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Many of the undernourished people on the planet obtain their entitlements to food

via agricultural-based livelihood strategies, often on underperforming croplands and

smallholdings. In this context, expanding cropland extent is not a viable strategy for

smallholders to meet their food needs. Therefore, attention must shift to increasing

productivity on existing plots and ensuring yield gaps do not widen. Thus, supporting

smallholder farmers to sustainably increase the productivity of their lands is one part of

a complex solution to realizing universal food security. However, the information (e.g.,

location and causes of cropland underperformance) required to support measures to

close yield gaps in smallholder landscapes are often not available. This paper reviews the

potential of crop phenology, observed from satellites carrying remote sensing sensors, to

fill this information gap. It is suggested that on a theoretical level phenological approaches

can reveal greater intra-cropland thematic detail, and increase the accuracy of crop

extent maps and crop yield estimates. However, on a practical level the spatial mismatch

between the resolution at which crop phenology can be estimated from satellite remote

sensing data and the scale of yield variability in smallholder croplands inhibits its use in

this context. Similarly, the spatial coverage of remote sensing-derived phenology offers

potential for integration with ancillary spatial datasets to identify causes of yield gaps.

To reflect the complexity of smallholder cropping systems requires ancillary datasets at

fine spatial resolutions which, often, are not available. This further precludes the use

of crop phenology in attempts to unpick the causes of yield gaps. Research agendas

should focus on generating fine spatial resolution crop phenology, either via data fusion

or through new sensors (e.g., Sentinel-2) in smallholder croplands. This has potential to

transform the applied use of remote sensing in this context.
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Introduction

Currently, 805 million people on planet Earth are
undernourished (FAO et al., 2014); with the majority of this
food insecure population in developing countries, particularly,
Sub-Saharan Africa and South Asia, where the rates of reduction
in undernourishment are also slowest. Under the current food
system a substantial proportion of the world’s population is food
insecure. Worryingly, projected increases in population and diets
will require significant increases in food production (Tilman
et al., 2011). This is problematic on numerous fronts; firstly,
current trends in crop yield growth will fall short of meeting
future demand (Ray et al., 2013); secondly, there is little room for
expansion of croplands (Foley et al., 2011; Smith, 2013); thirdly,
it highlights the complex interplay of socio-economic, political,
cultural, and environmental factors that inhibit access to safe,
sufficient, and nutritious food for sizeable vulnerable populations
(Enfors, 2013; Pritchard et al., 2013; FAO et al., 2014). Expanding
croplands is not an option for increasing crop production given
environmental and developmental concerns (Rockström et al.,
2009; Foley et al., 2011; Smith, 2013; Godfray and Garnett, 2014).
Therefore, to address current and future food insecurity requires
adjusting modes of access or demand for food, or increasing
production on existing croplands.

A large proportion of the current level of undernourishment
is borne by smallholder farmers in developing countries,
particularly in Sub-Saharan Africa and South Asia (FAO et al.,
2012; HLPE, 2013). Defining smallholder farmers is complex
(HLPE, 2013), and different aspects of smallholding, such as
size of land holding, asset levels, productivity of land or market
engagement all influence a smallholder household’s capacity to
access food (Sen, 1981; Enfors, 2013; HLPE, 2013; Tittonell and
Giller, 2013; Rammohan and Pritchard, 2014). The croplands
in Sub-Saharan Africa and South Asia have the largest share
devoted to producing crops for human consumption (Foley et al.,
2011) whilst also suffering from the largest yield gaps (Mueller
et al., 2012). Broadly put, yield gaps are the difference in crop
yield between what is realized by farmers and what is potentially
attainable in a given context (Tittonell and Giller, 2013; Van
Ittersum et al., 2013). Different approaches have been utilized to
measure and define yield gaps for specific contexts (Lobell et al.,
2009; Licker et al., 2010). This suggests that closing yield gaps in
smallholder landscapes can contribute toward the multiple goals
of reducing food insecurity, increasing levels of crop production
without negative environmental side-effects (Foley et al., 2011),
catching up with projected demand (Ray et al., 2013), and
improving the livelihoods of smallholders and their capacity to
access food (Enfors, 2013; Tittonell and Giller, 2013; Dzanku
et al., 2015).

Using data from household surveys across Sub-Saharan
Africa, Dzanku et al. (2015) highlighted the elasticity between
yield gaps and rural poverty, indicating that as yield gaps close
the associated poverty also reduces. The concept of closing
yield gaps in smallholder settings to enhance food security and
poverty alleviation outcomes fits with the theory of poverty traps
and development resilience (Barrett and Constas, 2014). The
literature on poverty traps theorizes that certain thresholds in

asset holdings exist which if exceeded lead to asset accumulation,
higher returns (e.g., income, crop yield) and graduation to
more desirable welfare levels (Carter and Barrett, 2006; Sabates-
Wheeler and Devereux, 2011). In the context of yield gaps in
smallholder croplands this theory suggests that if smallholders’
assets (e.g., land, agricultural machinery, financial capital to
purchase fertilizers and seeds, knowledge resources) are increased
then they will receive higher returns from these assets, directly
in the form of crop yield and indirectly through sales in
markets. Through increased outputs, either through crop yield or
incomes, smallholders will experience reduced levels of poverty
and food insecurity enhancing their ability to access food via
own-production or trade-based entitlements (Sen, 1981).

Closing yield gaps among smallholder croplands holds
significant potential for poverty alleviation and food security
(Dzanku et al., 2015). However, the context-specific nature of
smallholder environments means that large amounts of data on
the location, the magnitude, and the causation of yield gaps
are required to effectively target responses. In other words, for
such data to be utilizable in a policy-making sense, where the
units of policy-making are much broader (e.g., region, country,
global) than the scale at which yield gaps afflict the poorest
and food insecure (e.g., plot-to-plot in smallholder settings) they
must cover large extents without sacrificing local detail. These
data requirements resonate with the characteristics provided by
satellite sensor-derived remote sensing.

The data records accumulated through the Advanced Very
High Resolution Radiometer (AVHRR), SPOT-VEGETATION
(SPOT-VGT), Moderate Resolution Imaging Spectroradiometer
(MODIS), and Medium Resolution Imaging Spectrometer
(MERIS) have generated time-series of remote sensing imagery
that enable monitoring of the intra-annual, and inter-annual,
dynamics of vegetation growth. Vegetation growth dynamics is
usually discerned through repeat satellite sensor observations
of a location throughout the course of a growing season.
From such observations, the vegetative signal is typically
captured through various mathematical combinations of spectral
reflectance in the red and near infrared (NIR) spectral bands
into vegetation indices (VIs), such as the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation Index
(EVI; Huete et al., 2002; Pettorelli et al., 2005), or through
computation of biophysical variables, such as fraction of
absorbed photosynthetically active radiation (fAPAR) or leaf
area index (LAI; Duveiller et al., 2011; Meroni et al., 2014).
Repeat satellite sensor observations of the land surface can reveal
vast amounts of information about the dynamics of vegetation
growth; this in turn can be used to estimate several phenological
variables including the timing and length of seasons, and peak
growing season (Pettorelli et al., 2005; Dash et al., 2010; Vrieling
et al., 2011, 2013; Harris et al., 2014). Phenology refers to the
timing recurring biological events (Brown and de Beurs, 2008).

