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Background: Glutamine (Gln) metabolism has been confirmed as an important fuel in cancer metabolism. 
This study aimed to uncover potential links of Gln with long non-coding RNAs (lncRNAs) and the 
prognostic value of Gln-associated lncRNAs in multiple myeloma (MM) patients.
Methods: The RNA-seq expression profile and corresponding clinical data of gastric cancer obtained from 
Gene Expression Omnibus (GEO) database. Unsupervised consensus clustering was used to cluster MM 
samples based on Gln-associated lncRNAs. The overall survival (OS), biological pathways, and immune 
microenvironment were compared in different subtypes. Differential analysis was utilized to identify 
differentially expressed lncRNAs (DElncRNAs) in different subtypes. A risk model was constructed based 
on DElncRNAs by using Cox regression, least absolute shrinkage and selection operator (LASSO), and the 
stepAIC algorithm.
Results: We screened 50 Gln-associated lncRNAs and identified 3 molecular subtypes (clust1, clust2, 
and clust3) based on lncRNA expression profiles. Clust3 subtype showed the worst prognosis and highest 
enrichment of Gln metabolism pathway. Angiogenesis, epithelial-mesenchymal transition (EMT), and cell 
cycle-related pathways were relatively activated in clust3. Then, we identified 11 prognostic DElncRNAs 
for constructing the risk model. The MM samples were divided into high- and low-risk groups with 
distinct prognosis according to the risk score. The risk score was significantly associated with cell cycle and 
infiltration of many immune cells.
Conclusions: This study characterized the role of Gln-associated lncRNAs in Gln metabolism 
contributing for tumor-related pathways and immune microenvironment in MM patients. The 11 lncRNAs 
in the risk model may serve as potential targets for exploring the mechanism of Gln metabolism or serve as 
potential biomarkers for MM prognosis.
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Introduction

Multiple myeloma (MM) is a rare hematological malignancy, 
which accounts for about 10% of blood cancer (1).  
The typical characteristics of MM are the infiltration of 
abnormal clonal plasma cells in bone marrow and the 
excessive production of monoclonal protein that can lead 
to multiple clinical symptoms including hypercalcemia, 
renal insufficiency, anemia, and bone lesions (1). MM 
occurs more frequently in the elderly (aged 60 to 70 years) 
compared with the young (2). Males have a higher incidence 
rate than females, with age-standardized rates of 2.2% 
and 1.5%, respectively, according to 2020 global cancer 
statistics (3). With the development of autologous stem 
cell transplantation (ASCT) and chemotherapy, the median 
overall survival (OS) of MM patients has reached 6 years (4). 

However, before or after ASCT administration, a 
subgroup of exhausted/senescent cluster of differentiation 
(CD)8(+) T cells has been observed to cause T cell 
exhaustion and immune escape by expressing elevated 
immune checkpoints such as programmed cell death 
protein 1 (PD-1), cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4), 2B4, and CD160 (5,6). In this case, 
anti-immune checkpoint therapy is encouraged to rescue 
the anti-tumor response (7). Various preclinical and clinical 
studies of immune checkpoint inhibition on MM patients 
have revealed favorable outcomes. Pembrolizumab is a 
PD-1 inhibitor approved by the American Food and Drug 
Administration (FDA), and 7 of 23 (31%) MM patients 
receiving pembrolizumab after ASCT show a complete 
response in (8). In high-risk or recurrent MM patients 

after ASCT, ipilimumab in combination with nivolumab 
increases the progression-free survival (PFS) with  
18 months follow-up (9). Reprogramming of glutamine 
(Gln) metabolism in tumors modulates immune escape by 
regulating tumor PD1 ligand (PD-L1) expression. Similarly, 
the reprogramming of glutamine metabolism in immune 
cells also affects their immune function (10). However, it is 
still a challenging task to increase the accuracy and response 
rate of immunotherapy in MM patients.

Gln is an important amino acid, especially under 
catabolic stressed conditions. Previous research has 
illustrated that deprivation of Gln results in rapid necrosis 
and dying of cancer cells (11). Glu metabolism is an 
alternative source in the tricarboxylic acid (TCA) cycle in 
cancer cells, which can support fatty acid synthesis through 
reductive carboxylation (12). Lines of evidence have 
demonstrated that reductive carboxylation can promote 
lipid synthesis and regulate the expression levels of reactive 
oxygen species (ROS) benefiting cancer cell growth (13-15).  
The activated Gln metabolism is associated with cancer 
progression and Gln metabolism has become a therapeutic 
target in anti-cancer therapy (16). It has also been 
reported that human myeloma cell lines (HMCLs) are 
highly sensitive to Gln depletion and MM cells are also 
addictive to Gln (17). There are studied reported that 
MM cells are highly reliant on glutamine metabolism 
(18,19). It was found that continued cell survival in the 
absence of glutamine maintained the expression of myeloid 
leukemia factor 1, but importantly induced the expression 
of pro-apoptotic BIM expression (20). However, cancer 
metabolic reprogramming makes the requirement of Gln 
heterogenous. Some lncRNAs have been shown to play an 
important role in the progression of MM and can be used as 
an indicator of patient prognosis. Upregulation of MALAT1 
was significantly associated with poor prognosis of MM, 
including overall survival (OS) and progression-free survival 
(PFS) (21). Upregulation of 3 pseudogene 1 (PDIA3P) (22), 
H19 (23), colon-associated transcript 1 (CCAT1) (24), and 
colorectal neoplasia differential expression (CRNDE) were 
closely associated with MM survival outcome.

