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Abstract

Background: Molecular imaging of breast cancer is a promising emerging technology, potentially able to improve

clinical care. Valid imaging targets for molecular imaging tracer development are membrane-bound hypoxia-related

proteins, expressed when tumor growth outpaces neo-angiogenesis. We performed a systematic literature review

and meta-analysis of such hypoxia marker expression rates in human breast cancer to evaluate their potential as

clinically relevant molecular imaging targets.

Methods: We searched MEDLINE and EMBASE for articles describing membrane-bound proteins that are related to

hypoxia inducible factor 1α (HIF-1α), the key regulator of the hypoxia response. We extracted expression rates of

carbonic anhydrase-IX (CAIX), glucose transporter-1 (GLUT1), C-X-C chemokine receptor type-4 (CXCR4), or insulin-like

growth factor-1 receptor (IGF1R) in human breast disease, evaluated by immunohistochemistry. We pooled study

results using random-effects models and applied meta-regression to identify associations with clinicopathological

variables.

Results: Of 1,705 identified articles, 117 matched our selection criteria, totaling 30,216 immunohistochemistry results.

We found substantial between-study variability in expression rates. Invasive cancer showed pooled expression rates

of 35% for CAIX (95% confidence interval (CI): 26-46%), 51% for GLUT1 (CI: 40-61%), 46% for CXCR4 (CI: 33-59%), and

46% for IGF1R (CI: 35-70%). Expression rates increased with tumor grade for GLUT1, CAIX, and CXCR4 (all p < 0.001),

but decreased for IGF1R (p < 0.001). GLUT1 showed the highest expression rate in grade III cancers with 58% (45-69%).

CXCR4 showed the highest expression rate in small T1 tumors with 48% (CI: 28-69%), but associations with size were

only significant for CAIX (p < 0.001; positive association) and IGF1R (p = 0.047; negative association). Although based

on few studies, CAIX, GLUT1, and CXCR4 showed profound lower expression rates in normal breast tissue and benign

breast disease (p < 0.001), and high rates in carcinoma in situ. Invasive lobular carcinoma consistently showed lower

expression rates (p < 0.001).

Conclusions: Our results support the potential of hypoxia-related markers as breast cancer molecular imaging targets.

Although specificity is promising, combining targets would be necessary for optimal sensitivity. These data could help

guide the choice of imaging targets for tracer development depending on the envisioned clinical application.
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Background
In the past decades, conventional breast imaging modal-

ities such as (digital) mammography, breast ultrasound,

and more recently dynamic contrast enhanced magnetic

resonance imaging (DCE-MRI), have improved detection,

characterization, and management of breast cancer.

Although these imaging modalities are valuable in clinical

practice, novel imaging strategies such as molecular

imaging promise additional advantages. With molecular

imaging techniques, breast cancer could be detected even

before anatomical changes occur that are required for

visualization with currently used imaging modalities,

making it valuable for early detection or screening. For

diagnostic purposes, more informative characterization of

breast cancer could result in less unnecessary biopsies.

Furthermore, improved imaging of the extent of disease

could lead to better preoperative planning and to per-

operative guidance, increasing the primary surgery success

rate. Molecular imaging could also be applied to demon-

strate the presence of appropriate molecular targets in the

primary tumor, lymph node and distant metastasis (in vivo

receptor status determination), and could therefore be

useful to tailor therapy to individual patients and to

monitor therapy response [1-6]. Molecular imaging of

tumor metabolism using 18F-fluorodeoxyglucose (18F-FDG)

Positron Emission Tomography is currently common for

imaging and staging of advanced breast cancer. However, it

is of limited value in evaluation of early breast cancer be-

cause of limited spatial resolution, non-visibility of tumors

with low 18F-FDG avidity, and low specificity [7].

Imaging of tumor hypoxia could be a feasible alterna-

tive strategy for molecular imaging of breast cancer.

Hypoxia is a frequent phenomenon in solid tumors that

arises due to limited perfusion [8,9], and might therefore

be more specific than 18F-FDG imaging. Direct imaging

of tumor hypoxia using oxygen mimetics (e.g. with radi-

olabelled 2-nitroimidazole derivatives (18F-FMISO, 18F-

FAZA, 18F-EF5) and other molecules such as Cu-ATSM)

has been investigated in several clinical studies [10].

However, the biodistribution properties of these mole-

cules result in images with low contrast.

Molecular imaging using (monoclonal) antibodies or

antibody fragments (e.g. single chain variable fragments

(scFv), antibody-binding fragments (Fab), variable domains

of the heavy chain of heavy chain-only antibodies (VHH)

or affibodies) that have high affinity for markers that are

expressed in breast cancer under hypoxic conditions could

improve imaging contrast [11-13]. The molecules that are

targeted with these antibodies or fragments should ideally

be highly prevalent in (breast) cancer, and expression

should preferably be already present at the initial stage of

tumorigenesis. Expression of these molecules should be

absent or low in non-affected tissue and benign breast dis-

ease for high specificity, although the relative importance

of these properties depends on the envisioned clinical

application. For screening purposes, specificity of the

target of interest should be high and for application in a

diagnostic setting, expression prevalence of the target in

breast cancer should be sufficient. For intra-operative

guidance, high expression prevalences are less important

as pre-operative target selection is possible based on a

diagnostic (core) biopsy. However, distribution of the target

within the tumor should be homogenous when used for

assessment of tumor margins. Furthermore, extracellular

membrane bound molecules are most attractive, as these

are more easily accessible for most antibodies or antibody

fragments compared to intracellular molecules [14].

