitoring as well as the 

questions and problems that should be addressed for practical 

applications of air quality monitoring sensor networks.  

During the intercomparison tests between the sensor 

assembly and FRM or Federal Equivalent Method (FEM) 

instruments, 29 sensor assemblies were deployed in the center 

of Seoul, South Korea, in an area of about 800 × 800 m to 

investigate the heterogeneous distributions of air pollutants 

in the city. The detailed results of this sensor network study 

will be discussed in a subsequent paper. 

 

METHODS 

 

Air Quality Sensor Node 

In this study, the focus was on five criteria air pollutants, 

CO, NO2, O3, PM2.5, and PM10; temperature; and relative 

humidity. Temperature and humidity data were used for 

further correction of meteorological effects on sensor 

performance. Because the goal of the study was not to 

evaluate the performance of numerous commercially available 

sensors but rather to apply these sensors to the construction 

of a highly spatially resolved air quality monitoring network, 

we chose a sensor for each pollutant from the literature 

based mainly on evaluation results published by the United 

States Environmental Protection Agency (U.S. EPA) and the 

South Coast Air Quality Management District (SCAQMD; 

California, USA). The U.S. EPA and SCAQMD (Air Quality 

Sensor Performance Evaluation Center) have evaluated 

commercially available low-cost air pollutant sensors, 

providing comparisons with FRMs and FEMs in the real 

atmosphere and laboratory since 2013 (SCAQMD, 2017; 
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U.S. EPA, 2017). Additionally, we reviewed published articles 

containing sensor evaluations (e.g., Williams et al., 2013; 

Jiao et al., 2016; Cross et al., 2017; Ly et al., 2018). Thus, 

although we cannot say that the selected sensors are the best 

performing sensors available, they represent sensors with 

high sensitivity and accuracy on the market. 

The sensors selected are listed in Table 1. A particulate 

matter (PM) sensor (PMS5003; Plantower) employs a laser 

scattering technique with a laser diode for a light source and 

a photodiode detector for a receptor (Zheng et al., 2018). CO 

(CO-B4; Alphasense) and O3 (SM50; Aeroqual) sensors use 

an electrochemical sensing technique, which measures gas 

concentrations by measuring the current generated by the 

potential difference between working and counter electrodes 

when the target gas undergoes an oxidation or reduction 

reaction on the working electrode (Mead et al., 2013). NO2 

concentrations were measured with a metal oxide sensor 

(MiCS-2714; SGX), which measures the change in the 

electrical conductivity occurring when the target gas contacts 

the semiconductor surface (Urasinska-Wojcik et al., 2017). 

Among these sensors, the CO and O3 sensors were factory 

calibrated, but the NO2 sensor was not calibrated initially. 

Although we can obtain PM concentrations directly from 

sensor outputs, the manufacturer did not provide information 

on a calibration algorithm (Zheng et al., 2018). However, 

SCAQMD mentioned that the PMS5003 was factory 

calibrated (SCAQMD, 2019). We did not apply any additional 

pre-adjustment to sensor readings before storing the data. 

All the adjustments were made in the data post-processing 

stage based on intercomparison test results in real atmospheric 

conditions. The air quality data were averaged for 10 s and 

stored on a microSD card at a 0.1-Hz temporal resolution in 

a data logger (ATmega2560; Atmel), which could be 

simultaneously transferred via a wireless network to a 

smartphone (with a PHPoC Shield for Arduino). However, 

due to a limitation of wireless network access for 30 sensor 

nodes, we used only the stored data in SD card for data 

analyses, and the wireless connection was used only for 

checking the malfunction of a sensor node with a direct 

connection between the sensor node and smartphone. 

 

Table 1. Specifications of the sensors selected for this study. 

 Manufacturer/model  Specifications 

CO Alphasense/CO-B4  Linearity test with ref. method: R2 = 0.88, slope = 0.94 (5-min avg.) 

 Noise level: 4 ppb 

 Range: up to 1000 ppm 

 Operating conditions: –30–50°C/15–90% RH 

 Method: electrochemical sensor 

 Reference: Cross et al. (2017) 

NO2 SGX/MiCS-2714  Detection limit: 11.6 ppb 

 Linearity test with ref. method: R2 = 0.98 

 Accuracy: 3 ppb 

 Operating conditions: –30–85°C/5–95% RH 

 Method: metal oxide sensor 

 Reference: Urasinska-Wojcik et al. (2017) 

O3 Aeroqual/SM50  Linearity test with reference method: R2 = 0.91–0.97 

 Accuracy: < 10 ppb 

 Resolution: 1 ppb 

 Operating conditions: –20–50°C/5–95% RH 

 Method: electrochemical sensor 

 Reference: Jiao et al. (2016) 

PM2.5/PM10 Plantower/PMS5003  Linearity test with reference method: R2 = 0.92 (1-h avg.) 