To further understand the role of Gln and explore the 
heterogeneity of Gln metabolism in MM patients, this study 
focused on Gln metabolism-related long non-coding RNAs 
(lncRNAs). Various lncRNAs have been identified in Gln 
metabolism, such as XLOC_006390 (25), TUG1 (26), and 
GIRGL (27). In this study, we identified Gln phenotype-
based molecular subtypes through consensus clustering, and 
assessed the association of Gln metabolism with prognosis, 
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immune microenvironment, and biological pathways. 
Moreover, we established a Gln-associated risk model for 
distinguishing high-risk MM patients. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6190/rc).

Methods 

Data acquisition and processing of MM samples

The gene expression files and survival information of MM 
samples were obtained from the Gene Expression Omnibus 
(GEO) database, including the GSE4581 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4581) and 
GSE57317 (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE57317) datasets. The gene transfer format 
(GTF) file and sequencing data of human reference 
genome (release 41 [GRCh38.p13]) were downloaded from 
GENCODE (https://www.gencodegenes.org/human/). 
Seqmap software (28) was used to map the sequence of 
probes to the human reference genome (mismatch =0). The 
probes matching to multiple gene symbols were removed. 
The averaged expression level was selected when multiple 
probes matched to one gene symbol. Then, the expression 
profiles of lncRNA and messenger RNA (mRNA) were 
extracted. For clinical data, samples without survival time 
and survival status were excluded. After processing, there 
were 413 and 55 samples in the GSE4581 and GSE57317 
datasets respectively. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Screening of Gln-associated lncRNAs

Gln metabolism pathway (GOBP GLUTAMINE FAMILY 
AMINO ACID METABOLIC PROCESS) was downloaded 
from Molecular Signature Database (MSigDB) (29).  
Single-sample gene set enrichment analysis (ssGSEA) was 
performed through GSVA R package (30) to calculate the 
enrichment score of Gln metabolism pathway. Spearman 
correlation analysis was performed through Hmisc R 
package to evaluate the relation between Gln metabolism 
score and lncRNA expression. The Gln-associated lncRNAs 
were screened under P<0.05 and |R| >0.25. 

Molecular subtyping of MM samples

We used ConsensusClusterPlus R package (31) to cluster 

MM samples in the GSE4581 dataset based on the 
expression data of Gln-associated lncRNAs. The “hc” 
algorithm Spearman distance was used. Some 500 bootstraps  
were conducted with each bootstrap having 80% samples. 
Cluster number k was selected from 2 to 10. Cumulative 
distribution function (CDF) and consensus matrix were 
used to confirm the optimal cluster number. The final 
cluster number was the number of molecular subtypes.

Establishment of a risk model related to Gln phenotype

Firstly, limma R package (32) was employed to identify 
differentially expressed lncRNAs (DElncRNAs) in different 
molecular subtypes [|log2 (fold change (FC)| >log2(1.5) 
and false discovery rate (FDR) <0.05]. Univariate Cox 
regression analysis was conducted to screen DElncRNAs 
significantly associated with MM prognosis (P<0.05). 
Then, least absolute shrinkage and selection operator 
(LASSO) regression (33) and stepwise Akaike information 
criterion (stepAIC) (34) were used to decrease the number 
of DElncRNAs and construct a risk model. Multivariate 
Cox regression analysis was performed to calculate the 
coefficients of lncRNAs in the model. Finally, the risk 
model was constructed as follows: risk score = Σβi×Expi, 
where β represented coefficients, Exp represented the 
expression levels of lncRNAs and i represented lncRNAs.

Validation of the risk model

GSE4581 was used as the training dataset and GSE57317 
was used as the validation dataset. Risk score was calculated 
for each sample and was converted to z-score. Z-score =0 
was set as a cut-off to divide sample into high-risk (z-score 
>0) and low-risk (z-score <0) groups. Kaplan-Meier survival 
analysis was used to delineate survival curve of 2 risk groups. 
Receiver operating characteristic (ROC) curve analysis (35)  
was implemented to assess the performance of the risk 
model in predicting the prognosis of MM. 

Functional and immune analysis

Hallmark pathways (h.all.v7.5.1.symbols.gmt) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
(c2.cp.kegg.v7.5.1.symbols.gmt) were downloaded from 
MSigDB. ClusterProfiler R package (36) was utilized 
to annotate the enriched hallmark pathways in different 
molecular subtypes (adjusted P<0.05). SsGSEA was 
conducted to calculate the enrichment score of KEGG 

https://atm.amegroups.com/article/view/10.21037/atm-22-6190/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6190/rc
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4581
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4581
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57317
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57317
https://www.gencodegenes.org/human/
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pathways. Spearman correlation analysis was performed to 
screen KEGG pathways significantly associated with risk 
score under |R| >0.2 and P<0.05. 

The Est imat ion of  Stromal  and Immune ce l l s 
in Malignant Tumor tissues using Expression data 
(ESTIMATE) algorithm (37) was used to evaluate immune 
infiltration and stromal infiltration of different subtypes. 
SsGSEA was performed to estimate the proportion of 
28 immune-related cells (38). Immune checkpoint genes 
were downloaded from a previous study (39). Spearman 
correlation analysis was used to assess the association 
between risk score and immune cells.

