
ORIGINAL ARTICLE

The potential of stomata analysis in conifers to estimate presence
of conifer trees: examples from the Alps

Brigitta Ammann • Willem O. van der Knaap • Gerhard Lang •
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Abstract To estimatewhether or not a plant taxon found in

the fossil record was locally present may be difficult if only

pollen is analyzed. Plant macrofossils, in contrast, provide a

clear indication of a taxon’s local presence, although in some

lake sediments or peats, macrofossils may be rare or degra-

ded. For conifers, the stomata found on pollen slides are

derived from needles and thus provide a valuable proxy for

local presence and they can be identified to genus level. From

previously published studies, a transect across theAlps based

on 13 sites is presented. For basal samples in sandy silt above

the till with high pollen values ofPinus, for example, wemay

distinguish pine pollen fromdistant sources (sampleswith no

stomata), from reworked pollen (samples with stomata

present). The first apparent local presence of most conifer

genera based on stomata often but not always occurs together

with the phase of rapid pollen increase (rational limit). An

exception is Larix, with its annual deposition of needles and

heavy poorly dispersed pollen, for it often shows the first

stomata earlier, at the empirical pollen limit. The decline and

potential local extinction of a conifer can sometimes be

shown in the stomata record. The decline may have been

caused by climatic change, competition, or human impact.

In situations where conifers form the timberline, the stomata

recordmay indicate timberline fluctuations. In the discussion

of immigration or migration of taxa we advocate the use of

the cautious term ‘‘apparent local presence’’ to include some

uncertainties. Absence of a taxon is impossible to prove.

Keywords Stomata � Conifers � Presence–absence of

plant taxa � Apparent local presence � European Alps

Introduction

While palynology is considered the most reliable tool for

reconstructing the vegetation history of a site, records of

plant macrofossils such as needles, fruits, bud-scales and

periderm are by far the best indicators of the local presence

of any plant taxon in the past (Barnekow 1999; Birks 1973,

1984, 2001, 2007; Birks and Birks 1980, 2000, 2003; Birks

and Mathewes 1978; Dunwiddie 1987; Eide et al. 2006).

However, at many study sites sedimentary macrofossil

concentrations are too low to be useful for reconstruction

of the vegetation history. Conifer stomata are directly

derived from conifer needles and thus are a very valuable

proxy for local presence of conifers. Their identification on

Communicated by A. E. Bjune.

B. Ammann (&) � W. O. van der Knaap � P. Kaltenrieder �

W. Tinner

Institute of Plant Sciences and Oeschger Centre for Climate

Change Research, University of Bern, Altenbergrain 21,

3013 Bern, Switzerland

e-mail: Brigitta.Ammann@ips.unibe.ch

G. Lang

Stresemannstr. 28, 88400 Biberach an der Riß, Germany

M.-J. Gaillard

Department of Biology and Environmental Science, Linnaeus

University, 39182 Kalmar, Sweden

M. Rösch
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pollen slides may serve as a substitute for a thorough

macrofossil analysis, especially where macrofossils have

been degraded through transport, biotic or sedimentary

processes such as fragmentation, decomposition, oxidation

or corrosion. In a pioneer study Trautmann (1953) showed

that the stomata of European conifers found on pollen

slides could be identified to genus. Subsequently a few

pollen studies in Europe included records of conifer sto-

mata (Jensen et al. 2002; Froyd 2005; Bjune et al. 2004;

Paus et al. 2011), though the method is still far from being

regularly applied by palynologists. Keys for North Amer-

ican and northern Eurasian conifer stomata show that the

morphological differences discovered in Europe can be

applied to other floristic regions in which conifers are

abundant in the vegetation (Hansen 1995; MacDonald

2001; Sweeney 2004). As in Europe, the taxonomic reso-

lution usually reaches only the genus level, which is

comparable to pollen, but lower than for macrofossils

(Birks and Birks 2000; Birks 2001, 2007; Tinner and

Theurillat 2003). In Pinus, however, recent attempts sug-

gest that stomata of Diploxylon and Haploxylon types

could possibly be separated (see supplementary material in

Magyari et al. 2012). The preservation of stomata has not

been tested experimentally, but Lang (2005) reported that,

based on a suggestion by Helmut Müller, pollen prepara-

tion without acetolysis can be used to make sure that sto-

mata are not additionally degraded.

In this study we address the question to what degree and

under which conditions we can use the stomata record of

conifers to assess the presence of a taxon, keeping in mind

that the absence of a taxon cannot be unambiguously

proven (Birks and Birks 2003; Tinner and Theurillat 2003;

Leitner and Gajewski 2004; Hicks 2006; Tinner and Lotter

2006; Eide et al. 2006; Giesecke 2013). Under the pre-

sence–absence problem we understand the difficulties in

proving the presence or absence of taxa on the basis of

fossil records. This issue has been at the centre of debate

since the earliest days of palynology (Welten 1944; Firbas

1949; Lang 1992, 1994; Tinner and Lotter 2006).

In order to distinguish presence from local absence of

conifers, the modern relationship between pollen and sto-

mata across long transects at the polar tree line has been

studied by Hansen et al. (1996), Pisaric et al. (2000, 2001)

and Leitner and Gajewski (2004) and has been applied to

the Holocene record (Clayden et al. 1996, 1997; Pisaric

et al. 2003; Leitner and Gajewski 2004; Bjune et al. 2004).