Hypoxic conditions result in focal expression of hypoxia

inducible factor 1α (HIF-1α), the key regulator of the

hypoxia response [8,15,16]. The downstream targets of

HIF-1α, carbonic anhydrase IX (CAIX), glucose transporter

1 (GLUT1) and C-X-C chemokine receptor type 4

(CXCR4) [17-20], and insulin-like growth factor 1 receptor

(IGF1R) that maintains the hypoxia response via HIF-1α

stabilization [21-23], are expressed on the plasma mem-

brane of breast cancer cells and are therefore potentially

suitable candidates for molecular imaging of hypoxic

tumors with antibodies or antibody fragments.

Despite the apparent potential of these hypoxia related

proteins, expression patterns in human breast cancer,

normal breast tissue and benign breast diseases, as well

as expression in tumor margins and heterogeneity within

tumors are not well established. To evaluate whether

molecular imaging using these targets could be clinically

relevant, we performed a systematic literature review

and meta-analysis to quantify expression prevalences of

these hypoxia markers in breast disease as assessed by

immunohistochemistry (IHC), investigated relations

with clinicopathological characteristics, and assessed the

influence of specimen handling on these prevalences.

These data could help guide the choice of relevant

imaging targets for future tracer development towards

clinical studies.

Methods
Literature search

We performed a systematic search in the databases of

MEDLINE and EMBASE on August 21st, 2012. Search

terms included synonyms for the targets of interest

(CXCR4, GLUT1, CAIX, and IGF1R), combined with

‘breast’ and ‘mamm*’. The full search syntax can be

found in Table 1. We applied no restrictions on publica-

tion date. The search in the database of EMBASE was

limited to articles that were not indexed with a

MEDLINE ID, and conference abstracts were excluded.

Duplicate articles were manually removed from the

search results.
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Article selection

Article eligibility was assessed by three reviewers (AA,

AvB, JV) through independent screening of all titles and

abstracts from the search result (triple read). We ex-

cluded articles based on predefined criteria, disagree-

ments were resolved by discussion. An overview of the

selection procedure is shown in Figure 1. Reasons for

exclusion of articles based on title or abstract were: (1)

non-original data (e.g. reviews, editorials, guidelines, and

comments), (2) non-clinical articles (e.g. technical, animal,

or in vitro studies), (3) case reports, (4) articles investigating

other tissues than breast tissue, or (5) articles not written in

the English language. The full texts of the remaining articles

were screened for expression prevalence of the targets of

interest. Studies were excluded if (1) only lymph node or

distant metastases were investigated (N = 10), (2) the target

Table 1 Search strategy used to identify publications of interest regarding prevalence of hypoxia proteins in benign

and malignant breast tissue

Target Synonyms used

CAIX CAIX OR CA-IX OR “CA IX” OR CA9 OR CA-9 OR “CA 9” OR “carbonic anhydrase IX” OR “carbonic anhydrase 9”

GLUT1 GLUT1 OR GLUT-1 OR “glucose transporter 1”

CXCR4 CXCR4 OR CXCR-4 OR CXC-R4 OR “CXC chemokine receptor-4”

IGF1R “insulin like growth factor 1 receptor” OR “insulin like growth factor I receptor” OR IGF1R OR IGF-1R OR IGFR OR IGF-IR OR IGF1-R

Search terms were combined with ‘breast’ and ‘mamm*’. For MEDLINE, ‘[tiab]’ was added to each search term, and for EMBASE, ‘ti;ab;’ was added to each

search term.

Potentially relevant articles identified through MEDLINE 

(N=1629) and EMBASE (N=270) on August 21st, 2012

Duplicates excluded (N=194)

1476 studies excluded based on title and abstract review

Exclusion criteria

-  non-original data (e.g. reviews, editorials, guidelines, comments)

-  non-clinical articles (e.g. technical, animal or in vitro studies)

-  case reports

-  articles investigating other tissues than breast tissue

-  articles not written in English

Articles retrieved for full text review (N=229)

104 studies excluded based on full text review

Exclusion criteria

-  only lymph node or distant metastases investigated (N=10)

-  target was not assessed using IHC (N=64)

-  (non-defined part of) patients received neo-adjuvant therapy (N=10)

-  no prevalence reported or could not be derived 

   from published data (N=20)

Cross references (N=2)

Articles used for analysis (N=117)

CAIX (N=25) CAIX + GLUT1 (N=10)

      + IGF1R (N=1)
CXCR4 (N=28)IGF1R (N=31)GLUT1 (N=22)

Articles included in review (N=127)

Suspected patient overlap or tissue types not distinguishable (N=10)

Figure 1 Flowchart for selection of articles describing expression prevalences of the hypoxia markers CAIX, GLUT1, CXCR4, and IGF1R

in breast cancer, normal tissue, benign breast disease, and carcinoma in situ, assessed by immunohistochemistry.
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Figure 2 (See legend on next page.)
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of interest was assessed with another method than IHC

(e.g. quantitative Polymerase Chain Reaction or Western

Blot, N = 64), (3) all or a non-definable part of patients

received neo-adjuvant therapy (which could profoundly

alter biomarker status, N = 10), or (4) the prevalence of the

target of interest was not reported and could not be derived

from the published data (N = 20). All references of the

remaining articles were reviewed to retrieve articles initially

missed in the search syntax.

Data extraction and statistical analysis

We extracted relevant information of each study (e.g.

study and population characteristics, patient and tumor

characteristics, and IHC methodology). Then, for each

study and per target of interest, we annotated the number

of lesions stated as target-positive and the total number

of lesions, either directly or through recalculation based

on the information stated in the article. Lesions of interest

were invasive breast cancers, carcinoma in situ, benign

breast lesions, or normal breast tissue. For invasive

cancers, we grouped studies describing similar cut-off

levels for marker positivity. When a study described

multiple cut-off levels, the level corresponding to the

most used cut-off among other included studies was used,

as established after collecting all data. If patient data was

used in more than one article (i.e. when articles referred

to the same study, or assessed a comparable number of

patients from the same hospital in a similar inclusion

period to evaluate the expression of the same hypoxia

marker), then only the article with the largest number of

patients was included in the review and meta-analysis. A

subgroup was defined for studies investigating membran-

ous staining patterns only. Also, in order to assess applic-

ability of the targets for human molecular imaging

studies, we identified articles using a stringent or high

cut-off value and preferentially membranous staining

localization, as these studies provide the best evidence

for high expression levels of the target. Furthermore,

subgroups were defined according to tumor size (based

on the TNM staging system), histological grade, histo-

logical subtype, and specimen handling method (i.e. if full

tissue sections or tissue microarrays (TMA) were investi-

gated), when stated. To assess specificity of the investigated

markers, studies were grouped according to tissue types

other than invasive breast cancer (normal tissue, benign

breast disease, carcinoma in situ).

