

 1

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While
this document is believed to contain correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency
thereof, or The Regents of the University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof or
The Regents of the University of California.

 2

The Potential of the Cell Processor for Scientific Computing

Samuel Williams, John Shalf, Leonid Oliker, Parry Husbands, Shoaib Kamil, Katherine Yelick
Lawrence Berkeley National Laboratory

1 Cyclotron Road
Berkeley CA, 94720

{SWWilliams, JShalf, LOliker, PJRHusbands, SAKamil, KAYelick}@lbl.gov

The slowing pace of commodity microprocessor
performance improvements combined with ever-
increasing chip power demands has become of
utmost concern to computational scientists. As a
result, the high performance computing
community is examining alternative architectures
that address the limitations of modern cache-
based designs. In this work, we examine the
potential of the using the forthcoming STI Cell
processor as a building block for future high-end
computing systems. Our work contains several
novel contributions. We are the first to present
quantitative Cell performance data on scientific
kernels and show direct comparisons against
leading superscalar (AMD Opteron), VLIW (Intel
Itanium2), and vector (Cray X1) architectures.
Since neither Cell hardware nor cycle-accurate
simulators are currently publicly available, we
develop both analytical models and simulators to
predict kernel performance. Our work also
explores the complexity of mapping several
important scientific algorithms onto the Cell’s
unique architecture. Additionally, we propose
modest microarchitectural modifications that
could significantly increase the efficiency of
double-precision calculations. Overall results
demonstrate the tremendous potential of the Cell
architecture for scientific computations in terms
of both raw performance and power efficiency.

Keywords
Cell, GEMM, SpMV, sparse matrix, FFT, Stencil,
three level memory

1. Introduction

Over the last decade the HPC community
has moved towards machines built on commodity
microprocessors as a strategy for tracking the
tremendous growth in processor performance in
that market. As this pace slows, and the power
requirements of these processors continues to

grow, the HPC community is looking for
alternative architectures that provide high
performance on scientific applications, yet have a
healthy market outside the scientific community.
In this work, we examine the potential of the
forthcoming STI Cell processor as a building
block for future high-end computing systems, by
investigating performance across several key
scientific computing kernels: dense matrix
multiply, sparse matrix vector multiply, stencil
computations on regular grids, as well as 1D and
2D FFTs.

Cell is a high-performance implementation
of software-controlled memory hierarchy in
conjunction with the considerable floating point
resources that are required for demanding
numerical algorithms. Despite its radical
departure from mainstream/commodity processor
design, Cell is particularly compelling because it
will be produced at such high volumes that it will
be cost-competitive with commodity CPUs. The
current implementation of Cell is most often noted
for its extremely high performance single-
precision (SP) arithmetic, which is widely
considered insufficient for the majority of
scientific applications. Although Cell’s peak
double precision performance is still impressive
relative to its commodity peers
(~14.6GFLOP/s@3.2GHz), we explore how
modest hardware changes could significantly
improve performance for computationally
intensive DP applications.
 This paper presents several novel results.
We present quantitative performance data for
scientific kernels that compares Cell performance
to leading superscalar (AMD Opteron), VLIW
(Intel Itanium2), and vector (Cray X1)
architectures. We believe this is the first
published analysis of its kind. Since neither Cell
hardware nor cycle-accurate simulators are
currently publicly available, we develop both

 3

analytical models and simulators to predict kernel
performance. Our work also explores the
complexity of mapping several important
scientific algorithms onto the Cell’s unique
architecture in order to leverage the large number
of available functional units and software
controlled memory architecture. Additionally, we
propose modest microarchitectural modifications
that could increase the efficiency of double-
precision arithmetic calculations, and demonstrate
significant performance improvements compared
with the current Cell implementation.

Overall results demonstrate the
tremendous potential of the Cell architecture for
scientific computations in terms of both raw
performance and power efficiency. We also
conclude that Cell’s heterogeneous multi-core
implementation is inherently better suited to the
HPC environment than homogeneous commodity
multi-cores.