Threshold values for pollen indicating local presence of

plant populations might be derived if compared with the

stomata record; these thresholds were often lower than

expected, for example[1 % for Tsuga canadensis in

Wisconsin (Parshall 2002). Froyd (2005) demonstrates

with a two-step method of counting Pinus stomata in

Scotland, first by using standard counts and second by

using about four times higher resolution. With such refined

analysis the first stomata may be found when only 1.0 % of

the pollen is from Pinus, a limit also shown in accumula-

tion rates of pollen and stomata. 1.0 % is far below what is

usually assumed to be evidence of local presence of Pinus,

making the first occurrence at the Scottish site up to

1,600 years earlier. Lacourse et al. (2012) also come to the

conclusion that stomata of three conifer taxa may indicate

local presence hundreds to thousands of years before

conventionally used pollen percentage thresholds are

reached. Obviously pollen percentage thresholds are a

difficult concept because not only is there the problem of

closed data, but they are hardly ever calibrated, in contrast

to pollen influx or to plant macroremains, for which an

attempt is presented by Pidek et al. (2013).

An important refinement for the presence-absence

problem can be achieved with the inclusion of plant mac-

rofossil analysis. Birks et al. (1996) provide a review with

emphasis on northern Europe; Wick and Tinner (1997)

show the convincing parallelism in Holocene records of

pollen, stomata and macrofossils as concentrations for

Pinus cembra and Larix decidua at timberlines (upper limit

of forests) in the central and southern Alps. For the

southern Carpathians Magyari et al. (2012) show with

records of pollen, stomata and plant macrofossils how the

vegetation and the tree line changed during the Late-glacial

and early Holocene. In Ontario, Yu (1997) used stomata

and macrofossils to separate two genera that are hard to

distinguish by pollen morphology, namely Juniperus and

Thuja.

After discussing the stomata evidence in the central

Alps, we examine the relevance of the presence–absence

problem for interpretations of vegetation history. Partic-

ularly, we address problems related to the reconstruction

of the date of immigration of a taxon, migration pro-

cesses in time and space, and population establishment

and expansion (Wick and Tinner 1997; Tinner and

Theurillat 2003; Eide et al. 2006). The presence–absence

verification may also help to address important issues

such as taxa extinctions. To do this we compare selected

sites that have both pollen and stomata and partly also

macrofossil records. All sites have been previously

published, and the references allow more detail to be

gained about the original methodologies and interpreta-

tions. Most of the sites analyzed are from the Bern

school (Welten 1982a, b; Ammann and Wick 1993;

Wick and Tinner 1997 and references in Table 1). This

guarantees homogeneous identifications of pollen, spores,

stomata and macrofossils.

Our contribution assembles stomata and pollen records

from alpine and circum-alpine sites and discusses the
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‘‘presence–absence problem’’ for questions about the arri-

val and migration of conifer taxa, population dynamics and

fluctuations of timberline. These issues may contribute not

only to a better understanding of past vegetational

dynamics, but they may also help to refine our under-

standing of potential future vegetational responses to glo-

bal climatic warming.

Materials and methods

In order to estimate the apparent local presence of conifers,

we selected published sites with data on pollen and stomata

on an approximate south-north transect across the Alps

(Fig. 1). Out of the five genera Juniperus (juniper), Larix

(larch), Pinus (pine), Picea (spruce) and Abies (fir), three

have only one species each native to the study region (L.

decidua, Picea abies, Abies alba), while for juniper and

pine we elaborate this issue in the section below on ‘Sto-

mata and pollen across the Alps’. For simplicity, we use

genus names where no confusion among species is possi-

ble. We also include macrofossils where available (Gouillé

Rion, Lac Supérieur de Fully, hereafter called Lac de

Fully). Pollen data, including stomata as well as macro-

fossils, are extracted from the Alpine Palynological Data-

base, which is run by University of Bern. The time scales

are according to the original publications or to Giesecke

et al. (2014), as listed in Table 1; all ages are expressed in

cal. B.P. (calibrated years before A.D. 1950). Further meth-

odological details are available in the original publications

(Welten 1982a, b; Markgraf 1969; Rösch 1983, 1985;

Gaillard 1984, 1985; Tinner et al. 1996, 1999; Wick 2000;

Kaltenrieder et al. 2005; Tinner and Kaltenrieder 2005;

Finsinger and Tinner 2007; Ammann et al. 2013).

Fig. 1 Maps of the discussed sitesT
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lé

R
io
n

4
6
.2
�
N

7
.4
�
E

2
,3
4
3
m

A
t
ti
m
b
er
li
n
e
(P
.
c
e
m
b
ra
,
L
a
ri
x
)

T
in
n
er

et
al
.
(1
9
9
6
),
K
al
te
n
ri
ed
er

et
al
.

( 2
0
0
5
)
an
d
T
in
n
er

an
d
K
al
te
n
ri
ed
er

(2
0
0
5
)

R

B
o
eh
n
ig
se
e

4
6
.3
�
N

7
.8
�
E

2
,0
5
2
m

P
.
c
e
m
b
ra
,
L
a
ri
x
fo
re
st
s

M
ar
k
g
ra
f
(1
9
6
9
)

G

Z
en
eg
g
en

4
6
.3
�
N

7
.8
�
E

1
,5
2
0
m

P
.
sy
lv
e
st
ri
s,
P
ic
e
a
(u
p
p
er

m
o
n
ta
n
e)

to

P
.
c
e
m
b
ra
,
L
a
ri
x
(s
u
b
al
p
in
e)

W
el
te
n
( 1
9
8
2
a)

A

H
o
p
sc
h
en
se
e

4
6
.3
�
N

8
.0
�
E

2
,2
1
7
m

A
b
o
v
e
ti
m
b
er
li
n
e
(P
.
c
e
m
b
ra
,
L
a
ri
x
)

W
el
te
n
(1
9
8
2
a)