 Range of concentrations: 0–500 µg m–3 

 Resolution: 1 µg m–3 

 Operating conditions: –10–60°C/0–99% RH 

 Counting efficiency: 50% at 0.3 µm and 98% at ≥ 0.5 in 

 Method: light scattering  

 Reference: Wang et al. (2017) 

Temperature/Humidity Sensirion/SHT21  Resolution: 0.01°C/0.04% 

 Accuracy: ±0.3°C/±2% 

 Operating conditions: –40–125°C/0–100% (RH) 

 Reference: manufacturer’s specification document 

Data logger Atmel/ATmega2560  Power: DCV = 7–12, max = 300 mA 

 Digital I/O pins: 54 (of which 15 provide PWM output) 

 Analog input pins: 16 bit 

 Clock speed: 16 MHz 

 Micro SD memory: 16 GB 

 RTC: rechargeable battery (5.8 mAh), 30 days 
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The sensors were assembled in a platform made of 

acrylonitrile butadiene styrene plastic (dimensions: 200 × 

100 × 300 mm; Fig. 1). An intake for ambient air and an 

exhaust for in-box air were located at the top and bottom of 

the front side of the platform, with a fan in the exhaust 

portion. The calculated ventilation rate was more than 20 

times the platform volume per minute. We acknowledge that 

there could be a wall-loss issue for some pollutants (e.g., 

ozone). In this study, we could not quantitatively determine 

the effects of wall loss on ozone concentrations in a box. 

However, Ainsworth et al. (1981) suggested that ozone wall 

loss can lead to 2% uncertainty at the surface pressure level, 

and Itoh et al. (2012) suggested that the effective ozone 

lifetime due to wall loss in an acrylic resin tube is about 104 

s at the surface pressure level. Considering the ventilation 

rate in our sensor node box, we expect the wall-loss effect 

would be minor. Even in case that we cannot ignore ozone 

wall-loss effect, we think this effect could implicitly be 

corrected when we corrected pollutant concentrations from 

the sensor nodes corresponding to those obtained from the 

reference instruments, assuming constant wall-loss rates.  

 

Comparison of Air Quality Data among Sensors by 

Sampling Site, Period, and Meteorological Conditions 
To obtain reliable spatial distributions of air pollutants, 

the comparability of data among sensors should be ensured, 

so that a value obtained at one site can be compared directly 

with values from other sites. To date, most sensor evaluation 

studies have focused on the accuracy of sensor performance, 

testing a small number of sensors experimentally (e.g., 

SCAQMD, 2017; U.S. EPA, 2017). To investigate the 

consistency of data among numerous sensors, we placed 30 

sensor platforms together (10 sensors for O3) on the rooftop 

of a three-story building on the Pukyong National University 

campus. Pukyong National University is located 650 m west 

of the coast and is surrounded by heavily trafficked roads in 

all directions (about 400 m from all streets). Thus, the campus 

represents the ambient urban air without direct influences 

from emission sources, considering that daytime roadway 

plumes dissipate within about 300 m (Karner et al., 2010).  

The comparison tests were carried out four times, twice in 

summer and twice in winter, under distinct meteorological 

conditions. Within each season, the temporal gap between 

the two experiments was about four weeks. Each experiment 

was conducted for 3–5 days, depending on weather conditions. 

During this temporal gap, experiments using a highly 

spatially resolved sensor network were conducted in Seoul, 

the most populated megacity in Korea. The results from this 

air quality sensor network will be presented separately and 

are beyond the scope of the present study.  

 

Intercomparison between the Sensor Platform and 

Ratified Reference Instruments by Sampling Site, AQMS, 

and Meteorological Conditions 

A sensor platform was co-located (< 1 m) with the sample 

inlet of the AQMS operated by Seoul Institute of Health 

Environment for 7 days in summer (August 25–31, 2017) 

and 10 days in winter (January 11–20, 2018). The sample 

inlet was located at 16 m a.g.l. The instruments used for 

FRM/FEMs at the AQMS are CA-751 (non-dispersion infrared 

absorption) for CO, NA-721 (chemiluminescence) for NO2, 

OA-781 (non-dispersive ultraviolet absorption) for O3, and 

PM711 (beta ray attenuation) for particulate matter (PM) 

(Ambient Air Monitor 700 Series; Kimoto Electric Co., Ltd., 

Japan). 