Then, we pooled prevalence rates across studies using

a random-effects model, allowing for between-study

heterogeneity. We fitted a linear mixed model using the

exact binomial approach with the restricted maximum

likelihood method [24]. We tested for subgroup differ-

ences using meta-regression analysis with subgroup

indicators as fixed effects and the individual studies as

random effects in the models. Besides the pooled

prevalence estimates, we report predictive intervals as

suggested by Higgins et al. for the evaluation of

between-study heterogeneity [25]. We evaluated pres-

ence of publication bias with funnel plots and statisti-

cally tested for funnel plot asymmetry using Egger’s test

[26].

Analyses were performed with R (version 2.15.1, R

Foundation for Statistical Computing, Vienna, Austria)

[27] with the package ‘lme4’ [28] and ‘meta’ [29]. All

statistical tests were two-sided and a p-value of 0.05 or

less was considered statistically significant. Prevalence

estimates are reported with corresponding 95% logit

confidence intervals (CI).

Results
The search yielded 1,629 articles in MEDLINE and

270 articles in EMBASE. After removal of 194 dupli-

cates, 1,705 unique articles were left for evaluation. Of

these, we excluded 1,476 articles based on title and

abstract, and 104 articles based on full text screening

(Figure 1). Reference cross-checking of the selected

articles yielded two additional studies that were

initially missed, as synonyms for breast were not

included in the title or abstract [30,31]. Of the 127

selected articles (CAIX [9,32-71], GLUT1 [30,31,33,34,

36,39,42,45,46,49,53,62,65,67,69,72-91], CXCR4 [92-121]

IGF1R [36,122-156]), we excluded ten articles from the

analysis due to (suspected) overlap of study populations

[38,43,61,62,94,109,123,139,143,153], and one article [67]

because we could not distinguish between carcinoma

in situ and invasive breast cancer. Ten articles [33,34,39,

42,45,46,49,53,65,69] described both GLUT1 and CAIX

expression, and one study [36] described IGF1R, CAIX,

and GLUT1 expression. In three of these studies,

co-expression patterns of CAIX and GLUT1 were

(See figure on previous page.)

Figure 2 Expression prevalence of CAIX. A Systematic literature review of CAIX prevalence in breast cancer assessed by immunohistochemistry,

according to reported staining threshold. Legend: Dashed gray reference line: overall random-effects prevalence estimate. Abbreviations: Staining

threshold: weak intensity (WI), moderate intensity (MI), strong intensity (SI); Localization: cytoplasm (c), membrane (m); confidence interval (CI); not

stated (NS). B Systematic literature review of CAIX prevalence in normal breast tissue, benign breast diseases and carcinoma in situ assessed by

immunohistochemistry. Legend: Dashed line represents random effect summary prevalence estimate for invasive cancer within studies reporting

also on normal, benign and/or precancerous breast tissue (4 studies). Abbreviations: Staining threshold: weak intensity (WI), moderate intensity (MI),

strong intensity (SI); Localization: cytoplasm (c), membrane (m); confidence interval (CI); not stated (NS).
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Table 2 Systematic review, meta-analysis and meta-regression results of hypoxia membrane protein expression in breast cancer, in situ carcinoma, benign

breast disease, and normal breast tissue.

CAIX GLUT1 CXCR4 IGF1R

N Prev. (CI) p-value* N Prev. (CI) p-value* N Prev. (CI) p-value* N Prev. (CI) p-value*

Invasive carcinoma

Overall 36 0.35 (0.26-0.46) Ref 33 0.51 (0.40-0.61) Ref 28 0.46 (0.33-0.59) Ref 31 0.46 (0.35-0.70) Ref

Membranous localization only 20 0.23 (0.17-0.31) - 19 0.44 (0.37-0.52) - 2 0.16 (0.08-0.31) - 15 0.38 (0.27-0.50) -

Best evidence studies 6 0.38 (0.17-0.65) - 17 0.41 (0.35-0.48) - 7 0.43 (0.25-0.63) - 10 0.33 (0.22-0.46) -

Histological grade 12 10 13 5

I 0.04 (0.02-0.08) Ref 0.24 (0.18-0.31) Ref 0.26 (0.13-0.44) Ref 0.57 (0.51-0.63) Ref

II 0.16 (0.10-0.24) <0.001 0.33 (0.20-0.50) 0.012 0.32 (0.17-0.52) 0.049 0.51 (0.49-0.54) 0.093

III 0.30 (0.22-0.39) <0.001 0.58 (0.45-0.69) <0.001 0.44 (0.26-0.63) <0.001 0.41 (0.39-0.43) <0.001

Tumor size 7 6 12 4

T1 0.12 (0.11-0.14) Ref 0.37 (0.31-0.42) Ref 0.48 (0.28-0.69) Ref 0.45 (0.39-0.51) Ref

