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Chapter

The Potential of Sentinel-2 
Satellite Images for Land-Cover/
Land-Use and Forest Biomass 
Estimation: A Review
Crismeire Isbaex and Ana Margarida Coelho

Abstract

Mapping land-cover/land-use (LCLU) and estimating forest biomass using satellite 
images is a challenge given the diversity of sensors available and the heterogeneity 
of forests. Copernicus program served by the Sentinel satellites family and the 
Google Earth Engine (GEE) platform, both with free and open services accessible 
to its users, present a good approach for mapping vegetation and estimate forest 
biomass on a global, regional, or local scale, periodically and in a repeated way. 
The Sentinel-2 (S2) systematically acquires optical imagery and provides global 
monitoring data with high spatial resolution (10–60 m) images. Given the novelty 
of information on the use of S2 data, this chapter presents a review on LCLU maps 
and forest above-ground biomass (AGB) estimates, in addition to exploring the 
efficiency of using the GEE platform. The Sentinel data have great potential for 
studies on LCLU classification and forest biomass estimates. The GEE platform is a 
promising tool for executing complex workflows of satellite data processing.

Keywords: GEE, forest classifiers, accuracy, mapping

1. Introduction

In the last decades, remote sensing techniques have been applied in several studies 
of monitoring and classification of agricultural, forest, environmental, and socioeco-
nomic resources [1–5]. The information extracted by a set of sensors can offer informa-
tion on growth, vigor, dynamics, and diversity of vegetation cover [6–8]. In the LCLU 
classification and forest biomass estimation studies, the proper selection of the sensor 
is crucial, given the variation of spatial, radiometric, spectral, and temporal resolu-
tions available [9]. For these studies, the use of Sentinel-2 images and a free processing 
platform lack information about the advantages and disadvantages between different 
landscapes, classification methods, and biomass estimation models.

In this way, this chapter is organized as follows: Section 2 present the satellites 
image classification and the potential of the Sentinel-2 satellites; Section 3 describes 
forest LCLU maps and the assessment of accuracy; Section 4 presents the GEE plat-
form, advantages, and disadvantages; Section 5 describes the estimative of biomass 
via remote sensing; and Section 6 concludes with a platform performance overview 
and an outlook for the future.
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2. The potential of image classification and the Sentinel-2 satellite

The recognition of different LCLU by remote sensing is a key parameter in the 
application and assessment of socioeconomic and environmental changes at local, 
regional, and global scales. The accurate and reliable LCLU mapping, represented 
by a thematic map, can be obtained through the satellite images classification [10]. 
In studies with a focus on forest resources, forest classification provides useful 
information in various decision-making processes for forest planning and manage-
ment [11]. On a map, this classification becomes essential for the implementation 
of monitoring studies of natural and/or artificial forests, offering support in the 
assessment of forest protection, ecology, and quantification of carbon and biomass 
at different scales. In this way, data from several sensors that operate in the optical 
range of the electromagnetic spectrum enabled important advances in the methods 
of mapping and monitoring different vegetation covers.

Since the launch of the first terrestrial resource satellite in the 1950s, the analysis 
of vegetation data via remote sensing has been improved with advances in technol-
ogy. Currently, images obtained, for example, by Landsat, SPOT, MODIS, AVHRR, 
ASTER, CBERS QuickBird, IKONOS, WorldView, RapidEye, Radar, LiDAR, ALOS 
PALSAR, and Sentinel, can produce thematic maps. In the vegetation classification 
process, the selection of satellite images depends on factors such as the objective of 
the study, availability of images, cost, level of diversity in the types of cultures, and 
extension of the study area [12]. In general, radar data are used to model the vertical 
structure of a forest and data from the multispectral optical sensors are the most used 
in the literature to model the horizontal structure of vegetation [13]. Multispectral 
sensors are capable of capturing vegetation characteristics, such as species composi-
tion, canopy cover, growth stage, and health of some forest stands [13]. Thus, dif-
ferent spatial, spectral, and temporal parameters that allow the extraction of robust, 
consistent, and comparable long-term data series must be taken into account due to the 
better cost-benefit ratio [14, 15]. In summary, some of the sensors used for monitor-
ing vegetation were listed in Table 1. More information about the costs for satellite 
imagery can be found in http://www.landinfo.com. The sensors with medium and high 
spatial resolution differ in terms of the number of bands, temporal resolution, scale, 
and costs. Depending on the classification objective, the scale is a factor to consider, 
because, when choosing a sensor with a high spatial resolution (<5 m), the cost and 
complexity of the classification can increase [16]. In addition, with a larger set of data 
with spectral variability for the same class, the training time can affect the computa-
tional cost [17]. Thus, the spatial resolution must be considered as an important factor, 
because it must be adequate to the size of the object to be identified [16]. With images 
from S2, it was observed that the fragmented elements of the landscape decreased the 
accuracy of the classification by using the spatial resolution of 10 m, due to increased 
bias resulting from the total composition of pixels at the fragment edges [11].