G

S
im

p
lo
n
A
lt
er

S
p
it
te
l

4
6
.2
�
N

8
.0
�
E

1
,8
8
5
m

P
.
c
e
m
b
ra
,
L
a
ri
x
fo
re
st
s

W
el
te
n
( 1
9
8
2
a)

A

L
ag
o
d
i
O
ri
g
li
o

4
6
.1
�
N

6
.7
�
E

4
1
6
m

Q
u
e
rc
u
s,
C
a
rp
in
u
s,
F
a
g
u
s

T
in
n
er

et
al
.
( 1
9
9
9
)

R

a
A
g
e
sc
al
e:

A
A
lp
in
e
P
al
y
n
o
lo
g
ic
al

D
at
a-
B
as
e,

B
er
n
,
S
w
it
ze
rl
an
d
,
R
as

p
u
b
li
sh
ed

in
th
e
li
st
ed

re
fe
re
n
ce
s,
G

G
ie
se
ck
e
et

al
.
(2
0
1
4
)

Veget Hist Archaeobot (2014) 23:249–264 251

123



Results

Plant macrofossils, stomata and pollen from two sites

at the timberline

Gouillé Rion

The pond Gouillé Rion (0.5 ha) at 2,343 m a.s.l. is situated

in a southern tributary valley of the upper Rhône valley in

Valais (Figs 1, 2) between the present timberline (forest

limit) and the tree line (limit of the uppermost trees[2 m,

Tinner et al. 1996; Tinner and Theurillat 2003; Kaltenrie-

der et al. 2005; Tinner and Kaltenrieder 2005). In this

central alpine situation the forest limit is formed by P.

cembra and L. decidua, both of which show a pronounced

parallelism in the curves for their needles, stomata and

pollen (Wick and Tinner 1997, Fig. 6, given in radiocarbon

yrs B.P.). Forest establishment by Larix occured around

11,350 cal. B.P. Larix forests remained open, as shown by

the simultaneous occurrence of light-demanding dwarf

shrubs such as Dryas octopetala and Juniperus nana

(macrofossils found). Larix declined between ca. 9,000 and

8,000 cal. B.P., when the late-successional P. cembra

became important. A. alba macrofossils were occasionally

found, pointing to the sporadic local presence of the spe-

cies. The relationships to various aspects of climatic

change are discussed in Tinner et al. (1996), Kaltenrieder

et al. (2005) and Tinner and Kaltenrieder (2005). During

the Bronze Age (4,150–2,750 cal. B.P.), pollen, macrofos-

sils and stomata of P. cembra declined rapidly—early

transhumance is indicated by the evidence for burning of

trees by humans for summer farming (Tinner et al. 1996;

Kaltenrieder et al. 2005; Colombaroli et al. 2010).

Lac de Fully

Two medium-size lakes are situated in a former glacial

cirque above the village of Fully in lower Valais. The

sediments of the upper of the two lakes (Lac Supérieur de

Fully, at 2,135 m a.s.l.) were analysed for pollen, stomata

and plant macrofossils (Finsinger and Tinner 2007). The

lake now has a surface of ca. 25 ha, but it has had an

artificial dam there since A.D. 1914. The lake is below the

natural tree line (here about at 2,200–2,400 m a.s.l.), but

today its catchment is mostly treeless and is used for

summer farming. The vegetation during the early to mid-

Holocene was first an open forest with D. octopetala, tree

Betula and J. nana, which changed at about 8,200 cal.

Fig. 2 Modern altitudinal

distribution of Pinaceae taxa

from the Swiss lowlands across

the Alps, and the position of the

palaeoecological sites. Larix

decidua in the lowlands was

planted for forestry purposes.

Black horizontal bars indicate

the median value of altitude,

dark grey 50 %, light grey 90 %

and white 100 %. L lowlands,

P pre-alps, C central Alps,

S southern Alps; modified from

Brändli (1998)
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B.P. into more closed forests of L. decidua and P. cembra,

as shown by the consistent records of macrofossils, sto-

mata, and pollen (Fig. 4; Finsinger and Tinner 2007). A.

alba probably never played a major role in the forests at the

elevation of Lac de Fully, although a single anther (iden-

tified by its pollen content) shows the local or nearly local

presence of the late-successional conifer around 8,000 cal.

B.P. Just as at Gouillé Rion, the local forests at the tim-

berline were disrupted for summer farming during the

Bronze Age.

Stomata and pollen across the Alps

Here the five genera are presented separately. The inves-

tigated sites follow an approximate south-north transect.

Juniperus

In the Alps today, J. communis s.l. shows an altitudinal

distribution: J. communis s.str. grows up to about 1,600 m

a.s.l., while J. nana (=J. communis ssp. alpina) occurs

above 1,600 m (Oberdorfer 1990). Thus, J. communis s.str.

is a species of the colline and montane belts (rarely sub-

alpine), whereas J. nana belongs to the subalpine and

alpine belts and may occasionally reach 3,000 m a.s.l. in

Valais (Hess et al. 1976). The distinction between J.

communis and J. nana can be made neither on the basis of

pollen nor on stomata, but can be made on macrofossils, for

example needles and fruits (Figs 3, 4).

During the Late-glacial, Juniperus is often the first

conifer to appear, particularly in lowland records, and it

Fig. 3 Gouillé Rion at 2,343 m a.s.l., between timberline and tree

line in the central Alps. Selected taxa only. Left pollen, stomata and

macrofossils of conifers in cores GR-1/2; sampling resolution for

macrofossils is 5 cm for the Late-glacial and 3 cm for the Holocene

(Tinner et al. 1996). Right conifer macrofossils of core 6/7 at a

sampling resolution of 0.5 cm; asterisk indicates the position of

radiocarbon dates (Kaltenrieder et al. 2005)
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may show one of three different patterns in its early sto-

mata record (Fig. 5):

(1) Some Juniperus pollen appears near the base of the

profile but no stomata, then a characteristic increase in

pollen accompanied by stomata. In the lowlands south

of the Alps Juniperus expands as early as ca.