The AQMS is located in the center of Seoul (Jongno-gu, 

37.572°N, 127.005°E) and is surrounded densely with small 

buildings (mostly three- to four-story buildings). In this area, 

vehicular emissions are the major source of air pollutants, 

but there are no prominent emission sources in close 

proximity to the AQMS. Possible emission sources that may 

affect the AQMS are the eight-lane road (Jong-ro) located 

about 100 m south, the six-lane road (Yulgok-ro) about 300 m 

east, and the four-lane road (Dongho-ro) about 270 m west 

 

 

Fig. 1. Image of the sensor assembly. The space at the bottom holds the battery. 
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of the AQMS. The purpose of this intercomparison study was 

not to investigate air quality affected by vehicular emission 

sources; thus, we did not analyze the traffic rates on the 

surrounding roads. To investigate meteorological effects on 

variations in the sensor characteristics, we obtained 

meteorological data from a nearby automatic weather station 

operated by the Korea Meteorological Administration, as 

well as temperature and relative humidity measured inside 

the sensor platform. 

 

RESULTS AND DISCUSSION 

 

Meteorological Conditions 

Many sensor evaluation studies have been conducted under 

specific meteorological conditions (e.g., Williams et al., 2013; 

Masson et al., 2015; Jiao et al., 2016). The meteorological 

conditions in Korea, however, vary significantly from season 

to season (roughly from –20°C to 40°C and from dry to 

humid). In this study, an intercomparison among sensors and 

between sensors and FRM instruments was conducted under 

two distinct weather conditions (hot and humid in summer 

and cold and dry in winter). In addition, for each season, two 

intercomparison experiments (among sensors and between 

each sensor and the corresponding FRM instrument) were 

conducted in close temporal proximity, within one month. 

Thus, the meteorological conditions of the two intercomparison 

experiments were similar in both summer and winter (Table 2). 

 

Intercomparison among Sensors 

To investigate the consistency of sensor readings among 

a massive number of sensors, the comparisons of data were 

made with unadjusted raw signals from sensor nodes. In 

these comparisons, we used 15-min-averaged data to examine 

if the sensors have the potential to capture high temporal 

variations in pollutant concentrations in cities. All 30 sensors 

agreed well with each other for all tested pollutants in both 

summer and winter. Here, we present the statistical results 

obtained from the comparison of 29 sensor platforms with 1 

reference sensor platform (the reference sensor platform was 

installed at AQMS to conduct further intercomparison tests 

with reference instruments). The mean R2 values of the 29 

sensors were greater than 0.933 ± 0.012 in summer and 0.965 

± 0.020 in winter for all pollutants (Table 3). Slightly poorer 

linearity in summer for CO, PM2.5, and PM10 was likely 

caused by relatively low ambient concentrations in summer 

compared to those in winter (O3 showed the opposite trend, 

with higher summer concentrations). Thus, the consistency 

among sensors appears to be sufficient to determine the 

relative spatial distributions of pollutants obtained by the 

sensor network, at least under similar weather conditions. 

Accuracy issues are discussed in the next section. 

Although the linearity among sensors was excellent for all 

pollutants, the slopes of 1:1 plots between the 29 sensors and 

the reference sensor were more widely scattered for NO2 and 

CO compared with PM and O3 sensors. Assuming the zero 

values of all sensors are identical, if no slope correction is 

carried out, the concentrations among sensors may differ by 

up to 40% for CO (slopes of 0.74–1.13 in summer), 73% for 

NO2 (0.93–1.66 in winter), 17% for O3 (0.87–1.05 in 

winter), and 28% for PM2.5 (0.84–1.12 in winter). Because 

the PM sensor is based on a light scattering technique, PM2.5 

and PM10 showed almost the same temporal variations 

(discussed in the next section in more detail). Thus, PM10 is 

not discussed here. 

 

Table 2. Temperature and relative humidity during the intercomparison experiments. 

 Avg. (std.) Range 

Among sensors With FRM instruments Among sensors With FRM instruments 

Summer 

(Aug.–Sep.) 

Temp. (°C) 29.9 (4.2) 26.1 (3.3) 22.4–39.4 20.8–35.7 

Humid. (%) 60.7 (10.8) 53.8 (15.7) 32.0–79.4 17.5–83.9 

Winter 

(Dec.–Jan.) 

