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Abstract: The promise of collecting and utilising large amounts of data has never been 

greater in the history of urban water management (UWM). This paper reviews several data-

driven approaches which play a key role in bringing forward a sea change. It critically 

investigates whether data-driven UWM offers a promising foundation for addressing current 
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challenges and supporting fundamental changes in UWM. We discuss the examples of better 

rain-data management, urban pluvial flood-risk management and forecasting, drinking water 

and sewer network operation and management, integrated design and management, 

increasing water productivity, wastewater-based epidemiology and on-site water and 

wastewater treatment.  

The accumulated evidence assembled from research documented in the literature points 

towards a future UWM that offers significant potential benefits thanks to increased collection 

and utilisation of data. The findings show that data-driven UWM allows us to develop and 

apply novel methods, to optimize the efficiency of the current network-based approach, and 

an extended functionality of today’s systems. However, generic challenges related to data-

driven approaches (e.g. data processing, data availability, data quality, data costs) and the 

specific challenges of data-driven UWM need to be addressed, namely data access and 

ownership, current engineering practices and the difficulty of assessing the cost benefits of 

data-driven UWM. 

1 Introduction  

One of the earliest powerful demonstrations of how increased data availability can help to 

transform urban water management (UWM) is the work of John Snow in 1854.1 With the aid 

of precise spatial data about cholera victims in London, Snow provided evidence to support 

the hypothesis of a drinking-well being the source of the outbreak. His data-driven approach 

illustrates how the availability and interpretation of data can be for public hygiene, which is 

one of the essential UWM services along with the provision of safe drinking water, protection 

against flooding and water pollution control. Since the middle of the 19th century, major 

improvements in these services were made in many places in the world. However, today’s 

challenges in UWM have not been solved on a global scale.2,3 
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The various challenges (e.g. population change, ageing infrastructure or economic change) 

facing national water and wastewater infrastructures,4 bring to light an urgent need for 

innovation and a change in the UWM framework to provide more sustainable UWM 

services.5,6,7,8 Especially in the industrialised world, many challenges are endemic to the 

traditional and currently prevailing approach to UWM, which can be traced back to 

antiquity.9 This approach is based on the fundament of centralised conveyance infrastructure 

that provides drinking water for and evacuates waste and storm water from urban areas. In the 

majority of cases, this infrastructure is built to passively provide a defined transport capacity 

at a given peak load and has little flexibility to adapt to new demands.10 The most widely 

discussed changes affecting UWM infrastructure, such as urban development or climate 

change, albeit generally slow processes, can still cause inadequate system performance within 

the long lifespan of UWM infrastructure.11,12 Further consequential downsides of centralised 

infrastructure are its strong dependence on large water quantities, its vulnerability to 

excessive rainfall, high investment costs and vast and complex pipe networks. 

Increasing evidence questions whether and in what form the prevailing UWM practice can 

be the best solution for the world, as it has been since the beginning of the 20th 

century.13,14,15,16 Today, both existing UWM services as well as the absence of such services 

are incurring increasing economic, social and environmental costs, even in countries that 

have successfully built up a functioning UWM infrastructure.17  

 

The aim of this review is threefold: First, to explore the potential of increased data 

availability to tackle today’s challenges, bringing about new and fundamental changes in the 

way UWM  

s can be provided by data-driven UWM (Figure 1). Second, to review key challenges of 

data-driven UWM. Third, to relate data availability and its utility in UWM on a schematic 
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basis. Data-driven infrastructure transformation is not limited to UWM, but is happening also 

in other infrastructure sectors such as e.g. the energy sector.18 Despite the potentially valuable 

insights that could be gained from a thorough comparison of UWM to other sectors, such an 

enterprise is beyond the scope of the current review. 

Clearly, more and better data alone are not sufficient to solve today’s many UWM 

problems. However, the argument will be made that data are a necessary precondition for 

addressing some of the most pressing problems, be it by increasing efficiencies or by 

enabling novel and ‘smarter’ approaches.19,20,21 On the basis of the available literature, we 

will show that data-driven UWM, i.e. using different measurement techniques and collecting 

large volumes of data, carries the potential to expand the functionality of the UWM system 

beyond its traditional conveyance purpose. 
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Figure 1. Scope of UWM as illustrated by example variables of interest that will be 

affected by the current data and sensing revolution. 

 

2 The current revolution in data and sensing 

Whereas in the times of Snow, data collection was rudimentary and tedious, in today’s 

information age it is possible to generate and manage enormous amounts of data relatively 

cheaply and easily. This change has been mainly driven by UWM-independent advances in 

analytics, sensing, transmission, computing and data management. This section only touches 

on recent advances and does not provide a comprehensive overview of the literature: 

 

Analytics and sensing: Data can originate from various sources and rely heavily on measuring 

devices. Advances in measurement techniques have made huge leaps in the last few years. 

Three different trends in the production of data can be observed: First, novel sensors and 

measurement devices have been developed; second, measurements devices are available at 

increasingly lower cost; and third, thanks to miniaturization, sensors can be mounted on 

mobile platforms.19,22,23 Examples in the field of UWM are autonomous drones used for 

surface characterisation,24 sensor mounted on mobile platforms floating downstream 

networks,25 fast counting and identification of bacteria by flow cytometry26 and lab-on-a-chip 

biosensors.27 However, sensing capabilities have been enhanced not only by direct sensing 

technology, but also by soft sensing via software-based data processing.28 Furthermore, 

today’s spatially enabled societies and ‘smart cities’29 are increasingly equipped to actively or 

passively collect data on a voluntary or non-voluntary basis, and constitute thereby a 

fundamentally new type of resource.30 Examples of these new and upcoming data sources are 

crowdsourcing,31 using microwave links from telecommunication networks to identify rain 

intensities,32 harvesting social media33 or surveillance data to identify urban flood events.34 
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Transmission: Independently of UWM, major investments are being made in various data 

transmission technologies and networks.35,36 They range from mobile communications, smart 

metering networks to the ‘internet of things’ and specific sensor networks.37,38 This 

phenomenon is highly relevant, as the possibility of piggybacking on these existing 

transmission infrastructures substantially lowers data costs. 