T2 0.15 (0.11-0.20) <0.001 0.36 (0.29-0.43) 0.641 0.52 (0.28-0.74) 0.620 0.47 (0.44-0.49) 0.682

T3 0.30 (0.17-0.47) <0.001 0.30 (0.14-0.53) 0.180 0.68 (0.53-0.80) 0.122 0.39 (0.32-0.47) 0.047

Histological type 13 14 10 6

Invasive ductal carcinoma 0.34 (0.20-0.52) Ref 0.48 (0.32-0.64) Ref 0.46 (0.22-0.72) Ref 0.42 (0.28-0.58) Ref

Invasive lobular carcinoma 0.01 (0.00-0.05) 0.001 0.09 (0.01-0.40) <0.001 0.35 (0.00-0.98) 0.001 0.25 (0.08-0.55) <0.001

Specimen handling 36 32 28 31

Full sections 0.51 (0.37-0.64) Ref 0.61 (0.49-0.72) Ref 0.39 (0.28-0.51) Ref 0.34 (0.26-0.42) Ref

Tissue microarray 0.24 (0.16-0.35) 0.002 0.30 (0.18-0.45) 0.003 0.61 (0.29-0.85) 0.173 0.57 (0.39-0.73) 0.032

Other tissue types 4 5 6 4

Normal breast tissue 0.02 (0.00-0.50) <0.001 0.03 (0.00-0.22) <0.001 0.03 (0.01-0.07) <0.001 0.74 (0.69-0.78) 0.109

Benign breast diseases 0.06 (0.02-0.20) <0.001 0.04 (0.00-0.42) <0.001 0.04 (0.00-0.80) <0.001 0.73 (0.66-0.79) 0.137

Carcinoma in situ 0.49 (0.31-0.68) 0.025 0.52 (0.42-0.62) 0.680 0.71 (0.23-0.95) <0.001 0.33 (0.18-0.53) 0.869

*p-values obtained using meta-regression (linear mixed model with subgroup indicators as fixed and the individual studies as random effects); ref: reference

category for the meta-regression result; N: Maximum number of studies evaluated for pooled estimate or meta regression; prev.: expression prevalence of the investigated target.
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Figure 3 (See legend on next page.)
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investigated [42,45,69]. Study characteristics of all in-

vestigated studies are shown in Additional file 1: Table

S1A, Additional file 2: Table S1B, Additional file 3:

Table S1C, Additional file 4: Table S1D.

IHC methodology varied between the studies. For

assessment of CAIX expression, three different antibodies

were used, and in 11 studies (31%) only the manufacturer

was stated. In articles describing GLUT1 prevalence, six

different antibodies were used and in 23 studies (70%) only

the manufacturer was stated. For CXCR4, eight antibodies

were used and in seven studies (25%) the antibody data

was not reported, and for IGF1R, 11 different antibodies

were used, and five studies (16%) did not specify the clone

used. In addition, 51 studies (44%) investigated TMAs to

evaluate the expression of the target of interest. Only 32

studies (63%) using TMAs reported the number of cores,

and 37 studies (73%) reported the diameter of the cores. In

43 of the studies (37%) no information was available on

who assessed staining results, 18 studies (15%) reported

evaluation by a single observer and in 56 studies (48%) by

more than one observer. In 43 of the studies (37%), it was

explicitly stated that evaluation was performed by one or

more pathologists.

CAIX

A total of 36 articles including 10,885 invasive cancers

(range of 10 to 3,630 cancers per study) reported on

CAIX expression, with prevalence estimates ranging from

7% to 92%. The overall pooled prevalence of CAIX was

35% (CI 26-46%; Figure 2A and Table 2). For studies

investigating membranous staining patterns only, we

found a pooled expression prevalence of 23% (CI 17-31%,

20 studies; Additional file 5: Figure S1A) and the studies

providing best evidence for evaluation of molecular

imaging targets showed a pooled prevalence of 38%

(CI 17-65%, 6 studies; Additional file 6: Figure S1B).

Expression prevalence of CAIX increased with histo-

logical grade (16% in grade II (p < 0.001) and 30% in

grade III (p < 0.001) versus 4% in grade I; Additional file 7:

Figure S1C), and tumor size (15% in T2 (p < 0.001) and

30% in T3 (p < 0.001) versus 12% in T1; Additional file 8:

Figure S1D). Prevalence of CAIX was also higher in invasive

ductal carcinoma (IDC) compared to invasive lobular car-

cinoma (ILC) (34% versus 1%, p = 0.001; Additional file 9:

Figure S1E). CAIX expression was more often positive

in studies investigating full sections compared to TMA

(51% versus 24%, p = 0.002; Additional file 10: Figure S1F).

In normal breast tissue, the pooled prevalence was 2%

(CI 0-50%, p < 0.001; 4 studies). Pooled prevalence in

benign lesions was 6% (CI 2-20%, p < 0.001; 3 studies),

and in carcinoma in situ 49% (CI 31-68%, p = 0.025; 4

studies) (Figure 2B). Overall, between study-heterogeneity

of studies investigating CAIX expression was large, but

this decreased when confining analyses to membranous-

only and best evidence studies (these study groups largely

overlapped). Between-study variation was also lower

within subgroups of tumor grade and tumor size.