17,560 cal. B.P. in the stomata record, suggesting the

establishment of shrublands or open woodlands in

response to climate warming at the end of the Late

Glacial Maximum (LGM, see Lago di Origlio stomata

record). The Oldest Dryas ends abruptly with the onset

of the Bølling, starting with the ‘‘juniper jump’’ of

Denton et al. (2006). At Le Tronchet and Gerzensee

some stomata were found before the marked Juniperus

peak. There then follows a decline of both pollen and

stomata (Lago di Origlio, Hopschensee, Zeneggen-

Hellelen, Le Tronchet, Gerzensee). In these cases the

stomata seem to indicate local presence, whereas the

oldest pollen may be from long-distance transport.

(2) Similar, but with a single peak of stomata in the basal

sample (Nussbaumer Seen). Reworked material is the

probable cause, for this is a widespread phenomenon

in peri-alpine records¸ as testified for example at

Nussbaumer Seen by some Abies pollen which was

found in the sandy silt above the till and at other sites

on the Swiss Plateau also by Ulmus, pre-Quaternary

spores and cysts of dinoflagellates (Ammann 1989).

(3) Both pollen and stomata are found down to the base

of the core (Dossaccio-Bormio, Simplon Alter Spittel,

Boehnigsee, Eggen ob Blatten, Lai Nair). This

implies that the period before the arrival and estab-

lishment of juniper was not reached.

During the Holocene, the mass expansion of Juniperus

may primarily indicate pastures, as at Gouillé Rion (Kal-

tenrieder et al. 2005; Tinner and Kaltenrieder 2005).

Pinus

Pinus is represented by the morphologically distinct pollen

of P. cembra (Swiss stone-pine, a Haploxylon type) and P.

sylvestris-type (including P. sylvestris and P. mugo s.l.,

which at the elevations of the sites are Diploxylon types).

This distinction did not seem to be possible on the basis of

stomata, but it may yet be done using stomata-size statistics

(Magyari et al. 2012). Pinus is often but not always the

second conifer to establish after the ice retreat (or the third

Fig. 4 Lac de Fully, at 2,135 m

a.s.l., below the natural potential

tree line, but treeless today.

Selected taxa only. Left pollen

and stomata as percentages of

the pollen sum of terrestrial

plants; right: macrofossils as

concentrations in 50 cm3;

asterisk indicates the position of

radiocarbon dates. (Finsinger

and Tinner 2007)
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if Larix plays a role). As Pinus is a strong pollen producer

the probability that the pollen has been transported a long

distance is high, particularly for P. sylvestris. Under the

assumption that the (heavy) needles do not get transported

so far as pollen, the needle record and the occurrence of

stomata make it possible to differentiate between long-

distance pollen and local presence. The three species can

be distinguished with macrofossil analysis.

In the lowlands south (Fig. 5a) and north (Fig. 5d) of the

Alps, Pinus pollen shows either a long, thin ‘‘tail’’ during

the Oldest Dryas (Lago di Origlio, Gerzensee) or quite

substantial percentages during the oldest part of the Oldest

Dryas, when local vegetation was still scarce, before the

increase of Artemisia and Poaceae, as at Le Tronchet and

Nussbaumer Seen. Stomata of Pinus first occur during the

rapid increase of pine pollen (rational limit at Lago di

Origlio, Gerzensee, and Nussbaumer Seen) or later (Le

Tronchet). The time difference of this local establishment

of Pinus south and north of the Alps is large—about

16,000 cal. B.P. at Lago di Origlio (south) and about

13,800 cal. B.P. at Gerzensee (north).

At higher altitudes the distinction between distant-

transported and local Pinus pollen is also sometimes pos-

sible on the basis of the stomata record (Fig. 5a, b, c):

Zeneggen shows first early high Pinus pollen values, then a

decrease, followed by an increase concurrent with the first

stomata finds; the latter shows the local establishment of

pine stands at 1,520 m a.s.l. during the Allerød. At even

higher altitudes Pinus stomata appear in the fossil record

only during the early Holocene (Boehnigsee at 2,052 m

a.s.l., Hopschensee at 2,217 m a.s.l.). At some sites the

chronology of the oldest sediments is not reliable enough to

derive an accurate date for the local establishment of Pinus.

Larix

Larix provides a strong contrast to Pinus in its production

of pollen compared with stomata (Figs 5, 6). Pollen pro-

duction of Larix is intermediate, but its dispersal very poor

(Sjögren et al. 2008a, b); in contrast, production of Larix

stomata is higher than in any other conifer genus because

of the abundant annual production of the deciduous nee-

dles. This difference in needle production may be even

larger near the timberline because needle retention in Pinus

and Picea under cooler conditions such as at higher alti-

tudes or latitudes was shown to be longer than under

warmer conditions (Reich et al. 1996). The Larix records

are presented on the same percentage scale for pollen and

stomata in Fig. 6 (in contrast to Fig. 5). The strong positive

correlation between pollen and stomata is obvious for the

high altitude sites in the central Alps: strongest at Simplon

Alter Spittel and Hopschensee, somewhat weaker but still

clear at Lac de Fully, Zeneggen and Dossaccio, with a

nearly continuous stomata record during the early Holo-

cene, but only sporadic finds later at Boehnigsee, Gouillé

Rion and Eggen ob Blatten. In the southern Alpine low-

lands such as around Lago di Origlio, Larix stomata are

rare and restricted to the Late-glacial. Vescovi et al. (2007)

present a review of numerous north Italian Late-glacial

sites with substantial records of Larix stomata, the oldest at

16,300 cal. B.P. at Lago Piccolo di Avigliana (353 m a.s.l.,

(Finsinger et al. 2006) and a nearly continuous record after

14,300 cal. B.P. at Palughetto (1,040 m a.s.l.).

