L))

Check for
u

ipdates
Original Article Page 1 of 15

The potential of glutamine metabolism-related long non-coding
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Background: Glutamine (Gln) metabolism has been confirmed as an important fuel in cancer metabolism.
This study aimed to uncover potential links of Gln with long non-coding RNAs (IncRNAs) and the
prognostic value of Gln-associated IncRNAs in multiple myeloma (MM) patients.

Methods: The RNA-seq expression profile and corresponding clinical data of gastric cancer obtained from
Gene Expression Omnibus (GEO) database. Unsupervised consensus clustering was used to cluster MM
samples based on Gln-associated IncRNAs. The overall survival (OS), biological pathways, and immune
microenvironment were compared in different subtypes. Differential analysis was utilized to identify
differentially expressed IncRINAs (DEIncRNAs) in different subtypes. A risk model was constructed based
on DEIncRNAs by using Cox regression, least absolute shrinkage and selection operator (LASSO), and the
stepAIC algorithm.

Results: We screened 50 Gln-associated IncRNAs and identified 3 molecular subtypes (clustl, clust2,
and clust3) based on IncRNA expression profiles. Clust3 subtype showed the worst prognosis and highest
enrichment of Gln metabolism pathway. Angiogenesis, epithelial-mesenchymal transition (EMT), and cell
cycle-related pathways were relatively activated in clust3. Then, we identified 11 prognostic DEIncRNAs
for constructing the risk model. The MM samples were divided into high- and low-risk groups with
distinct prognosis according to the risk score. The risk score was significantly associated with cell cycle and
infiltration of many immune cells.

Conclusions: This study characterized the role of Gln-associated IncRNAs in Gln metabolism
contributing for tumor-related pathways and immune microenvironment in MM patients. The 11 IncRINAs
in the risk model may serve as potential targets for exploring the mechanism of Gln metabolism or serve as
potential biomarkers for MM prognosis.
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Introduction

Multiple myeloma (MM) is a rare hematological malignancy,
which accounts for about 10% of blood cancer (1).
The typical characteristics of MM are the infiltration of
abnormal clonal plasma cells in bone marrow and the
excessive production of monoclonal protein that can lead
to multiple clinical symptoms including hypercalcemia,
renal insufficiency, anemia, and bone lesions (1). MM
occurs more frequently in the elderly (aged 60 to 70 years)
compared with the young (2). Males have a higher incidence
rate than females, with age-standardized rates of 2.2%
and 1.5%, respectively, according to 2020 global cancer
statistics (3). With the development of autologous stem
cell transplantation (ASCT) and chemotherapy, the median
overall survival (OS) of MM patients has reached 6 years (4).

However, before or after ASCT administration, a
subgroup of exhausted/senescent cluster of differentiation
(CD)8(+) T cells has been observed to cause T cell
exhaustion and immune escape by expressing elevated
immune checkpoints such as programmed cell death
protein 1 (PD-1), cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4), 2B4, and CD160 (5,6). In this case,
anti-immune checkpoint therapy is encouraged to rescue
the anti-tumor response (7). Various preclinical and clinical
studies of immune checkpoint inhibition on MM patients
have revealed favorable outcomes. Pembrolizumab is a
PD-1 inhibitor approved by the American Food and Drug
Administration (FDA), and 7 of 23 (31%) MM patients
receiving pembrolizumab after ASCT show a complete
response in (8). In high-risk or recurrent MM patients
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after ASCT, ipilimumab in combination with nivolumab
increases the progression-free survival (PFS) with
18 months follow-up (9). Reprogramming of glutamine
(Gln) metabolism in tumors modulates immune escape by
regulating tumor PD1 ligand (PD-L1) expression. Similarly,
the reprogramming of glutamine metabolism in immune
cells also affects their immune function (10). However, it is
still a challenging task to increase the accuracy and response
rate of immunotherapy in MM patients.