Decades of research have shown spectral reflectance, and
derived VIs, to be correlated with several biophysical variables
including vegetation greenness, photosynthetic activity, canopy
structure, biomass, and productivity (Tucker, 1979; Pinter et al.,
1981; Huete et al., 2002; Pettorelli et al., 2005). It is this
characteristic, and often via computing VIs, that makes remote
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sensing attractive for monitoring spatio-temporal patterns
in vegetation growth and observing phenological transitions.
However, given their prominence in remote sensing of vegetation
it is important to note that different VIs have varying strengths
and weaknesses with regards to monitoring vegetation; for
example, the NDVI is chlorophyll sensitive whilst the EVI is
more sensitive to canopy structure and related variables, such
as LAI (Huete et al., 2002). The NDVI has been critiqued for
scaling problems, the non-linear relationship with vegetation
fraction within pixels (Lobell and Asner, 2004; Jiang et al.,
2006), saturation at high biomass levels, and sensitivity to
canopy background variation (Huete et al., 2002). Gitelson (2004)
demonstrated how the NDVI did not capture variability in
fraction of vegetation cover above 60% or LAI greater than
two and posited the wide dynamic range vegetation index
(WDRVI) as being more suitable. These differences in VIs will
have subsequent impacts upon abilities to monitor vegetation,
to estimate biophysical variables and observe phenological
transitions.

Reflecting the value of phenological information to studies of
vegetation growth and productivity (and a range of other fields)
there are several “pre-processed” remote sensing data products
available to facilitate observations of vegetation phenology. These
include the Global Inventory Modeling and Mapping Studies
(GIMMS) dataset produced using bi-monthly composites of
AVHRR NDVI data at an ∼8 km spatial resolution from 1981 to
2011 (see http://www.mdpi.com/journal/remotesensing/special_
issues/monitoring_global for a special issue of Remote Sensing
introducing the new GIMMS NDVI 3 g dataset). Several VI
products are derived from MODIS data at a range of temporal
and spatial resolutions (https://lpdaac.usgs.gov/products/modis_
products_table); for example, the MOD09A1 product enables
computation of NDVI and EVI at a 500m spatial resolution in
8 day composites. Specific VI (e.g., MOD13A1) and vegetation
phenology (e.g., MCD12Q2; Ganguly et al., 2010) products
are also available from MODIS data. The MCD12Q2 product
provides estimates of the date of various phenological transitions
including onset of greenness, onset of maximum greenness,
onset of decrease in greenness and minimum greenness along
with associated EVI-values (Ganguly et al., 2010). Other
coarse to medium resolution sensors which enable monitoring
of land surface (and vegetation) phenology include SPOT-
VGT and MERIS (see http://www.spot-vegetation.com/ and
https://earth.esa.int/web/guest/missions/esa-operational-eo-miss
ions/envisat/instruments/meris). Finer spatial resolution optical
products are available from the Landsat Thematic Mapper
(TM), Enhanced Thematic Mapper (ETM+), and Operational
Land Imager (OLI) sensors carried on a succession of satellites
with a 30m spatial resolution (see http://landsat.usgs.gov/
for a review of the Landsat project). Other similar products
exist, such as the imagery from the Linear Imaging Self
Scanning (LISS) III sensor with a 23.5m spatial resolution (see
https://earth.esa.int/web/guest/data-access/browse-data-product
s/-/article/liss-iii-data-products-1660) and a range of other
sensors with sub-10m spatial resolutions (for example,
Worldview, IKONOS, GeoEye). However, challenges persist with
monitoring vegetation growth and dynamics with finer spatial

resolution data due to infrequent revisit periods, obtaining
sequences of cloud free images, and access to data.

Here, the capacity to monitor temporal profiles of vegetation
growth via optical remote sensing, and estimate associated
phenological variables, over smallholder croplands to enhance
yield gap analysis is reviewed. Thus, there is a specific focus
on monitoring crop growth and estimating crop phenological
transitions. To ensure clarity in use of terms crop phenology
when referred to at the plant scale refers to specific development
stages crops go through (e.g., emergence, heading, anthesis),
whereas remote sensing observations refer to less specific metrics
(e.g., start-of-season, green up, peak growing season, end-of-
season, onset-of-senescence); crop growth and crop growth
dynamics refer to the green up and senescence cycles displayed
by crops as they pass through phenological stages. It is worth
mentioning that a range of sensors can reveal information on
crop growth and phenology (e.g., radar, Shao et al., 2001; Li
et al., 2003); however, this review is restricted to optical, satellite
sensors. This focus on optical remote sensing is justified at
the current moment; “long”-term records of optical imagery
monitoring intra- and inter-annual dynamics in croplands,
such as GIMMS AVHRR, SPOT-VGT and MODIS, have been
accumulated permitting a large body of research to be conducted.
Furthermore, we are about to enter a new phase of optical remote
sensing with the recent launch of Landsat-8 and the imminent
launches of Sentinel-2 and Sentinel-3 which will advance current
capacities for cropland monitoring alongside extending existing
data records. Thus, now is an opportune moment to take stock of
existing research and capacities, and suggest how this research
agenda could move forward to help close productivity gaps in
smallholder croplands.

As discussed, there is considerable information contained
within remote sensing observations of croplands which
complements the need for “fine” spatial detail covering large
spatial extents for yield gap analysis. Thus, this paper reviews
the utility in observing crop growth dynamics and phenology
from satellite remote sensing sensors to identify and explain
the causes of yield gaps in smallholder croplands. The structure
of the paper follows a standard workflow to identify, quantify,
and understand the causation of yield gaps in a smallholder
setting exploring the potential added value or limitation of a
phenology-based approach at each stage of the process. The
stages in this workflow follow: Identification of croplands, Crop
yield estimation, Yield gap estimation, Applicability of crop
phenology in yield gap assessments in smallholder croplands,
and Causation and closure of yield gaps.

Identification of Croplands

Accurate maps of crop extent and crop type are imperative
for crop yield estimation from remote sensing data because
crop extent maps can be used to avoid or minimize the error
introduced by non-agricultural land covers (Atzberger, 2013;
Bolton and Friedl, 2013). Thus, generating accurate crop maps
generally forms the first stage of remote sensing based yield gap
analysis.
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Monitoring crop growth and phenological variables derived
from remote sensing data can aid in the discrimination of
croplands from non-croplands because croplands have an
obviously distinct temporal and spectral signature from non-
vegetated land surfaces (e.g., water bodies, urban). Importantly,
the value of crop growth dynamics and phenology is more
evident when treating separately croplands from other vegetated
land covers; for example, multi-date imagery capturing the
distinct green-up and senescence cycles of cereal crops is notably
different from that for forests (Dash et al., 2010). Once croplands
have been identified, remote sensing-derived crop growth
profiles, reflecting a crops phenology, can provide substantial
amounts of intra-cropland information. Furthermore, time-
series of remote sensing observations over croplands and
extracting phenological information also facilitates monitoring
of spatial patterns in cropping intensity (i.e., single-cropping,
double-cropping, and triple cropping; Dash et al., 2010; Biradar
and Xiao, 2011; Vrieling et al., 2013).

Several studies have utilized variation in crop growth profiles
and phenological variables in different classification procedures
to identify different crop types. Wardlow et al. (2007) highlighted
the advantage of multi-date imagery over single-date imagery
for monitoring croplands, even if the single date imagery is of
a finer spatial resolution, as different crops can look spectrally
similar at a single time step but have different spectro-temporal
profiles over a growing season. Xiao et al. (2005, 2006) use
temporal profiles of EVI and Land Surface Water Index (LSWI)
measurements to identify rice croplands. They use a searching
algorithm which identifies a peak in LSWI corresponding to
flooded fields at the beginning of the paddy rice growing season
followed by a rapid increase in EVI as the crop enters its
vegetative development stage. Spectral Matching Techniques
(SMT) use statistical measures of similarity in the shape and
amplitude of temporal VI profiles to endmember VI profiles to
classify pixels into different crop types, cropping patterns, and
irrigation characteristics (Thenkabail et al., 2007, 2009; Gumma
et al., 2011). Thenkabail and Wu (2012) have fused multi-date
MODIS imagery, capturing the phenology of different croplands
and land cover types, with other remote sensing datasets in an
Automated Cropland Classification Algorithm to generate 30m
irrigated vs. rainfed cropland maps over Tajikistan. Other studies
have shown how it is possible to discriminate between different
crop types based upon the timing of different phenological phases
(e.g., onset of greenness, peak greenness) observed from multi-
date remote sensing data (Wardlow et al., 2007).