In multispectral images, vegetation analysis can be obtained by reflectance 
information resulting from different wavelength bands [visible (VIS), near-infra-
red (NIR), and short-wave infrared (SWIR)]. The reflectance of the light spectra 
emits different signals according to the biophysical variables of the vegetation [18]. 
Among the wavelengths, the emissivity (equivalent to the absorption capacity 
in the thermal wave range) most used in the analysis of vegetation is in the near 
and middle regions of the infrared [19]. Various combinations of bands have been 
studied over decades to derive the biophysical variables of vegetation, resulting in a 
range of vegetation indices (VIs). In the LCLU classification, VIs are used to extract 
quantitative information from the contrast of intrinsic characteristics of spectral 
reflectance of vegetation [20]. VIs are useful to characterize the vigor of vegeta-
tion, pigments, sugar content and carbohydrates, high plant temperature levels, 
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Sensor group Satellite/sensor No of bands Spatial resolution 

(m)

Temporal resolution 

(day)

Scale of 

applicationa

Data distribution 

policy (cost)

Data availability

Medium spatial 
resolution sensor

SPOT 4–5 2.5–20 26 L-R Yes 1986

Aster 14 15–90 16 L-G No 1999

IRS-P6-LISS III 4 23.5 24 L-G No 2003

CBERS-4 4 5–20 52–26 L-R No 2014

Landsat-8 11 15–100 16 L-G No 2013

Sentinel-2 13 10–60 5 L-R No 2015

High spatial 
resolution sensor

IKONOS 5 1–4 1.5–3 L-R Yes 1999

QuickBird 5 0.61–2.24 2.7 L Yes 2001

WorldView 4–17 0.31–2.40 1–4 L Yes 2007

GeoEye 4 0.46–1.65 2.6 L Yes 2008

RapidEye 5 5 1–5.5 L-R Yes 2012
aL-G: local to global; L-R: local to regional; L: local.

Table 1. 
Main characteristics of the remote sensors used for LCLU classification: spectral (number of bands), spatial and temporal resolution, data cost, the scale of application, and data availability.
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and abiotic/biotic stress levels, among others [21]. Thus, VIs have become com-
monly applied because of computationally simple analysis of vegetation on global, 
regional, or local scales [20].

The forest classification is a complex task, and searching for information using 
individual bands can result in low accuracy models. The model input data can be 
represented by spectral bands combined with auxiliary bands (vegetation indices), 
the use of image transformation algorithms, such as principal component analysis 
(PCA), and image textures [13]. The combination between them helps to distin-
guish complex vegetation arrangements, improving thematic area estimates [13]. 
The vegetation indices are mathematical functions that combine two or more spec-
tral bands [22]. The use of vegetation indices is widely discussed in the literature 
because they improve the classification accuracy. The VIs can reduce atmospheric 
interference and better distinguish the vegetation characteristics such as plant 
vigor, water content, sensitivity to lignin, and forest above-ground biomass (alive 
or dead) [23, 24]. The normalized difference vegetation index (NDVI) has been 
used for many years in classification studies, due to its high correlation with photo-
synthetically active vegetation and sensitivity to discriminate between vegetation, 
nonvegetation, wet, and dry areas [5, 21, 23–25].

The texture data are also important in classification studies, as it contains 
information of groups of pixels with similar intensity properties describing the 
distribution and spatial arrangement of repetitions of tones. It has been used in 
the quantification of the variability of pixels in a neighborhood [26]. The texture 
information explores information such as crown-internal shadows, size and crown 
shape, in coarser scales [18]. Several studies point out that the integration of texture 
measures increase the classification accuracy by improving the separability between 
classes through reducing the spectral confusion effects between spectrally similar 
classes [10, 27]. The incorporation of texture metrics can improve classification 
accuracy by up to 10 to 15% [18]. Textural information can be derived from various 
methods that use multiple functions of image bands in different window sizes [21]. 
The methods can be categorized into four main groups being based on structure, 
statistics, model, and transformation. As an example, we can mention the local sta-
tistics (that describe the moments of a neighborhood of individual pixels in a region 
of the image) and the measures of the gray level co-occurrence matrix (GLCM) 
(statistics set that characterize the distance and the angular relationships between 
pixels) [28]. In the LCLU classification, second-order GLCM texture measures have 
been the most used textural characteristics for characterizing the relative frequen-
cies between the brightness values of two pixels connected by a spatial relationship 
[29]. However, studies that incorporate the combination of vegetation indices with 
image texture measurements may contribute more to improvements in classifica-
tion accuracy than when they are used separately [18].

There are different classification approaches; a class can be represented based on 
classifiers pixel by pixel [30], per object [30], and per sub-pixel [31]. In the pixel-
by-pixel classification, only spectral information of each pixel is used separately, 
to represent a certain class [30]. In object classification, the image segmentation is 
performed based on a group of pixels with similar properties, in which the algo-
rithm examines the texture and the spectral response of the object as a basic unit, 
instead of individualized pixels [19]. The sub-pixel mode consists of identifying 
within a pixel the proportion of each type of LCLU, modifying a classification in a 
resolution with clear limits, without assigning mixed pixels to a dominant class [31].