Temp. (°C) 4.1 (5.2) 2.5 (5.5) –7.2–17.7 –11.3–11.6 

Humid. (%) 24.7 (10.1) 47.3 (12.6) 7.5–55.4 18.6–79.8 

 

Table 3. Results of linear regression between 29 sensors and the reference sensor in summer and winter (using 15-min-

averaged unadjusted data). The reference sensor represents the sensor node that was co-located with FRM/FEM instruments 

at AQMS. 

Summer (Aug.–Sep.) CO NO2 O3 PM2.5 PM10 

Slope Mean (std.) 0.87 (0.08) 1.03 (0.08) 1.00 (0.04) 0.94 (0.04) 0.93 (0.04) 

Range 0.74–1.13 0.88–1.23 0.96–1.06 0.87–1.01 0.85–1.00 

R2 Mean (std.) 0.940 (0.055) 0.982 (0.012) 0.997 (0.001) 0.945 (0.012) 0.933 (0.012) 

Range 0.739–0.979 0.953–0.997 0.994–0.998 0.911–0.964 0.905–0.951 

# of data (N) 312 284 325 342 342 

 

Winter (Dec.–Jan.) CO NO2 O3 PM2.5 PM10 

Slope Mean (std.) 0.90 (0.06) 1.17 (0.30) 0.96 (0.06) 1.03 (0.06) 1.01 (0.07) 

Range 0.79–1.07 0.83–1.66 0.87–1.05 0.84–1.12 0.80–1.12 

R2 Mean (std.) 0.972 (0.039) 0.965 (0.020) 0.975 (0.004) 0.991 (0.008) 0.988 (0.006) 

Range 0.960–0.988 0.934–0.994 0.970–0.981 0.955–0.995 0.961–0.993 

# of data (N) 484 377 463 574 574 
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Intercomparison tests among sensors were conducted 

twice during each season (before and after two-week 

intercomparison tests with the FRM instruments). The two 

datasets obtained from two separate experiments agreed 

well (falling onto one regression line) for all pollutants in 

both summer and winter (Figs. S1–S5 in Supplementary 

Information). During the two experimental periods in each 

season, meteorological conditions were similar (Table 2). 

Thus, we conclude that sensor characteristics do not change 

over time, at least for a one-month period under similar 

weather conditions. 

The consistency among sensors in different seasons (thus, 

under different meteorological conditions and with a six-month 

time interval) agreed well, except for that of the CO sensors 

(Fig. S6), which showed variable consistency. Most CO 

sensors showed good agreement between seasons (Fig. S6(a)), 

but some showed different relationships (Fig. S6(e)). Even 

when the sensors showed inconsistent seasonal relationships, 

the slopes between the sensors in the two seasons were similar. 

Thus, these differences were likely caused by zero drift due 

to differing meteorological conditions or the time interval. 

Only 3 sensors out of 29 showed seasonal inconsistency, with 

a maximum zero-shift of 137 ppb (Fig. S6(e)). Nonetheless, 

most sensors (26 out of 29) agreed with each other reasonably 

well (R2 > 0.9). Thus, we conclude that the consistency 

among sensors is reasonably good regardless of meteorological 

conditions and that this consistency is maintained for a period 

of at least six months (sensors were stored in plastic bags filled 

with N2 gas when they were not operated). Although the 

consistency among sensors was excellent, the correspondence 

with air pollution data obtained from FRM/FEM instruments 

under different meteorological conditions should also be 

examined and is discussed in the next section. 

 

Intercomparison between Sensors and Reference 

Instruments, and Meteorological Effects 

The reference sensor platform described in “Intercomparison 

among sensors” was co-located with the AQMS inlet to 

determine the accuracy and consistency of the sensors 

compared to FRM/FEM instruments for summer and winter. 

In these comparisons, we used 1-h-averaged sensor readings 

because the AQMS provides 1-h-averaged air quality data. 

Generally, the consistency between sensor readings and the 

concentrations recorded with FRM instruments was reasonably 

good for CO, O3, and PM2.5 (Table 4 and Fig. 2). 

 

Gas Sensors (CO, O3, and NO2) 

The CO sensor agreed well with the corresponding FRM 

instrument in both summer (R2 = 0.814) and winter (R2 = 

0.930). Although the slopes differed significantly (summer: 

1.03; winter: 1.63) (Fig. 2(a)), the data ranged much more 

widely in winter (0.4–2 ppm) than in summer (0.3–0.8 ppm). 