Statistical analysis

The analysis in this study was supported by the Sangerbox 
platform (http://vip.sangerbox.com/) (40). Wilcoxon test 
was used to examine the difference between two groups. 
Kruskal-Wallis test was used to compare the difference 
among 3 groups. Log-rank test was conducted in Cox 
regression analysis and survival analysis. Benjamini and 
Hochberg (BH) method was used to correct P values. A P 
value <0.05 was considered significant.

Results

Identification of Gln-associated molecular subtypes in MM

We used ssGSEA to calculate the enrichment score of 
Gln-related pathway “GOBP_GLUTAMINE_FAMILY_
AMINO_ACID_METABOLIC_PROCESS” for MM 
samples in GSE4581 dataset. To screen Gln-associated 
lncRNAs, we calculated the correlation between lncRNAs 
and the ssGSEA score of Gln-related pathway (termed Gln 
score in the following). A total of 50 lncRNAs significantly 
associated with Gln score were screened (P<0.05, |R| >0.25, 
Table S1). Then, we performed unsupervised consensus 
clustering to classify MM samples based on the expression 
data of 50 Gln-associated lncRNAs. According to the CDF 
curves and the area under CDF curves of different cluster 
number (k), k=3 was determined to divide samples into  
3 clusters (Figure 1A-1C). Kaplan-Meier survival analysis 
showed a significant difference of OS in 3 clusters/subtypes 
(P=0.0024), where clust3 had the worst prognosis than 
other 2 subtypes (Figure 1D). The Gln score of clust3 was 
significantly higher than that of clust1 and clust2, indicating 
that Gln score may be a risk factor (Figure 1E). Previous 
research had identified 7 subgroups of MM (CCND (CD)1, 

CD2, MMSET (MS), MAF/MAFB (MF), hyperdiploid 
(HY), proliferation (PR), and low bone disease (LB)) based 
on mRNA expression profiles in CD138-enriched plasma 
cells using unsupervised hierarchic clustering (41). Among 
them, PR and MS had a worse prognosis compared with 
other MM subgroups. We compared our subtypes with 
previous subgroups and the result was visualized by Sankey 
diagram (Figure 1F). The MM samples with dead status 
were mostly in clust3 (Figure 1F,1G), and PR and MS 
also had higher proportions of dead samples compared 
with other subgroups. Our results of subtyping showed a 
consistent with previous research to some extent, which 
supported that the reliability of our subtyping based on 
Gln-associated lncRNAs. In another aspect, the subtyping 
also suggested that Gln-associated lncRNAs played an 
important role in MM progression.

Biological pathways and immune characteristics of three 
subtypes

To understand the mechanism of Gln-associated lncRNAs 
in MM, we compared the enrichment of biological pathways 
in 3 subtypes by using gene set enrichment analysis 
(GSEA). In clust3 versus no_clust3, we observed that some 
oncogenic pathways and cell cycle-related pathways such 
as angiogenesis, epithelial-mesenchymal transition (EMT), 
G2M checkpoint, and E2F targets were relatively activated 
in clust3, whereas immune-related pathways such as 
interferon (IFN)-gamma response and IFN-alpha response 
were relatively suppressed in clust3 (Figure 2A). In clust2 
versus no_clust2 and clust1 versus no_clust1, the above 
pathways were not significantly enriched, suggesting that 
Gln-associated lncRNAs may be involved in the regulation 
of these pathways.

Tumor immune microenvironment is highly associated 
with tumor prognosis, which can be modulated by various 
factors such as hypoxia and metabolism. The association 
of Gln metabolism with tumor microenvironment has 
been revealed in the previous study (42). We assessed the 
immune infiltration in 3 subtypes, and found that clust3 
had a lower ESTIMATE score than other 2 subtypes  
(Figure 2B). Enrichment analysis of 28 immune cells 
revealed a significant difference on the enrichment score of 
20 immune cells in 3 subtypes (Figure 2C). In addition, we 
evaluated the expression levels of immune checkpoints, and 
most of immune checkpoints were differentially expressed 
in 3 subtypes (Figure 2D). Furthermore, we calculated 
the enrichment score of 15 immune-related pathways as 

http://vip.sangerbox.com/
https://cdn.amegroups.cn/static/public/ATM-22-6190-supplementary.pdf
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Figure 1 Identification of molecular subtypes based on Gln-associated lncRNAs in GSE4581 dataset. (A,B) CDF curves and area under 
CDF curves when k=2–10. (C) Consensus matrix when cluster number was 3. (D) Kaplan-Meier survival analysis of 3 clusters. (E) The 
ssGSEA score of Gln pathway in 3 subtypes. Wilcoxon test was conducted. (F) Sankey diagram of 3 subtypes and 7 subgroups identified in 
the previous research. (G) The distribution of 3 subtypes in survival and dead groups. ANOVA was conducted. *, P<0.05; ****, P<0.0001. 
CDF, cumulative distribution function; ns, not significant; CD, CCND; HY, hyperdiploid; LB, low bone disease; MF, MAF/MAFB; 
MS, MMSET; PR, proliferation; Gln, glutamine; lncRNA, long non-coding RNA; ssGSEA, single-sample gene set enrichment analysis; 
ANOVA, analysis of variance. 

shown in a heatmap (Figure S1). Three subtypes showed 
an evidently different expression pattern of these pathways. 
The different levels of immunomodulators and different 
enrichment of immune cells led to different immune 
response in three subtypes. Also, the above results also 
revealed an association between Gln metabolism and tumor 
immune microenvironment.