Crop Yield Estimation

Basic Theory of Remote Sensing-derived Crop
Yield Estimation
Remote sensing-derived VIs and biophysical variables provide
measures of amount and condition of green vegetation on the
land surface, this information in turn can be used to estimate
biomass. Crop yield, which is the economically or nutritionally
utilized part of the plant, is a fraction of the total biomass and
green vegetation cover. Thus, the ability to estimate crop yield

accurately from remote sensing is dependent upon the degree
of correlation between total biomass and crop yield and the
ability for remote sensing-derived VIs or biophysical measures
to capture variation in above ground biomass. The ratio of total
crop biomass to crop yield is known as the harvest index (HI),
and the variation in HI between crops needs to be accounted
for in crop yield estimation models (Bastiaanssen and Ali, 2003).
Also, different varieties of the same crop have different HI;
for example, there is variation in plant structure between high
yielding and traditional rice varieties and variation in HI with
environmental conditions and management practices (Zhang
et al., 2008; Wassmann et al., 2009; Das, 2012). Variation in
cultivars planted within croplands is difficult to distinguish from
remote sensing data and will introduce some error into estimates
of crop yield. Two main approaches are used to estimate crop
yield from remote sensing data; firstly, regression models trained
using VIs or biophysical measures, and crop yield statistics, and,
secondly, incorporating VIs, spectral reflectance or biophysical
variables (such as LAI see Doraiswamy et al., 2005) into crop
growth simulation models (Rembold et al., 2013). Often VIs
are utilized as independent variables in regression models to
predict crop yield, whereas spectral reflectance measures or VIs
are often used to estimate biophysical variables (Lobell et al.,
2003; Duveiller et al., 2013) which are subsequently incorporated
into crop growth simulation models. The following section
reviews how the information on multi-temporal remote sensing
of croplands, and observing crop phenology, can enhance both of
these approaches.

Crop Yield–VI Regression Models
Different VIs have been used to estimate crop yield via regression
models including the NDVI (Funk and Budde, 2009; Becker-
Reshef et al., 2010; Mkhabela et al., 2011; Bolton and Friedl,
2013; Huang et al., 2013), Normalized Difference Water Index
(NDWI; Bolton and Friedl, 2013), EVI (Bolton and Friedl, 2013;
Duncan et al., 2014a), and WDRVI (Sakamoto et al., 2013).
Studies have shown similarities between crop yield estimates
based on different VIs; however, the EVI often outperforms
the NDVI (Bolton and Friedl, 2013; Son et al., 2014). Spectral
reflectance, transformed to VI, from croplands, at certain stages
of the growing season, often gives an indication of crop yield
or potential yield; regression models using observed crop yield
statistics and VIs at certain growth stage can capitalize on
this relationship (Funk and Budde, 2009; Bolton and Friedl,
2013). Often, in cereal crops this period is close to, and just
following, peak VI and is an approximation of the timing of
the heading, reproductive and grain filling phases (Funk and
Budde, 2009; Rojas et al., 2011; Huang et al., 2013; Duncan et al.,
2014a; Son et al., 2014). Spatial variation exists in the timing
of these phases within, and between, croplands due to crops
and cultivars of different durations, different planting dates and
management practices and exposure to different environmental
and climatic conditions. Crop phenology derived from remote
sensing data can be used to capture local variation in the timing
of optimum periods to use VI for crop yield estimation (Funk
and Budde, 2009; Bolton and Friedl, 2013; Duncan et al., 2014a).
Incorporating crop phenology into these statistical crop yield
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models can increase model accuracy by capturing the temporal
variations of crop growth at pixel level; Bolton and Friedl (2013)
demonstrate how phenologically adjusting VI time-series per-
pixel increases the accuracy of crop yield estimates. Also, the
accuracy of remote sensing-based yield models varies through a
growing season; this demonstrates the importance of including
multi-temporal VI information into crop yield models to isolate
time-periods which correspond to the phenological stages of crop
development which determine crop yield (Bolton and Friedl,
2013; Huang et al., 2013; Sakamoto et al., 2013).

Using crop phenology information derived from 500m spatial
resolution MODIS data, Duncan et al. (2014a) found that VI at
peak VI and the following a 30 day period on a pixel-by-pixel
basis provides the best estimate for wheat crop yield over Punjab
and Haryana (R2-value of 0.6 when correlated with district-wise
crop yields). This can be compared with estimates of district-
wise crop yield estimates from single date Landsat imagery (30m
spatial resolution) over the same area which had an R2 of 0.28
(Lobell et al., 2010). This indicates that despite the coarser
spatial resolution of MODIS data the temporal detail enabling
discrimination of local variability in the timing of phenological
transitions can increase the accuracy of crop yield estimation; the
drawback is the limited ability to monitor individual fields.

Crop Growth Models
Crop growth models can either take the form of crop simulation
models, which simulate crop growth processes to estimate
crop yield, or Net Primary Production (NPP) models based
on Monteith’s efficiency equations to estimate crop biomass
production which is converted to crop yield via HI (Rembold
et al., 2013). A key input to NPP models is fAPAR during the
growing season which can be estimated using VIs (Bastiaanssen
and Ali, 2003; Lobell et al., 2003; Rembold et al., 2013).
NPP models require estimates of fAPAR throughout the
crop growing season (Lobell et al., 2003); spatially explicit
crop phenology information identifying start-of-season, end-of-
season, and length-of-season per-location within croplands can
reduce noise from non-crop growing time periods influencing
crop yield estimates. In the absence of field-level, multi-temporal
estimates of VIs Lobell et al. (2003) integrated infrequent Landsat
30m spatial resolution images with field measured, typical,
fAPAR growing season profiles. This demonstrates the need for
a relatively high spatial and temporal resolution remote sensing
data to provide inputs for NPP based models to capture local
variability. The launch of Sentinel-2 in 2015 with a potential 5
day revisit period and a 10–60m spatial resolution (ESA, 2010),
and the ability to estimate within-field crop phenology, has the
potential to improve estimates of fAPAR constrained to the crop
growing season and enhance NPP crop yield models.

Rembold et al. (2013) reviewed the different approaches
to incorporating remote sensing observations of croplands
into crop simulation models. The use of crop phenological
information derived from multi-temporal remote sensing data
can increase the accuracy of estimates of simulated yields when
models are applied spatially (Doraiswamy et al., 2005; De Wit
et al., 2012; Rembold et al., 2013). De Wit et al. (2012) optimized
the WOFOST crop model parameters over wheat croplands

in Europe by minimizing the difference between simulated
and MODIS observed green area index (GAI). However, in
this approach only pixels which had >75% coverage of wheat
cropland were utilized. Given the mismatch in scale between
the spatial resolution of moderate spatial resolution sensors,
from which multi-temporal data is typically derived, and
the heterogeneity of smallholder landscapes such approaches
will struggle due to difficulties in obtaining reliable input
observations over fields. Again, the launch of Sentinel-2 may
enhance capabilities to utilize remote sensing data with crop
models over smallholder landscapes. On a similar note, Duveiller
et al. (2013) demonstrate how the global MODIS LAI (MCD15)
and the Carbon Cycle and Change in Land Observational
Products from an Ensemble of Satellites (CYCLOPES) LAI
(derived from SPOT data) struggle to capture crop (wheat)
specific temporal profiles in LAI in Belgium where the mean field
size was 3.62 ha. This precludes the ability to incorporate such
measurements into crop growth simulation models to estimate
crop yield; especially in smallholder croplands where field sizes
and land holdings are much smaller.