 

Computing and data management: Ubiquitous computing, automation and efficient data 

management have advanced by several orders of magnitude in the past decade. 

Computational power and data storage are becoming cheaper and data processing techniques 

are becoming much more powerful. 

 

Various aspects of our daily lives have been deeply influenced by this ongoing revolution in 

data and sensing. In the following, we show that adopting a more data-driven approach offers 

the potential to enable radically different practices in UWM and serves as a precondition for a 

shift towards novel and possibly more sustainable UWM services. 

 

3 Approaches to data-driven UWM 

A number of data-driven approaches appear promising for initiating fundamental changes in 

UWM. In the following sections, we discuss these approaches with the help of key examples 

that illustrate the relevant challenges and opportunities in UWM. Although additional 

examples could potentially be identified, we argue that the selection represents decisive 

trends and shows the potential of data-driven UWM in an exemplary way. 

 

3.1 Spatial and temporal variability of rainfall  

Rainfall is one of the main agents that influences UWM.39 It determines the number and 

duration of sewer overflows40 or the hydraulic load of the drainage system and to a certain 
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extent also the performance of wastewater treatment plants (WWTP).41 Thus, challenges such 

as flooding of urban areas, sub-optimal WWTP operation and pollution of water bodies 

through sewer overflows are directly linked to rainfall data. Rainfall is highly variable in 

nature and varies significantly over time and space.42 One of the main hurdles to achieving 

smarter management of sewer systems is thus our limited ability to accurately measure and 

predict rainfall at relevant spatial (generally sub-kilometre) and temporal (around minute-

resolution or less) scales.19 

 

There has been a surge in improving conventional rainfall measurement techniques and 

introducing novel sensing methods to account for the spatial variance of rainfall.43 The design 

of point measurement instruments like rain gauges has been improved, e.g. electronic 

floating-device rain gauges that capture rainfall intensities better,44 or the rain gauges have 

been supplemented with more sophisticated instruments such as disdrometers providing the 

drop size distribution of rainfall.45 Land and satellite-based radar has been increasingly used 

to provide a more spatially explicit picture of rainfall.46 Weather radars designed specifically 

for urban application have a shorter range and provide a finer resolution of rainfall 

measurements. Additional information on rainfall can be acquired by measuring the signal 

attenuation in telecommunications microwave links; the data of such commercial links have 

been used from several urban catchments, e.g. in Czech Republic, the Netherlands and 

Switzerland, to obtain path-averaged rainfall intensities.32,47,48 Furthermore, new attempts 

have also been made to increase the density of point measurements by crowdsourcing.49,50,51 

 

While new measurement techniques, such as radar systems and microwave links, are 

addressing the demand for finer spatio-temporal resolution of rainfall data, the measurement 
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accuracy of these devices is still somewhat insufficient and needs improvement so that their 

full potential for UWM can be harnessed.52,53  

The big challenge however, is integrating all these different sources of rainfall data into a 

coherent and usable data collection. Measurement and interpolation uncertainties need to be 

adequately considered,54,55 and large amounts of data need to be processed. Significant work 

is being done to merge rain-gauge and radar data to produce more reliable rainfall 

fields.56,57,58 Although rainfall measurements are of major importance to smarter management 

of urban drainage systems the ability to efficiently control urban drainage systems, needs to 

be addressed likewise (see Section 3.3). Additionally, the flexibility to control the drainage 

system is strongly constrained by the capacity of the existing infrastructure. 

 

3.2 Urban flood risk management 

Urban pluvial floods potentially have a high social and economic impact, but they are by their 

nature one of the least predictable challenges facing UWM.59 Consequently, flood-risk 

management can also be described as ‘a process of decision making under uncertainty’.60 

Additionally, urban flooding is expected to grow in importance in line with climate change 

and urbanisation.61 Besides infrastructure planning and flood risk assessment, early warning 

systems are also becoming more and more relevant for flood-risk management. 

 

Hydrological and hydraulic modelling is the basis for urban pluvial flood-risk management, 

and relies on different forms of input data: i.) layout data allows the topography of the model 

to be established, ii.) rainfall and flood data represent observed or anticipated rainfall events 

and the system's reaction to the rainfall, respectively. 

 

i.) Layout data consists of information about the drainage infrastructure and the terrain 

(e.g. elevation, surface characteristics). Whereas information about the drainage 
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infrastructure is often considered as given but may not be available with the desired 

accuracy and completeness,62
 terrain data are more widely available. The impact of 

elevation data resolution is however essential: For example, a certain resolution (~2-5 

meters raster cell size in general) and accuracy is required for the realistic representation 

of surface flow between buildings or along the side of roads.24,63 Today, elevation data 

can be easily collected at very high resolutions due to advances in remote sensing, and 

their application to urban flood modelling has been shown to potentially improve flow 

path delineation.64 However, their use is still not widespread for two reasons. First, the 

computation time for larger catchments is inhibitive. Second, urban environments 

contain a large variety of mobile and temporary elements, such as vehicles or 

construction sites, which are visible in very high-resolution remote sensing data but are 

not modelled adequately.65 Relevant surface characteristics such as perviousness and 

roughness are typically estimated by classifying aerial images into land use types and 

using lookup tables to assign surface characteristic values to each land use class. Recent 

land use classification methods perform very well even with minimal human 

supervision, but the incremental gains at the level of the modelling results are not 

significant, in part because of the integrative nature of the rainfall-runoff models.66 

While the spatial distribution of surface characteristics may be sufficiently resolved, we 

see development potential for methods that allow more direct inference of surface 

characteristics, in lieu of land use lookup tables.67 

 

ii.) High-resolution rainfall and flood data are particularly important for urban flood 

modelling. Flood data are particularly difficult and costly to obtain, which in 

combination with the rarity of flood events, explains its scarcity.68,69 This has motivated 

the exploration of new measurement techniques such as robust and cheap binary 

9 

 



sensors.70,71 Moreover, researchers are now looking into social media as a platform for 

obtaining such data, for example by using Twitter to collect flood information for a 

decision support tool to decision-makers in Jakarta,31 or by using YouTube videos and 

crowdsourcing to estimate flash-flood volumes to better understand flood risks.72,73 

While the above-mentioned data collection modes are still in a phase of development 

and do not solve the issue of flood event rarity, we find in the examples that they can 

provide valuable information about flood events that are challenging to measure with 

conventional sensors. 