In the LCLU mapping, the right choice of a classification method is essen-
tial to obtain good accuracy of representing the thematic map in an image [9]. 
Traditionally, the classification methods used can be supervised or unsupervised 
classification [32]. In particular, in supervised classification, it can be applied 
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parametric (e.g., linear and multiple) and nonparametric [e.g., the nearest neighbor K 
(K-NN), artificial neural network (RNA), random forest (RF), decision trees (DT), 
and support vector machines (SVM)] models [13, 33]. In the parametric models, 
the results are restricted, for example, to unimodal data, by assuming a relationship 
between the dependent and independent variables with an explicit model structure 
[13]. However, the nonparametric supervised classification has been the most used 
method in classification studies based on remote sensing data due to the more 
robust approach [33]. Thus, the supervised classification based on machine learning 
achieves better overall accuracy, due to the ability to deal with heterogeneous images, 
such as forest scenery [34–36]. Based on the training samples defined by the user, the 
algorithm searches for pixels belonging to each class [30]. The classifiers learn from 
the database and are efficient in identifying the nonlinearity of the data, noise in the 
samples, and can use less computation time [34].

In special, the Sentinel-2A (S2) launched in 2015, result from the Earth obser-
vation mission developed by the European Space Agency (ESA) as part of the 
Copernicus program, has been designed to support global monitoring for environ-
ment and security (GMES) [37]. The Sentinel-2 wide swath high-resolution Multi-
Spectral Instrument system (MSI) aims to obtain information on the monitoring and 
management of terrestrial surface and provides continuity of the SPOT and Landsat 
missions [37]. With the wide coverage (swath width of 290 km) and minimum 5-day 
global revisit time (with twin satellites in orbit), the sensor becomes an extremely 
useful monitoring product for studies such as LCLU changes and environmental 
impacts [23]. The main level 2A output allows the use of orthoimage with corrected 
reflectance at the bottom-of-atmosphere (BOA) [38]. The MSI from optical sensor 
has 13 spectral bands, with three spatial resolutions, four bands with 10 m, includ-
ing visible and near-infrared (NIR), six bands with 20 m, including four red-edge 
bands, two in the SWIR region, and three bands with 60 m (Figure 1) [39, 40].

The multispectral S2 data have several advantages over monitoring satellites avail-
able. In particular, Landsat and Sentinel-2 data are now frequently used in monitor-
ing and management studies, to meet the demand for attributes scale data with easy 
access [16]. The S2 has red-edge spectral bands of longer wavelength range, essential 
in vegetation analysis [41]. In addition, the spatial resolution of this satellite can be 

Figure 1. 
Multispectral bands of the Sentinel-2 in 10, 20, and 60 m spatial resolution and their wavelengths.
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compared to commercial SPOT or RapidEye systems, surpassing the spatial resolu-
tion of the MODIS 250 m [41]. The Sentinel-2A satellite imagery can be acquired for 
free at the Sentinel Hub (https://scihub.copernicus.eu/). For the image processing, 
the ESA developed the Sentinel Application Platform (SNAP) software. It is a tool 
available to analyze satellite information for free, specialized for the Sentinel series, 
has a performance comparable to that attained with other software’s (e.g., QGIS or 
ENVI) [42], and has a discussion forum for consultations [43]. For these reasons, it 
seems to be justified to explore the potential of Sentinal-2 data for studies in forest 
monitoring [24] such as forest succession [2] and wildfire control [44], forest clas-
sification [11], forest management [45], and biomass estimation [46].

3. Maps of forest LCLU and accuracy assessment

In image classification, information on the spectral resolution of the sensors is 
also important to provide data on vegetation reflectance [25]. This is possible because 
each species emits an intrinsic electromagnetic wave according to chemical contents 
and morphology such as leaf structure, water content, pigments, carbohydrate 
and aromatic content, and proteins, among other factors [21]. In a light spectrum, 
remote vegetation detection is based on the ultraviolet, visible near, and medium 
infrared regions [47]. In the species, identification by remote sensing data requires 
attention, because there is spectral variability within and between healthy tree spe-
cies, which can lead to an incorrect classification and hinder statistical assessments 
[48]. The spectrum can change, for example, with the differences in illumination, 
shadow effects, and during the seasons and growth periods of trees [48].