Yield Gap Estimation

Lobell (2013) provides a comprehensive review of different
approaches to estimate yield gaps via remote sensing data. The
discussion here builds upon this review by briefly highlighting
where phenological information from croplands can have added
value. Remote sensing estimates actual yield, as it is realized in
farmers’ fields, and then uses assumptions to estimate potential
yield and, thus, yield gaps (the difference between the potential
and realized yield) across croplands.

One approach to yield gap estimation using remote sensing
is to assign the maximum yield observed in a region (e.g., a 5
or 10 km window or agro-climatic zone) as a locally attainable,
potential yield (Lobell, 2013). The difference between measured
yield in fields and locally maximum yield represents the yield
gap. However, this approach is static in time and, thus, subject to
inter-annual fluctuations in yield being misinterpreted as longer-
term underperformance. Therefore, the yield gap can be plotted
between average yield and maximum yield, while increasing
the number of years used to compute the average yield (Lobell
et al., 2010). If the yield gaps are temporally persistent then
the measured yield gap should not shrink when increasing the
number of years used to compute the average yield. Lobell
et al. (2007) present a statistical approach to estimate temporally
persistent, field level yield gaps relative to a “regional” potential
yield. These approaches are limited by modeling decisions made
about the size of area to use when estimating potential yield and
the assumption that some farmers in this area come close to
realizing potential yield (Lobell, 2013). None of these approaches
rely directly on multi-temporal imagery or crop phenology; yield
estimates can be produced using single date remote sensing
imagery (Lobell et al., 2010). However, as demonstrated in
the previous sections multi-temporal information and crop
phenological data can improve remote sensing-derived crop yield
measures and, thus, increase the accuracy of yield gap estimates.
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Multi-temporal imagery and crop phenology monitored from
remote sensing data enables detection of spatial patterns in
cropping intensity (Dash et al., 2010; Vrieling et al., 2013).
This information can reveal where crop production, and, thus,
annual yields per unit land, could be increased by placing the
land under cultivation for a greater proportion of time (as
opposed to increasing the productivity of a plot in a given
season). Duncan et al. (2014b) demonstrate how remote sensing-
derived crop phenology can be used to track the spatial dynamics
in cropping intensity over a ∼20 year period in North India.
This could have significant implications for food security for
smallholders as reducing the length of fallow periods increases
the productive returns on existing assets (e.g., land or labor).
However, in such situations it is likely additional assistance (e.g.,
extension services) and/or incentives will be necessary to enable
smallholders to capitalize on gains from increased cropping
intensity.

Applicability of Crop Phenology in Yield
Gap Assessments in Smallholder
Croplands

Low Quality Input Data
In a review of the performance of the MODIS MCD12Q2
Global Land Cover Dynamics product Ganguly et al. (2010)
observed high levels of missing detections of phenological
transitions over Sub-Saharan Africa and Asia. This is attributed
to persistent cloud cover and high levels of atmospheric aerosols
obscuring accurate measurement of land surface reflectance
and, thus, inhibiting the performance of MODIS phenology
detection algorithms. The locations which are most challenging
for accurate phenology estimation from the MODIS MCD12Q2
product overlap geographically with the largest distributions
of smallholder farmers and low productive farmlands. The
determinants of the poor performance of the MODIS MCD12Q2
product over these regions are not product-specific, but would
apply to all attempts to generate high quality crop phenology
estimates from optical remote sensing. This would be particularly
problematic for sensors with less frequent return periods, such
as Landsat (16 days). A global study of cloud interference with
MODIS observations during agricultural growing seasons, and
specific phases of agricultural growing seasons demonstrates
the challenges in obtaining repeatable cloud free imagery over
South Asia, Sub-Saharan Africa and portions of Latin America
(Whitcraft et al., 2015). This problem is particularly pronounced
for the early and peak stages of the crop growing season which
inhibit accurate retrieval of start-of-season estimates, early crop
growth dynamics andmonitoring crop performance around peak
growing season which can be used to infer final crop yield
(Whitcraft et al., 2015).

India is an exemplar point for this issue; almost a quarter of the
world’s undernourished population resides in India (FAO et al.,
2014) whose livelihoods are tied to underperforming croplands.
However, accurate and reliable remote sensing imagery during
the dominant rice growing, kharif, season is obscured by cloud
cover due to the monsoon (Figure 1) and aerosol loading

FIGURE 1 | Missing values in the EVI time-series generated using the

MODIS MOD09A1 product over two agricultural locations in Odisha,

Eastern India in 2008. Missing values were detected using the MODIS

quality assurance (QA) product; gaps in the time-series are where high-quality

retrievals were not available to compute the EVI.

over South Asia (Ramanathan and Carmicheal, 2008). Figure 1
displays the rice growth profile for two locations in eastern
India as observed via the MODIS MOD09A1 data. It clearly
highlights missing observations in the early andmid-stages of the
crop growing season; this is similar to observations by Whitcraft
et al. (2015). This indicates the challenge in monitoring crop
growth dynamics in smallholder landscapes, thus, suggesting any
use of crop phenology products derived from optical remote
sensing data over these regions must be treated with caution.
One approach to counteract the influence of clouds on cropland
monitoring would be to use radar imagery, not sensitive to
cloud or atmospheric effects (Chakraborty et al., 1997; Tso and
Mather, 2009). Multi-date radar imagery has been used to classify
cropland areas, monitor crop development, (Chakraborty et al.,
1997; Shao et al., 2001), assimilate into crop simulation models
(Dente et al., 2008), and estimate crop yield via statistical models
(Li et al., 2003). However, approaches have also been developed to
overcome imperfections in spectral reflectance data from optical
remote sensors when generating multi-temporal profiles of crop
growth and estimating crop phenological variables. Given the
focus on optical remote sensing here the next sectionmoves on to
review these approaches and their effectiveness over smallholder
croplands.

Issues in Phenology Profile Generation
Due to noise, multi-temporal remote sensing datasets exhibit
local variation in spectral reflectance, and thus VI-values,
punctuated by missing values (evident in Figure 1), whereas,
over time, crop growth follows a smooth trajectory in normal
conditions (events such as pest attacks, moisture shortage,
natural disasters can perturb crop growth; see Sakamoto et al.
(2007) for an example of mapping flood extent and duration
in the Mekong Delta). To account for this several different
approaches to filtering and smoothing raw remote sensing
data are used to smooth remote sensing data to match an
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ideal crop growth profile. These approaches include Fourier
transforms (Dash et al., 2010), Savitzky–Golay filters (Chen et al.,
2004; Jonsson and Eklundh, 2004), logistic functions (Zhang
et al., 2003), wavelet transforms (Sakamoto et al., 2005) or
asymmetric Gaussian functions (Jonsson and Eklundh, 2004)
amongst others. Hird and McDermid (2009) and Atkinson et al.
(2012) provide comparisons of different smoothing approaches.
Different smoothing techniques applied to the same raw remote
sensing data can generate noticeable differences in crop growth
dynamics, and, thus, detection of crop phenology. This is
exemplified in Figure 2 which shows differences in rice crop
growth profiles generated from the same raw data by Fourier and
wavelet transforms.

Sakamoto et al. (2005) demonstrate the influence that different
smoothing techniques have on estimating the timing of crop
phenological development stages. This is evidenced in Figure 2

where there are clear differences in the timing and magnitude
of peak VI and area under the curve, both proxy measures of
crop productivity, yield, and biomass (Pettorelli et al., 2005; Funk
and Budde, 2009). This source of error is particularly problematic
in phenology-based approaches to yield gap analysis when shifts
in the timing of crop development stages can have significant
impacts on crop yield and influence crop sensitivity to climatic
events (Lobell et al., 2012, 2013; Duncan et al., 2014a).