Gln is an important amino acid, especially under
catabolic stressed conditions. Previous research has
illustrated that deprivation of Gln results in rapid necrosis
and dying of cancer cells (11). Glu metabolism is an
alternative source in the tricarboxylic acid (T'CA) cycle in
cancer cells, which can support fatty acid synthesis through
reductive carboxylation (12). Lines of evidence have
demonstrated that reductive carboxylation can promote
lipid synthesis and regulate the expression levels of reactive
oxygen species (ROS) benefiting cancer cell growth (13-15).
The activated GIn metabolism is associated with cancer
progression and Gln metabolism has become a therapeutic
target in anti-cancer therapy (16). It has also been
reported that human myeloma cell lines (HMCLs) are
highly sensitive to Gln depletion and MM cells are also
addictive to Gln (17). There are studied reported that
MM cells are highly reliant on glutamine metabolism
(18,19). It was found that continued cell survival in the
absence of glutamine maintained the expression of myeloid
leukemia factor 1, but importantly induced the expression
of pro-apoptotic BIM expression (20). However, cancer
metabolic reprogramming makes the requirement of Gln
heterogenous. Some IncRNAs have been shown to play an
important role in the progression of MM and can be used as
an indicator of patient prognosis. Upregulation of MALAT1
was significantly associated with poor prognosis of MM,
including overall survival (OS) and progression-free survival
(PFS) (21). Upregulation of 3 pseudogene 1 (PDIA3P) (22),
H19 (23), colon-associated transcript 1 (CCAT1) (24), and
colorectal neoplasia differential expression (CRNDE) were
closely associated with MM survival outcome.

To further understand the role of Gln and explore the
heterogeneity of Gln metabolism in MM patients, this study
focused on Gln metabolism-related long non-coding RNAs
(IncRNAs). Various IncRNAs have been identified in Gln
metabolism, such as XLOC_006390 (25), TUGI1 (26), and
GIRGL (27). In this study, we identified Gln phenotype-
based molecular subtypes through consensus clustering, and
assessed the association of Gln metabolism with prognosis,
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immune microenvironment, and biological pathways.
Moreover, we established a Gln-associated risk model for
distinguishing high-risk MM patients. We present the
following article in accordance with the TRIPOD reporting
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6190/rc).

Methods
Data acquisition and processing of MM samples

The gene expression files and survival information of MM
samples were obtained from the Gene Expression Omnibus
(GEO) database, including the GSE4581 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4581) and
GSES57317 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgiracc=GSES57317) datasets. The gene transfer format
(GTF) file and sequencing data of human reference
genome (release 41 [GRCh38.p13]) were downloaded from
GENCODE (https://www.gencodegenes.org/human/).
Seqmap software (28) was used to map the sequence of
probes to the human reference genome (mismatch =0). The
probes matching to multiple gene symbols were removed.
The averaged expression level was selected when multiple
probes matched to one gene symbol. Then, the expression
profiles of IncRNA and messenger RNA (mRNA) were
extracted. For clinical data, samples without survival time
and survival status were excluded. After processing, there
were 413 and 55 samples in the GSE4581 and GSES57317
datasets respectively. The study was conducted in accordance
with the Declaration of Helsinki (as revised in 2013).

Screening of Gln-associated IncRNAs

Gln metabolism pathway (GOBP GLUTAMINE FAMILY
AMINO ACID METABOLIC PROCESS) was downloaded
from Molecular Signature Database (MSigDB) (29).
Single-sample gene set enrichment analysis (ssGSEA) was
performed through GSVA R package (30) to calculate the
enrichment score of Gln metabolism pathway. Spearman
correlation analysis was performed through Hmisc R
package to evaluate the relation between Gln metabolism
score and IncRNA expression. The Gln-associated IncRNAs
were screened under P<0.05 and IR 1 >0.25.