Generally, in the LCLU classification, the forest classes are considered more 
heterogeneous than the water surface, the exposed soil, urban and agricultural 
classes. The complexity of a forest canopy comes from a surface full of lighting and 
shading fluctuations [49]. The variability between forest classes can directly change 
the spectral response reflected in the images influenced by several parameters such 
as age, season, defoliation, the density (e.g., number of trees and basal area), canopy 
cover, and understory [49, 50]. In remote sensing, several studies show that the gain 
in differentiation between species increases with the wavelength, showing a greater 
correction with the SWIR region [11, 46, 51]. As an example, we can mention the 
spectral differentiation between conifer needles and broad (flat) leaves. In general, 
the biggest difference between them is in transmittance and reflectance in the infra-
red region [51]. In relation to broad leaves, conifer needles have less transmittance 
at all wavelengths (greater absorption) and low reflectance in the SWIR region 
[11, 16, 37, 42, 43]. This effect is due to the greater sensitivity to water absorption 
which in conifers is deeper [51], explained by the difference in anatomical structure, 
biochemical composition, and thickness of the leaves, for example [11, 23, 39]. 
According to some studies, obtaining accurate thematic maps of the Mediterranean 
ecosystems multispectral bands of the Sentinel-2 in 10, 20, and 60 m spatial resolu-
tion and their wavelengths is a challenge, due to its complexity derived from the 
variability of tree density per unit area and similar spectral behavior [52, 53]. In the 
montado system, where there is a higher occurrence of holm oak and cork oak, in 
pure and mixed stands, with high spatial variability in tree densities, the effect of 
mixed pixels can decrease the accuracy of a classification depending on the spatial 
scale and resolution [54–56]. When using Landsat-8 images, the montado class can 
be classified as an agricultural class and vice versa, because some montado areas 
with 10 to 30% tree density can be masked by the high reflectance of the bare soil 
[57]. On the other hand, the montado areas with a tree density above 50% can be 
confused with the olive grove classes due to spectral proximity [57]. When using 
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Sentinel-2 images for canopy estimation of the montado system, it was observed 
that the use of red-edge bands, integrated in seven vegetation indices, was essential 
and sensitive in the vegetation properties evaluation during the summer, improving 
the tree crown coverage estimates [56]. The classification of seven forest species in 
Germany also achieved improvements in accuracy by including the SWIR bands 
(B11 and B12), one on the red border (B5) and two on the visible border (B2 and 
B4), using Sentinel-2 images and the RF algorithm [49]. Thus, one of the ways to 
capture the spectral confusion that can interfere with the results of a thematic map 
is through the evaluation of the classification model’s accuracy.

In forest classification studies, the assessment of accuracy is necessary to 
validate a classified image because the estimates or forecasts can present errors and 
uncertainties [58]. The most common way to express the accuracy map is by com-
paring the final product area percentage with the reference data of an image. This 
statement is derived from one of the most used approaches to define the accuracy 
of the classified data, expressed in the form of the confusion matrix and/or contin-
gency matrix [36]. Through this analysis, it is possible to generate information on 
overall accuracy, user’s and producer’s accuracy, and Kappa coefficient (k) [24, 59, 60].  
The confusion matrix is a cross-tabulation, which correlates the LCLU classes in 
rows and columns, with reference or test data (usually represented by columns) 
being compared with classified or training data (usually represented by lines) [58]. 
In the matrix, the diagonal values indicate the number of pixels in the agreement 
between two class sets [61].

The overall accuracy of the thematic maps is defined by the division of number 
of the pixels classified correctly by the total number of samples. However, with the 
advances in remote sensing technology, using a computational classification in the 
landscape complexity, the classification standardization must be analyzed with 
caution. The overall accuracy is not always representative of the individual class’s 
accuracy, that is, the high overall accuracy map does not guarantee high accuracy for 
the individual classes [62]. When assessing the accuracy of classification, the overall 
accuracy assumes a minimum value and, in each class, a value with comparable preci-
sion [63]. Therefore, to obtain more detailed accuracy information, the individual 
class accuracy of LCLU can also be derived from the confusion matrix. Through 
matrix analysis, the user’s and producer’s accuracy points out the errors of omission 
and commission, respectively. In the producer’s accuracy, the user has the oppor-
tunity to evaluate the number of the pixels correctly classified in the interest class. 
The omitted pixels that have not been classified outside the interest class are called 
omission errors [58]. On the other hand, the user’s accuracy indicates the percentage 
of pixels in a classified image that really represents the class on the ground, certifying 
the classification, in this case measuring commission errors [58, 64, 65]. The Kappa 
coefficient is used to describe the possibilities of casual agreement between predicted 
values and field data [66]. The K values varied from 0 to 1, where the closer to 1, the 
better the perfect agreement between the ground truth and the classified image [66].

In the analysis of thematic mapping, it is vital that accuracy is the best pos-
sible for each particular case, avoiding interpretation errors [67]. However, there 
is still no record of a preestablished minimum limit in terms of accuracy, because 
the reliability of a map may vary depending on the study application [65, 68, 69]. 
Anderson et al. [70] mentioned that an accuracy of 85% in LCLU classification 
maps is frequently accepted. When using MODIS images with a spatial resolution 
of 1 km in classification studies, Thomlinson et al. [28] defined a minimum value 
of 85% for overall accuracy and 70% for the classes, due to the difference in errors 
between spatial and thematic accuracy. The United Nations Framework Convention 
on Climate Change (UNFCCC) does not provide any limit to the accuracy of the 
data for the construction of forest reference levels [65]. Despite attempts, defining 
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this value as a goal may be inappropriate and not represent reality in front of the 
challenges of the distinction of heterogeneous classes at different spatial resolu-
tions and scales [69]. Furthermore, a classification study may be more interested in 
analyzing the accuracy of a particular class and disregarding others [71].