The phenological development stages observed from remote
sensing data (such as onset of greenness and peak VI) are
approximations of actual development stages that crops go
through such as emergence, heading, anthesis, and grain filling.
Numerous different approaches have been used across a range
of studies and croplands to estimate the timing of crop

FIGURE 2 | Smoothed phenology profiles, using Fourier and wavelet

transforms, for the same pixels in Figure 1 (i.e., agricultural pixels in

Odisha, Eastern India for the 2008–2009 cropping season. Annotations

demonstrate how different smoothing techniques yield different

start-of-season and peak VI retrievals. The time-series here has been

extended to capture a potential second cropping season after the monsoon;

the cropping season time-series displayed spans mid-March (pre-monsoon) in

2008 to the mid-May in 2009 (end of harvest of the post-monsoon crop).

development stages from VI derived crop phenology profiles
(Jonsson and Eklundh, 2004; Sakamoto et al., 2005; Dash et al.,
2010; Vrieling et al., 2011, 2013; Lobell et al., 2012, 2013).
However, remote sensing does not measure directly the timing of
specific crop development phases. Thus, approaches to estimate
crop phenology from remote sensing data are typically not
linked to environmental variables which drive crop development;
often include calendar time as a predictor variable; are often
arbitrary measures of crop green up, green down, and length of
growing season; and susceptible tomisdetection of a phenological
transition (Brown and de Beurs, 2008).

Reflecting the above concerns, studies have sought to
include environmental variables (such as temperature or relative
humidity), which drive crop phenological development, into
remote sensing based models of crop growth dynamics (De Beurs
and Henebry, 2005; Brown and de Beurs, 2008; Duveiller et al.,
2013). De Beurs and Henebry (2005) and Brown and de Beurs
(2008) trained quadratic regression models expressing NDVI as
a function of accumulated growing degree days (AGDD) and
accumulated relative humidity (Arhum), respectively. Thus, crop
development observed via VIs is not represented as a function
of calendar time but of time crops are exposed to environmental
variables which drive crop growth. In these models the intercept
reflects crop greenness at low AGDD or Arhum, the slope
parameter reflects the time (in units of AGDD or Arhum) to
reach peak VI (or peak biomass), and the quadratic parameter
determines the shape of the crop growth trajectory and length-
of-season (De Beurs and Henebry, 2005). The advantage of
these models are that they are tied to ecological theory and
can be applied to VIs without the need for smoothing raw data
(Brown and de Beurs, 2008). Duveiller et al. (2013) demonstrate
that plotting multi-temporal LAI and green area index (GAI)
(derived from MODIS and SPOT data) against AGDD over
wheat croplands generates smoother crop trajectories than when
plotted against calendar time.

However, the gains of incorporating environmental variables
with remote sensing observations to estimate crop phenology
is dependent upon understanding the environmental factors
constraining (or driving) crop growth and development. For
example, in some instances croplands are moisture-limited
(Brown and de Beurs, 2008), temperature-limited (Lobell et al.,
2012; Duncan et al., 2014a), or nutrient-limited (Tittonell and
Giller, 2013). Therefore, identifying the correct environmental
variables, or mix of environmental variables is critical to
accurately modeling crop phenology. This is problematic in
smallholder croplands on numerous counts due to the complex
interplay of factors limiting crop growth, the spatial variability
of these factors, and the availability of data required to
resolve these issues at suitable spatio-temporal resolutions.
Furthermore, the computation of AGDD is crop specific with
regards to the values of the base temperature above which
crop growth occurs and the values of critical temperatures
which if exceeded are detrimental to crop growth (Hatfield
et al., 2011; Gourdji et al., 2013; Teixeira et al., 2013). Also,
a crop’s sensitivity to temperature will vary throughout the
growing season as it passes through different development
stages (Hatfield et al., 2011).When computing AGDD for wheat
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croplands over Belgium Duveiller et al. (2013) do not specify a
critical upper limit for temperature; if this method was directly
applied in many of the smallholder croplands in the tropics it
could miss out the harmful impact of extreme heat on crop
growth (Lobell et al., 2012; Teixeira et al., 2013; Duncan et al.,
2014a). Given the crop specific nature of these temperature
values crop specific maps are required which are challenging to
produce in heterogeneous smallholder croplands. Whilst linking
environmental variables with remote sensing observations to
monitor crop phenology offers a theoretical advance, its practical
application in smallholder landscapes also remain challenging.

Approaches to estimating crop phenology from remote
sensing, either using multi-temporal VIs in isolation or in
combination with ancillary environmental variables, only enable
estimates at the pixel level. In reality crop development phases
occur at the plant scale which may not be universal across a
pixel. Thus, it is difficult to validate the different approaches
in the literature for estimating crop phenological parameters
(Brown and de Beurs, 2008). Lobell et al. (2013) validated wheat
crop start-of-season estimates, defined via a threshold approach,
observed from EVI temporal profiles derived fromMODIS using
LAI generated from CERES crop simulation models. You et al.
(2013) compared four approaches to estimate start-of-season
and end-of-season with ground based measurements, across a
range of crop types, in China; the four approaches were a 50%
threshold between minimum and maximum NDVI (White and
Nemani, 2006), curvature-change rate method (Zhang et al.,
2003), maximum slope method (Yu et al., 2003), and threshold
values for NDVI, slope of the NDVI temporal profile, and
NDVI difference between NDVI at a given time-step and base
(bare ground) NDVI trained using local observation data (You
et al., 2013). All methods performed poorly in estimating end-
of-season; however, for both start-of-season and end-of-season
the thresholds trained with local observation data were the most
accurate. Sakamoto et al. (2005) compared ground observations
of planting date, heading date and harvesting date with estimates
retrieved via inflection points andmaximum values fromMODIS
EVI data smoothed via wavelet or Fourier transforms. Except
for heading date, crop phenology retrievals from the wavelet
transform had a noticeably lower root mean square error (RMSE)
when compared to ground observations; however, Sakamoto
et al. (2005) concluded the error in estimation dates was still
too great for inclusion into crop simulation models. Brown
and de Beurs (2008) compared start-of-season estimates derived
from NDVI-Arhum regression models (trained using NDVI
data from AVHRR, SPOT, and MODIS sensors) with rainfall
based start-of-season estimates and farmer reported sowing and
emergence dates. The NDVI based estimates were closer to
farmer reported sowing and emergence dates than rainfall based
estimates; start-of-season estimates based upon 8-day composites
of MODIS data had a lower RMSE and a higher R2 compared
to 16-day MODIS composites and GIMMS AVHRR imagery
when regressed against ground observations (Brown and de
Beurs, 2008). However, Brown and de Beurs (2008) highlight
sources of uncertainty in validating remote sensing-derived crop
phenology: different farmers may have different interpretations
of sowing or emergence dates, and averaging farmer reported

sowing dates to a larger regionmay preclude the ability to validate
the effect of image spatial resolution on crop phenology retrieval.

Thus, there is not a clear optimum approach to generating
temporal profiles of crop growth or retrieving crop phenological
parameters. This is compounded by challenges in validation,
including: identifying what remote sensing-derived phenology
metrics are observing, identifying suitable ground based metrics
for validation, overcoming the different spatial scales at which
satellite sensors observes crop growth dynamics and phenological
developments occurring at the plant scale on the ground, and
availability of ground based validation data over smallholder
croplands. There is the potential that differences in methods
used to generate crop growth dynamics from remote sensing
data and to estimate crop phenological parameters will influence
the results of yield gap analysis. It is important to be able
to discriminate between observed yield variation which is real
and yield variation which is an artifact of data processing and
smoothing techniques.