2. Related Work
 One of the key limiting factors for
computational performance is off-chip memory
bandwidth. Since increasing the off-chip
bandwidth is prohibitively expensive, many
architects are considering ways of using available
bandwidth more efficiently. Examples include
hardware multithreading or more efficient
alternatives to conventional cache-based
architectures such as software controlled
memories. Software-controlled memories can
potentially improve memory subsystem
performance by supporting finely controlled
prefetching and more efficient cache-utilization
policies that take advantage of application-level
information – but do so with far less architectural
complexity than conventional cache architectures.
While placing data movement under explicit
software control increases the complexity of the
programming model, prior research has
demonstrated that this approach can be more
effective for hiding memory latencies (including
cache misses and TLB misses) – requiring far
smaller cache sizes to match the performance of
conventional cache implementations [12, 13].

Over the last five years, a plethora of
alternatives to conventional cache-based
architectures have been suggested including
scratchpad memories [15, 16, 17], paged on-chip

memories [13, 14], and three level memory
architectures [11, 12]. Until recently, few of these
architectural concepts made it into mainstream
processor designs, but the increasingly stringent
power/performance requirements for embedded
systems have resulted in a number of recent
implementations that have adopted these
concepts. Chips like the Sony Emotion Engine [8,
9, 10] and Intel’s MXP5800 both achieved high
performance at low power by adopting the three
(registers, local memory, external DRAM) level
memory architecture. More recently, the STI Cell
processor has adopted a similar approach where
data movement between these three address
spaces is explicitly controlled by the application.
This more aggressive approach to memory
architecture was adopted to meet the demanding
cost/performance requirements of Sony’s
upcoming video game console. However, to date,
an in-depth study to evaluate the potential of
utilizing the Cell architecture in the context of
scientific computations does not appear in the
literature.

3. Cell Background
 Cell [1, 2] was designed by a partnership
of Sony, Toshiba, and IBM (STI) to be the heart
of Sony’s forthcoming PlayStation3 gaming
system. Cell takes a radical departure from
conventional multiprocessor or multi-core
architectures. Instead of using identical
cooperating commodity processors, it uses a
conventional high performance PowerPC core that
controls eight simple SIMD cores, called
synergistic processing elements (SPEs), where
each SPE contains a synergistic processing unit
(SPU) and a local memory. An overview of Cell
is provided in Figure 1.

Unlike a typical coprocessor, each SPE
has its own local memory from which it fetches
code and reads and writes data. The PowerPC
core, in addition to virtual to physical address
translation, is responsible for the management of
the contents of each SPE’s 256KB of non-cache
coherent local store. Thus to load and run a
program on an SPE, the PowerPC core initiates
the direct memory access (DMA) of SPE program
and data from DRAM to the local store. Once the
DMAs complete, the PowerPC core starts the
SPE. For predictable data access patterns the

 4

local store approach is highly advantageous as it
can be very efficiently utilized through explicit
software-controlled scheduling. Improved
bandwidth utilization through deep pipelining of
memory requests requires less power, and has a
faster access time than a large cache due in part to
its lower complexity. If however, the data access
pattern lacks predictability, then the advantages of
software managed memory are lost.

Figure 1 – Overview of the Cell processor. Eight SPEs, one PowerPC
core, one memory controller, and two I/O controllers are connected via
four rings. Each ring is 128b wide and runs at half the core frequency.
Each SPE has its own local memory from which it runs programs.

Access to external memory is handled via

a 25.6GB/s XDR memory controller. The
PowerPC core, the eight SPEs, the DRAM
controller, and I/O controllers are all connected
via 4 data rings, collectively known as the EIB.
The ring interface within each unit allows 8
bytes/cycle to be read or written. Simultaneous
transfers on the same ring are possible. All
transfers are orchestrated by the PowerPC core.

Each SPE includes four single precision
(SP) 6-cycle pipelined FMA datapaths and one
double precision (DP) half-pumped (one SIMD
instruction every other cycle) 9-cycle pipelined
FMA datapath with 4 cycles of overhead for data
movement [20]. Cell has a 7 cycle in-order
execution pipeline and forwarding network [1].
IBM appears to have solved the problem of
inserting a 13 (9+4) cycle DP pipeline into a 7
stage in-order machine by choosing the minimum
effort/performance/power solution of simply
stalling for 6 cycles after issuing a DP instruction.
The SPU’s DP throughput [29] of one DP
instruction every 7 (1 issue + 6 stall) cycles
coincides perfectly with this reasoning.