 

Detailed and accurate flood models will potentially provide improved flood hazard maps. By 

using historic rainfall and flood data, the uncertainty of model prognosis can be reduced 

through calibration. A Bayesian framework also allows this reduction to be expressed 

formally.74 Many studies have also shown clear increase in the performance of hydrological 

models with the increase in the layout detail75 and the quality of input data.76 Also, it has 

been demonstrated that for proper parameter estimation of models, longer time series of flood 

data, which captures more flood events, is desirable.77 A very attractive application of flood 

models is that of early flood-warning systems. The usefulness of a hydrological model for an 

early flood-warning system depends on how far ahead in time (lead time) a reasonably 

accurate prediction can be made. However, the prediction uncertainty of models increases 

with increasing lead times.78 Improved flood modelling will lead to higher lead times without 

a significant drop in the prediction accuracy. 

 

It is important to stress that the increased availability of the above mentioned data can only 

improve the well-being of society (e.g. safer cities, fairer insurance policies or better flood 

10 

 



evacuation measures) if the required technologies and engineering methods are adopted by 

practitioners and society (cf. Section 4.1).  

 

3.3 Drinking water and sewer network operation and management 

Massive resources were invested to construct today’s UWM network infrastructures. 

However, investments are increasingly falling short,79 making it essential to increase the 

efficiency of existing systems. Only limited knowledge is currently available about the 

performance of water supply and sewer networks at any given moment in time and across the 

whole network. There is a strong and growing literature that supports the notion of using 

performance indicators, including customer satisfaction data, to guide and improve 

infrastructure management.80,81 In this review, we are assuming that this is the current state of 

the art and will explore more advanced possibilities of data collection and the potential of 

novel data for UWM.  

In the following, we outline novel approaches aiming to improve network management and 

operation, namely i.) real-time control (RTC) modified with model predictive control (MPC), 

ii.) smart (water) metering, iii.) structural (pipe) health monitoring, and iv.) quality control 

through detecting source contamination.  

 

i.) RTC and MPC allow us to go beyond considering sewers as passive transportation 

infrastructure since they can be used to increase the efficiency of existing infrastructure, 

thereby postponing or eliminating the need for investments in completely new 

infrastructure. RTC
82,83 makes storm water systems ‘smart’23 and significantly improves 

utilisation of the existing drainage infrastructure.84 The release of untreated sewerage 

into receiving water bodies during rain events can be reduced by dynamically 

controlling the flow and retention volumes in sewers with sensor networks and 

automated valves, for example.85 
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The high temporal and spatial variability of pollution flow would require RTC to 

distinguish between highly polluted and less polluted flows. Pilot studies show 

promising results using conductivity and turbidity sensors as real-time surrogates for 

pollution potential.86 Such information coupled with RTC, in the near future, would 

allow storm water discharge to be managed on the basis of the impact potential on the 

receiving water body.  

MPC is an advanced RTC technique, in which the optimisation is based not only on the 

knowledge of the current state of the system but also on its forecast state. Thus, MPC 

allows us to improve the monitoring process and to optimally utilise the storage 

capacities of rainwater reservoirs, detention ponds and in-sewer storage volumes by 

considering anticipated rainfall (thus e.g. reducing sewer overflows). Advanced control 

logic is being used in field studies to regulate storage capacities with information from 

water level sensors and real-time weather forecasts to create dynamically controlled 

rainwater reservoirs.87,88,89 Model results suggest that up to 92% of releases to the 

combined sewer could theoretically be reduced with dynamically controlled cisterns.87 

The computational resources required for RTC and MPC have significantly improved in 

the last decade90,91 and studies confirm the robustness of MPC algorithms for complex 

(non-linear) systems.92,93 

 

ii.) Smart (drinking water) metering
94,95,96 opens up promising new approaches to network 

management which rely on the availability of detailed water-related activity data from 

the customers. Smart metering allows frequent and high-resolution use patterns to be 

recorded at different positions in the network.97 Case studies suggest potential 

residential water use reductions of at least 10% and monthly peak demand reductions of 

10%.96 Reduced water demand and peak water demand alleviation also means that 
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downsized water supply infrastructure could be built, which translates into potential 

capital cost savings were recently estimated to be between 11% and 51%.98 Excessive 

water usages, breakages, abuse or water theft,99 can then be detected anywhere in the 

network. Additionally, water end-use models can be created and the quantification of 

wastewater production improved. Another attractive feature of smart metering is its 

promise to switch from pure supply to demand management. This would allow the 

available infrastructure to be utilised more efficiently by influencing customer demand 

based on capacity. Examples include differentiated tariff structures designed to reduce 

peak hour and day demand by ‘peak‘ or ‘drought pricing’.100,101,102 The alignment of 

prices along free market lines in real-time has been predicted to be especially effective 

for outdoor water use given its greater price elasticity.103,104 However, less research has 

focused on domestic indoor water use, where price elasticity is low.105 One option might 

be to provide customers with direct feedback, e.g. through on-site displays or by 

wireless communication via mobile phones or email.106,107,108 

However, it is unclear how effective such measures are in the long run, i.e. there is little 

evidence how smart metering will affect long-term consumption behaviour. 