Molecular subtyping of MM samples

We used ConsensusClusterPlus R package (31) to cluster
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MM samples in the GSE4581 dataset based on the
expression data of Gln-associated IncRNAs. The “hc”
algorithm Spearman distance was used. Some 500 bootstraps
were conducted with each bootstrap having 80% samples.
Cluster number k was selected from 2 to 10. Cumulative
distribution function (CDF) and consensus matrix were
used to confirm the optimal cluster number. The final
cluster number was the number of molecular subtypes.

Establishbment of a risk model related to Gin phenotype

Firstly, limma R package (32) was employed to identify
differentially expressed IncRNAs (DEIncRNAs) in different
molecular subtypes [Ilog2 (fold change (FC)| >log2(1.5)
and false discovery rate (FDR) <0.05]. Univariate Cox
regression analysis was conducted to screen DEIncRNAs
significantly associated with MM prognosis (P<0.05).
Then, least absolute shrinkage and selection operator
(LASSO) regression (33) and stepwise Akaike information
criterion (stepAIC) (34) were used to decrease the number
of DEIncRNAs and construct a risk model. Multivariate
Cox regression analysis was performed to calculate the
coefficients of IncRNAs in the model. Finally, the risk
model was constructed as follows: risk score = XpixExpi,
where B represented coefficients, Exp represented the
expression levels of IncRNAs and i represented IncRNAs.

Validation of the risk model

GSE4581 was used as the training dataset and GSE57317
was used as the validation dataset. Risk score was calculated
for each sample and was converted to z-score. Z-score =0
was set as a cut-off to divide sample into high-risk (z-score
>0) and low-risk (z-score <0) groups. Kaplan-Meier survival
analysis was used to delineate survival curve of 2 risk groups.
Receiver operating characteristic (ROC) curve analysis (35)
was implemented to assess the performance of the risk
model in predicting the prognosis of MM.

Functional and immune analysis

Hallmark pathways (h.all.v7.5.1.symbols.gmt) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
(c2.cp.kegg.v7.5.1.symbols.gmt) were downloaded from
MSigDB. ClusterProfiler R package (36) was utilized
to annotate the enriched hallmark pathways in different
molecular subtypes (adjusted P<0.05). SsSGSEA was
conducted to calculate the enrichment score of KEGG
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pathways. Spearman correlation analysis was performed to
screen KEGG pathways significantly associated with risk
score under |R| >0.2 and P<0.05.

The Estimation of Stromal and Immune cells
in Malignant Tumor tissues using Expression data
(ESTIMATE) algorithm (37) was used to evaluate immune
infiltration and stromal infiltration of different subtypes.
SsGSEA was performed to estimate the proportion of
28 immune-related cells (38). Immune checkpoint genes
were downloaded from a previous study (39). Spearman
correlation analysis was used to assess the association
between risk score and immune cells.

Statistical analysis

The analysis in this study was supported by the Sangerbox
platform (http://vip.sangerbox.com/) (40). Wilcoxon test
was used to examine the difference between two groups.
Kruskal-Wallis test was used to compare the difference
among 3 groups. Log-rank test was conducted in Cox
regression analysis and survival analysis. Benjamini and
Hochberg (BH) method was used to correct P values. A P

value <0.05 was considered significant.