Thus for computationally intense
algorithms like dense matrix multiply (GEMM),
we expect SP implementations to run near peak
whereas DP versions would drop to

approximately one fourteenth the peak SP flop
rate[21]. Similarly, for bandwidth intensive
applications such as sparse matrix vector
multiplication (SpMV) we expect SP versions to
be between 1.5x and 4x as fast as DP, depending
on density and uniformity.

With respect to the memory subsystem, all
loads and stores issued from the SPE can only
access the SPE’s local memory. The limited scope
of loads and stores allows one to view the SPE as
having a two-level register file. The first level is a
128 x 128b single cycle register file, where the
second is a 16K x 128b six cycle register file.
Data must be moved into the first level before it
can be operated on by instructions.

The Cell processor depends on explicit
DMA operations to move data from main memory
to the local store of the SPE. Whereas scalar
processors have byte, word, half and doubleword
loads, the SPEs have selectable length DMAs that
run in parallel (via DMA engines) with the SIMD
code. Thus an SPE has the capability of
mitigating memory latency overhead via double-
buffered DMA loads and stores. At the SPE level,
most algorithms are programmed much the same
way as they are on traditional architectures. The
SPE’s DMAs are simply a condensed version of a
stream of scalar loads. In fact, they are much like
a traditional unit stride vector load – the major
difference being that they do not suffer the
performance issues associated with a hardware
encoded vector length. We exploit these
similarities to existing HPC platforms to select
programming models that are both familiar and
tractable for scientific application developers.

4. Programming Models
 Moving from a hardware managed
memory hierarchy to one controlled explicitly by
the application significantly complicates the
programming model. Our goal is to select the
programming paradigm that offers the simplest
possible expression of an algorithm while being
capable of fully utilizing the hardware resources
of the Cell processor.

The candidate programming models for
Cell can be divided into three categories:
independent SPEs, data pipelined, and lock step
data parallel. Heterogeneous programming of
heterogeneous elements is atypical of applications

SPE
256KB

PPC
512KB

memory
controller

I/O

I/O

EIB
4 rings, 8bytes/ core cycle

25.6 GB/s

SPE
256KB

SPE
256KB

SPE
256KB

SPE
256KB

SPE
256KB

SPE
256KB

SPE
256KB

 5

in the scientific community so the independent
SPE model was not pursued vigorously. Data
pipelining, where large blocks of data are
streamed from one SPE to the next, may be
suitable for certain classes of algorithms and will
be the focus of future investigation. The data-
parallel programming model is well established in
the computational sciences and offers the simplest
and most direct method of decomposing the
problem, and thus is the focus of our
investigation.

Data-parallel programming is quite similar
to loop-level parallelization afforded by OpenMP
or the vector-like multistreaming on the Cray X1
and the Hitachi SR-8000. Although this
decomposition offers the simplest programming
model, the restrictions on program structure and
the fine-grained synchronization mean that it may
not be the fastest or the most efficient approach
and thus slight variations were employed.

5. Simulation Methodology

In this paper, performance estimation is
broken into two steps commensurate with the two
phase double buffered computational model. This
provides a high level understanding of the
performance limitations of the Cell processor on
various algorithms. Once we gain access to a
cycle accurate simulator and/or Cell hardware, we
will verify our results and gain understanding of
the processor features that limit performance.

In the first step, pencil and paper
calculations were performed to estimate the
computational and memory requirements for the
kernels of the four benchmarks. The kernels were
segmented into code-snippets that operate only on
data present in the local store of the SPE. The
performance estimation was further refined by
hand-coding SPE assembly instructions for the
code snippets and calculating the execution times
for those snippets – taking into account the
latency of each operation, and the operand
alignment requirements given the
SIMD/quadword nature of the SPE execution
pipeline. The execution times for these snippets
are parameters for the execution component of the
performance estimator.

In the second step, we construct a model
that tabulates the time required for DMA loads
and stores of the operands required by the code

snippets. The model must accurately reflect the
constraints imposed by resource conflicts in the
memory subsystem. For instance, a sequence of
DMAs issued to multiple SPEs must be serialized,
as there is only a single DRAM controller. The
model also presumes a fixed DMA initiation
latency of 1000 cycles based on existing design
documents available regarding the Cell
implementation. The model also presumes either a
snooping or a broadcast mechanism was
implemented in the EIB either in hardware or via
software emulation.