Spatial Resolution
Typically, remote sensing-derived crop growth dynamics and
phenology is monitored over croplands at a 250m (Wardlow
et al., 2007) or 500m spatial resolution (Xiao et al., 2005,
2006) or with even coarser spatial resolutions (Rojas, 2007;
Vrieling et al., 2011, 2013). This presents significant challenges
in smallholder landscapes where average plot sizes can be far
smaller than pixel sizes of the remote sensing data. For example,
in Bihar, Odisha and Madhya Pradesh, some of India’s poorest
and most food insecure states (Menon et al., 2009; Pritchard
et al., 2013), 91, 72, and 44%, respectively, of farm holdings are
marginal (Ministry of Agriculture, 2014). At the national level
in India, 67% of land holdings are marginal. Marginal holdings
are less than 10,000m2 (Ministry of Agriculture, 2014). Whilst
the majority of farmers in India have land holdings smaller than
10,000m2 the typical footprint of a 500m gridded MODIS pixel
is 250,000m2. Contrary to this, in the US. Great Central Plains
where Wardlow et al. (2007) demonstrated that crop phenology
can help discriminate crop types the field sizes are 325,000m2 or
larger encompassing at least five 250m spatial resolution MODIS
pixels.

In smallholder landscapes this mismatch in scale is
particularly problematic, firstly, the spatial resolution of
pixels upon which spectral reflectance is recorded in gridded
products (such as level 2G or level 3 MODIS or L1b and
above MERIS products) will often cover a mix of land uses,
fields and heterogeneous cropping patterns (Wolfe et al., 1998;
Tan et al., 2006; Gómez-Chova et al., 2011). Thus, a single
value (e.g., spectral reflectance, VI, LAI etc.) recorded within
a pixel may mask locally important gradients in productivity
and confound the ability to accurately estimate crop specific
yield; this issue is clearly illustrated in the upper two panels of
Figure 3 where one gridded MODIS pixel would encompass
a mosaic of different fields and land cover types from ponds,
forest, human settlement and fields. Furthermore, the pixels
contained in gridded products, such as those depicted in
Figure 3, are idealistic representations of the actual satellite
sensor observation footprints (Wolfe et al., 1998; Tan et al., 2006;
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FIGURE 3 | The upper panel depicts grid cell outlines, in Sinusoidal

projection, from MODIS 250m level 2G and 3 products over a

smallholder landscape. The middle panel shows the corresponding

spectral reflectance in the near-infrared wavelength reported for each grid

cell in the MOD09GQ product. The bottom panel shows the observation

coverage (obscov) values for the same grid cells. This image corresponds to

smallholder croplands near the Bhitarkanika mangrove forests in Odisha,

India (Sources: Esri, DigitalGlobe, GeoEye, i-cubed, Earthstar Geographics,

CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP,

swisstopo, and the GIS User Community).

Duveiller et al., 2011; Gómez-Chova et al., 2011). The spatial
resolutions of grid cells (for level 2G or level 3 MODIS products)
and satellite sensor observation footprints will be the same at
nadir, but observation footprint sizes will vary off-nadir, whereas
pixel dimensions in grid cells will remain consistent across
the landscape (Huang et al., 1998; Tan et al., 2006; Duveiller
et al., 2011). For whiskbroom sensors, such as MODIS, the
observation footprint increases with view zenith angle (Tan
et al., 2006), but, misalignment and variation in observation
footprints relative to uniform grids of processed products also
impact pushbroom sensors, such as MERIS (Gómez-Chova et al.,
2011). Thus, often, values in gridded pixels will be computed
from a mix of radiance from adjacent regions which are also

composed of a mix of land covers in smallholder croplands.
This effect can be depicted by mapping observation coverage
(obscov), which is the ratio of the intersection area, defined as
the intersection area between the grid cell and the observation
footprint, to the total area of the observation footprint (Tan et al.,
2006). In the lower panel of Figure 3 the obscov is presented
which illustrates the extent to which the area of the gridded
pixel contributes to the observation value they report. Lobell
(2013) highlights the problems of mixed land covers when using
remote sensing in field scale yield gap analysis; he draws upon
the challenge of generating accurate remote sensing estimates
of crop yields in Sub-Saharan Africa where intercropping is
common.
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When using coarse spatial resolution remote sensing data
over relatively complex landscapes sampling methods have been
proposed to select pixels of a specified purity (i.e., measured
spectral reflectance is predominantly from a homogeneous
land cover) for operational applications (e.g., monitoring crop
development; Duveiller et al., 2008; Duveiller and Defourny,
2010). Over agricultural landscapes in Romania Duveiller et al.
(2011) generate crop-specific, regional, multi-temporal profiles of
GAI fromMODIS 250m imagery using pixel purity, observation
coverage (obscov), and view zenith angle as criteria of selection
for high quality, representative pixels. This approach has been
extended to generate a longer-term time-series of GAI at the
regional scale over croplands in Belgium (Duveiller et al., 2012),
the ability to generate long-term data records offers advantages in
being able to detect the occurrence of temporally persistent yield
gaps and distinguish yield gaps from inter-annual yield variation
(Lobell et al., 2010; Lobell, 2013).

In a similar vein, Bolton and Friedl (2013) discarded MODIS
pixels with less than a 50% coverage of croplands and weighted
the remaining pixel VI-values by the proportion of pixel
cropland coverage when estimating crop yields. However, there
are limitations to adopting these approaches in smallholder
croplands. Monitoring crop growth and phenology from a
sample of coarse spatial resolution pixels requires that enough
pixels fall within fields; as discussed above pixel footprints
from sensors with sufficient temporal resolution to resolve
crop phenology are still coarse relative to the field dimensions
in smallholder landscapes. Also, as demonstrated in Figure 4,
using smallholder croplands in eastern India as an example,
it is unlikely that there will be a large proportion of MODIS
500m pixels with at least 50% cropland coverage. Furthermore,
even if a pixel covers multiple fields of the same crop, in
a smallholder landscape within-pixel variability will remain
with regards to the timing of crop phenology, cultivars sown,

FIGURE 4 | Histogram of cropland fraction in MODIS 500m pixels

derived from the MOD09A1 product over Jagatsinghpur and

Kendrapara districts in Odisha, India. The cropland fraction within a

MODIS 500m pixel was derived from Landsat 30m cropland map from the

2009 kharif rice growing season.

management practices, and local gradients in crop yield (Tittonell
and Giller, 2013). A recent map of global field sizes at a 1 km
spatial resolution has been produced by Fritz et al. (2015)
and is available at http://cropland.geo-wiki.org/; this product
may open up opportunities for large-scale testing of how
fragmented field patterns in smallholder landscapes confounds
crop growth monitoring, phenology retrieval and subsequent
yield estimation.

Sampling from a population of pixels, or discarding pixels
based upon certain criteria reduces the ability to capture
spatial variability in crop yields. For example, Funk and Budde
(2009) and Bolton and Friedl (2013) aggregated yields estimated
utilizing crop phenology derived from selected MODIS pixels
to larger administrative units. The sampling, or selection,
of high-quality MODIS observations to estimate crop-specific
biophysical parameters captures regional growth dynamics
(Duveiller and Defourny, 2010; Duveiller et al., 2011, 2012).
However, such sampling approaches from moderate spatial
resolution imagery come at the expense of the required spatial
detail to observe local yield variability in smallholder croplands;
often yield gaps will occur within the pixel footprints of moderate
resolution sensors or will occur in pockets across a landscape
which sampling approaches may fail to detect. Whilst these
approaches are useful for inter-regional assessments of yield
gaps they cannot reveal intra-regional or local variability in
yield. For smallholders this local variability in yield is often
important where crop yields vary over small distances (Tittonell
and Giller, 2013) and, where, due to non-linear returns on assets
a “relatively” small change in crop yield can have significant
implications for levels of wellbeing (Carter and Barrett, 2006;
Tittonell, 2014). Furthermore, the mismatch between the spatial
resolution at which it is possible to observe crop growth and
phenology and the size of fields and landscape heterogeneity in
smallholder systems makes it difficult to accurately estimate crop
yield. This inhibits identification of intra-cropland yield gaps
and has obvious implications for the operational uses of crop
phenology derived from remote sensing in this context.