Establishment of a risk model related to Gln phenotype

As we found a significant difference of biological pathways 

and immune microenvironment in 3 subtypes, we then tried 
to construct a risk model based on the DElncRNAs among 
3 subtypes. Firstly, we used differential analysis to identify 
DElncRNAs in clust1 versus no_clust1, clust2 versus 
no_clust2, and clust3 versus no_clust3. As a result, 154 
DElncRNAs with 138 upregulated and 16 downregulated 
were identified in clust1 versus no_clust1 (Figure 3A). A 
total of 355 DElncRNAs with 15 upregulated and 340 
downregulated were identified in clust2 versus no_clust2 
(Figure 3B). A total of 17 DElncRNAs with 11 upregulated 
and 6 downregulated were identified in clust3 versus no_

0             1             2             3             4              5             6
Time, years

0.0       0.2       0.4       0.6      0.8        1.0
Consensus index

2             4             6             8            10
k

Cluster         Clust1           Clust2           Clust3

Cluster         Clust1          Clust2          Clust3Clust1                   Clust2                    Clust3 Cluster                                   Event                           Molecular subgroup

Alive                                   Dead

−log10 (ANOVA P value)

4.84 (*)

4.84 (*)0

0

P=0.0024

Clust1

Clust2

Clust3

Clust1

Clust2

Clust3

113
137
163

93
86

112

76
34
77

51
12
45

19
7

30

0
2
7

0
0
0

Clust1                 Clust2                     Clust3

Consensus CDF Consensus matrix k=3

Delta area

Clust1

Clust2

Clust3
2
3
4
5
6
7
8
9
10

G
S

E
45

81

GSE4581

Alive

Dead

Dead

Alive

CD1

CD2

ns

HY

LB

MF

MS

PR

****
****

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.6

1.2

0.8

0.4

G
lu

ta
in

e 
fa

m
ily

 a
m

in
o 

ac
id

 m
et

ab
ol

ic
 p

ro
ce

ss
 s

co
re

100

75

50

25

0

P
er

ce
nt

ag
e,

 %

1.0

0.8

0.6

0.4

0.2

0.0

C
D

F

0.5

0.4

0.3

0.2

0.1

0.0

R
el

at
iv

e 
ch

an
ge

 in
 a

re
a 

un
de

r 
C

D
F 

cu
rv

e

A

B

C D

E F G

https://cdn.amegroups.cn/static/public/ATM-22-6190-supplementary.pdf


Zhong et al. Role of Gln-associated lncRNAs in MM Page 6 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(24):1362 | https://dx.doi.org/10.21037/atm-22-6190

Fi
gu

re
 2

 T
he

 e
nr

ic
he

d 
bi

ol
og

ic
al

 p
at

hw
ay

s 
an

d 
im

m
un

e 
ch

ar
ac

te
ri

st
ic

s 
in

 t
hr

ee
 s

ub
ty

pe
s 

in
 G

SE
45

81
 d

at
as

et
. (

A
) 

G
en

e 
en

ri
ch

m
en

t 
an

al
ys

is
 o

f 
K

E
G

G
 p

at
hw

ay
s.

 Y
el

lo
w

 
in

di
ca

te
s 

re
la

tiv
el

y 
ac

tiv
at

ed
 a

nd
 r

oy
al

 p
ur

pl
e 

in
di

ca
te

s 
re

la
tiv

el
y 

su
pp

re
ss

ed
. (

B
) 

St
ro

m
al

 s
co

re
, i

m
m

un
e 

sc
or

e 
an

d 
E

ST
IM

AT
E

 s
co

re
 a

na
ly

ze
d 

by
 E

ST
IM

AT
E

 a
lg

or
ith

m
. 

(C
) 

T
he

 e
nr

ic
hm

en
t 

sc
or

e 
of

 2
8 

im
m

un
e 

ce
lls

 c
al

cu
la

te
d 

by
 s

sG
SE

A
. (

D
) 

T
he

 e
xp

re
ss

io
n 

of
 im

m
un

e 
ch

ec
kp

oi
nt

s.
 K

ru
sk

al
-W

al
lis

 t
es

t 
w

as
 c

on
du

ct
ed

. *
, P

<0
.0

5;
 *

*,
 P

<0
.0

1;
 

**
*,

 P
<0

.0
01

; *
**

*,
 P

<0
.0

00
1.

 N
E

S,
 N

or
m

al
iz

at
io

n 
E

nr
ic

hm
en

t 
Sc

or
e;

 n
s,

 n
ot

 s
ig

ni
fic

an
t; 

K
E

G
G

, K
yo

to
 E

nc
yc

lo
pe

di
a 

of
 G

en
es

 a
nd

 G
en

om
es

; E
ST

IM
AT

E
, E

st
im

at
io

n 
of

 
St

ro
m

al
 a

nd
 I

m
m

un
e 

ce
lls

 in
 M

al
ig

na
nt

 T
um

or
 ti

ss
ue

s 
us

in
g 

E
xp

re
ss

io
n 

da
ta

; s
sG

SE
A

, s
in

gl
e-

sa
m

pl
e 

ge
ne

 s
et

 e
nr

ic
hm

en
t a

na
ly

si
s.