Furthermore, most applications of smart metering to date have been proposed in the 

context of industrialised countries and less applications can be found for low-income 

markets where a critical set of enabling factors need first to be addressed.21 

Nevertheless, smart metering is not restricted to network-based water delivery and has 

already been applied in a pilot field study in the context of developing countries, e.g. by 

equipping hand pumps with sensors to monitor water levels and charge customers 

adequately.109 
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iii.) Structural (pipe) health monitoring addresses UWM challenges such as groundwater 

contamination, local flooding, sinkholes and high water consumption. Pressure or 

vibration sensors and microphones are available to allow network management to be 

improved by remotely collecting data and thus monitoring the structural health of sewer 

and drinking water pipes.110,111 The miniaturization of sensors and the possibility of 

mounting them on mobile platforms are driving new network exploration methods (e.g. 

inline mobile sensor technology).112 Furthermore, we are witnessing the apparition of 

alternative monitoring approaches that rely on crowdsourcing to gather information 

about the network (e.g. water leaks or water levels) via smartphones.113 

Increased knowledge about the condition of sewer and water-supply networks 

contributes to reduced water loss and prevents local flooding or sinkholes e.g. by 

automatic leak detection,114,115,116 and enables improved rehabilitation planning and 

modelling thanks to reduced uncertainty about pipe conditions.117 

 

iv.) Quality control through source contamination detection is essential in view of threats to 

human and environmental health due to discharges of untreated wastewater into 

receiving waters and wastewater intrusion into storm drainage and drinking water 

resources through leakages, wrong connections or intentional contamination (compare 

Section 3.5 in case of water reuse).118,119 However, it remains a challenge to monitor 

water quality and especially to identify the precise source of the pollution, as wastewater 

and water supply networks are highly distributed, have many entry points and have to 

deal with a wide variety of potentially harmful contaminants.  

Reliable water quality control and rapid detection of contamination sources is 

particularly vital in water supply networks. It could be achieved by real-time monitoring 

of selected contamination indicators and optimal sensor placement – two highly topical 
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research topics.120,121 Approaches relying on simple indicators, such as a distributed 

temperature sensor cables, have been successfully used to identify incorrect wastewater 

connections to storm water sewers.118,122 Panasiuk et al. conclude in a comprehensive 

review of human waste monitoring methods that the most promising approaches are 

based on chemical indicators and biological markers (cf. Table 1 in Section 3.6 for 

potential wastewater indicators).118 Nevertheless, further research is needed on 

innovative sampling methods, such as online-monitoring or passive sampling.118 

Additionally, the monitoring of biological markers via e.g. quantitative polymerase 

chain reaction123 requires further development before being field ready.124 

Contamination warning systems in water supply systems that combine real-time 

monitoring data with crowdsourcing using customer feedback on water quality via 

smartphones have been tested but require extended pilot field studies before 

implementation.125 Further, remote mobile sensors moving along the pipe with the flow 

could increase the likelihood of detecting contamination and fully-functional prototypes 

should be available in the near future.25  

 

The data-driven approaches above outlined allow the management and operation of network-

based infrastructures to be improved by saving water and protecting environmental and 

human health. Generally, the main aim is to minimally delay premature rehabilitation (e.g. by 

identification of pipe health) or even replace the creation of infrastructures (e.g. by switching 

from supply to demand management). To date, the literature does not provide us with clear 

proof that such a strategic shift from hardware to data actually leads to the desired savings, 

flexibility or long term increase in performance. However, the cited literature does show 

many promising examples that these hopes might be justified.  
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3.4 Water productivity 

Urbanisation in combination with climate change is expected to influence the spatial pattern 

of water availability and demand in complex ways.3 One related challenge is enhancing 

efficiency and optimising water allocation and usage in order to address water scarcity, 

especially in growing cities and regions affected by drought. The successful construction of 

water sensitive cities relies on increased data availability via measurement devices.126 In order 

to use less water, water productivity needs to be improved, i.e. the value of goods and 

services produced per unit of water used.127 Water can be saved in many different manners: 

by conservation, efficiency, sufficiency, substitution, reuse, recycling or harvesting.128 Not all 

of these water saving strategies can be influenced by data-driven approaches to the same 

degree: For example, the practice and acceptability of water conservation is generally 

culturally dependent.128 In the following, we therefore only outline strategies for which the 

availability and leveraging of data plays a significant role: i.) increasing water use efficiency 

ii.) reusing and reclaiming water and iii.) rainwater harvesting. 

 
i.)  Increasing efficiency: The simplest way to increase water productivity is to use less 

water for the same service or to incentivise and inform on water-saving behaviour, e.g. 

by means of smart metering (cf. Section 3.3). Another data-driven way to reduce water 

consumption is ‘smart irrigation’, where irrigation systems are operated on the basis of 

humidity sensors, soil moisture sensors and real-time weather forecast data to allow 

precise watering depending on actual watering needs.35,129 Whereas smart irrigation is 

driven mainly by the agricultural sciences, these technologies and approaches are equally 

suitable for residential areas and are already available on the market. 

 

ii.)  Water productivity may be further increased by reusing or reclaiming water.130,131 

Currently, only 1.7% of the urban water use is reused.17 The (direct or indirect) potable 
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or non-potable reuse of water from various sources requires robust and comprehensive 

monitoring and control systems for risk management to ensure human and 

environmental health.132,133,134 Successful large-scale implementation beyond niche 

applications of non-potable water in drought-affected regions such as California is data-

driven and will rely amongst many other factors135 on detailed real-time water quality 

assessments measuring pathogens and chemical constituents. Whereas software for the 

timely detection of treatment failures has recently been successfully developed such as 

the CANARY event detection software,136 direct potable water reuse still lacks reliable 

monitoring techniques.137 

 

iii.) Finally, water productivity is not increased only by saving water but also by harvesting 

rainfall. When harvested rainwater is put to a different use (e.g. for toilet flushing, cloth 

washing, irrigation or drinking after adequate treatment), data are drawn from various 

sources (e.g. tank-level sensors or rain forecasts).138 Another further way in which the 

revolution in data and sensing revolution has innovated rainwater harvesting is by 

providing better information about estimates of harvesting sites and harvesting 

potential.139,140 Quigley and Braun87 showed in several demonstration projects that using 

rain forecasts to control the filling level of retention structures can optimise rainwater 

utilisation and harvesting without compromising the retention capabilities of the 

investigated ‘green infrastructure’ elements. 