GLUT1

A total of 33 articles including 3,633 invasive cancers

reported on GLUT1 expression, with a range of 11 to

458 cancers per study. The overall pooled prevalence of

GLUT1 expression was 51% (CI 40-61%; Figure 3A and

Table 2), but the reported prevalence varied substantially

between studies (range 5% to 100%). For studies investi-

gating membranous staining patterns only, the pooled

prevalence was 44% (CI 37-52%, 19 studies; Additional

file 11: Figure S2A) and when the studies providing best

evidence for evaluation of molecular imaging targets were

selected, this was 41% (CI 35-48%; 17 studies; Additional

file 12: Figure S2B). GLUT1 prevalence was higher for

grade III (58%, p < 0.001) and grade II tumors (33%, p =

0.012) compared to grade I tumors (24%; Additional file 13:

Figure S2C), but there was no relation with tumor size

(Additional file 14: Figure S2D). Furthermore, as for

CAIX, expression prevalence in ILC was lower compared

to IDC (9% versus 48%, p < 0.001; Additional file 15:

Figure S2E). Studies investigating TMAs reported lower

prevalence of GLUT1 expression compared to studies

using full sections (30% versus 61%, p = 0.003, Additional

file 16: Figure S2F). In normal breast tissue, the pooled

expression prevalence was 3% (CI 0-22%, p < 0.001; 5

studies). Pooled prevalence in benign lesions was 5% (CI

0-42%, p < 0.001; 3 studies), and in carcinoma in situ 52%

(CI 42-62%, p = 0.680; 3 studies) (Figure 3B). For GLUT1,

the overall between-study variation was large as well, but

substantially smaller for studies investigating membranous

staining only and the best evidence studies (these study

groups again largely overlapped). Furthermore, the

(See figure on previous page.)

Figure 3 Expression prevalence of GLUT1. A Systematic literature review of GLUT1 prevalence in breast cancer assessed by immunohistochemistry,

according to reported staining threshold. Legend: Dashed gray reference line: overall random-effects prevalence estimate. Abbreviations: Staining

threshold: weak intensity (WI), moderate intensity (MI), strong intensity (SI); Localization: cytoplasm (c), membrane (m); confidence interval (CI); not

stated (NS). B Systematic literature review of GLUT 1 prevalence in normal breast tissue, benign breast diseases and carcinoma in situ assessed by

immunohistochemistry. Legend: Dashed line represents random effect summary prevalence estimate for invasive cancer within studies reporting

also on normal, benign and/or precancerous breast tissue ( 5 studies). Abbreviations: Staining threshold: weak intensity (WI), moderate intensity

(MI), strong intensity (SI); Localization: cytoplasm (c), membrane (m); confidence interval (CI); not stated (NS).
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Figure 4 (See legend on next page.)
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between-study variation was markedly lower when taking

tumor size into account, and somewhat lower within

subgroups of grade. In the studies investigating co-

expression patterns of GLUT1 and CAIX, concordant

presence or absence of CAIX and GLUT1 was found in

78/118 (66%) [42], 45/59 (76%) [45], and 45/48 (94%) [69]

of the cancers, respectively.

CXCR4

A total of 28 articles including 5,583 invasive cancers re-

ported on CXCR4 expression, with a range of 7 to 1,808

cancers per study. The pooled prevalence of CXCR4

expression was 46% (CI 33-59%; Figure 4A and Table 2),

with a range between studies of 8% to 100%. For stu-

dies investigating membranous staining patterns only,

the pooled prevalence was 16% (CI 8-31%; 2 studies;

Additional file 17: Figure S3A) and when the studies

providing best evidence for evaluation of molecular im-

aging targets were selected, this was 43% (CI 25-63%;

7 studies, Additional file 18: Figure S3B). CXCR4 preva-

lence increased with histological grade (32% in grade II

(p = 0.049) and 44% in grade III (p < 0.001), compared

to 26% in grade I; Additional file 19: Figure S3C), but no

relation was found with tumor size (Additional file 20:

Figure S3D). Furthermore, the prevalence of CXCR4

was higher in IDC than in ILC (46% versus 35%, p =

0.001; Additional file 21: Figure S3E). Expression preva-

lence was not related to slide construction method

(Additional file 22: Figure S3F). In normal breast tissue,

the pooled expression prevalence was 3% (CI 1-7%, p <

0.001; 4 studies). Pooled prevalence in benign lesions was

4% (CI 0-80%, p < 0.001; 4 studies), and in carcinoma

in situ 71% (CI 23-95%, p < 0.001; 2 studies) (Figure 4B).

Between-study heterogeneity of studies investigating

CXCR4 expression was large, both overall and within all

subgroups (except for the two studies investigating

membranous staining).

IGF1R

We analyzed a total of 31 articles including 8,463 invasive

cancers (range of 8 to 2,871 cancers per study). The pooled

prevalence of IGF1R expression was 46% (CI 35-57%;

Figure 5A and Table 2) with a range between studies

of 10% to 99%. For studies investigating membranous

staining patterns only, the pooled prevalence was 38%

(CI 27-50%; 15 studies, Additional file 23: Figure S4A) and

when the studies providing best evidence for evaluation of

molecular imaging targets were selected, this was 33%

(CI 22-46%; 10 studies, Additional file 24: Figure S4B). In

contrast to the other investigated markers, the pooled

prevalence of IGF1R was lower in grade III versus grade I

cancers (41% versus 57%, p < 0.001; Additional file 25:

Figure S4C), and was lower in T3 cancers compared to T1

cancers (39% versus 45%, p = 0.047; Additional file 26:

Figure S4D). Prevalence of IGF1R was higher in IDC com-

pared to ILC (42% versus 25%, p < 0.001; Additional file 27:

Figure S4E), and higher in studies using TMAs than in

studies using full sections (57% versus 34%, p = 0.032;

Additional file 28: Figure S4F). In normal breast tissue, the

pooled expression prevalence was 74% (CI 69-78%, p =

0.109; 2 studies). Pooled prevalence in benign lesions was

73% (CI 66-79%, p = 0.137; 2 studies), and in carcinoma

in situ 33% (CI 18-53%, p = 0.869; 2 studies) (Figure 5B).

Variation in results between studies was large, both overall

and within the studies investigating membranous staining

only and best evidence studies. Within groups of tumor

grade and size, the between-study heterogeneity was very

low, but the number of studies in these subgroups was

small.