Abies

At Lago di Origlio Tinner et al. (1999) found both the

beginning and end of a local presence of Abies stands, a

rare case in our transect. Stomata first appear during the

rational limit of Abies pollen (8,970 cal. B.P.) and disappear

briefly after the pollen decline (4,760 cal. B.P.) (Figs 5a, 7).

Tinner et al. (1999) demonstrated that increased fire fre-

quency led to local extinction of this fire-intolerant tree

around 5,100 cal. B.P. This is somewhat earlier than at Lago

di Ganna 20 km to the southwest (Fig. 7; Schneider and

Tobolski 1985). At Eggen ob Blatten (1,645 m a.s.l.) the

first two stomata occur around 8,410 cal. B.P. and the last

around 4,700 cal. B.P. in the middle of a three-step decline

in the Abies pollen curve.

All other sites in Fig. 5 show no stomata of Abies except

for a single find at Dossaccio (1,730 m a.s.l.), where it

occurs together with a small Abies pollen peak. The alti-

tudes of the other sites are either too high or too low for

Abies (Fig. 5d), or the climate was too dry as in Valais:

some sites show pollen percentages but none show stomata.

Picea

Picea stomata are absent both at the lowland sites (Lago die

Origlio, Le Tronchet, Gerzensee, Nussbaumer Seen) and at

the high altitude sites (Gouillé Rion 2,343 m a.s.l.). At

intermediate altitudes they occur early at the southeastern

site Dossaccio (around 9,400 cal. B.P. at 1,730 m a.s.l.) just

before the first of the three steps of increasing pollen. At

Simplon Pass early finds of stomata occur with very low

pollen percentages at relatively high altitude at Hops-

chensee (around 5,500 cal. B.P. at 2,217 m a.s.l.); this is in

accordance with the record of Picea needles found by Lang

and Tobolski (1985). The stomata at the nearby site

Simplon Alter Spittel are somewhat younger (around

3,500 cal. B.P. at 1,885 m a.s.l.). In the inner-alpine valley

of Valais, stomata were found at Lac de Fully (ca.

5,100 cal. B.P. at 2,135 m a.s.l., higher than the highest

occurrence of closed Picea abies forests today, see Figs. 2,

4, 5b), at Zeneggen (after 4,000 cal. B.P. at 1,520 m a.s.l.)

and at Boehnigsee (around 3,200 cal. B.P. at 2,052 m a.s.l.).
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Fig. 5 a-d South-north transect across the Alps with 13 sites providing pollen and stomata records for five gymnosperm genera (Juniperus,

Larix, Pinus, Picea, Abies). Pollen and stomata values are percentages of the pollen sum but with different x-axis scales for pollen and stomata
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Fig. 5 continued
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Discussion

Forest establishment traced by stomata

Stomata analysis along with pollen analysis may help to

establish the history of the first afforestation after the LGM

or the ice retreat. In Figs. 3 and 4 we have included the

curves for Artemisia and Poaceae as proxies for the ‘‘Late-

glacial steppe’’. On the south–north transect we see that:

• At Lago di Origlio (416 m a.s.l., Tinner et al. 1999)

Juniperus stomata records start before the decrease of

Artemisia and Poaceae at ca. 17,560 cal. B.P., earlier

than the first stomata of Pinus and the first pollen of

Larix around 15,500 cal. B.P. (Fig. 5a).

• At Simplon-Alter Spittel (1,885 m a.s.l., Welten 1982a)

stomata of Juniperus, Larix and Pinus start before the

decline of Artemisia and Poaceae. Welten 1982a

already discussed the very early deglaciation of Simp-

lon Pass and the early establishment of trees during the

Allerød (13,900–12,800 cal. B.P.) at this south exposed

site (Fig. 5a).

• At Hopschensee (Simplon Pass, at 2,217 m a.s.l.,

Welten 1982a) the stomata of Larix, then Juniperus

and Pinus occur during the decrease of Artemisia and

Poaceae at the beginning of the Holocene (beside an

early single stoma of Larix) (Fig. 5a).

• Among the five sites in Valais, Zeneggen is the lowest

one (1,520 m a.s.l., Welten 1982a) and two steps of

afforestation are visible: during the Allerød, when

juniper and pine occur. They disappear during the

Younger Dryas and reappear during the earliest Holo-

cene. Thus this site is at the sensitive treeline ecotone

during the Younger Dryas (Fig. 5b).

• AtBoehnigsee (2,052 m a.s.l.,Markgraf 1969) some rare

juniper stomata occur near the base of the sequence, but

in the early Holocene around 10,400 cal. B.P. frequent

and nearly regular occurrences of Juniperus stomata are

followed by stomata of pine and larch. The decline of

Pinus stomata parallels the decrease of P. cembra pollen

(7,000–6,000 cal. B.P.), suggesting that this reflects the

decline of local P. cembra trees and not of the regionalP.

sylvestris-type (Fig. 5b).

• AtLac deFully (2,135 ma.s.l., Finsinger andTinner 2007)

the early Holocene is not only characterized by long-

distance transportedCorylus andUlmus pollen but also by

a local decline ofD. octopetala leaves and after 9,500 cal.