 

Overall, the data and sensing developments enabling these different approaches promise to 

improve water productivity and could potentially lead to the acceleration of the trends for 

increasing water productivity. 
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3.5 Infrastructure design and management 

Socio-economic changes frequently outrun the lifespan of existing water infrastructures.10,12 

Thus estimates indicate that the global urban areas will grow by 60% to 200% between 2000 

to 2030.141 Good design concepts that maintain flexibility and can achieve overall goals over 

the long term are and will continue to be important. It is not surprising that several such 

concepts can be found in literature and in practice. Examples are low impact urban design 

and development (LIUDD), sustainable urban drainage systems (SUDS), water sensitive 

urban design (WSUD) and integrated urban water management (IUWM), all of which 

emphasize the importance of a more integrated or holistic approach to UWM.142 

These approaches demand significant integrated modelling. This quantifies the interaction 

between sub-systems (i.e. freshwater production, storm water runoff, wastewater treatment) 

within the wider urban system (e.g. water, energy, solid waste, agriculture) and assesses their 

performance under changing conditions.62,143,144 However, integrated modelling requires 

highly consistent data, of the kind commonly processed by geographic information 

systems.145,146 It needs spatially explicit input data of very diverse type and from many 

different sources (e.g. local climate, soil characteristics, elevation data, groundwater depth, 

land use, geology, water needs, system performance, water quality, sewer system 

characteristics etc.).140,147,148 The increased availability of manifold data will therefore allow 

the reliability of integrated models to be improved.149  

Highly integrated models play an important role as input for decision support systems (see 

also Figure 2). More comprehensive ones such as structured decision-making or multi-criteria 

decision analysis in particular make very high demands on the volume of the data and 

modelling results.150,151
 Another interesting approach in this field is the use of artificial 

intelligence for decision support: the integration of numerical or statistical models achieves 

higher accuracy and reliability, but imposes a corresponding toll on the amount and quality of 

the underlying data.152 Figure 2 indicates the different layers of data demand for modelling 
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and decision-making. An illustration is provided by ‘green infrastructure designs’ (e.g. green 

roofs, constructed wetlands, mixed-use storm water collection and infiltration sites) which 

have a broad range of effects, such as altering the quality or the amount of storm water 

runoff, effects on groundwater, air quality and ambient temperatures (cf. heat island 

effect).153,154 An Australian example of spatially explicit modelling suggest that 10% of park 

area allocation may result in 62% of nitrogen reduction from stormwater,146 and experimental 

studies show positive effects of vegetated roofs on stormwater retention by reducing 

rainwater volume (52-95%).153 However, the influence of green roofs on urban microclimate 

remains negligible unless they are combined with vegetation areas at street level: integrated 

models revealed a temperature cooling up to 2°C.154 

 

Integrated design concepts and modelling encounter many obstacles. Various obstacles (e.g. 

conflicting objectives, reluctance in investigative data collection or confidentiality of existing 

data) to integrated planning have already been described and most of them are still highly 

relevant today.155 Nevertheless, the adoption of integrated modelling seems to be progressing 

as the growing number of modelling tools indicates.62 Data availability for the calibration of 

such models is certainly not the only bottleneck, but it is an important precondition for their 

useful application. 
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Figure 2. Integrated models in UWM and their data need (in adaptation to Bach et al.).62 

 

3.6 Wastewater-based epidemiology 

Wastewater is a reflection of the society producing it. It contains a mixture of human excreta 

and substances used in households for daily living. Novel technological opportunities such as 

quantitative polymerase chain reaction123 lab-on-a-chip biosensors,27,156 in-situ chemical 

analysers157 or fluorescence spectroscopy158 will allow us to harvest information from this 

complex sewage matrix (almost) in real-time. With these new data sources, the opportunity 

arises to use wastewater to gain insight into i.) the prevention of epidemics, ii.) the 

assessment of human health and lifestyle and iii.) the monitoring of drugs via indicator 

substances (Table 1). 

i.) Pathogen monitoring would allow early warning systems for infectious diseases to be 

implemented. Successful attempts have been made to identify and quantify viruses, 
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protozoa and bacteria in wastewater. However, a review article about the applicability in 

practice also concluded that ‘the molecular techniques available today and those under 

development would require further refinement in order to be standardized and 

applicable’.123 

The potential benefits could be substantial, as many pathogens are excreted before 

symptoms of infections appear and can be detected if only a small percentage of a 

population is infected.159 Monitoring studies show the potential of detecting infectious 

viruses, for example at the inflow of WWTPs.160,161,162 Improvements in measurement 

technology, such as high-throughput mass sequencing or biosensors for rapid and on-

site monitoring of disease biomarkers, can facilitate the detection process.163 Biosensors 

hold the promise to develop into a cheap and easy-to-handle option for developing 

countries, where few suitable laboratories are available and hygiene is a major 

concern.164,165 However, successful development and implementation require the 

consideration of various barriers present in real-world settings, and must be field tested 

(cf. Section 4.1).166 

ii.) Next to the prevention of epidemics, the status and change of human health and lifestyle 

characteristics can be assessed. First research attempts are the monitoring oxidative 

stress indicators167,168 or the measurement of microbial gut communities in sewage to 

predict the obesity levels of cities.169 If sewer systems exist, such human health and 

lifestyle indicators (cf. Table 1) can be identified on different spatial scales, e.g. on a 

city or single household level. New sensor technologies might one day enable real-time 

monitoring of vital health parameters in smart toilets, e.g. as described in a patent 

entitled ‘Toilet device with system for inspecting health conditions’.170 This would 

enable users to assess their personal state of health and share information via online 
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networks or report it to physicians. In addition, valuable information about human 

lifestyle is gained by monitoring household-specific discharge patterns (see Section 3.3). 

iii.) By analysing wastewater for drugs (illicit or legal), the variety of knowingly and 

unknowingly consumed drugs may be assessed. Novel approaches enable tobacco and 

alcohol usage in sewage171,172 to be monitored or drug consumption across European 

cities to be compared via lab-based analysis of 24-hour composite samples.173,174 Such 

information can be used to develop prevention campaigns or to assess their success for 

entire populations without depending on strongly biased and time lagged-surveys.175 

While many real-time sensors for monitoring water quality are still at the research and 

development phase, the assessment of drug consumption does not necessarily need this 

data in high temporal resolution. 