Ac
tiv

at
ed

 B
 c

el
l

St
ro

m
al

 s
co

re

ANGIOGENSIS

G2M_CHECKPOINT

ESTROGEN_RESPONSE_LATE
E2F_TARGETS

SPERMATOGENESIS

EPITHELIAL_MESENCHYMAL_TRANSITION MYOGENESIS

INFLAMMATORY_RESPONSE

KRAS_SIGNALING_DN

ALLOGRAFT_REJECTION

NOTCH_SIGNALING

INTERFERON_GAMMA_RESPONSE

INTERFERON_ALPHA_RESPONSE

Im
m

un
e 

sc
or

e ES
TI

M
AT

E 
sc

or
e

AD
O

RA
2A

BT
LA

BT
N

L2
C

D
16

0
C

D
20

0 C
D

20
0R

1
C

D
24

4
C

D
27

C
D

27
4

C
D

27
6

C
D

28
C

D
40

C
D

40
LG

C
D

44
C

D
48

C
D

70
C

D
80

C
D

86
C

TL
A4

H
AV

C
R2

H
H

LA
2

IC
O

S IC
O

SL
G

ID
O

1
ID

O
2 KI

R3
D

L1
LA

G
3

LA
IR

1 LG
AL

S9
N

RP
1

PD
C

D
1

PD
C

D
1L

G
2

TI
G

IT TM
IG

D
2

TN
FR

SF
14 TN

FR
SF

18 TN
FR

SF
25 TN

FR
SF

4 TN
FR

SF
8 TN

FR
SF

9 TN
FS

F1
4 TN

FS
F1

5 TN
FS

F1
8 TN

FS
F4

TN
FS

F9
VS

IR
VT

C
N

1

Ac
tiv

at
ed

 C
D

4 
T 

ce
ll

Ac
tiv

at
ed

 C
D

8 
T 

ce
ll

C
en

tra
l m

em
or

y 
C

D
8 

T 
ce

ll

Ef
fe

ct
or

 m
em

or
y 

C
D

8 
T 

ce
ll

G
am

m
a 

de
lta

 T
 c

el
l

Im
m

at
ur

e 
B 

ce
ll

M
em

or
y 

B 
ce

ll

Re
gu

la
to

ry
 T

 c
el

l

T 
fo

llic
ul

ar
 h

el
pe

r c
el

l

Ty
pe

 1
 T

 h
el

pe
r c

el
l

Ty
pe

 1
7 

T 
he

lp
er

 c
el

l

Ty
pe

 2
 T

 h
el

pe
r c

el
l

Ac
tiv

at
ed

 d
en

dr
iti

c 
ce

ll

C
D

56
br

ig
ht

 n
at

ur
al

 k
ille

r c
el

l

C
D

56
di

m
 n

at
ur

al
 k

ille
r c

el
l

Eo
si

no
ph

il

Im
m

at
ur

e 
de

nd
rit

ic
 c

el
l

M
ac

ro
ph

ag
e M

as
t c

el
l M

D
SC M

on
oc

yt
e

N
at

ur
al

 k
ille

r c
el

l

N
at

ur
al

 k
ille

r T
 c

el
l

N
eu

tro
ph

il

Pl
as

m
ac

yt
oi

d 
de

nd
rit

ic
 c

el
l

Ef
fe

ct
or

 m
em

or
y 

C
D

4 
T 

ce
ll

C
en

tra
l m

em
or

y 
C

D
4 

T 
ce

ll

C
lu

st
1 
vs
. n

o_
cl

us
t1

C
lu

st
2 
vs
. n

o_
cl

us
t2

C
lu

st
3 
vs
. n

o_
cl

us
t3

4 2 0 −
2

−
4

N
E

S

C
at

eg
or

y 
   

   
 C

lu
st

1 
   

   
 C

lu
st

2 
   

   
C

lu
st

3
C

at
eg

or
y 

   
   

 C
lu

st
1 

   
   

 C
lu

st
2 

   
   

C
lu

st
3

C
at

eg
or

y 
   

   
 C

lu
st

1 
   

   
 C

lu
st

2 
   

   
C

lu
st

3

**
**

**
**

**
*

**
*

**
*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
*

*
*

*
*

*
ns

ns
ns

ns
ns

ns
ns

ns
*

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*
**

*
*

**
*

**
**

**
*

**
*

*
ns

ns
ns

ns
ns

ns
ns

ns
ns

ns
ns

ns

0.
6

0.
4

0.
2

0.
0

−
0.

2

−
0.