Reflecting the discussion above, the challenge of using
crop phenology-based approaches to estimate crop yield in
smallholder landscapes, based on the current spatial resolution of
suitable remote sensing data is evident in Figure 5. In Figure 5,
a crop phenology-based approach to estimate peak WDRVI and
EVI-values (using 500m spatial resolution MOD09A1 MODIS
data) across a smallholder rice cropping landscape in coastal
Odisha, eastern India, captures a small amount of variation
in rice crop yield (R2 = 0.45 and 0.15, respectively). The
method used to estimate rice crop yield here is similar to
that employed by Bolton and Friedl (2013) over croplands in
the USA; however, the relationship between EVI and maize
and soybean yields in the USA approached R2 = ∼0.6. The
distinction here is that these croplands are “intensive and
extensive” with limited contamination from other land covers
or mixed cropping mosaics (Bolton and Friedl, 2013, p. 76)
compared to the predominantly small and marginal croplands of
Odisha (Agriculture Department, 2013). The launch of Sentinel-
2, and potential fusion with Landsat and other imagery, may
overcome some of these limitations experienced by using current
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FIGURE 5 | The relationship between block-wise kharif rice crop yields

reported via agricultural statistics and block-wise weighted average

peak WDRVI (upper panel) and EVI (lower panel) calculated using

MODIS MOD09A1 data. The weight of each pixel’s peak EVI in the

calculation of block average peak EVI corresponds to the proportion of

cropland within each pixel determined using two Landsat (30m spatial

resolution) crop maps (one from the 2002 kharif season and one from the

2009 kharif season). Here, only pixels with at least 50% cropland cover were

retained for further analysis as in Bolton and Friedl (2013). Rice crop growing

season and peak VI were extracted using a method similar to that outlined in

Dash et al. (2010), but, with adapted thresholds. This analysis was performed

for two districts (Jagatsinghpur and Kendrapara) in Odisha, India, from the

2001–2002 to the 2010–2011 cropping seasons.

coarser spatial resolution remote sensing phenology products in
smallholder croplands.

Causation and Closure of Yield Gaps

Having identified where yield gaps exist, and estimated the
magnitude of yield gaps, the next stage in the logical workflow
to close yield gaps is to understand the underlying causes of
underperforming fields. The timing of crop development stages,
such as planting, anthesis, or grain filling can be correlated to
final crop yield. Using phenology parameters (start-of-season
and end-of-season) extracted from time-series of fAPAR derived
from SPOT-VGT data over the Horn of Africa, Meroni et al.
(2014) computed growing season cumulative sums of fAPAR
(CfAPAR) as a proxy of gross primary production (GPP).
Anomalies in CfAPAR from its average value at a location
were used to detect drought, and the cause of such drought
was identified through associated phenology parameters (e.g.,
late start-of-season shortening growing season length). It should
be noted that detection of drought induced shortfalls in crop
production is distinct from observing temporally persistent
yield gaps; but such an approach could be adapted to identify
where frequent droughts can contribute to long-term cropland
underperformance. Lobell et al. (2013) observed yield declines for
later sown crops using crop phenology derived fromMODIS data
for the wheat crop in north-west India.

Further studies have correlated crop phenology observed over
wheat croplands in North-west India croplands with spatial grids
of temperature data to explain patterns in crop yield declines
(Lobell et al., 2012; Duncan et al., 2014a). These studies showed
that earlier sowing decreased the exposure of crops to the periods
of highest temperatures, and, identified which temperature
variables influence crop performance. In this instance, remote
sensing-derived crop phenology can be used to identify and
explain the causes of yield gaps and suggest a remedy: earlier
sowing. One route to achieving earlier sowing in North-west
India is through zero-tillage; whilst zero-tillage may not result
in increasing potential yields it can provide other benefits to
farmers through reduced input costs (e.g., machine hire and fuel),
reduced exposure to extreme heat events, and more sustainable
agro-ecosystems (especially if zero-tillage is combined with other
resource conserving practices; Gupta and Seth, 2007; Erenstein
and Laxmi, 2008). This suggests that even if yield gaps are not
closed per se; utilizing crop phenology to help target resource
conserving practices can still yield benefits to smallholders. There
is need for certain qualifications here; it has been suggested that
moves toward conservation agriculture will not be universally
beneficial for all smallholders; Giller et al. (2009) discuss the
limitations of conservation agriculture in smallholder farming
systems in Africa.

What the studies by Lobell et al. (2012) and Duncan et al.
(2014a) also demonstrate is the potential to correlate crop
phenological information with other spatial data to explore
causes of yield gaps. Exploring the constraints of climatic
variables on crop yields lends itself to this form of analysis
given spatial gradients in rainfall and temperature, the availability
of gridded climatic data (e.g., WORLDCLIM: http://www.
worldclim.org/; APHRODITE: http://www.chikyu.ac.jp/precip/)
or the ease of interpolating station data to grids at different spatial
resolutions (Hijmans et al., 2005; Xie et al., 2007; Yatagai et al.,
2009; Yasutomi et al., 2011). Alongside integrating climatic data
with crop phenology to explain causes of yield gaps, Franch et al.
(2015) extend the methodology of Becker-Reshef et al. (2010)
by utilizing temperature data to compute AGDD, the heat the
plant is exposed to, to predict peak NDVI (over a month in
advance) and forecast wheat crop yields approximately two and
a half months prior to harvest in the USA, China, and Ukraine.
Thus, the integration of climatic data and remote sensing-
derived crop phenology offers potential to predict within-season
underperformance in croplands. However, the Franch et al.
(2015) study forecasts yield at the administrative unit level and
is not applied to forecast local variability in crop yields typical of
smallholder croplands.

Whilst this analysis may reveal that smallholder croplands
co-occur with certain challenging climates for crop growth
(Brown et al., 2010; Vrieling et al., 2011); often, yield gaps exist
within smallholder croplands and are explained by a range of,
interacting, complex factors (Tittonell and Giller, 2013; Dzanku
et al., 2015). For remote sensing-derived crop growth monitoring
and phenology to shed light on the complex causes of yield
gaps in smallholder croplands it must be compatible with a
range of datasets from different disciplines. Lobell et al. (2002)
combined multi-date maps of crop yield derived from 30m
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spatial resolution Landsat imagery with soil type zone maps
to explore the constraints on yield. Crop yields were grouped
based on soil type and climate (determined by multi-date
imagery capturing inter-annual climate variation); a statistical
approach was then determined to explore the influence of
between-group effects (e.g., soil type) vs. within-group effects
(e.g., farmer-specific management practices) on crop yield. This
work highlighted that most variation in crop yields was explained
by within-group effects, highlighting the significant control of
management practices on field-to-field crop yield as opposed
to larger scale gradients corresponding to soil type. It was
also shown that different management practices resulted in
differential sensitivity to climate impacts upon yield. Field-to-
field variability in yield can also be explained by soil quality,
but at this scale this is likely to be the result of legacies of farm
management decisions (Lobell et al., 2002; Tittonell and Giller,
2013). As mentioned, a recent advance is the generation of a
global map of field sizes at a 1 km spatial resolution (Fritz et al.,
2015) which could be coupled with spatial estimates of crop yield
to assess what constraints field sizes are to realizing potential
yields. This would open doors to large-scale testing of whether,
and where, achieving economies of scale with regards to plot sizes
and associated input/output factors presents barriers to farmers
increasing their production.