B.P. needles of local L. decidua, a light-demanding species.

From about 8,200 cal. B.P. onwards macrofossils of

P. cembra were found. Both timberline conifers declined

during the Bronze Age and they did not recover (Fig. 5b).

• At Gouillé Rion (2,343 m a.s.l., Tinner et al. 1996;

Kaltenrieder et al. 2005; Tinner and Kaltenrieder 2005),

an early decline of Artemisia and Poaceae is not

accompanied by stomata (older than 11,000 cal. B.P.),

but between 10,000 and 9,000 cal. B.P. Artemisia (but

not Poaceae) decreases a second time and stomata of

Larix and Pinus appear (Fig. 5b).

• In Eggen ob Blatten (1,645 m a.s.l., Welten 1982a)

stomata of Juniperus and Pinus are present from the

base and during the decrease of Poaceae in the early

Holocene (Fig. 5c). Of interest are also the stomata of

Abies (present since ca. 8,500 cal. B.P. and abundant ca

5,800–4,700 cal. B.P.). The site of Eggen ob Blatten

does not lie in the main valley of Valais with its dry-

continental climate, but in a side valley with higher

humidity, somewhat comparable to the only major

Abies forest today in Derborance (Steiger 2009).

• In Lai Nair (1,546 m a.s.l., Welten 1982b) stomata of

Juniperus and Pinus are present during the Late-glacial

Interstadial of the Bølling-Allerød and decline during the

Younger Dryas, which is marked by higher values of

Artemisia and Poaceae. Pollen ofLarix is important in the

early Holocene, but stomata finds are scarce (Fig. 5c).

• InDossaccio (1,730 ma.s.l.,Welten 1982b) near Bormio

in Valtellina (Italy) only the two basal samples are from

the Bølling-Allerød Interstadial, then the increase in

Artemisia indicates the Younger Dryas. Stomata of

Juniperus, Pinus and Larix did not disappear during this

cool period. The earlyHolocene is rich inLarix andPinus

pollen and stomata of both. For Picea the first stoma

occurs around 9,400 cal. B.P. just before the first increase

of the pollen. With a second and a third increase of Picea

pollen, stomata of Larix and Pinus decrease (Fig. 5c).

The three sites on the Swiss Plateau show a very con-

sistent pattern of forest establishment in the Late-glacial

(Fig. 5d): Juniperus has a sharp maximum at the onset of

the Bølling (14,685 cal. B.P.) and Pinus arrives around

14,000–13,800 cal. B.P. (Gaillard 1984, 1985; Wick 2000;

Rösch 1983, 1985; Ammann et al. 2013).

From the records at various altitudes we conclude:

(1) In steppic environments such as that of the early Late-

glacial, stomata may help to distinguish between

reworked and long-distance pollen. Basal samples

containing stomata may indicate reworking (Juniperus

and Pinus in Nussbaumer Seen), since needles or

stomata are dispersed over much shorter distances than

pollen (Birks 2001). Reworking is sometimes also

indicated by a record of pre-Quaternary spores.

(2) Shrubland or forest establishment can be inferred

from stomata analysis if conifers were important in

the vegetation, such as Juniperus and Pinus.

(3) In the altitudinal transect presented here, this first

afforestation occurred during the early Late-glacial

(Oldest Dryas) at Lago di Origlio, at the beginning of
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the Bølling on the Swiss Plateau, and in the early

Holocene at higher altitudes in the Alps.

(4) Anthropogenic deforestation can be traced with

stomata at ecotones formed by conifers as

demonstrated at Lac de Fully and Gouillé Rion for

the Bronze Age (early transhumance) by the decrease

and final disappearance of stomata of Larix and

Pinus, if evidence is available for human impact, such

Fig. 6 South-north transect of nine sites from the lowland south of

the Alps to the Central Alps for pollen and stomata of Larix, a

medium pollen producer but low disperser and strong needle

producer. Pollen and stomata values are percentages of the pollen

sum on the same x-axis scales for pollen and stomata

Fig. 7 The relationship of

absolute, empirical and rational

limits to apparent regional and

apparent local presence and to

population expansion,

respectively. The schemes of

Watts (1973) and Birks (1986)

are fitted to the stratigraphy of

pollen and plant macrofossils of

the two wind-pollinated tree

taxa Fagus sylvatica and Abies

alba at Lago di Ganna

(Schneider and Tobolski 1985)

and of pollen and stomata of

Abies alba at Lago di Origlio

(Tinner et al. 1999). The two

taxa are medium pollen

producers and good dispersers.

Adapted from Lang (1992,

1994)

Veget Hist Archaeobot (2014) 23:249–264 259

123



as pollen of weeds or crops. Grazing may be reflected

by finds of stomata of plants that are advantaged by

pastoral activities, such as Juniperus at Gouillé Rion.

(5) Finally and perhapsmost important, proving the absence

of plant taxa remains illusory, and presence is best traced

by the analysis of plant macrofossils, often to species

level. In the absence ofmacrofossil records, stomatamay

be used as a second best tool reaching genus level. The

relationship between the earliest stomata found and the

traditional pollen limits (absolute–empirical–rational)

are summarized in Table 2.

Population decrease and local extinction of conifers

recorded at the ending of stomata finds

Stomata may show not only the start of local presence and

population growth of conifers but also their decline and their

apparent local extinction, corresponding to phases 6 and 7 of

Fig. 7. Decline and extinction of taxa may be due to climatic

changes, to competition among taxa, and/or tohumanactivities.

(1) Climate and competition: At Lago di Origlio the light-

loving taxon Larix declines around 9,000 cal. B.P. with

the development of the mixed A. alba and deciduous

forest and even locally occurring Abies (Tinner et al.