In fact, there are many studies with different classifiers that can obtain results 
with good accuracy [71]. Given the complexity of image classification, there are 
a variety of classification methods using classifying algorithms, with different 
approaches to achieve mapping accuracy [36]. With an emphasis on supervised 
classification, the machine learning algorithms exploited image data by finding 
hidden relationships between various input variables (parameters) with output 
variables (classification results) [72]. Because it is computer programming, training 
samples are essential to identify different spectral areas to represent a class in the 
image. It is based on previous samples or experiences that machine learning has the 
ability to generalize, that is, when trained they are able to produce solutions to an 
unknown data set [72]. The combination of different classification techniques has 
been investigated with support vector machines (SVM) [73], random forest (RF) 
[74], and classification and regression tree (CART) [75]. Despite the use of several 
methods to evaluate the performance of the algorithms, evaluating the classifica-
tion accuracy is the most common one [9]. This assessment is necessary because the 

Algorithms Overall accuracy 

(%)

Example of use Reference

Artificial neural 
network (ANN)

65.7 Mapping of the forest vertical structure 
in Gong-ju, Korea.

[67]

85.0a Discriminating urban forest types in 
Xuzhou, East China.

[60]

Convolutional neural 
network (CNN)

90.4 Forest vegetation types in Jilin 
Province, China.

[77]

97.7 Classification forest in Semarang, 
Central Java, Indonesia

[78]

Random forest (RF) 90.9|93.2b Forest classification in ecosystems in 
Germany and South Africa.

[79]

88.9 Mapping of 11 forest classes in the 
Belgian Ardenne ecoregion, Ardenne, 

Belgium.

[11]

Support vector 
machine (SVM)

80.0 Mapping of the invasive species 
American bramble (Rubus cuneifolius) 
in KwaZulu-Natal province of South 

Africa.

[80]

RF|SVM 84.2|81.8 Mapping of the crop, including high 
and low density forest classes in the 

foothill of Himalaya.

[81]

RF|K-NN|SVM 94.44|95.29|94.13 Classification of six types of land use, 
including forest cover in the Red River 

Delta in Vietnam.

[82]

80.0|74.3|80.3 Classification land use, including 
forest cover in the Dak Nong province, 

Vietnam.

[69]

aANN + vegetation abundance (VA).
bSentinel 1 and Sentinel 2.

Table 2. 
The overall accuracy of LCLU and forest classification with Sentinel data.
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classifier’s performance is affected, not only by the classifier’s own limitation but 
also by the image quality, sample size, and computational resource [9, 76]. Table 2 
shows the overall accuracy obtained by different algorithms in some recent studies 
with forest classification, using Sentinel-2 images. These results aim to provide 
information on the current conditions of vegetation cover. In addition, it shows 
that the relevance of accuracy depends on the objective of the study, without being 
based on standard accuracy [69]. However, it was observed that classifiers have an 
important role in supervised classification. When using improved classification 
methods, such as the use of convolutional neural networks, the overall accuracy is 
generally higher in relation to the other methods that presented medium or fluctu-
ating precision [36].

The studies based on forest species classification involving Sentinel-2 images are 
still recent [23, 33, 83–86]. The classification with S2 images of forest tree species in 
southwestern France obtained an overall accuracy above 90%, for plantations such 
as aspen (Populus tremula) and red oak (Quercus rubra). However, the species that 
presented more spectral confusion with an accuracy of 81 and 74% were the black 
pine (Pinus nigra) and Douglas fir (Pseudotsuga menziesii), respectively [87]. In tests 
with S2 images and the RF for forest type mapping in the Mediterranean, Italy, 
using four vegetation indices (NDVI, SRI, RENDVI, and ARI1) in three phenologi-
cal periods (winter, spring, and summer), Puletti et al. [88] reported that the forest 
categories (pure coniferous forests, broadleaf forests, and mixed forests), had an 
overall accuracy of 86.2% and a Kappa coefficient of 0.86. The user’s and producer’s 
accuracy were above 83% for all the classes. In a study, by Duan et al. [89], they 
obtained overall, producer’s and user’s accuracy of 92.3, 92.3, and 92.2%, respec-
tively, when mapping the distribution of urban forests in China, using eight bands 
and three vegetation indices (NDVI, NDWI, and NDBI) with S2 images, random 
forest algorithms, and the GEE platform. Thus, the spatial distribution of species 
and their number of trees per hectare can be understood by the classification, 
becoming essential in studies with different types of landscapes. When making 
decisions about forest resources, this information is very important, because each 
specific study offers support to the formulation of local and global public policies, 
as well as in forest planning and management up to biomass estimates.