The number of SPEs, the local store size
and the bandwidths are encoded directly into the
model as constants. External control is provided
for parameters such as the DMA initiation
latency.

Our simulation framework is essentially a
memory trace simulator – the difference being the
complexity of the concurrent memory and
computation operations that it must simulate.
Instead of explicitly simulating computation using
a cycle-accurate model of the functional units, we
simulate the flow of data through the machine,
and annotate the flow with execution time.
Therefore, our simulation is more sophisticated
than a typical memory-trace simulator; however,
although it should accurately model execution
time, it does not actually perform the
computation.

 CELL X1(MSP) Opteron Itanium2
 SPE Chip

Architecture SIMD multi-core
SIMD

multi-chip
Vector

Super
Scalar

VLIW

Frequency 3.2GHz 3.2GHz 800MHz 2.2GHz 900MHz
DRAM BW - 25.6GB/s 34GB/s 6.4GB/s 6.4GB/s

GFlop/s(single) 25.6 204.8 25.6 8.8 3.6
GFlop/s(double) 1.83 14.63 12.8 4.4 3.6

Local Store 256KB 2MB - - -
L2 Cache - 512KB 2MB 1MB 256KB
L3 Cache - - - - 1.5MB

Power 3W [1] ~40W 100W 89W 130W

Table 1 - Architectural overview of STI Cell [21], Cray X1 MSP, AMD
Opteron, and Intel Itanium2. Total Cell power and peak GFlop/s are
based on the active SPEs/idle PowerPC programming model.

Algorithms that employed double-

buffering were broken into a number of phases in
which communication for the current objects and
computation for the previous objects can take
place simultaneously. Of course, for each phase,
it was necessary to convert cycles into actual time
and FLOP rates. For simplicity we chose to

 6

model a 3.2GHz, 8 SPE version of Cell with
25.6GB/s of memory bandwidth. This version of
Cell is likely to be used in the first release of the
Sony PlayStation3 [19]. The lower frequency had
the simplifying benefit that both the EIB and
DRAM controller could deliver two SP words per
cycle. The maximum flop rate of such a machine
would be 204.8GFlop/s, with a computational
intensity of 32 FLOPs/word. It is unlikely that
any version of Cell would have less memory
bandwidth or run at a lower frequency.

For comparison, we examine performance
on several leading processor designs: the vector
Cray X1 MSP, superscalar AMD Opteron 248 and
VLIW Intel Itanium2. The key architectural
characteristics are detailed in Table 1.

5.1 Cell+ Architectural Exploration

In order to explore the limitations of Cell’s
DP issue bandwidth, we propose an alternate
design with a longer forwarding network. In this
hypothetical implementation, called Cell+, each
SPE would still have the single DP datapath, but
would be able to dispatch one DP SIMD
instruction every other cycle instead of one every
7 cycles. The Cell+ design would achieve 3.5x
the DP throughput of the Cell (51.2 GFlop/s) by
fully utilizing the existing DP datapath; however,
it would maintain the same SP throughput,
frequency, bandwidth, and power as the Cell.
Based on our experience designing the VIRAM
vector processor-in-memory chip [14], we believe
the Cell+ design modifications are modest. The
Cell+ design would require a tiny increase in
transistor count, while having a potentially
significant impact on DP application performance.

6. Dense Matrix-Matrix Multiply

We begin by examining the performance
of dense matrix-matrix multiplication, or GEMM.
This kernel is characterized by high
computational intensity and regular memory
access patterns, making it a extremely well suited
for the Cell architecture. We explored two storage
formats: column major and block data layout [7]
(BDL). BDL is a two-stage addressing scheme
(block row/column, element sub row/column)
detailed in appendix A.

6.1 Algorithm Considerations
For GEMM, we adopt what is in essence

an outer loop parallelization approach. Each
matrix is broken into 8n x n Cell “cache” blocks,
which in turn are split into eight n x n SPE
“cache” blocks. Technically they aren’t cache
blocks as the SPEs have no caches, but for clarity
we will continue to use the terminology. For the
column layout, the matrix will be accessed via a
number of short DMAs equal to the dimension of
the cache block – e.g. 64 DMAs of length 64.
BDL, on the other hand, will require a single long
DMA of length 16KB.