1999). At Gouillé Rion Larix declines when P. cembra

becomes abundant. At Dossaccio (1,730 m a.s.l.) the

declines ofP. cembra andL. decidua both occurwith an

increase of Picea in which the stomata record parallels

the pollen curve. At Nussbaumer Seen the abundance

of Pinus declines strongly with the development of

mixed deciduous forest of the early Holocene.

(2) Human impact: tree species that declined were used

by prehistoric and historic people for construction and

heating (including cheese making) and impeded

intense pastoralism: P. cembra and Larix at Lac de

Fully, Gouillé Rion, Hopschensee and Simplon Alter-

Spittel; Abies at Eggen ob Blatten; Picea at Dossac-

cio. At Lago di Origlio the decline of Abies was

shown to correlate with increases of indicators of

human activities and higher values of charcoal

(Tinner et al. 1999). Around Lac de Fully and Gouillé

Rion the Bronze Age people lowered the timberline

formed by P. cembra and L. decidua for summer

farming (Figs. 4, 5b; Finsinger and Tinner 2007;

Kaltenrieder et al. 2005; Colombaroli et al. 2010). At

Zeneggen Welten (1982a) interpreted increases of

Juniperus together with higher values of Poaceae as

an indicator of local pastures. Similar patterns are

found at Boehnigsee.

Table 2 The five conifer taxa and their stomata record compared to the absolute, empirical and rational limits of the pollen percentage curves

Larix behaves differently to all the other coniferous genera in showing stomata with much lower pollen values;

this is a result of its high production and shedding of needles, and its medium pollen production and low pollen dispersal
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General considerations about the presence or absence

of taxa, and implications for the reconstruction

of vegetation history

Macrofossil and stomata recordsmayhelp to refine the question

whether a taxon was locally present at a site. Other important

issues, however, are related to the assumption of the absence of

taxa. For instance, reconstructing immigrations andmigrational

routes requires the assumption that the taxon was absent from

the site before its first appearance in the fossil record. It is

tempting to interpret the beginning of a curve as arrival and an

increase as local population expansion of a taxon, as was done

by von Post (1924) and later on by Bertsch (1935, 1940) and

others, at a time when radiocarbon dating was not available to

synchronize the pollen records. These assumptionsmay appear

convincing but they require a thorough check.

The assumption has been widely accepted that the (usually

exponential) increase of pollen before the first peak (the so-

called rational limit) reflects local population expansion.

Much more debated is the start of regular pollen occurrence

(the so-called empirical limit). Does it reflect the immigration

of a taxon or was the taxon already present in the area, though

at lower population density? Rudolph (1930) preferred this

latter interpretation and assumed that at latest during the early

Holocene all taxa had already reached central Europe. In his

view, vegetation history (and as a part of it the Central

European Ground Succession or ‘‘Grundsukzession’’) reflects

(subsequent) expansions of taxa in response to changing cli-

mates and environments instead of migrational processes.

Later on Welten (1944) supported Rudolph’s interpretation.

On the basis of spatial distribution densities of trees, Welten

(1944) estimated that the presence of 70 individuals of a rare

tree species in a forested lake catchment with a radius of

2,300 m would result in the detection of one pollen grain for

every 10,000 grains counted (0.01 %). Seventy individuals in

such a small area around a site are many, if compared to

detection uncertainties of ecological field data. Welten’s

estimate thus indicates that past occupancymight be seriously

underestimated when pollen or other even less abundant plant

remains are used.Thedetection frequency (0.01 %) suggested

byWelten corresponds to the sedimentary situation before the

beginningof the empirical limit,with one pollengrain in every

20th sample for pollen sumsof 500, showing that the arrival or

even the initial population establishment of a taxon (with[50

individuals) can occur long before the start of the empirical

limit in pollen diagrams. Consequently Welten (1944) pro-

posed that the use of pollen values for determining the arrival

or local presence of a taxon be avoided and concluded that

migrational reconstructions are illusory (‘‘Scheinwanderun-

gen’’). Firbas (1949) largely took up the view of Rudolph and

Welten, remaining critical of arrival and migration recon-

structions. After discussing all relevant dispersal processes

that could have induced fast migration rates at or before the

start of the Holocene, such as animals, wind, streams or ice

floes, he partially rejected the earlymigrational reconstruction

attempts of Bertsch (1935, 1940) to emphasize that the

assessment of the relevance of migrational processes for the

vegetation history of Europe primarily depends on the

unequivocal evidence of the arrival time of a taxon. Similarly,

Godwin (1956) suggested that[50 % of the British flora was

already established by the end of the Late-glacial. Even for

taxa that expanded late in northwesternEurope, such asFagus

sylvatica, he excluded low migrational rates as a cause (p.

208); instead he emphasized the presence of previously

established small foci that allowed the taxon to expandquickly

once the climatic conditions became sufficiently favourable.