4

Score

40
00

20
00 0

−
20

00

Score

12 8 4

Score

A
B

C

D



Annals of Translational Medicine, Vol 10, No 24 December 2022 Page 7 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(24):1362 | https://dx.doi.org/10.21037/atm-22-6190

clust3 (Figure 3C). For a total of 421 DElncRNAs, we used 
univariate Cox regression to screen the DEGs associated 
with MM OS. A total of 27 DElncRNAs were screened with 
21 risk lncRNAs and 6 protective lncRNAs under P<0.05 
(Figure 3D). Subsequently, we used LASSO regression to 
decrease the number of prognostic genes. When lambda 
=0.01442, the model reached the optimal and 22 lncRNAs 
remained (Figure 3E,3F). Furthermore, stepAIC was 
conducted to further optimize the model by reducing AIC 
value. Finally, a total of 11 prognostic lncRNAs remained. 
The risk model was determined as follows: Risk Score = 
−0.624 × LINC01653 + 0.192 × TMPO-AS1 + 0.443 ×  
THOC7-AS1 − 0.192 × AC116366.2 − 0.395 × AC090983.1 
+ 0.254 × ERVH-1 + 0.196 × MRGPRF-AS1 + 0.212 ×  
AFDN-DT −0.191 × TARID −0.247 × C1QTNF1-AS1 +  
0.288 × AL033530.1.

Validation of the 11-lncRNA risk model

GSE4581 was used as the training dataset and GSE57317 
was used the validation dataset to assess the performance of 
the 11-lncRNA risk model. We calculated the risk score for 
each MM sample and converted risk score to z-score. The 
samples were divided into high-risk (z-score >0) and low-
risk (z-score <0) groups according to the cut-off of z-score 
=0 (Figure 4A). Dead samples were more accumulated in 
the high-risk group compared with the low-risk group. The 
expression of 11 lncRNAs showed different enrichment in 2 
risk groups, where TMPO-AS1, THOC7-AS1, MRGPRF-
AS1, ERVH-1, AL033530.1, and AFDN-DT were 
relatively more highly expressed in the high-risk group. The 
results of ROC curve analysis presented that the risk model 
had a higher area under the ROC curve (AUC) score of 1-, 

Figure 3 Construction of a risk model related to Gln phenotype in GSE4581 dataset. (A-C) Differential analysis of clust1 vs. no_clust1, 
clust2 vs. no_clust2, and clust3 vs. no_clust3. (D) 27 DEGs significantly associated with prognosis. (E,F) LASSO regression analysis on the 
27 prognostic DEGs. Lambda =0.01442 is shown as a red dashed line in (E) and red dot in (F). FDR, false discovery rate; Gln, glutamine; 
DEGs, differentially expressed genes.
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Figure 4 Validation of the 11-lncRNA risk model. (A) The distribution of samples and the expression of 11 lncRNAs ranking by risk score 
in GSE4581 dataset. (B) ROC curve of 1-, 3-, and 5-year OS in GSE4581 dataset. (C) Kaplan-Meier survival curve of high-risk and low-risk 
groups in GSE4581 dataset. (D) ROC curve of 1-, 2-, and 3-year OS in the GSE57317 dataset. (E) Kaplan-Meier survival curve of high-risk 
and low-risk groups in GSE57317 dataset. AUC, area under the curve; CI, confidence interval; lncRNA, long non-coding RNA; OS, overall 
survival; ROC, receiver operating characteristic.

3-, and 5-year in the GSE4581 dataset, with 0.74, 0.71, and 
0.79 respectively (Figure 4B). Two risk groups also displayed 
significantly differential OS in the GSE4581 dataset  
(Figure 4C). In the validation dataset, similar results were 
observed (Figure 4D,4E), suggesting that the 11-lncRNA 
risk model was effective to predict the prognosis of MM.

Next, we evaluated the performance of the risk model 
in the 7 MM subgroups. Survival analysis showed that 
MS and PR had shorter OS than other subgroups, which 
was consistent with the previous research (41) (Figure 5A). 
The Sankey diagram displayed that high-risk samples were 
more accumulated in MS and PR subgroups (Figure 5B). 
Comparison of risk score in the 7 subgroups revealed that 
PR subgroup had the highest risk score, followed by the MS 
subgroup (Figure 5C), indicating that the risk model was 
reliable and effective. 

Pathway and immune analyses of two risk groups

We calculated the enrichment score of KEGG pathways for 
each MM sample in GSE4581 dataset. Spearman correlation 
analysis was performed to evaluate the relationship of risk 
score with KEGG pathways. A total of 7 pathways were 
screened to be significantly related to risk score (|R| >0.2 
and P<0.05), where cell cycle was positively correlated with 
risk score and the Notch signaling pathway was negatively 
correlated with risk score (Figure 6A,6B). In the relationship 
of risk score with immune cell infiltration, we observed that 
some immune cells such as activated CD4 T cells, activated 
CD8 T cells, and memory B cells were differentially 
enriched in 2 risk groups (Figure 6C). Correlation analysis 
also showed a significant correlation of risk score with some 
immune cells including activated CD4 T cells, activated 
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Figure 5 The relation of risk score with seven MM subgroups in GSE4581 dataset (A) Kaplan-Meier survival curve of seven subgroups. (B) 
Sankey diagram of 2 risk groups and seven subgroups. (C) The risk score of 7 subgroups. Wilcoxon test was conducted. *, P<0.05; **, P<0.01; 
***, P<0.001; ****, P<0.0001. CD, CCND; HY, hyperdiploid; LB, low bone disease; MF, MAF/MAFB; MS, MMSET; PR, proliferation; 
MM, multiple myeloma. 

CD8 T cells, central memory CD4 T cells, memory B 
cells, type 1 T helper cells, type 2 T helper cells, CD56dim 
natural killer (NK) cells, eosinophils, macrophages, and NK 
cells (Figure 6D).