 

Sewage is full of valuable information and represents a dynamic picture of human societies in 

time and space. Monitoring wastewater data in conjunction with spatial and demographic 

data are particularly promising. Wastewater-based epidemiology has so far been applied 

mostly in the field of illicit drug consumption, but it has the potential to assess the 

improvement of overall human health.176 For wider applications, there are still open questions 

to be solved, such as obtaining information about the behaviour and stability of substances 

and pathogens of interest in the sewers177 or the accurate estimation of the number of people 

at a given time in the sample catchment for normative purposes.178 Even more importantly, 

while the use of chemical monitoring is in a field-applicable phase, further research and 

development on microbial markers is needed.118,123,124 In a review on new microbial markers 

assays, the authors considered the field of microbial markers as still rapidly evolving.124 
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Category Category indicator Selected prominent examples 

Epidemic Virus159,160,161,162 Rotavirus 
Smallpox 
Norovirus 
Hepatitis A and E 

 Bacteria169,179,181 Human fecal and antibiotic resistance (e.g. 
escherichia coli, intestinal enterococcus) 

Health & 
lifestyle 

Oxidative stress167,168 Isoprostanes 

 Pharmaceuticals180,181 Carbamazepine 
Diclofenac 
Antibiotics (e.g. sulfamethoxazole) 

 Personal care products180 Anti-microbial disinfectant (e.g. triclosan) 
Nail polish and hair spray (e.g. di-n-butyl 
phthalate) 
Laundry and dishwasher detergents (e.g. 
nonylphenol) 

 Nutrition169,176 Obesity indicators (human fecal oligotypes) 
Synthetic sweeteners (e.g. sucralose, acesulfame) 

Drugs[a] Legal171,172,176 Alcohol (e.g. ethyl sulfate) 
Tobacco (e.g. nicotine, cotinine) 

 Illicit175,176 Cocaine 
Benzoylecgonine 
Heroin 
Tetrahydrocannabinol (THC) 
Amphetamines 
3,4-methylenedioxymethamphetamine (MDMA) 

Other Surface runoff180 Pesticides and biocides (e.g. mecoprop, 
carbendazim, diazinon, diuron) 

 Wastewater marker118,179,181 Household indicators (e.g. caffeine) 

[a] The distinction between legal and illicit is arbitrary and only matters in that there may be 

alternative ways to quantify the consumption of most legal substances, e.g. sales data. 

 

Table 1. A non-exhaustive selection of prominent examples of wastewater substances 

measured for retrieving information.  
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3.7 On-site drinking and wastewater treatment  

Most of the examples for data-driven UWM so far address challenges in highly urbanised 

environments with extensive and complex network infrastructures. Truly impressive as the 

outlined application examples are, due to limitations of the traditional networked approach, 

UWM service provision is and will not be network-based everywhere. On-site treatment - 

also called distributed or decentralised treatment - is so far used for niche applications, in 

areas with low population densities or fast demographic change, or as a stop-gap solution in 

densely populated unserved settlements.182 However, on-site treatment has been suggested as 

a complement or fundamentally different alternative to conventional centralised network-

based systems.13,147,148,183,184 We argue that data-driven UWM allows on-site treatment to go 

beyond niche applications and constitute a widespread customised and flexible engineering 

solution. We do not contrast on-site and centralised solutions here (cf. Section 4), but review 

the potential for improving on-site technologies by the revolution in data and sensing. Three 

main on-site applications can be found in the literature:  

 
i.) On-site or point-of use treatment of water is the most effective way to provide safe 

drinking water in areas with insufficient water quality.185,186 This approach does not 

require extensive infrastructure investments and only a fraction of the total water 

consumption needs to be treated.187,188 The main challenge from a sensing and data point 

of view is to reliably identify the treatment performance (mainly hygiene, but also 

contaminants such as arsenic) and to detect the point for rehabilitation or replacement of 

critical decentralised infrastructure elements.  

 

ii.) On-site water treatment for reuse is an attractive option to increase water productivity 

(cf. Section 3.5).187 The US-NRC identified several research areas that hold significant 

potential to advance the reuse of municipal wastewater.188 They include the 
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identification of ‘better indicators and surrogates that can be used to monitor process 

performance in reuse scenarios and develop online real-time or near real-time 

analytical monitoring techniques for their measurement’.188 

 

iii.) On-site wastewater treatment. Even though on-site WWTPs are already widely applied 

in OECD countries,189,190 they are often seen as a stop-gap. On-site systems are 

perceived to have low technical reliability191 and their overall treatment performance is 

often unconvincing or unknown.192 Kaminsky and Javernick-Will however concluded, 

that ‘system software is more likely to be the root cause of system failure than the 

hardware itself’,
193 implying that on-site systems are not limited by the available 

technology but by institutional and organisational factors. 