Evaluation of publication bias

The substantial overall between-study heterogeneity in

prevalence estimates was confirmed by examination of the

funnel plots (not shown). Furthermore, smaller studies

(i.e. with lower precision) were more likely to report

higher hypoxia marker prevalence rates (all Egger’s tests

p < 0.05, except for IGF1R). Funnel plots evaluating hypoxia

marker prevalence rates according to tumor grade showed

no evidence for publication bias for GLUT1 and CXCR4

(all Egger’s tests p > 0.25), but indicated that smaller stu-

dies showed a larger increase in CAIX prevalence for grade

III versus I and a larger decrease in IGF1R prevalence for

grade II versus grade I tumors (i.e. more extreme effects in

small studies; Egger’s tests p = 0.044 and p = 0.023, respec-

tively). We found no indication for publication bias when

evaluating the studies reporting on hypoxia marker

prevalence rates according to tumor size (all Egger’s tests

p > 0.15, or too few studies for evaluation).

(See figure on previous page.)

Figure 4 Expression prevalence of CXCR4. A Systematic literature review of CXCR4 prevalence in breast cancer assessed by immunohistochemistry,

according to reported staining threshold. Legend: Dashed gray reference line: overall random-effects prevalence estimate. Abbreviations: Staining

threshold: weak intensity (WI), moderate intensity (MI), strong intensity (SI); Localization: cytoplasm (c), membrane (m); confidence interval (CI); not

stated (NS). B Systematic literature review of CXCR4 prevalence in normal breast tissue, benign breast diseases and carcinoma in situ assessed by

immunohistochemistry. Legend: Dashed line represents random effect summary prevalence estimate for invasive cancer within studies reporting

also on normal, benign and/or precancerous breast tissue (6 studies). Abbreviations: Staining threshold: weak intensity (WI), moderate intensity (MI),

strong intensity (SI); Localization: cytoplasm (c), membrane (m); confidence interval (CI); not stated (NS).
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Discussion
In this comprehensive systematic literature review and

meta-analysis, we reported on expression prevalence of the

hypoxia-related proteins GLUT1, CAIX, CXCR4, and

IGF1R in breast cancer and carcinoma in situ, benign

breast disease and normal breast tissue. We included a total

of 117 articles totaling 30,216 IHC results. Hypoxia marker

prevalence rates were in the range of other potential

targets for molecular imaging with antibodies or antibody

fragments, e.g. Epidermal Growth Factor Receptor (EGFR)

[157] or CD44v6 [158], and were higher than for example

Human Epidermal Growth Factor Receptor 2 (HER2)

[159]. Benign breast disease and non-affected breast tissue

showed low expression, but the number of available studies

was limited. The between-study variation of results was

substantial and meta-regression showed several clinicopatho-

logical features of breast cancer to significantly influence

hypoxia marker expression.

CAIX, GLUT1, and CXCR4 prevalence rates significantly

increased with histological grade, which is consistent with

the hypothesis that high grade tumors have a higher prolife-

ration rate, causing neo-angiogenesis to lag behind tumor

growth [160]. The resulting inadequate nutrient and oxygen

supply causes activation of the hypoxia pathway [161,162].

Surprisingly, we found an inverse relation for IGF1R with

histological grade. In analogy to histological grade, larger

tumors may also express hypoxia markers more frequently,

but we only found a significant positive relation for CAIX,

and again an unexpected negative significant relation with

IGF1R. We further found that hypoxia proteins are infre-

quently expressed in ILC, suggesting that hypoxia is not a

common phenomenon in these cancers. Ercan et al.

reported that only 3% of ILC expresses HIF1α, compared

to 39% of IDC [163], suggesting that hypoxia is indeed rare

in this subtype. We found significant lower expression

prevalences in normal tissue and benign breast diseases

compared to invasive breast cancer, showing high cancer-

specificity of CAIX, GLUT1 and especially CXCR4. IGF1R

was evaluated in few studies with non-significant results, so

no conclusions can be drawn with respect to specificity of

this target. Pooled expression prevalence rates of carcinoma

in situ were at least comparable to (GLUT1 and IGF1R) or

higher than (CAIX and CXCR4) invasive carcinoma, albeit

based on few studies.

An increasing number of recent studies evaluated

hypoxia marker expression using TMA. Although TMA

allows for higher throughput than full section analyses, it

may lead to underestimation of marker expression in

presence of intra-tumoral heterogeneity. We found that

CAIX and GLUT1 prevalence was significantly lower in

TMA studies, presumably due to the sampling method

used for TMA construction, in which necrotic regions

that usually have the highest expression of hypoxia-

related proteins are avoided [65]. The lower prevalence

of CAIX and GLUT1 in TMA studies could be inter-

preted as an indication of intratumoral heterogeneity of

these markers. Although this interpretation is interesting,

the applicability of TMAs for assessment of hypoxia

marker expression needs to be reconsidered [164,165],

even if their use has been justified for other markers (e.g.

ERα and HER2 [143,166]).

With a view to molecular imaging, specificity of the

imaging target is pivotal for every clinical application.

The marked lower expression prevalence of CAIX,

GLUT1 and CXCR4 in benign breast disease and normal

breast tissue is thus highly promising. The specificity

results for IGF1R are less encouraging, albeit based on

only two studies. For early detection, a suitable target

should be prevalent already in small tumors. Furthermore,

evidence is mounting that current mammography screen-

ing may lead to substantial over-diagnosis [167] and

picks-up tumors with favorable prognosis [168]. An

imaging target that identifies small tumors with poor

prognosis, e.g. grade III invasive breast cancers [169],

would thus be especially valuable for screening. This

combination makes GLUT1 an interesting candidate, with

high expression in grade III cancers (58%) and also highest

expression in T1 tumors (although the latter not signifi-

cantly different from T3 tumors). CXCR4 and CAIX also

show higher expression in grade III cancers, but for CAIX

expression prevalence is markedly lower in smaller lesions.