4.  Google Earth Engine (GEE) platform: advantages and disadvantages 
in the LCLU classification

In GEE, there is a computing platform that has a cloud infrastructure designed by 
Google, from the launch of the public data catalog of the Landsat 2008 series images 
[89]. The platform allows to manage, analyze, and store large volumes of geospatial 
historical data on a planetary scale, which can be applied for several scientific studies 
[89]. In the GEE, it is possible to have access to data catalog of the Landsat, MODIS, 
and Sentinel satellites [90]. In addition, the platform offers social, demographic, 
climatic, and digital elevation models and allowing the interaction remote sensing 
data with algorithms in synergy with the field data, using Java-Script or Python code 
[90]. Another cloud resource available in GEE is the Fusion Table, which offers sup-
port for tabular data, keyword-based mechanisms, and text data, among others [91].

Although the GEE platform is a free access tool, the LCLU mapping in large 
extensions and with high spatial resolution can be challenging for several rea-
sons. The inclusion of large volumes of data from a complex and heterogeneous 
landscape requires a large computational load and processing time [92]. However, 
freely accessible data can be used in studies with limited funding. For example, 
the use of Sentinel-2 data is more recommended than the Landsat images, because 
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it provides a slightly higher spatial and spectral resolution [5]. The classification 
methods can also be applied on the platform according to the image type, seg-
mentation method, classification algorithm, training sample sets, input resources, 
target classes, and accuracy assessment [36]. All classification procedures can be 
developed on the cloud computing platform, without downloading remote sensing 
data, processing on desktops or other software, simplifying information extraction 
[86]. Therefore, the GEE platform allows the use of high-performance tools for 
processing a large data set. Thus, GEE is an important resource for big data man-
agement and scientific development, because it lowers barriers between the global 
scientific community and allows the same opportunities to share and replicate 
geospatial analysis [89].

With millions of servers worldwide, the platform allows the combination of 
different algorithms and data with free availability for noncommercial use [93]. 
In the image processing phase, the GEE platform can synchronize all S2 data, can 
easily clear cloudy pixels [86], and perform a continuous workflow of complex 
remote sensing [94]. According to the objective of the study, it is possible to choose 
the specific period and create image mosaics, with the best cloudless pixel for a 
specific region, solve terrain effects problems, and identify any changes in LCLU in 
the world through classified images [95]. Also, it can use several vegetation indices 
at the same time when image classification is performed [96].

Although it is of easy access, users are generally not familiar with the client-
server programming model. The GEE libraries offer a more familiar programming 
environment, but the user must have some basic knowledge of the programming 
language [95]. This requires much effort from the end user to be implemented 
[94]. Fortunately, there are learning platforms and discussion forums on GEE on 
the Internet, which help to solve most doubts and programming errors. However, 
difficulties have been encountered in studies of LCLU classification. Difficulties in 
validating the classification model carried out in the GEE were found by Zurqani et 
al. [96], as there was little availability of high-resolution aerial images in the world, 
to serve as a reference. The difficulties in image preprocessing were also reported, 
due to difficulties in the acquisition of parameters with the atmospheric correction 
[89], and limited availability of other algorithms, not allowing improvements in the 
classification accuracy [97].

The GEE memory defines a threshold limit to the size of the matrices, which 
constrains the training of the classification algorithms, with a large number of 
training samples and evaluation of the input bands [98]. The limited processing 
capacity can cause errors in complex computational analyses as in large spatial 
areas [95]. On the other hand, GEE processing can be affected by the very different 
preprocessing criteria, which makes analysis and comparison with other sensors 
difficult and makes GEE unsuitable for some types of processing [98, 99].

The approach to programming through the cloud platform is becoming increas-
ingly common for large-scale computing and in multidisciplinary studies. In this 
way, the offer of high-resolution satellite images in the GEE can solve the problems 
of detecting global changes in LCLU, environmental monitoring, and help in the 
quantitative and qualitative identification of forest cover [24]. In particular, the 
Sentinel 1 (radar data) and Sentinel 2 data, have great potential for future studies of 
classification and estimates of above-ground biomass, through GEE. Until the present 
moment, few studies have tested the cloud platform capabilities with Sentinel data. 
This gap opens the opportunity to generate research and development in monitor-
ing forest cover [100]. In future missions, the Sentinel data will be essential for 
studies to validate forest AGB estimates [100]. Free access to both resources can 
generate valuable information on forest cover, located in low-, medium-, and high-
income countries.
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5. Biomass estimation

Above-ground biomass (AGB) of forests plays a key role in the global carbon cycle, 
maintaining the climate and as bioenergy reservoirs [101]. In a global context, forest 
AGB or phytomass is generally defined by the quantification of stems, branches, and 
leaves. The estimation of the amount of the carbon mass or energy potential per unit 
area is also frequent [102]. In global discussions on climate change, the estimation of 
forest AGB has been one of the agenda items in public and private decision-making, 
integrating into sustainable development projects on a local to global scale [91].