Thus, the winter slope likely represents the actual sensor 

characteristics. Indeed, both the summer and winter data 

appear to lie along the line fitted for the entire seasons with 

the slope similar to that for only winter data (Fig. 2(a)). 

However, considering the possibility of zero shift in the CO 

sensor, as discussed in “Intercomparison among sensors” 

(although this shift was observed in a minority of CO 

sensors), we cannot exclude the possibility that the slope is 

affected by meteorological conditions. Overall, we conclude 

that CO sensors have the potential for application in high-

density stationary and mobile sensor networks, but their data 

should be properly calibrated before being used or shared. 

The O3 sensor showed great consistency with the FRM 

instrument in both summer (hot and dry conditions) and winter 

(cold and dry conditions) (R2 = 0.894 and 0.944 in summer and 

winter, respectively). In addition, the data from the two seasons 

showed almost identical relationships with the FRM instrument 

(summer and winter relationships agreed with each other within 

4% over the 20–100 ppb range). Thus, meteorological factors 

(temperature and relative humidity) in two different seasons did 

not affect sensor responses within this ambient concentration 

range. This finding indicates that O3 sensors have great 

potential to be employed in high-resolution sensor networks 

with minimal post-processing or correction of data. When 

O3 concentrations were below 20 ppb, sensor readings were 

lower than the actual concentrations. In particular, at levels 

less than 10 ppb, the O3 sensor did not detect O3. However, 

these low concentrations are not of interest from an air 

quality perspective; therefore, we excluded these data from 

our analysis (indicated by the brown rectangle in Fig. 2(c)). 

 

Table 4. Summary of the intercomparison results between sensors and FRM instruments (using 1-h-averaged unadjusted 

sensor data). Because the NO2 readings were raw signals from the sensor (not factory-calibrated signals), the slope and y-

intercept are not very meaningful.  

  CO NO2 O3 PM2.5 PM10 

Summer 

(Aug.–Sep.) 

Slope 1.03 - 0.88 0.30 0.28 

y-intercept 224.04 - 7.04 3.59 16.55 

R2 0.814 0.407 0.894 0.738 0.339 

# of data 141 135 147 145 144 

Winter 

(Dec.–Jan.) 

Slope 1.63 - 0.83 0.40 0.40 

y-intercept 219.73 - 8.26 4.98 18.12 

R2 0.930 0.785 0.944 0.930 0.882 

# of data 170 134 175 165 174 

Overall 

(summer and winter) 

Slope 1.7286 - 0.86 0.42 0.42 

y-intercept  - 7.79 2.27 14.99 

R2 0.925 0.005 0.877 0.955 0.917 

# of data 311 269 322 310 318 
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Fig. 2. Results of the comparison between AQMS and unadjusted sensor data for summer and winter (hourly averaged data): 

(a) CO, (b) NO2, (c) O3, (d) PM2.5, and (e) PM10. Red stars represent summer data, and blue circles indicate winter data. The 

black dotted lines denote the linear fit for winter, black dashed lines those for summer, and green solid lines those for both 

seasons combined.  

 

Although the NO2 sensor and FRM instrument have positive 

correlations in each season, the 1:1 plots were inconsistent 

between summer and winter, with more widely scattered 

data compared to other pollutant sensors (R2 = 0.41 in summer 

and 0.79 in winter). Because the signals from all NO2 

sensors were consistent with each other (Figs. S1 and S2), 

their seasonal inconsistency with the FRM instrument and 

wider scatter appear to have been caused by meteorological 

conditions and other interfering factors (e.g., O3; Mead et 

al., 2013). However, after correcting for these factors, NO2 

concentrations from the sensor agreed much better with FRM 

concentrations, as discussed in “Post-processing of sensor 

data and uncertainties.” Thus, to employ this NO2 sensor in 

a sensor network, intensive post-processing of data is required. 

 

PM Sensor 

The PM sensor showed excellent consistency with the 

FEM instrument (R2 = 0.955 for PM2.5 and 0.917 for PM10). 