For intra-operative guidance, a high prevalence in invasive

cancer is not required, as tissue can be sampled for inves-

tigation of target expression pre-operatively. Such a

target should ideally show low intratumoral heterogeneity

to ascertain radical resection. Although this was not

specifically addressed by individual studies, the difference

in results between TMA and full-section studies may

(See figure on previous page.)

Figure 5 Expression prevalence of IGF1R. A Systematic literature review of IGF1R prevalence in breast cancer assessed by immunohistochemistry,

according to reported staining threshold. Legend: Dashed gray reference line: overall random-effects prevalence estimate. Abbreviations: Staining

threshold: weak intensity (WI), moderate intensity (MI), strong intensity (SI); Localization: cytoplasm (c), membrane (m); confidence interval (CI); not

stated (NS). B Systematic literature review of IGF1R prevalence in normal breast tissue, benign breast diseases and carcinoma in situ assessed by

immunohistochemistry. Legend: Dashed line represents random effect summary prevalence estimate for invasive cancer within studies reporting also

on normal, benign and/or precancerous breast tissue ( 4 studies). Abbreviations: Staining threshold: weak intensity (WI), moderate intensity (MI), strong

intensity (SI); Localization: cytoplasm (c), membrane (m); confidence interval (CI); not stated (NS).
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indicate that CAIX and GLUT1 have marked intratumoral

heterogeneity and might therefore be less suitable for

intra-operative application than CXCR4. Risk factors for

incomplete tumor resection in current clinical practice

include the presence of an extensive intraductal compo-

nent [170], and the ILC histological subtype [171-175].

Especially CXCR4 shows high expression in DCIS, thus is

potentially valuable for imaging of an extensive intraductal

component. However, none of the markers show potential

for ILC imaging.

None of the investigated markers showed a sufficient

expression prevalence to allow sensitive molecular imaging

with a single tracer only. For successful implementation

(especially in a screening or diagnostic setting), a com-

bination of tracers would be required to obtain a high

sensitivity. However, all of the investigated markers here

are expressed via the same (hypoxia-related) oncogenic

pathway. The few studies that investigated co-expression

patterns found that expression of these markers were

indeed closely correlated. It would therefore be more

advantageous to combine the hypoxia targets with targets

from other oncogenic pathways, such as growth factors

(e.g. EGFR or HER2), targets that are excreted in the

tumor stroma (e.g. Vascular Endothelial Growth Factor

(VEGF)), or less tumor-specific targets such as Mucin 1

(MUC1), Mammaglobin, or CD44v6 [36]. However, the

aggregated nature of the obtained data did not allow us

to investigate the best combination of targets or to

investigate co-expression patterns.

To appreciate the results, one needs to acknowledge

that studies employed various IHC protocols and assess-

ment methodologies, as no standardized scoring system is

established for these markers, in contrast to e.g. HER2

[176]. When we evaluated only studies that used relatively

strict cut-offs (i.e. the studies providing best evidence for

evaluation of molecular imaging targets) or studies investi-

gating membranous staining only, the results were still

comparable to the overall results. Nevertheless, as IHC

may not reflect the functionality or availability of a marker

in all situations, it remains unclear which or if any cut-off

level relates to sufficient marker levels for molecular im-

aging in humans [177]. However, IHC remains the estab-

lished standard for protein expression estimation since it

allows for sensitive detection at the (sub-) cellular level,

and is more reliable than assays measuring DNA or RNA

levels because of post-translational processing.

Conclusions
We have shown that human expression prevalence and

patterns of hypoxia-related markers support their potential

as molecular imaging targets, with promising specificity.

However, none of the evaluated markers shows sufficient

prevalence in invasive cancer to be exploited as the sole tar-

get. Future research should focus on the identification of

optimal combinations of candidate imaging targets, and

dedicated studies are needed to assess the accuracy of such

combinations to discriminate between breast cancer (sub-

types) and benign breast lesions and normal tissue. The

data from this review and such studies could help guide the

choice of markers for breast cancer tracer development.

Additional files

Additional file 1: Table S1A. Study characteristics of articles included

in the review investigating CAIX expression prevalences in breast cancer,

carcinoma in situ, benign breast disease, and normal breast tissue

Legend: a: mean; *: mean size in mm (range or SD); b: nuclear grade; ns:

not stated; na: not applicable; ○: tissue not investigated; ●: tissue

investigated; ◉: both TMA and full sections investigated; IDC: invasive

ductal carcinoma; ILC: invasive lobular carcinoma; IBC: inflammatory

breast cancer; ABC: advanced breast cancer; TN: triple negative; LN:

lymph node; TMA: tissue microarray; PT: phyllodes tumors; FA:

fibroadenoma; M: distant metastasis; Obs.: number of observers

evaluating staining result; +: positive; -: negative.

Additional file 2: Table S1B. Study characteristics of articles included

in the review investigating GLUT1 expression prevalences in breast

cancer, carcinoma in situ, benign breast disease, and normal breast tissue.

Legend: a: mean; *: mean size in mm (range or SD); b: nuclear grade; ns:

not stated; na: not applicable; ○: tissue not investigated; ●: tissue

investigated; ◉: both TMA and full sections investigated; IDC: invasive

ductal carcinoma; ILC: invasive lobular carcinoma; IBC: inflammatory

breast cancer; ABC: advanced breast cancer; TN: triple negative; LN:

lymph node; TMA: tissue microarray; PT: phyllodes tumors; FA:

fibroadenoma; M: distant metastasis; Obs.: number of observers

evaluating staining result; +: positive; -: negative.