Results

Identification of Gin-associated molecular subtypes in MM

We used ssGSEA to calculate the enrichment score of
Gln-related pathway “GOBP_GLUTAMINE_FAMILY_
AMINO_ACID_METABOLIC_PROCESS” for MM
samples in GSE4581 dataset. To screen Gln-associated
IncRNAs, we calculated the correlation between IncRNAs
and the ssGSEA score of Gln-related pathway (termed Gln
score in the following). A total of 50 IncRINAs significantly
associated with Gln score were screened (P<0.05, IR| >0.25,
Table S1). Then, we performed unsupervised consensus
clustering to classify MM samples based on the expression
data of 50 Gln-associated IncRNAs. According to the CDF
curves and the area under CDF curves of different cluster
number (k), k=3 was determined to divide samples into
3 clusters (Figure 1A-1C). Kaplan-Meier survival analysis
showed a significant difference of OS in 3 clusters/subtypes
(P=0.0024), where clust3 had the worst prognosis than
other 2 subtypes (Figure 1D). The Gln score of clust3 was
significantly higher than that of clustl and clust2, indicating
that Gln score may be a risk factor (Figure 1E). Previous
research had identified 7 subgroups of MM (CCND (CD)1,
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CD2, MMSET (MS), MAF/MAFB (MF), hyperdiploid
(HY), proliferation (PR), and low bone disease (LB)) based
on mRNA expression profiles in CD138-enriched plasma
cells using unsupervised hierarchic clustering (41). Among
them, PR and MS had a worse prognosis compared with
other MM subgroups. We compared our subtypes with
previous subgroups and the result was visualized by Sankey
diagram (Figure 1F). The MM samples with dead status
were mostly in clust3 (Figure 1F1G), and PR and MS
also had higher proportions of dead samples compared
with other subgroups. Our results of subtyping showed a
consistent with previous research to some extent, which
supported that the reliability of our subtyping based on
Gln-associated IncRNAs. In another aspect, the subtyping
also suggested that Gln-associated IncRNAs played an
important role in MM progression.

Biological pathways and immune characteristics of three
subtypes

To understand the mechanism of Gln-associated IncRINAs
in MM, we compared the enrichment of biological pathways
in 3 subtypes by using gene set enrichment analysis
(GSEA). In clust3 versus no_clust3, we observed that some
oncogenic pathways and cell cycle-related pathways such
as angiogenesis, epithelial-mesenchymal transition (EMT),
G2M checkpoint, and E2F targets were relatively activated
in clust3, whereas immune-related pathways such as
interferon (IFN)-gamma response and IFN-alpha response
were relatively suppressed in clust3 (Figure 2A). In clust2
versus no_clust2 and clustl versus no_clustl, the above
pathways were not significantly enriched, suggesting that
Gln-associated IncRNAs may be involved in the regulation
of these pathways.

Tumor immune microenvironment is highly associated
with tumor prognosis, which can be modulated by various
factors such as hypoxia and metabolism. The association
of Gln metabolism with tumor microenvironment has
been revealed in the previous study (42). We assessed the
immune infiltration in 3 subtypes, and found that clust3
had a lower ESTIMATE score than other 2 subtypes
(Figure 2B). Enrichment analysis of 28 immune cells
revealed a significant difference on the enrichment score of
20 immune cells in 3 subtypes (Figure 2C). In addition, we
evaluated the expression levels of immune checkpoints, and
most of immune checkpoints were differentially expressed
in 3 subtypes (Figure 2D). Furthermore, we calculated
the enrichment score of 15 immune-related pathways as
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Figure 1 Identification of molecular subtypes based on Gln-associated IncRNAs in GSE4581 dataset. (A,B) CDF curves and area under

CDF curves when k=2-10. (C) Consensus matrix when cluster number was 3. (D) Kaplan-Meier survival analysis of 3 clusters. (E) The

ssGSEA score of Gln pathway in 3 subtypes. Wilcoxon test was conducted. (F) Sankey diagram of 3 subtypes and 7 subgroups identified in
the previous research. (G) The distribution of 3 subtypes in survival and dead groups. ANOVA was conducted. *, P<0.05; ****, P<0.0001.
CDF, cumulative distribution function; ns, not significant; CD, CCND; HY, hyperdiploid; LB, low bone disease; MF, MAF/MAFB;
MS, MMSET; PR, proliferation; Gln, glutamine; IncRNA, long non-coding RNA; ssGSEA, single-sample gene set enrichment analysis;

ANOVA, analysis of variance.

shown in a heatmap (Figure SI). Three subtypes showed
an evidently different expression pattern of these pathways.
The different levels of immunomodulators and different
enrichment of immune cells led to different immune
response in three subtypes. Also, the above results also
revealed an association between GIn metabolism and tumor
immune microenvironment.