The prognostic value of 11 lncRNAs

The 11-lncRNA risk model was verified to be effective 
to predict MM prognosis in 2 independent datasets. 

We evaluated the relation of each lncRNA with OS by 
univariate Cox regression analysis. The result showed 
that 6 lncRNAs (TMPO-AS1, THOC7-AS1, MRGPRF-
AS1, ERVH-1, AL033530.1, and AFDN-DT) were risk 
factors [hazard ratio (HR) >1] and 5 lncRNAs (LINC01653, 
AC090983.1, AC116366.2, TARID, and C1QTNF1-AS1) 
were protective factors (HR <1, Figure 7A). We examined 
their performance in classifying high-risk and low-risk 
groups. Except for TARID, the other 10 lncRNAs were 
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Figure 7 The performance of 11 lncRNAs in GSE4581 dataset. (A) Univariate Cox regression analysis of 11 lncRNAs. (B) Kaplan-Meier 
survival analysis of high-risk and low-risk groups dividing by each lncRNA. lncRNA, long non-coding RNA.
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effective to divide MM samples into 2 risk groups with 
distinct OS (Figure 7B).

Discussion

Gln is the second commonly used source for energy after 
glucose in cancer cells. Gln can degrade to glutamate and 
ammonia (NH4+) under glutaminase (43). HMCLs produce 
excessive NH4+ and the upregulated level of NH4+ is also 
detected in CD138+ cells of MM patients (17). Inhibition of 
Gln transporter ASCT2 can effectively decrease Gln uptake 
and suppress HCML growth through a series downstream 
effects including changes in mTORC1 kinase activity, MYC 
transcription, protein synthesis, cell proliferation, and 
autophagy (43,44). LncRNAs are abundant in eukaryotes 
and have various functions according to different cellular 
localization. For instance, nuclear lncRNAs influence 
histone modification or transcriptional regulation (45). A 
study has demonstrated that lncRNAs regulate glucose, 
Gln, and lipid metabolism in cancer (46). However, the role 
of lncRNAs in Gln metabolism in MM patients is under-
reported. 

In the present study, we identified 50 lncRNAs that 
were significantly associated with Gln metabolism. Based 
on the expression profiles of the 50 lncRNAs, we identified 
3 molecular subtypes (clust1, clust2, and clust3) through 
consensus clustering. Clust3 had the worst OS and the 
highest enrichment of Gln metabolism, indicating that 
the 50 lncRNAs may be involved in Gln metabolism 
and thus affect the prognosis in MM patients. Previous 
research also identified 7 subgroups of MM patients (CD1, 
CD2, HY, LB, MF, MS, and PR) according to the mRNA 
expression profiles of CD138-enriched plasma cells (41). In 
the comparison of our subtypes with previous subgroups, 
clust3 was mostly distributed in MS and PR subgroups, 
in line with the previous result that MS and PR had 
poor prognosis. The molecular subtyping based on Gln-
associated lncRNAs suggested that the lncRNAs played 
an essential role in regulating Gln metabolism and thus 
affected MM prognosis,

We further assessed the link of Gln-associated lncRNAs 
with potential pathways and immune microenvironment. 
Some tumor-related pathways were significantly activated 
in clust3 compared with other subtypes, including 
angiogenesis, EMT, G2M checkpoint, and E2F targets. 
Angiogenesis is a typical hallmark of tumors, which enables 
tumor cells and epithelial cells to survive the hypoxic 
environment. It has been demonstrated that angiogenesis 

can be promoted under the addiction of epithelial cells to 
Gln (47). G2M checkpoint and E2F targets are cell cycle-
related pathways that are frequently dysregulated in tumor, 
and G2M has been identified as a potential prognostic 
biomarker for breast cancer (48). EMT promotes cell 
proliferation and migration, which is a biomarker of 
poor prognosis in both solid tumor and hematological 
malignancy (49). It has been reported that hypoxia promotes 
the formation of bone marrow foci in MM cells through 
EMT process (49,50). 

Immune-related pathways including IFN-alpha response 
and IFN-gamma response were relatively inhibited in 
clust3, indicating a suppressed immune response of clust3. 
Immune analysis also revealed that clust3 had lower immune 
infiltration than other subtypes. In addition, many immune 
cells and most of immune checkpoints were differentially 
enriched in 3 subtypes, which indicated that 3 subtypes 
had different immune microenvironments. Angiogenesis 
and EMT are highly associated with orchestration of the 
immune microenvironment (51,52), which may contribute 
to the different immune response in the 3 subtypes. 
Moreover, a study has shown that tumor cells competitively 
prey on glutamine in TME, resulting in limited availability 
of glutamine to tumor-infiltrating T lymphocytes, leading 
to immune escape (53). It has been proposed that the 
“glutamine steal” hypothesis that selectively blocking Gln 
metabolism in tumor cells can eliminate the metabolic 
competition for Gln in TME while releasing Gln for use 
by immune cells, thus enhancing the anti-tumor immune 
response (10).