Additional file 3: Table S1C. Study characteristics of articles included

in the review investigating CXCR4 expression prevalences in breast

cancer, in situ carcinoma, benign breast disease, and normal breast

tissue. Legend: a: mean; *: mean size in mm (range or SD); b: nuclear

grade; ns: not stated; na: not applicable; ○: tissue not investigated; ●:

tissue investigated; ◉: both TMA and full sections investigated; IDC:

invasive ductal carcinoma; ILC: invasive lobular carcinoma; IBC:

inflammatory breast cancer; ABC: advanced breast cancer; TN: triple

negative; LN: lymph node; TMA: tissue microarray; PT: phyllodes tumors;

FA: fibroadenoma; M: distant metastasis; Obs.: number of observers

evaluating staining result; +: positive; -: negative.

Additional file 4: Table S1D. Study characteristics of articles included

in the review investigating IGF1R expression prevalences in breast cancer,

carcinoma in situ, benign breast disease, and normal breast tissue.

Legend: a: mean; *: mean size in mm (range or SD); b: nuclear grade; ns:

not stated; na: not applicable; ○: tissue not investigated; ●: tissue investigated;

◉: both TMA and full sections investigated; IDC: invasive ductal carcinoma;

ILC: invasive lobular carcinoma; IBC: inflammatory breast cancer; ABC:

advanced breast cancer; TN: triple negative; LN: lymph node; TMA: tissue

microarray; PT: phyllodes tumors; FA: fibroadenoma; M: distant metastasis;

Obs.: number of observers evaluating staining result; +: positive; -: negative.

Additional file 5: Figure S1A. CAIX - Membranous staining. Systematic

literature review of CAIX prevalence in breast cancer assessed by immunohis-

tochemistry for studies investigating membranous staining patterns only.

Additional file 6: Figure S1B. CAIX - Best evidence studies. Systematic

literature review of CAIX prevalence in breast cancer assessed by

immunohistochemistry for studies providing the best evidence for high

expression levels.

Additional file 7: Figure S1C. CAIX - Histological grade. Systematic

literature review of CAIX prevalence in breast cancer assessed by

immunohistochemistry in relation to histological grade.

Additional file 8: Figure S1D. CAIX - Tumor size. Systematic literature

review of CAIX prevalence in breast cancer assessed by

immunohistochemistry in relation to tumor size.
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Additional file 9: Figure S1E. CAIX - Histology. Systematic literature

review of CAIX prevalence in breast cancer assessed by

immunohistochemistry in relation to histological subtype.

Additional file 10: Figure S1F. CAIX - Specimen handling.

Systematic literature review of CAIX prevalence in breast cancer assessed by

immunohistochemistry in relation to specimen handling method.

Additional file 11: Figure S2A. GLUT1 - Membranous staining.

Systematic literature review of GLUT1 prevalence in breast cancer

assessed by immunohistochemistry for studies investigating membranous

staining patterns only.

Additional file 12: Figure S2B. GLUT1 - Best evidence studies.

Systematic literature review of GLUT1 prevalence in breast cancer

assessed by immunohistochemistry for studies providing the best

evidence for high expression levels.

Additional file 13: Figure S2C. GLUT1 - Histological grade. Systematic

literature review of GLUT1 prevalence in breast cancer assessed by

immunohistochemistry in relation to histological grade.

Additional file 14: Figure S2D. GLUT1 - Tumor size. Systematic

literature review of GLUT1 prevalence in breast cancer assessed by

immunohistochemistry in relation to tumor size.

Additional file 15: Figure S2E. GLUT1 - Histology. Systematic literature

review of GLUT1 prevalence in breast cancer assessed by

immunohistochemistry in relation to histological subtype.

Additional file 16: Figure S2F. GLUT1 - Specimen handling. Systematic

literature review of GLUT1 prevalence in breast cancer assessed by

immunohistochemistry in relation to specimen handling method.

Additional file 17: Figure S3A. CXCR4 - Membranous staining.

Systematic literature review of CXCR4 prevalence in breast cancer

assessed by immunohistochemistry for studies investigating membranous

staining patterns only.

Additional file 18: Figure S3B. CXCR4 - Best evidence studies.

Systematic literature review of CXCR4 prevalence in breast cancer

assessed by immunohistochemistry for studies providing the best

evidence for high expression levels.

Additional file 19: Figure S3C. CXCR4 - Histological grade. Systematic

literature review of CXCR4 prevalence in breast cancer assessed by

immunohistochemistry in relation to histological grade.

Additional file 20: Figure S3D. CXCR4 - Tumor size. Systematic

literature review of CXCR4 prevalence in breast cancer assessed by

immunohistochemistry in relation to tumor size.

Additional file 21: Figure S3E. CXCR4 - Histology. Systematic literature

review of CXCR4 prevalence in breast cancer assessed by

immunohistochemistry in relation to histological subtype.

Additional file 22: Figure S3F. CXCR4 - Specimen handling. Systematic

literature review of CXCR4 prevalence in breast cancer assessed by

immunohistochemistry in relation to specimen handling method.

Additional file 23: Figure S4A. IGF1R - Membranous staining.

Systematic literature review of IGF1R prevalence in breast cancer assessed

by immunohistochemistry for studies investigating membranous staining

patterns only.

Additional file 24: Figure S4B. IGF1R - Best evidence studies.

Systematic literature review of IGF1R prevalence in breast cancer assessed

by immunohistochemistry for studies providing the best evidence for

high expression levels.

Additional file 25: Figure S4C. IGF1R - Histological grade. Systematic

literature review of IGF1R prevalence in breast cancer assessed by

immunohistochemistry in relation to histological grade.

Additional file 26: Figure S4D. IGF1R - Tumor size. Systematic

literature review of IGF1R prevalence in breast cancer assessed by

immunohistochemistry in relation to tumor size.

Additional file 27: Figure S4E. IGF1R - Histology. Systematic literature

review of IGF1R prevalence in breast cancer assessed by

immunohistochemistry in relation to histological subtype.

Additional file 28: Figure S4F. IGF1R - Specimen handling. Systematic

literature review of IGF1R prevalence in breast cancer assessed by

immunohistochemistry in relation to specimen handling method.
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