In addition, the 1:1 relationship in summer and winter had 

the same trend (Figs. 2(d) and 2(e)). The summer and winter 

relationships with the FEM instrument differed slightly, but 

this was likely caused by differing ambient levels of PM2.5 
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between the two seasons (summer range: < 10–23 µg m–3; 

winter range: 10–100 µg m–3). However, the sensor read 

concentrations 2.6 and 2.2 times those measured with the 

FEM instrument in summer and winter, respectively. PM10 data 

were scattered more widely compared to PM2.5, particularly in 

summer (R2 = 0.34; Table 4). This scatter was prominent 

when PM2.5 was low and the PM10/PM2.5 ratio was high (see 

the green rectangle in Fig. 2(e)). The same trend was also 

present in the time-series figure of the SCAQMD report 

(SCAQMD, 2017; Fig. S7), although the report does not 

discuss this trend and its possible causes. Thus, we conclude 

that although PM sensors can be applied to high-resolution 

sensor networks, the data should be calibrated carefully 

before deployment, and PM10 is less reliable under conditions 

of low PM2.5 and high PM10/PM2.5 ratios. We do not discuss 

this issue in more detail because it is beyond the scope of 

this study to elucidate the causes of this feature. 

SCAQMD (2017) showed that commercially available PM 

sensors have a wide range of performance, and Morawska et 

al. (2018) noted that pre-testing or calibration under realistic 

use conditions is necessary. Our results also suggest that the 

characteristics and performance of the selected sensor 

should be carefully determined and the data should be 

corrected properly before deployment. 

 

Post-processing of Sensor Data and Uncertainties 

Data post-processing was conducted separately for each 

season to avoid additional complexities, such as sensor aging 

and long-term zero drift. All data post-processing was 

conducted with MATLAB 2017b (MathWorks®) due to the 

massive dataset from 30 sensor nodes. For practical application 

in massive mobile or stationary sensor networks, only zero 

and scale corrections were used based on linear regression 

results for CO, O3, and PM sensors. For NO2 sensors, linear 

fitting did not produce satisfactory results (Table 4). Thus, 

an additional multivariate regression method was applied to 

improve the reliability and quality of sensor data. Because 

semiconductor gas sensors (e.g., NO2 sensor) are known to 

be influenced by temperature, humidity, and interfering gases 

(Barsan et al., 2007; Kleffman et al., 2013; Mead et al., 

2013), we used temperature, humidity, and O3 as explanatory 

variables (NO2 concentrations could be grouped by O3 level; 

data not shown). The linearity with AQMS NO2 improved 

significantly after correction with the multivariate regression 

method (equations are shown in Fig. S8), especially for summer 

data (R2 = 0.37–0.80 for summer and 0.77–0.82 for winter; 

Fig. S8). The data post-processing (for both normalization 

to a reference and multivariate regression) were based on the 

entire observation data because these corrections were for 

diagnostic evaluation, not for prognostic purposes. 

The time-series of post-adjusted air quality data from the 

sensors corresponded to those from the FRM/FEM instruments 

in both the magnitude and temporal variation (Fig. S9). The 

results of several statistical tests to evaluate the uncertainty 

of post-adjusted sensor data compared to AQMS data are 

also summarized in Table 5. The larger mean absolute error 

(MAE) of the CO sensor was caused by higher ambient CO 

concentrations (the mean relative error (MRE) of the CO 

 

Table 5. Summary of several statistical tests for uncertainty in corrected (post-adjusted) sensor data (numbers of data used 

in the tests are identical with those in Table 4).  

 Substance Bias1 RMSE2 IOA3 MAE4 MRE5 (%) 

Summer CO –1.4 67.8 0.92 51.8 12.2 

NO2 0.04 10.0 0.61 8.0 34.5 

O3 –1.64 7.7 0.93 4.3 28.9 

PM2.5 0.07 2.7 0.90 2.2 30.2 

PM10 0.23 14.3 0.46 4.2 20.8 

Winter CO –111.5 142.0 0.95 116.8 10.1 

NO2 –0.75 8.6 0.94 6.8 34.8 

O3 –2.63 4.2 0.96 3.2 24.3 

PM2.5 0.50 7.2 0.98 4.5 26.6 

PM10 –0.92 11.6 0.97 8.8 17.3 

1 Bias (mean error):  1
i i

M O
N

  

2 RMSE (root mean square error): 
 2

i iM O

N


 

3 IOA (index of agreement): 
 

 

2

2
1

i i

i i

M O

M M M O




  




 

4 MAE (mean absolute error): 
1

i i
M O

N
  

5 MRE (mean relative error): 
1

100 (%)
i i

i

M O

N O


  

where M: sensor data and O: AQMS data. 
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sensor was about 10%, lower than those of other sensors). In 

contrast, O3 and PM2.5 sensors had larger MRE values (25–

30%), but their MAE levels were acceptable (O3: 3–4 ppb; 

PM2.5: 2–5 µg m–3). 