Establishment of a risk model related to Gln phenotype

As we found a significant difference of biological pathways
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and immune microenvironment in 3 subtypes, we then tried
to construct a risk model based on the DEIncRNAs among
3 subtypes. Firstly, we used differential analysis to identify
DEIncRNAs in clustl versus no_clustl, clust2 versus
no_clust2, and clust3 versus no_clust3. As a result, 154
DEIncRNAs with 138 upregulated and 16 downregulated
were identified in clustl versus no_clustl (Figure 34). A
total of 355 DEIncRNAs with 15 upregulated and 340
downregulated were identified in clust2 versus no_clust2
(Figure 3B). A total of 17 DEIncRNAs with 11 upregulated
and 6 downregulated were identified in clust3 versus no_
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Figure 3 Construction of a risk model related to Gln phenotype in GSE4581 dataset. (A-C) Differential analysis of clustl vs. no_clustl,

clust2 vs. no_clust2, and clust3 vs. no_clust3. (D) 27 DEGs significantly associated with prognosis. (E,F) LASSO regression analysis on the
27 prognostic DEGs. Lambda =0.01442 is shown as a red dashed line in (E) and red dot in (F). FDR, false discovery rate; Gln, glutamine;

DEGs, differentially expressed genes.

clust3 (Figure 3C). For a total of 421 DEIncRNAs, we used
univariate Cox regression to screen the DEGs associated
with MM OS. A total of 27 DEIncRNAs were screened with
21 risk IncRNAs and 6 protective IncRNAs under P<0.05
(Figure 3D). Subsequently, we used LASSO regression to
decrease the number of prognostic genes. When lambda
=0.01442, the model reached the optimal and 22 IncRNAs
remained (Figure 3E,3F). Furthermore, stepAIC was
conducted to further optimize the model by reducing AIC
value. Finally, a total of 11 prognostic IncRNAs remained.
The risk model was determined as follows: Risk Score =
-0.624 x LINCO01653 + 0.192 x TMPO-AS1 + 0.443 x
THOCT7-AS1 - 0.192 x AC116366.2 - 0.395 x AC090983.1
+ 0.254 x ERVH-1 + 0.196 x MRGPRF-ASI + 0.212 x
AFDN-DT -0.191 x TARID -0.247 x CIQTNFI1-AS1 +
0.288 x AL033530.1.
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Validation of the 11-IncRNA risk model
GSE4581 was used as the training dataset and GSE57317

was used the validation dataset to assess the performance of
the 11-IncRNA risk model. We calculated the risk score for
each MM sample and converted risk score to z-score. The
samples were divided into high-risk (z-score >0) and low-
risk (z-score <0) groups according to the cut-off of z-score
=0 (Figure 44). Dead samples were more accumulated in
the high-risk group compared with the low-risk group. The
expression of 11 IncRNAs showed different enrichment in 2
risk groups, where TMPO-AS1, THOC7-AS1, MRGPRF-
AS1, ERVH-1, AL033530.1, and AFDN-DT were
relatively more highly expressed in the high-risk group. The
results of ROC curve analysis presented that the risk model
had a higher area under the ROC curve (AUC) score of 1-,

Ann Transl Med 2022;10(24):1362 | https://dx.doi.org/10.21037/atm-22-6190
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3-, and 5-year in the GSE4581 dataset, with 0.74, 0.71, and
0.79 respectively (Figure 4B). Two risk groups also displayed
significantly differential OS in the GSE4581 dataset
(Figure 4C). In the validation dataset, similar results were
observed (Figure 4D,4E), suggesting that the 11-IncRNA
risk model was effective to predict the prognosis of MM.

Next, we evaluated the performance of the risk model
in the 7 MM subgroups. Survival analysis showed that
MS and PR had shorter OS than other subgroups, which
was consistent with the previous research (41) (Figure 5A).
The Sankey diagram displayed that high-risk samples were
more accumulated in MS and PR subgroups (Figure 5B).
Comparison of risk score in the 7 subgroups revealed that
PR subgroup had the highest risk score, followed by the MS
subgroup (Figure 5C), indicating that the risk model was
reliable and effective.