As discussed in Section Spatial Resolution, the spatial
resolution at which crop phenology can be estimated reliably
with remote sensing data inhibits its use at the field scale in
smallholder settings. Thus, whilst a phenology-based approach
to monitoring local yield gaps remains limited in this context
it will also be unable to help unpick the drivers of yield
gaps. It is worth noting that single date per growing season
Landsat images were used as inputs in the study by Lobell
et al. (2002). There are further limitations in the utility
of the use of the current state-of-the-art in remote sensing
of crop growth and phenology retrieval over smallholder
croplands. Firstly, there is a requirement for adequate ancillary
datasets to correlate with crop phenology data; if these datasets
are not available or of insufficient quality it reduces the
explanatory value of the phenological information. Secondly,
if crop phenological information can aid detection of local
gradients in crop yield it does not explain what factor, or
interaction of factors, is driving this variation. These factors
can include fertilizer application, livestock interactions, soil
salinity, cultivar type, pests, labor availability, behavioral choices
by farmers, irrigation access and type, local institutions, road
access, and past legacies of management (Tyagi et al., 2005;
Lobell et al., 2010; Enfors, 2013; Tittonell and Giller, 2013;
Tittonell, 2014). A location-specific understanding of these
yield limiting factors is crucial to support effective policy and
agricultural extension workers in delivering interventions which
raise productivity on underperforming farms. Furthermore,
smallholder farms and cropping landscapes are socio-ecological
systems (Enfors, 2013) where farm productivity and potential
productivity display complex and non-linear responses to inputs
andmanagement (Tittonell, 2014). Therefore, effective yield-gap-
closing interventions need to be sensitive to local complexity,
non-linear dynamics and the wider socio-economic and cultural

context (Enfors, 2013). For example, Enfors (2013) highlighted
how water management and conservation tillage interventions
have little impact in fields unless they are coupled with supportive
nutrient, agronomic and institutional environments. Currently,
the information contained within remote sensing observations of
crop growth and phenology estimates is ill suited to supporting
such agricultural interventions, either by farmers or extension
officers, in smallholder landscapes.

As stated by Tittonell and Giller (2013) demarcating zones
of fertility, and estimating the proportion of fields in degraded
states which need long-term rehabilitation, within smallholder
landscapes is crucial to determining the true extent of yield
gaps. Given the large (and often unavailable) data requirements
for estimating zones of fertility and locally occurring potential
yields via surveys or crop simulation modeling in smallholder
landscapes (Tittonell and Giller, 2013) the potential uses of
crop phenology from remote sensing should not be discounted.
Also, as remote sensing measures actual crop yield it offers
advantages in predicting locally attainable yield over methods,
such as experimental plots which may be located on the most
productive land or crop simulationmodels which are constrained
by local data requirements (Tittonell and Giller, 2013).

Looking Forward and Future Research

Whilst the current suite of typical remote sensing products
to monitor crop growth and estimate phenology is limited
(e.g., MODIS, SPOT-VGT) research should focus on testing the
validity of innovative data fusion methods, such as STARFM
which combine the fine spatial detail in Landsat imagery with the
temporal detail in MODIS imagery over smallholder landscapes
(Gao et al., 2006; Lobell, 2013). The STARFM algorithm
downscales MODIS spectral reflectance to a Landsat spatial
resolution based upon a spatially weighted relationship between
Landsat and MODIS spectral reflectance for a pair of images
taken on similar dates (Gao et al., 2006). Other approaches
to data fusion which generate “fine” spatial resolution, time-
series to enable monitoring crop growth dynamics include
linear-mixture models which exploit fine spatial detail in land-
use/land-cover maps or fine resolution imagery with the spectral
and temporal detail in moderate resolution imagery. Zurita-
Milla et al. (2009) and Amorós-López et al. (2013) use linear
mixture models to fuse Landsat imagery, MERIS imagery, and
land-use/land-cover maps to compute VI and monitor crop
growth dynamics and phenology at finer spatial resolutions. The
STARFM approach to generating fine spatial resolution time-
series of spectral reflectance is strengthened with increases in the
numbers of temporally matching pairs of Landsat and MODIS
imagery used as algorithm inputs (Gao et al., 2006; Watts et al.,
2011). With Landsat 8 and Landsat 7 orbits designed to provide
imagery every 8 days (Roy et al., 2014) it increases the likelihood
of being able to match more Landsat and MODIS image pairs
as inputs into data fusion algorithms. This in turn should
enhance capabilities to generate finer spatial resolution temporal
VI profiles over croplands. For all data fusion approaches there is
a need for a quantitative evaluation of how effective data fusion
techniques are in simulating fine spatial resolution crop growth,
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in estimating phenology, in enabling local yield, and yield gap
estimates.

Furthermore, the upcoming launch of Sentinel-2 should
strengthen the research agenda to explore ways to utilize crop
phenology information over smallholder croplands. This could
either be through using Sentinel-2 imagery in isolation, or
combining it with Sentinel-3, MODIS, Landsat 8 or vector
data via data fusion techniques. Looking forward, a strong
theory of remote sensing of crop yield exists which new
approaches to estimating remote sensing-derived crop phenology
can draw upon. However, as demonstrated by Lobell et al.
(2010) discriminating persistent yield gaps from inter-annual
variability requires yield estimates from several years which
presents problems with using Sentinel-2, or Sentinel-2 and
Landsat 8 fusions, over more imminent time scales.

However, such a time-gap provides an opportunity to target
research agendas before these products become operational
in targeting and informing interventions to close yield gaps
within smallholder croplands. Two key research agendas appear
prominent, both linked to extensive validation relative to
the context of application, i.e., the specific characteristics
of smallholder croplands. Firstly, given the relatively “low”
crop yields in many smallholder croplands it is important
to ascertain whether real spatial variation in crop yield is
distinguishable from error in crop yield estimates from new
remote sensing products. Secondly, given the small field sizes
and local landscape heterogeneity in smallholder croplands the
extent to which the geometric accuracy (i.e., do satellite sensor
observations correspond to gridded pixel outputs) of newly
derived crop phenology retrievals confounds spatial targeting
needs evaluation. If these two research agendas can be addressed
then there is the potential to enhance the capability of using
remote sensing to monitor crop growth and derive crop
phenology measures to assist in increasing productivity within
smallholder croplands.

Conclusions

This paper reviews the potential uses of crop phenology derived
from remote sensing platforms in aiding yield gap assessments
in smallholder cropping landscapes. Closing yield gaps in
these contexts is a crucial step toward meeting required food
demand and reducing food insecurity, with potential positive side
effects for other development goals, such as poverty alleviation.
Phenology-based approaches can increase the accuracy and
thematic detail in crop area, crop type and cropping intensity
classifications. The use of spatial-crop phenology information,
when the correlation between spectral reflectance and crop

yield varies through a growing season, has clear advantages for
remote sensing-based yield estimation. These advantages have
the potential to feed into and improve approaches to estimating
yield gaps from remote sensing data.

However, most smallholder croplands are located in regions
where obtaining reliable, repeat remote sensing observations is
challenging due to atmospheric aerosols and cloud cover. Also,
the spatial resolution at which remote sensing data is available
to monitor crop growth dynamics and estimate phenology is

too coarse to capture the heterogeneity and local variability of
production in smallholder landscapes. These factors confound
the use of phenological approaches to identifying yield gaps in
smallholder contexts, especially when yield variation often occurs
on a field-to-field basis. The spatial coverage of remote sensing-
derived phenology datasets enables correlation with ancillary
spatial datasets to explore the causes of yield gaps. However, this
approach is undermined by (1) the requirement for a detailed
number of spatial datasets with sufficient local detail to capture
the complex causation of yield gaps in smallholder contexts and
(2) the poor performance of estimating crop phenology at the
finer scales of yield variability within smallholder landscapes.
Thus, on a theoretical level the information contained within
crop phenology could assist remote sensing-based yield gap
analysis. However, in smallholder landscapes the characteristics
of available remote sensing data used to estimate crop phenology
is ill suited to yield gap identification or explanation.

The current state of remote sensing-derived crop phenology
estimation can add value to yield gap assessments within larger,
intensive, homogeneous croplands, such as those in the USA
or north-west India. Given the global spatio-temporal coverage
of MODIS and similar products crop phenological information
can assist yield gap assessments between regions. However,
the accuracy and applied value of remote sensing-derived crop
phenology information within smallholder croplands must be
treated with caution.
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