 

Application of Post-processing to the Other 29 Sensor 

Nodes’ Data in a Sensor Network 

During the periods for which 1 representative sensor node 

was co-located with reference instruments for intercomparison 

tests, the other 29 sensor nodes were deployed in a nearby 

urban area with a spatial domain size of 800 m × 800 m to 

investigate spatiotemporal heterogeneity of air pollutant 

distributions in complex urban environments (Fig. S10). To 

compare directly air pollutant concentrations read by each 

sensor node deployed in a sensor network, we applied a two-

stage post-adjustment to the other 29 sensor nodes. At the 

first stage, we corrected the readings from 29 sensor nodes 

corresponding to the representative sensor node that was 

located with reference instruments based on the comparison 

results among sensors (Table 3; see “Intercomparison 

among sensors”). At the second stage, because all 30 sensor 

nodes agreed well with each other (Table 3), we applied the 

post-processing of sensor data that was derived from the 

intercomparison results between the sensor node and reference 

instruments to the other 29 sensor nodes (corrected at the first 

stage) to adjust sensor readings to those corresponding to the 

reference instruments. 

Fig. 3 shows the time-series of pollutant concentrations from 

the sensor node after being corrected with the two-stage 

post-processing method mentioned above as well as the 

concentrations measured at the nearby AQMS (37.565°N, 

126.976°E). This AQMS is a different place from the site 

where the intercomparison tests were conducted between the 

sensor node and reference instruments. Thus, these AQMS 

data were independent of the post-processing of sensor 

readings. The sensor was located in the ground-level (about 

3 m a.g.l.), and AQMS is located about 40 m from the sensor 

horizontally, at 15 m a.g.l. (Fig. S10). Considering the different 

positions of the sensor node and AQMS (horizontally and 

vertically), the time-series of the sensor node and reference 

instruments agreed well, demonstrating the potential of 

sensor measurements for air quality monitoring. The sensor 

node recorded high CO concentrations at midnight in the early 

period of monitoring in summer (tinted areas in Fig. 3(a)). 

At that time, construction equipment was operated beside 

the sensor. 

The detailed results and discussion of the actual deployment 

of sensors in a network in complex urban micro-built 

environments will be discussed in a separate paper. 

 

Temporal Variations in Sensor Characteristics and 

Stabilization Time 

Electrochemical gas sensors and semiconductor sensors 

require time for stabilization prior to reading ambient pollution 

levels (Futata and Ogino, 1998; Burgues and Marco, 2018). 

For example, electrochemical sensors measure the current 

generated by reduction-oxidation (redox) reactions that 

occur on the electrode of the sensor and then convert these 

currents into pollutant concentrations. These redox reactions 

continuously occur, even when the sensor is not powered, 

and currents accumulate on the electrode. When the 

electrochemical sensor is powered, release of these currents 

to ambient levels takes time (Futata and Ogino, 1998). This 

means that when most cost-effective gas sensors (excluding 

non-dispersive infrared gas sensors; Dinh et al., 2016) are 

powered, we had to wait for the sensors to stabilize before 

recording the real signals (Fig. S11). However, we found 

that when power was momentarily disconnected (< 1 min), 

all sensors stabilized within 1 min (data not shown). 

As expected, the stabilization time for CO and NO2 

sensors was significant and increased with the period during 

which sensors were not operated (resting time) (Fig. 4). 

When the resting time was less than 5 days, the stabilization 

time increased sharply, up to 1.7 h for the CO sensor and 

~3 h for the NO2 sensor. With more than 5 days of resting 

time, the stabilization time did not increase significantly (up 

to ~3 h for the CO sensor and no change in the NO2 sensor). 

However, when the resting time was longer than 3 months, 

the stabilization time again increased sharply, up to ~5 h for 

CO and > 13 h for the NO2 sensor. Of note, the stabilization 

time is a characteristic of the individual sensor, and each 

sensor may have a different stabilization time (Fig. S11(b) 

and S11(c)). Thus, we consider the stabilization times 

presented here to be lower limits. 

Unlike the CO and NO2 sensors, the unstabilized O3 

sensor gave zero values (Fig. S11(a)). The O3 sensor also 

 

 

Fig. 4. Stabilization time for the (a) CO and (b) NO2 sensors. Resting time on the x-axis refers to the period for which the 

sensors were unpowered. 
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required time for stabilization but not as much as the CO and 

NO2 sensors. Regardless of resting time, the stabilization 

time of the O3 sensor appeared to be no longer than 10 min 

(based on limited experiments; data not shown). The PM 

sensor is based on a light scattering technique and did not 

require any stabilization time. 