Watts (1973) and later Birks (1986) refined the relationships

between the pollen-stratigraphic evidence and the pollen-

inferred arrival and expansion of arboreal plants. Lang (1992)

corroborated this approach by including plant macrofossil

evidence (Fig. 7). Plantmacrofossils (or stomata as a derivative

of needles) provide better evidence of local presence than

pollen (Birks and Birks 2000), but given the low numbers

preserved in the sediment they have significantly less power as

evidenceof the absenceof a taxonat a site. Since it is impossible

to prove the spatial absence of a taxon by pollen ormacrofossils

(Birks and Birks 2003; Hicks 2006; Tinner and Lotter 2006;

Giesecke 2013), the reconstruction of the presence and thus

immigration of a taxon remains obscure (Seppä 2007). Indeed

reconstructing immigration and migrations from pollen or

macrofossil evidence disregards the challenges of imperfect

detection (see Kérry 2011). We thus suggest that the term

immigration should be avoided when dealing with vegetation

reconstructions based on pollen-, macrofossil- or stomata-

inferred vegetation history reconstructions. Instead the terms

‘‘apparent local’’ and ‘‘apparent regional’’ presence may take

into account detection uncertainty (Kérry 2011). The terms

‘‘apparent local’’ and ‘‘apparent regional’’ presence have a

strong basis in the biostratigraphies. For inferred population

dynamics one may use the term ‘‘apparent establishment’’.

On the basis of pollen and macrofossil records seven

(dynamic) phases were distinguished and illustrated by

Lang (1992, 1994), based on Watts (1973), Birks (1986)

and Schneider and Tobolski (1985), shown in Fig. 7 from

bottom to top:

(1) No pollen and macrofossils in the sediment record:

taxon might be absent.

(2) Occasional pollen grains (after absolute pollen limit),

no closed curve, no plant macrofossils: apparent

regional presence of the taxon, range close to the site

or alternatively, the taxon might be present locally but

in low numbers (cryptic presence).

(3) Continuous pollen record (after empirical limit) and/

or first macrofossils: apparent local presence of the

taxon, local establishment of population.
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(4) Increase of pollen abundances (after rational limit) to

reach a first peak and/or regular occurrence of macro-

fossils: local population (mass) expansion of a taxon.

(5) Secondary pollen and macrofossil peaks, often smaller

than the first peak: population oscillations of the taxon.

(6) Decrease of pollen and/or macrofossil abundance:

decline of the population of the taxon.

(7) Disappearance of pollen and macrofossils in the

sediment record: population collapse, apparent local

extinction.

With regard to pollen, this scheme may apply to wind-

pollinated trees in Europe with average or moderate pollen

production and dispersal, such as Abies, Picea, Ulmus,

Quercus, Fagus and Carpinus (Fig. 7). In insect-pollinated

trees such as Acer and Tilia, or wind and insect pollinated

ones such as Castanea or wind-pollinated trees with low

pollen production such as Fraxinus excelsior or those with

poor dispersal (Larix), single occasional pollen finds

(absolute limit) may indicate the apparent local presence of

the plant. In strong pollen producers, however, such as

Pinus, Betula, Corylus and Alnus, care should be taken

when inferring the apparent local presence on the basis of

pollen alone. For this latter group the (latest) local presence

becomes likely when reaching the rational pollen limit.

Two additional problems need to be kept in mind:

(1) The conventional interpretation that pollen andmacrofos-

sil abundances primarily reflect population dynamics, and

not productivity changes such as increased flowering or

organ production, is supported by recent interdisciplinary

studies comparing dynamicmodelling outputs, pollen and

macrofossil records (Lotter andKienast 1990; Keller et al.

2002; Heiri et al. 2006; Henne et al. 2011). Productivity

changes may indeed occur at annual scales (Hicks 2001,

2007; Sjögren et al. 2008a;VanderKnaap et al. 2010), but

are supposed to become relevant at decadal to millennial

scales only when the causal factor, such as climatic

change, lasts longenough (Fischer et al. 1959;Hicks2006;

Mazier et al. 2012; Sjögren and Kirchhefer 2012).

(2) The second problem when tracking the spatial occur-

rence, spatial expansion or population expansion on the

basis of palaeo-evidence (pollen, stomata, plant macro-

fossils) is taxonomic resolution. Pollen types may

represent species, groups of species, subgenera, genera,

or even families. Species-rich taxa such as Quercus

robur-type cannot provide details about the history of the

individual species involved without macrofossil or leaf-

cuticule evidence (Finsinger et al. 2011), or if themodern

spatial species distribution and genetic structure do not

deliver additional information. This issue can potentially

be resolved by consulting ancient DNA (Gugerli et al.

2013), which may allow reconstruction of vegetation

history at subspecies and even population levels.

Conclusions

Stomata can provide valuable insights into the local apparent

presence of conifer taxa, usually at genus level. P. sylvestris

and L. decidua have strongly contrasting records,P. sylvestris

being a strong pollen producer and L. decidua a strong needle

producer. Where present in the sediment, macrofossils can

refine the taxonomic resolution of the results and significantly

contribute to a better assessmentof the local apparent presence

of taxa. Together with pollen analysis, which is superior to all

other proxies with regard to the large numbers of fossils

recorded, stomata and plant macrofossils may contribute to a

better assessment of the times of apparent establishment,

expansion, decline and extinction of populations.

Based on apparent local presence, inferences of altitu-

dinal or latitudinal fluctuations of tree lines or timberlines

may be possible; such fluctuations can be caused either by

climatic changes or by human impact.

Extreme care is requiredwhen reconstructing the first arrival

and thus the immigrationormigrationof taxa.Currently there is

no tool available to track the arrival of the first individual or few

individuals at a site. This implies that the reconstruction of

immigrations and migrations will remain elusive for a long

time.We thus recommend the use of less equivocal terms such

as ‘‘apparent local’’ and ‘‘apparent regional’’ presence; for the

term ‘‘expansion’’ we need to say if we think of spatial

expansion or of the build-up of a population.
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BjuneAE, Birks HJB, Seppä H (2004) Holocene vegetation and climate

history on a continental-oceanic transect in northern Fennoscandia

based on pollen and plant macrofossils. Boreas 33:211–223
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Steiger P (2009) Wälder der Schweiz—Von Lindengrün zu Lärchen-
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