Furthermore, we screened the DElncRNAs among 
3 subtypes, and established a risk model based on the 
DElncRNAs. A total of 11 lncRNAs were included in 
the risk model, including TMPO-AS1, THOC7-AS1, 
MRGPRF-AS1, ERVH-1, AL033530.1, AFDN-DT, 
LINC01653, AC090983.1, AC116366.2, TARID, and 
C1QTNF1-AS1. The 11-lncRNA risk model was effective 
and robust to divide MM patients into high-risk and low-
risk groups in 2 independent datasets. The high-risk 
group had significantly worse prognosis than the low-risk 
group. Notably, MS and PR subgroups showed higher risk 
score than the other subgroups, which was accordant with 
previous observations. TMPO-AS1 was reported to be 
overexpressed in various tumors such as prostate cancer and 
triple-negative breast cancer (54,55). TARID was revealed 
to promote demethylation and activation of TCF21, a 
tumor suppressor (56). Other lncRNAs have been scarcely 
reported in cancer, but they may be potential regulators 
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involved in MM.
The relationship of risk score with biological pathways 

and immune cell infiltration was also evaluated in MM 
patients. Cell cycle and nitrogen metabolism were positively 
correlated with risk score, which was consistent with the 
results in subtype analysis. In addition, multiple immune 
cells were significantly correlated with risk score, including 
activated CD4 T cells, activated CD8 T cells, central 
memory CD4 T cells, memory B cells, type 1 T helper 
cells, type 2 T helper cells, CD56dim NK cells, eosinophils, 
macrophages, and NK cells. The close relationship 
of risk score with immune cells suggested that the 11 
lncRNAs possibly played a regulatory role in the immune 
microenvironment. However, the experimental analysis 
in more clinical MM patients is needed to verify the risk 
model.

Our study has three main features. First, a comprehensive 
analysis of multiple omics data (metabolomics, genomics, 
transcriptomics) was performed. Secondly, we proposed 
Gln metabolism combined with lncRNA to construct 
a prognostic model, which is currently the first study 
conducted in MM. Finally, compared with a single 
prognostic gene, the polygenic prognostic model is better 
able to feedback the overall symptoms of the disease. 
However, The limitations of this study cannot be ignored. 
Firstly, all data were downloaded from public databases, 
and the sample size and clinical information were limited. 
Second, although a risk score system consisting of 11 
lncRNAs has been created, the regulatory network and 
biological effects between these genes remain to be 
explored.

Conclusions

In conclusion, this study utilized the lncRNA expression 
profiles of MM patients to identify molecular subtypes 
and construct a risk model related to Gln phenotype. 
We explored the link of Gln metabolism with lncRNAs, 
biological pathways, and immune microenvironment. The 
11-lncRNA risk model had a prognostic value to predict OS 
for MM patients. In addition, the 11 lncRNAs may serve 
as potential targets for studying further mechanism of Gln 
metabolism in MM patients.
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Supplementary

Figure S1 Heatmap showed the enrichment score of 15 immune-related pathways in three subtypes.
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Table S1 A list of 50 Gln-associated lncRNAs

Gene Cor P

AC005261.1 −0.274869 1.36E-08

AC005332.4 −0.343439 7.08E-13

AC007996.1 −0.263608 5.41E-08

AC008393.1 −0.287431 2.69E-09

AC008875.3 −0.389307 2.22E-16

AC012146.1 0.2625981 6.10E-08

AC016747.1 0.3411348 1.03E-12

AC092747.4 −0.325395 1.22E-11

AC093157.1 0.2671877 3.51E-08

AC103740.1 0.2705032 2.34E-08

AC114776.1 0.3507564 2.12E-13

AC245297.2 −0.257104 1.17E-07

AL031985.3 0.2592027 9.13E-08

AL158206.1 −0.340153 1.21E-12

AL355987.4 −0.296592 7.84E-10

AL365181.3 0.296473 7.97E-10

AL365203.2 0.2527365 1.94E-07

AL445524.1 0.2710701 2.18E-08

AL450998.2 −0.252114 2.08E-07

AL606760.1 0.266554 3.79E-08

AP000766.1 −0.444352 0

AP000813.1 −0.284419 3.99E-09

AP002840.2 −0.257234 1.15E-07

BISPR −0.273768 1.56E-08

CERS6-AS1 0.2989965 5.64E-10

CRNDE 0.3256028 1.18E-11

CRYZL2P-SEC16B 0.3245427 1.39E-11

EIF3J-DT −0.391705 0

EPB41L4A-DT −0.259653 8.66E-08

FAM111A-DT −0.272276 1.88E-08

FAM13A-AS1 −0.264626 4.78E-08

FAM27C 0.2968756 7.54E-10

GABPB1-IT1 −0.28285 4.90E-09

GIHCG 0.2753763 1.27E-08

HEIH −0.268778 2.89E-08

INTS6-AS1 −0.316013 4.97E-11

LINC00847 −0.31915 3.12E-11

LINC00893 −0.327327 9.06E-12

LINC00963 0.263745 5.32E-08

LINC00992 0.2898783 1.94E-09

LINC00996 −0.29173 1.52E-09

OIP5-AS1 −0.258787 9.59E-08

PAN3-AS1 −0.278657 8.40E-09

PCAT6 0.2715488 2.05E-08

PSMA3-AS1 −0.404679 0

RAD51-AS1 −0.277301 9.98E-09

SCAMP1-AS1 −0.328556 7.50E-12

SP2-AS1 0.302742 3.35E-10

TMEM99 0.3471879 3.83E-13

TUG1 −0.267831 3.24E-08

Gln, glutamine; lncRNA, long non-coding RNA. 