© Annals of Translational Medicine. All rights reserved.

Patbway and immune analyses of two risk groups

We calculated the enrichment score of KEGG pathways for
each MM sample in GSE4581 dataset. Spearman correlation
analysis was performed to evaluate the relationship of risk
score with KEGG pathways. A total of 7 pathways were
screened to be significantly related to risk score (IRI >0.2
and P<0.05), where cell cycle was positively correlated with
risk score and the Notch signaling pathway was negatively
correlated with risk score (Figure 64,6B). In the relationship
of risk score with immune cell infiltration, we observed that
some immune cells such as activated CD4 T cells, activated
CD8 T cells, and memory B cells were differentially
enriched in 2 risk groups (Figure 6C). Correlation analysis
also showed a significant correlation of risk score with some
immune cells including activated CD4 T cells, activated

Ann Transl Med 2022;10(24):1362 | https://dx.doi.org/10.21037/atm-22-6190
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CDS8 T cells, central memory CD4 T cells, memory B
cells, type 1 T helper cells, type 2 T helper cells, CD56dim
natural killer (NK) cells, eosinophils, macrophages, and NK
cells (Figure 6D).

The prognostic value of 11 IncRNASs

The 11-IncRNA risk model was verified to be effective
to predict MM prognosis in 2 independent datasets.

© Annals of Translational Medicine. All rights reserved.

We evaluated the relation of each IncRNA with OS by
univariate Cox regression analysis. The result showed
that 6 IncRNAs (TMPO-AS1, THOC7-AS1, MRGPRF-
AS1, ERVH-1, AL033530.1, and AFDN-DT) were risk
factors [hazard ratio (HR) >1] and 5 IncRNAs (LINC01653,
AC090983.1, AC116366.2, TARID, and C1QTNFI1-ASI)
were protective factors (HR <1, Figure 74). We examined
their performance in classifying high-risk and low-risk
groups. Except for TARID, the other 10 IncRNAs were

Ann Transl Med 2022;10(24):1362 | https://dx.doi.org/10.21037/atm-22-6190
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Figure 7 The performance of 11 IncRNAs in GSE4581 dataset. (A) Univariate Cox regression analysis of 11 IncRNAs. (B) Kaplan-Meier
survival analysis of high-risk and low-risk groups dividing by each IncRNA. IncRNA, long non-coding RNA.
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effective to divide MM samples into 2 risk groups with
distinct OS (Figure 7B).

Discussion

Gln is the second commonly used source for energy after
glucose in cancer cells. Gln can degrade to glutamate and
ammonia (NH4+) under glutaminase (43). HMCLs produce
excessive NH4+ and the upregulated level of NH4+ is also
detected in CD138+ cells of MM patients (17). Inhibition of
Gln transporter ASCT?2 can effectively decrease GIn uptake
and suppress HCML growth through a series downstream
effects including changes in mTORCI kinase activity, MYC
transcription, protein synthesis, cell proliferation, and
autophagy (43,44). LncRNAs are abundant in eukaryotes
and have various functions according to different cellular
localization. For instance, nuclear IncRNAs influence
histone modification or transcriptional regulation (45). A
study has demonstrated that IncRNAs regulate glucose,
Gln, and lipid metabolism in cancer (46). However, the role
of IncRNAs in Gln metabolism in MM patients is under-
reported.