In forest biomass estimates, data can be acquired using direct (destructive) 
methods based on harvesting the all tree and indirect (nondestructive) based on 
field inventory and synergy between remote sensing data [103]. The direct methods 
are considered to have the best accuracy, due to the dry weight determination of 
the parts of the tree [101]. However, when it is intended to estimate biomass, this 
method is time-consuming, costly and laborious, and inadequate for using in large 
geographic areas [13, 42]. In addition, the application of destructive methods causes 
disturbances in the fauna and flora with alterations in the microclimate and habitat 
[104]. Thus, one of the alternatives to reduce these impacts is through the use of 
remote sensing technology [105]. In addition to being a nondestructive method, 
it is based on forest inventory data, allowing the fitting of models in synergy with 
small-, medium-, and large-scale satellite images [91, 106].

The thematic mapping based on a forest classification is fundamental as input 
parameters for the area and biomass estimation [107]. It is through the accuracy of a 
thematic map that the user can assess the consistency of the overall reliability of the 
map data and accuracy measures for LCLU classes [107]. In biomass estimates by 
remote sensing, the type of sensor, different spatial and temporal resolutions, scale, 
field data, errors, and uncertainty are factors that hinder the statistical evaluation 
of the final product on the map. In the biomass estimate, several studies indicate 
errors that can range from 5 to 30% [13]. The forest planning and management 
decision scale can also influence the accuracy of forest biomass analysis. According 
to Lu et al. [13], it is recommended that in forest research, accuracy reaches values 
greater than 90% for a regional scale and 80% for a national or global scale.

Regardless of the estimation method used, it is fundamentally a thorough evalu-
ation of the reference data and map data [108]. The agreement presented by the 
error matrix may not be equivalent to the product of the map and the reality, which 
impacts the biomass estimates [109]. Therefore, the classification validation analysis 
becomes essential because, depending on the classification methodology in a forest 
ecosystem, it is possible to observe errors and uncertainties that affected the classifier’s 
performance [36]. In studies of the representation of the heterogeneity of a forest, the 
erroneous choice of spatial resolution can cause the addition of redundant data and 
can increase the noise of statistical models, without adding important information 
about the stands [110]. Even when an AGB forest map achieves high accuracy with the 
integration of multisource remote sensing data, some limitations and uncertainty can 
impact the results between LCLU and remote sensing data [42]. One of the limitations 
is found in the uncertainties about ground measurements with GPS, which can contain 
geolocation errors, difficult to eliminate in the image analysis processing [42]. In 
addition, some uncertainties in the prediction model can be included with the time gap 
between field data and remote sensing data [42, 111]. In this way, any gain in accuracy 
in biomass maps comes from advances in technology. The diversity of image process-
ing software, greater processing capacity, and computer storage allowed the synergis-
tic use of cloud platforms and machine learning use to deal with big data problems.

Revised studies for the Mediterranean region [106] found that when the esti-
mates are based on passive sensor (optical data) are less accurate (R2 ≈ 0.70) than 
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those carried by active sensors (R2 ≥ 0.80). One of the factors can be related to the 
dimension of images. While the optical sensors are based mainly on two-dimen-
sional view—2D, creating estimates with the top canopy layer, the active sensors, 
such as synthetic aperture radar (SAR) and LiDAR, reach the third dimension of 
the forest with the evaluation of the arboreal and understory, presenting a better 
data correlation with the biomass [106]. Among some studies, it was found that the 
spatial resolution has a key role in the accuracy of the biomass. The spatial resolu-
tion of Landsat can achieve a low accuracy [112], while the SPOT satellites [113], 
GeoEye [114], and Quickbird [55] can achieve medium to high accuracy, WorldView 
[115] and spatial resolution of LiDAR can achieve high accuracy [116]. Overall, the 
more accurate the modeling, the greater the approximation to the observed values 
[117]. Accurate models with optical data can be achieved using the high spatial 
resolution (<10 m), where the pixel size approximates the size of the study object 
[118]. In particular, using Sentinel-2 data, it has been reported medium accuracy in 
local and regional scale studies [119, 120]. Thus, the production of AGB maps, with 
Sentinel-2 data, has a great potential to expand to forest management and monitor-
ing decisions on a regional scale.

In quantifying the biomass stock with Sentinel data, the cross-use of sensor data 
combined with forest inventory data and algorithms were fundamental for gains in 

Satellite 

data

Location Forest settings Model performance Reference

R2 RMSE 

(Mg. ha−1)

S2 Evros prefecture, 
Rhodopes mountain 

range, Greece

Mediterranean 
forest

0.63 63.11a [122]

S2 Parsa National Park, Nepal Central-southern 
part of Nepal, 

subtropical 
climate

0.81 25.32 [124]

S2 Parque Nacional Yok Don, 
Vietnam

Tropical monsoon 
climate

0.81 36.67 [119]

S2 Parsa National Park, Nepal Central-southern 
part of Nepal, 

subtropical 
climate

0.99 4.51 [125]

S2 Hunan Province, southern 
China

Subtropical 
monsoon climate

0.58 65.03a [123]

S1 and 
S2

Island province of 
Palawan, Philippines

Southern coast of 
Honda Bay within 
the administrative 

jurisdiction of 
Puerto Princesa 

City, tropical 
climate

0.75 33.81 [43]

S1 and 
S2

Ecoregion of Changbai 
Mountains mixed forests 
and eastern mountainous 
region of Jilin Province in 

northeast China

Monsoon-
influenced humid 

continental 
climate

0.97 33.29 [76]

am3 ha−1 (growing stock volume).