 

Barriers towards widespread successful implementation of on-site systems are multi-faceted 

and or a technological transfer demanding (see Section 4.1). However, there are two 

important barriers for which data-driven approaches are especially promising, namely the 

lack of information about the treatment performance and the cost of operation and 

maintenance. The latest developments in sensor technology, data acquisition and computation 

are already applied to some centralised approaches,194 but they could also pave the way with 

respect to performance and costs for on-site systems. In the following, these two issues are 

specifically discussed for on-site wastewater treatment. However, they also apply in a similar 

way to on-site water treatment: 

 
Treatment performance: Most on-site treatment plants are scarcely monitored today - e.g. in 

Germany small-scale WWTP are monitored twice or three times annually.195 The treatment 

performance of on-site WWTPs could be improved significantly by more frequent 

monitoring, which serves as a basis for detecting malfunctioning systems.192,196 Enhanced 
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monitoring would additionally improve the understanding and optimisation of on-site 

treatment systems.197 Furthermore, improved monitoring techniques may enable the 

application of more complex and demanding treatment technologies such as autotrophic 

ammonium oxidation. Continuous monitoring approaches to centralised WWTPs exist, but 

are not yet sufficiently low-maintenance for direct implementation on on-site WWTPs. First 

promising tests for on-site systems have been made with SAC254 (the spectral absorption 

coefficient at wavelength 254) and dissolved oxygen measurements, while turbidity showed 

no correlation with biological oxygen demand.198 Soft sensing may be another promising way 

to generate useful information out of easy-to-collect data.199,200 

 

Maintenance costs: High maintenance costs are a common problem in massively modular 

infrastructure,201 because of the costs of regular inspections, cleaning, sludge collection or 

repair.202 Their operation will consequently benefit substantially from developments in 

sensoring and automation.203 For centralised infrastructures, lower costs can typically be 

achieved with scheduled, planned and pro-active maintenance.204,205 This generally also holds 

true for on-site systems: For example, tank-filling sensors could lower the cost of managing 

sludge and scum collection management by enabling the implementation of scheduled 

management schemes.206 Greater knowledge about maintenance requirements would allow 

operation and maintenance to be targeted and would optimise the allocation of personnel and 

resources, i.e. a shift towards pro-active and planned maintenance. Lower maintenance would 

then lead to lower overall decentralised treatment costs. 

 

The revolution in data and sensing is thus breaking new ground for the application of on-site 

technologies in regions where a rethinking of the most suitable UWM system is needed due 

to infrastructure costs and resource efficiency.207 Performance monitoring is not only 
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imperative to ameliorate the poor reputation of on-site systems, but also to provide a defined 

level of performance and to reduce overall costs by enabling a more targeted and efficient 

maintenance and repair regime.  

 

4 Discussion 

So far, the focus of this review has been on approaches and examples showing where more 

data have the potential to substantially improve the efficiency of current UWM practice. This 

would enable a switch from pure infrastructure generation to the active operation and 

management of UWM systems and leading to enhancing the utility of existing infrastructures 

(e.g. RTC of sewer overflows) or the active management of risk and threats (e.g. urban 

pluvial flood warnings or water supply contamination). This is especially relevant in a 

changing world where demand generally changes faster than the lifespan of critical 

infrastructure elements.12,208 

However, the most promisingly prospect is that a data-driven UWM could fundamentally 

novel ways of offering water related services. The ability to provide high levels of water 

productivity and sanitation with fewer investments in network-based infrastructures could be 

a key tool in a strongly urbanising world. This is particularly true for areas which are 

becoming depopulated and areas with low population densities.209 However, careful multi-

criteria evaluations need to accompany the implementation of appropriate on-site systems, 

and the optimal treatment scale needs to be determined with respect to costs, energy 

consumption, greenhouse gases, drinking water reuse or resources recovery.147,210,211,212,213
 

Another exiting prospect is that wastewater-based epidemiology can bring added value to 

operating and monitoring sewer systems and permit intimate insights into societal health and 

wellbeing. 

However, the availability of more data also raises concerns that need to be addressed. The 

aim of Section 4.1 is to summarise the most pressing concerns of data-driven UWM rather 
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than giving a complete picture of all conceivable hurdles. In Section 4.2, the role of data and 

its utility for UWM is discussed in more generic terms. 

 

4.1 Challenges of data-driven UWM 

Challenges relating to generic data and technology, i.e. successfully taking advantage of data-

driven UWM, include turning data into information in a timely manner (data processing), 

making useful information available to users and utilities (data availability), addressing the 

issues of data-quality and uncertainty of different data sources (data quality), achieving low 

operation and maintenance costs for sensors and measurements (data costs) and the lack of 

general standards and protocols or data management.37,96, 97,214 The increased demand on data 

processing and modelling, e.g. for detailed forecast generation or detailed flood risk 

assessments is more specific (but also not necessarily exclusive) for UWM. It requires 

advanced computational power.90,91 Advances in technology and methods are catching up 

with these needs - improved hardware and new mathematical techniques including the 

introduction of emulators, have been introduced to bypass inhibitive computational 

times.215,216 

These challenges are more or less common to all types of ‘smart’ initiatives, such as smart 

electricity grids.217 In addition to these generic issues, we suggest that three challenges need 

special consideration, namely i.) data access and ownership, ii.) changes in engineering and 

management practice, and iii.) the trade-off between benefits and costs. Although these three 

issues may also apply to other thematic fields, they manifest themselves in specific ways in 

UWM: 

 

i.) Privacy is a key societal issue surrounding data-driven UWM, namely the ownerships of 

the data and who has (open) data access. The end of privacy has been declared,218 but in 

view of the examples outlined above, there is a need to reflect on Orwellian critiques in 
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UWM. Of course, not all data are sensitive, i.e. rainfall data. However, the availability 

of more personalised data increases its potential for abuse: thus detailed water 

consumption patterns could help burglars to identify currently non-inhabited homes,219 

or wastewater-based epidemiology would allow geospatially explicit health information 

to be revealed that might be exploited by insurance companies.  

Furthermore, a dependence on ‘smart’ or ‘intelligent’ systems increases the potential 

vulnerability to cyber-crime.220,221 Safe UWM systems therefore need to function 

reliably and be cyber-secure, e.g. to prevent the unauthorized manipulation of critical 

infrastructure elements. Introducing common standards is one way of dealing with the 

widespread scepticism, although this needs to be addressed by a legitimation portfolio 

approach.135 Ethical guidelines and legal regulations must also be developed, such as 

suggested for (illicit) drug monitoring.222
 Whereas this is of lower importance for 

aggregated data collection (e.g. in the main sewer), data collection at household level is 

especially sensitive. 