In the present study, we identified 50 IncRNAs that
were significantly associated with Gln metabolism. Based
on the expression profiles of the 50 IncRNAs, we identified
3 molecular subtypes (clustl, clust2, and clust3) through
consensus clustering. Clust3 had the worst OS and the
highest enrichment of Gln metabolism, indicating that
the 50 IncRNAs may be involved in GIn metabolism
and thus affect the prognosis in MM patients. Previous
research also identified 7 subgroups of MM patients (CD1,
CD2, HY, LB, MF, MS, and PR) according to the mRINA
expression profiles of CD138-enriched plasma cells (41). In
the comparison of our subtypes with previous subgroups,
clust3 was mostly distributed in MS and PR subgroups,
in line with the previous result that MS and PR had
poor prognosis. The molecular subtyping based on Gln-
associated IncRNAs suggested that the IncRNAs played
an essential role in regulating Gln metabolism and thus
affected MM prognosis,

We further assessed the link of Gln-associated IncRNAs
with potential pathways and immune microenvironment.
Some tumor-related pathways were significantly activated
in clust3 compared with other subtypes, including
angiogenesis, EMT, G2M checkpoint, and E2F targets.
Angiogenesis is a typical hallmark of tumors, which enables
tumor cells and epithelial cells to survive the hypoxic
environment. It has been demonstrated that angiogenesis

© Annals of Translational Medicine. All rights reserved.
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can be promoted under the addiction of epithelial cells to
Gln (47). G2M checkpoint and E2F targets are cell cycle-
related pathways that are frequently dysregulated in tumor,
and G2M has been identified as a potential prognostic
biomarker for breast cancer (48). EMT promotes cell
proliferation and migration, which is a biomarker of
poor prognosis in both solid tumor and hematological
malignancy (49). It has been reported that hypoxia promotes
the formation of bone marrow foci in MM cells through
EMT process (49,50).

Immune-related pathways including IFN-alpha response
and IFN-gamma response were relatively inhibited in
clust3, indicating a suppressed immune response of clust3.
Immune analysis also revealed that clust3 had lower immune
infiltration than other subtypes. In addition, many immune
cells and most of immune checkpoints were differentially
enriched in 3 subtypes, which indicated that 3 subtypes
had different immune microenvironments. Angiogenesis
and EMT are highly associated with orchestration of the
immune microenvironment (51,52), which may contribute
to the different immune response in the 3 subtypes.
Moreover, a study has shown that tumor cells competitively
prey on glutamine in TME, resulting in limited availability
of glutamine to tumor-infiltrating T lymphocytes, leading
to immune escape (53). It has been proposed that the
“glutamine steal” hypothesis that selectively blocking Gln
metabolism in tumor cells can eliminate the metabolic
competition for Gln in TME while releasing Gln for use
by immune cells, thus enhancing the anti-tumor immune
response (10).

Furthermore, we screened the DEIncRNAs among
3 subtypes, and established a risk model based on the
DEIncRNAs. A total of 11 IncRNAs were included in
the risk model, including TMPO-AS1, THOC7-AS1,
MRGPRF-AS1, ERVH-1, AL033530.1, AFDN-DT,
LINCO01653, AC090983.1, AC116366.2, TARID, and
C1QTNF1-AS1. The 11-IncRNA risk model was effective
and robust to divide MM patients into high-risk and low-
risk groups in 2 independent datasets. The high-risk
group had significantly worse prognosis than the low-risk
group. Notably, MS and PR subgroups showed higher risk
score than the other subgroups, which was accordant with
previous observations. TMPO-AS1 was reported to be
overexpressed in various tumors such as prostate cancer and
triple-negative breast cancer (54,55). TARID was revealed
to promote demethylation and activation of TCF21, a
tumor suppressor (56). Other IncRNAs have been scarcely
reported in cancer, but they may be potential regulators
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involved in MM.

The relationship of risk score with biological pathways
and immune cell infiltration was also evaluated in MM
patients. Cell cycle and nitrogen metabolism were positively
correlated with risk score, which was consistent with the
results in subtype analysis. In addition, multiple immune
cells were significantly correlated with risk score, including
activated CD4 T cells, activated CD8 T cells, central
memory CD4 T cells, memory B cells, type 1 T helper
cells, type 2 T helper cells, CD56dim NK cells, eosinophils,
macrophages, and NK cells. The close relationship
of risk score with immune cells suggested that the 11
IncRNAs possibly played a regulatory role in the immune
microenvironment. However, the experimental analysis
in more clinical MM patients is needed to verify the risk
model.