Table 3. 
Studies on forest biomass estimation using algorithms RF in different ecological settings.
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the accuracy of the estimates. A study by Castillo et al. [43] showed improvements 
in the accuracy of biomass models with Sentinel-1 (S1) and S2, which were compa-
rable to the image accuracy of current commercial sensors. In biomass estimates, 
precision can also differ depending on the order of importance of spectral bands 
and textures, according to the input characteristics in the model [121]. When ana-
lyzing Landsat-8 satellite images with the inclusion of S2 images, the importance 
of SWIR region reflectance to improve the estimation of forest parameters was 
observed [122]. In study using the GEE platform, it was identified that the greatest 
contribution of the variables in the estimates of forest AGB were those composed 
by the SWIR and red-edge bands [119]. In addition, Hu et al. [123] reported that the 
red-edge band (B5) of S2 was the best in the prediction with good performance of 
the RF algorithm on the GEE platform. In particular, the RF algorithm showed good 
accuracy in AGB estimates in subtropical deciduous forests, as it was robust with 
the nonlinearity of the data [124]. Due to the large reported of the random forest 
algorithm in biomass estimation studies, Table 3 summarizes the results of some 
recent studies that used Sentinel (S1 and S2) data to estimate the forest AGB in 
different scenarios. It was observed that the machine learning algorithm was used in 
different climatic conditions and in time series with considerable accuracy.

Although advances in image resolution and use of radar data have been increas-
ingly available, the storing of a large amount of data and with a complex data 
structure is one of the major challenges of research with the geospatial data [126]. 
With the advances in technology, cloud computing has helped researchers to solve 
big data problems, which reduces the costs of accessing software and maintaining 
hardware [93]. However, to date, studies with cloud platforms such as GEE for 
forest biomass estimates have been little explored. For forest AGB, cloud computing 
holds promise in solving problems related to big data [126]. The platform’s advan-
tages are related to the data storage and analysis process of an intensive nature and 
based on complex point structures, such as LIDAR data [91]. The GEE platform is 
being used as rasterized data management in parallel with other software such as 
packages in the R [125] and cloud computing applications such as Fusion Tables and 
Google Cloud Platform [91]. In the near future, it is hoped that it will be possible to 
integrate data such as high-precision LiDAR with a collection of optical images for 
mapping global biomass [91].

In remote sensing, the promising prospects for biomass estimates can take 
new directions thanks to the ESA’s Earth Explorer mission Biomass. The mission 
scheduled for this decade aims to provide global maps of biomass and carbon stored 
in the world’s forests [126]. As a novelty, the Biomass will have the first P-band 
synthetic aperture radar capable of carrying out the precise mapping of biomass 
estimates [126]. In addition, it will have an experimental tomograph to provide 3D 
views of the forests [126]. In this way, we hope that in the future, it will be possible 
to carry out studies with crossing Sentinel 2 data with Biomass to compose thematic 
maps of LCLU changes and biomass stock with greater accuracy.

6. Conclusions and outlook

The development of LCLU maps for biomass estimates with Sentinel images is 
still recent, but promising. In studies of LCLU classification, the overall accuracy and 
producer’s and user’s accuracy should be the highest possible for better support of 
biomass prediction models. For the refinement of the classification map, the accuracy 
can be improved with the combination of radar and optical data from Sentinel 1 and 
2, respectively, as well as incorporating models and algorithms, vegetation indices, 
textures, biophysical variables, and forest inventory data, among others. However, it 
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is noteworthy that the accuracy of the biomass prediction models obtained by remote 
sensing still depends on the precision of the field-based measurements.

The GEE platform allows the use of free data, combined with the remote data 
and machine learning for building maps, in addition, to assess the use of land occu-
pation on a large scale. The inclusion of samples collected in the field in the Google 
Fusion Table and multitemporal data, such as high-resolution images can improve 
the classification results.

Based on the limitations of the GEE platform, we hope that the new updates 
of the platform can solve problems such as memory space and the inclusion of 
other ranking algorithms. The improvements make the platform more accessible 
and attract new users to assess changes in LCLU and analysis of vegetation cover 
monitoring. In future works, the LCLU classification approach will be based on 
plots using the pixel method connected to the GEE and field validation, which 
facilitates the detection and understanding of the dynamics of forest areas in terms 
of volumetric and gravimetric production of biomass over time.

To our knowledge, studies that address the accuracy of a forest classification 
combined with biomass estimates, using Sentinel images on cloud platforms, have 
not yet been reported in the literature. Available studies make separate approaches 
to forest classification and biomass estimates. With Sentinel imagery, these two 
themes generally use field data and other thematic maps to develop the models. This 
limitation shows the opportunity to develop pioneering research on forest classifi-
cation and biomass estimates with Sentinel images on cloud platforms.
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