 

ii.) Data-driven UWM requires a change in practices ranging from network operation to 

decision-making.5 Professionals working in UWM are generally not used to dealing 

with an abundance of data and dynamic systems. The adaptation to increased data 

availability thus requires a change in engineering and management practices which 

considers the adaptation of new types of models and takes into account uncertainty and 

risks. However, the general tendency to risk aversion and the restricted time available to 

utility managers in UWM are not conducive to promoting innovative change.223 

The introduction of new practices is obviously complex and time-consuming and will 

require changes such as institutional transitions. However, the complex and 

multidimensional process of changing dominant professional cultures and forming new 
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industries with different practices such as on-site treatment or RTC needs to be 

discussed elsewhere.8,224 Nevertheless, it is interesting to note that in the electricity 

sector for instance, IT and communications technology companies, and not the utilities 

themselves, are a key driver for the transition towards smart grids.225 

 

iii.) Data acquisition is not free and its costs need to be justified with the potential benefits it 

provides. For example, the RTC of drainage systems requires reliable actuators, energy 

provision, sensors, transmission, SCADA (supervisory control and data acquisition) 

equipment and corresponding operation and maintenance efforts. This can be compared 

directly with the more traditional approach of investing in static retention tanks and 

conveyance capacity.  

However, the trade-off between the potential benefits and the necessary investments is 

often difficult to quantify, as the forecasting benefits of increased data are not easily 

foreseeable and their advantages, such as greater flexibility, are difficult to 

monetize.226,227 

This difficulty in assessing the benefits of change is also discussed in other 

infrastructures analogous to UWM: thus Moretti et al. e.g. concluded in a review about 

the environmental and economic benefits of smart electricity grids, that they ‘are energy 

efficient and reduce greenhouse gas emissions’ but also warn that ‘investments in smart 

grid systems may not yield any benefits’.228 In contrast, Niesten and Alkemade reviewed 

the literature about value creation in smart grids and concluded that corresponding 

business models could be profitable.229 

 

The above listed issues demonstrate that the application of data-driven approaches in UWM 

is not limited to techno-economic innovation. A whole-system perspective is necessary for 
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the transformation of UWM systems and technologies need to be adapted to local 

conditions.7,166 Very different barriers need to be addressed as a myriad of factors affect 

innovation processes21,214,223,230 and they ‘typically depend on the co-development of new 

socio-technical configurations, new market structures, new actors and new institutional 

settings.’231 

 

4.2 The utility of data-driven UWM 

With respect to data, more are not necessarily better – especially considering the costs 

involved. It is necessary to decide on which data to collect and to which resolution in view of 

a specific purpose. The relationship between the amount of data and the utility derived from it 

may differ for different data-driven applications. Different trajectories can be described (two 

characteristic examples are shown in Figure 3). The three data regions presented there are 

characterised as follows: in the data-scarce region, the utility of the data is small despite the 

cost and effort involved. An example is rain data, where a few high-resolution events do not 

provide much useful information for the design of the system. After several years of 

collecting rain events, the data moves into the optimal region, where it offers enough 

variability to allow design decisions to be made (trajectory A). In the data-abundant region, 

the additional gain in information and therefore the increase in utility with greater data 

availability is comparable small. Data-driven UWM should aim to reach the region of optimal 

data availability. 

Another simplified didactic example for this relationship can be taken from the assessment of 

urban flood risk: better elevation data increases the gain in information, especially if only a 

limited resolution is so far available (data-scarce region). Once the resolution of the elevation 

data is good enough to detect streets, a substantial gain in utility can be achieved, resulting in 

a ‘sigmoid’ relationship (exemplary trajectory B in Figure 3). After a certain resolution is 

reached (optimal region), the additional information gain of higher resolution levels out. As 
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discussed above, the exact shape of the trajectory may vary for different data-driven 

applications. 

While elevation data often offers the desired data availability (see Section 3.2), we suggest 

that most utilities are still in the data scarce-region as regards most other UWM applications. 

 

 

Figure 3. Schematic representation of two example trajectories demonstrating the 

relationship between data and utility with respect to different data regions. 

 

5 Conclusions 

This review has explored the possibility and benefits of creating more data-driven UWM by 

utilising the ongoing push for smart infrastructures. The main findings are: 

 

• The compiled evidence indicates that i.) considerable research documented in the 

literature points towards more data-driven UWM, and ii.) the potential benefits are 

significant. 

• Increased data availability from conventional and new data sources is a precondition 

for many novel methods developed within the UWM literature. Examples include 

efficiency gains through real-time control, improved risk assessment though sensor-

based contamination detection or credible early pluvial flood-warning systems. 
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• Utilisation of the current network-based UWM can be substantially optimised. 

Making use of more data improves its efficiency and expands its functionality beyond 

the passive conveyance of water and wastewater. 

• Novel sensoring and smart meter technologies can lead to radically different 

approaches to UWM. Prominent examples are on-site water and wastewater treatment 

and the introduction of demand management in water supply. 

• Wastewater-based epidemiology can add value to operating and monitoring sewer 

systems and permit intimate insights into societal health and wellbeing. 

• Diverse, consistent and spatially explicit data are essential for integrated modelling 

and deciding on more sustainable design and management of UWM infrastructures. 

• The provision of a high level of water productivity and sanitation with less network-

based infrastructure requires more data-driven UWM. This allows defined levels of 

performance and lower costs for on-site systems to be achieved. 

• An evolution towards data-driven UWM faces several obstacles extending from 

privacy concerns to the requirements of institutional changes in the legal and 

operative framework. Most importantly, clear evidence for a beneficial cost-benefit 

ratio that would justify widespread implementation of a more data-driven UWM is 

generally missing. 
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