Although we do not need to consider the stabilization time 

once the sensor network has been operated continuously for 

a long time, it is important to be aware of this characteristic 

for discontinuous monitoring of air pollutants (e.g., episodic 

monitoring of air pollutants by smartphone users) to avoid 

recording and sharing inaccurate air pollution data. 

 

CONCLUSION 

 

The goals of using low-cost air pollution sensors vary 

widely, from warning residents of gas leaks or high-pollution 

events to providing high-density air quality monitoring in cities. 

This study focused on assessing the suitability of low-cost 

sensors for spatially dense air quality monitoring networks.  

The sensors currently available on the market show great 

potential as air quality monitors for such networks in large 

cities containing various built environments, given that (1) the 

self-consistency among the 30 tested sensors was reasonably 

high, with R2 values larger than 0.93 for all of the tested 

pollutants; (2) the consistency between the sensors, excluding 

that for NO2, and the FRM/FEM instruments was also 

reasonably high, with R2 values larger than 0.87 (over the 

entire periods of comparison; Table 4); and (3) the consistency 

both among the sensors and between the sensors and the 

FRM/FEM instruments (except the NO2 sensor) remained 

stable during two distinct meteorological scenarios (hot and 

humid in summer and cold and dry in winter), which 

approximate the extremes experienced in most cities. 

However, several issues must be resolved prior to using 

low-cost sensors for spatially dense air quality monitoring 

networks. First, the differences between the unadjusted 

concentrations obtained by the sensors were non-negligible, 

reaching as high as 17%, 28%, 40%, and 73% for O3, PM2.5, 

CO, and NO2, respectively, indicating that the sensor data 

must be corrected when investigating the qualitative spatial 

distributions of air pollutants on a fine scale. 

Second, the unadjusted concentrations recorded by the 

CO and PM sensors differed significantly from those of the 

FRM instruments (60–70% lower for CO and about 2.5-fold 

higher for PM), although the O3 sensors agreed quite well 

with the FRM instrument (within 20% for the 15–70 ppb 

range). Furthermore, the NO2 sensor required additional 

correction (in this study, we applied multivariate regression). 

Thus, to obtain reliable air quality data from sensor networks, 

the data must be carefully corrected through post-processing. 

Nonetheless, a simple two-step calibration process (i.e., 

linearity correction for the discrepancy among the sensors 

followed by scale correction for the discrepancy between the 

sensors and the FRM instruments) can produce reliable data 

from a spatially dense network. 

Third, meteorological conditions and interfering materials 

may significantly affect some sensors (including the NO2 

sensor that we tested); hence, we must also correct for these 

effects, e.g., by applying multivariate regression analysis or 

neural network statistical analysis (Jianlin Hu at Nanjing 

University of Information Science and Technology, personal 

communication, February 2, 2018). 

Fourth, some sensors must “warm up” prior to use. The time 

required to stabilize the CO and NO2 sensors in this study, 

for example, increased significantly, from a few hours to more 

than half a day, after unpowered periods, and the sensors 

produced unrealistic data while warming up. Therefore, warm-

up time should be considered, especially for discontinuous 

monitoring efforts, such as mobile monitoring with handheld 

sensors by citizen scientists. 

Unfortunately, this study could not quantify the degradation 

in sensor performance caused by long-term operation. 

However, considering the relatively short lifetimes of low-cost 

sensors (particularly electrochemical and metal oxide sensors), 

we should quantify and correct for this degradation. Cross et 

al. (2017) noted the brief lifetime (24–36 months) as one of 

the problems with low-cost sensors, and Bai et al. (2019) 

suggested that the performance of low-cost PM sensors 

gradually degraded over an 18-month operating period.  

Despite the sensor’s lifetime issue, we conclude that 

employing a spatially dense, massive air quality monitoring 

network using currently available low-cost sensors is 

feasible for short-term experiments (i.e., less than a few 

months in length, although this time frame could be 

substantially extended for PM and O3, based on longer-term 

experimental results reported in the literature, e.g., Jiao et 

al., 2016; SCAQMD, 2017). To obtain reliable data, we 

need to design the experiments properly, and for long-term 

or discontinuous monitoring, we also need to quantify the 

sensor’s lifetime and degradation in performance over time as 

well as sensor’s warm-up time. In addition, more systematic 

and generally applicable algorithms must be developed to 

correct for meteorological effects so that near-real-time air 

quality information on a fine scale can be provided. Statistical 

and/or machine-learning methods with large datasets may 

offer a solution to these issues. 
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