Our study has three main features. First, a comprehensive
analysis of multiple omics data (metabolomics, genomics,
transcriptomics) was performed. Secondly, we proposed
Gln metabolism combined with IncRNA to construct
a prognostic model, which is currently the first study
conducted in MM. Finally, compared with a single
prognostic gene, the polygenic prognostic model is better
able to feedback the overall symptoms of the disease.
However, The limitations of this study cannot be ignored.
Firstly, all data were downloaded from public databases,
and the sample size and clinical information were limited.
Second, although a risk score system consisting of 11
IncRNAs has been created, the regulatory network and
biological effects between these genes remain to be
explored.

Conclusions

In conclusion, this study utilized the IncRINA expression
profiles of MM patients to identify molecular subtypes
and construct a risk model related to Gln phenotype.
We explored the link of Gln metabolism with IncRNAs,
biological pathways, and immune microenvironment. The
11-IncRNA risk model had a prognostic value to predict OS
for MM patients. In addition, the 11 IncRNAs may serve
as potential targets for studying further mechanism of Gln
metabolism in MM patients.
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Figure S1 Heatmap showed the enrichment score of 15 immune-related pathways in three subtypes.
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Table S1 A list of 50 Gln-associated IncRNAs

Gene Cor P

AC005261.1 -0.274869 1.36E-08
AC005332.4 -0.343439 7.08E-13
AC007996.1 -0.263608 5.41E-08
AC008393.1 -0.287431 2.69E-09
AC008875.3 -0.389307 2.22E-16
AC012146.1 0.2625981 6.10E-08
AC016747.1 0.3411348 1.03E-12
AC092747.4 -0.325395 1.22E-11
AC093157.1 0.2671877 3.51E-08
AC103740.1 0.2705032 2.34E-08
AC114776.1 0.3507564 2.12E-13
AC245297.2 -0.257104 1.17E-07
AL031985.3 0.2592027 9.13E-08
AL158206.1 -0.340153 1.21E-12
AL355987.4 -0.296592 7.84E-10
AL365181.3 0.296473 7.97E-10
AL365203.2 0.2527365 1.94E-07
AL445524.1 0.2710701 2.18E-08
AL450998.2 -0.252114 2.08E-07
AL606760.1 0.266554 3.79E-08
AP000766.1 -0.444352 0

AP000813.1 -0.284419 3.99E-09
AP002840.2 —-0.257234 1.15E-07
BISPR -0.273768 1.56E-08
CERS6-AS1 0.2989965 5.64E-10
CRNDE 0.3256028 1.18E-11
CRYZL2P-SEC16B 0.3245427 1.39E-11
EIF3J-DT -0.391705 0

EPB41L4A-DT -0.259653 8.66E-08
FAM111A-DT -0.272276 1.88E-08
FAM13A-AS1 -0.264626 4.78E-08
FAM27C 0.2968756 7.54E-10
GABPB1-IT1 -0.28285 4.90E-09
GIHCG 0.2753763 1.27E-08
HEIH -0.268778 2.89E-08
INTS6-AS1 -0.316013 4.97E-11
LINC00847 -0.31915 3.12E-11
LINC00893 -0.327327 9.06E-12
LINC00963 0.263745 5.32E-08
LINC00992 0.2898783 1.94E-09
LINC00996 -0.29173 1.52E-09
OIP5-AS1 -0.258787 9.59E-08
PAN3-AS1 -0.278657 8.40E-09
PCAT6 0.2715488 2.05E-08
PSMA3-AS1 -0.404679 0

RAD51-AS1 -0.277301 9.98E-09
SCAMP1-AS1 -0.328556 7.50E-12
SP2-AS1 0.302742 3.35E-10
TMEM99 0.3471879 3.83E-13
TUGT -0.267831 3.24E-08

Gin, glutamine; IncRNA, long non-coding RNA.
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