Since the local store is only 256KB, and
must contain both the program and stack, program
data in the local store is limited to about 56K
words. The cache blocks, when double buffered,
require 6n2 words of local store (one from each
matrix) – thus making 962 the maximum square
cache block in SP. Additionally, in column
layout, there is added pressure on the maximum
cache block size for large matrices, as each
column within a cache block will be on a different
page resulting in TLB misses. The minimum size
of a cache block is determined by the FLOPs to
word ratio of the processor. In the middle, there
is a cache block “sweet spot” that delivers peak
performance.

The loop order was therefore chosen to
minimize the average number of pages touched
per phase for a column major storage format. The
BDL approach, as TLB misses are of little
concern, allows us to structure the loop order such
that memory bandwidth is minimized.

A possible alternate approach is to adapt
Cannon’s algorithm [6] for parallel machines.
Although this strategy could reduce the DRAM
bandwidth requirements by transferring blocks via
the EIB, for a column major layout, it could
significantly increase the number of pages
touched. This will be the subject of future work.

Note that for small matrix sizes, it is most
likely advantageous to choose a model that
minimizes the number of DMAs. One such
solution would be to broadcast a copy of the first
matrix to all SPEs.

6.2 Single Precision GEMM Results

Cell GEMM performance for large
matrices is presented in Table 2 (comprehensive

 7

SGEMM results for various matrix and cache
block sizes are available in Appendix B).
SGEMM simulation data show that 322 blocks do
not achieve sufficient computational intensity to
fully utilize the processor. The choice of loop
order and the resulting increase in memory traffic
prevents column major 642 blocks from achieving
a large fraction of peak (over 90%) for large
matrices. Only 962 block sizes provide enough
computational intensity to overcome the
additional block loads and stores, and thus
achieving near-peak performance - over
200GFlop/s. For BDL, however, 642 blocks
effectively achieve peak performance. Whereas
we assume a 1000 cycle DMA startup latency in
our simulations, if the DMA latency were only
100 cycles, then the 642 column major
performance would reach parity with BDL.

At 3.2GHz, each SPE requires about 3W
[1]. Thus with a nearly idle PPC and L2, Cell
achieves over 200GFlop/s for approximately 40W
of power – nearly 5GFlop/s/Watt. Clearly for
well-suited applications, Cell is extremely power
efficient.

6.3 Double Precision GEMM Results

A similar set of strategies and simulations
were performed for the DGEMM. Cache blocks
are now limited to 642 due to the limited size of
local store. However, unlike SGEMM, this block
size does not limit performance. Although the
time to load a DP 642 block is twice that of the SP
version, the time required to compute on a 642 DP
block is about 14x as long as the SP counterpart
(due to the limitations of the DP issue logic). Thus
it is far easier for DP to reach its peak
performance. – a mere 14.6 GFlop/s. However,
when using our proposed Cell+ hardware variant,
DGEMM performance jumps to an impressive 51
GFlop/s.

6.4 Performance Comparison

Table 2 shows a performance comparison
of GEMM between Cell and the set of modern
processors evaluated in our study. Note the
impressive performance characteristics of the Cell
processors, achieving 57x, 27x, and 12.5x speed
up for SGEMM compared with the Itanium2,
Opteron, and X1 respectively. For DGEMM, the
default Cell processor is 4.2x, 3.7x, and 1.3x

faster than the Itanium2, Opteron, and X1. In
terms of power, the Cell performance is even
more impressive, achieving nearly 200x the
efficiency of the Itanium2 for SGEMM!

Our Cell+ exploration architecture is
capable, for large cache blocks, of fully exploiting
the DP pipeline and achieving over 50 GFLOP/s.
However, for smaller blocks (e.g. 322)
performance will drop to under 35 GFLOP/s. In
DP, the Cell+ architecture would be nearly 15
times faster than the Itanium2 and nearly 50 times
more power efficient. Additionally, traditional
micros (Itanium2, Opteron, etc) in multi-core
configurations would require either enormous
power saving innovations or dramatic reductions
in performance, and thus would show even poorer
performance/power compared with the Cell
technology. Compared to the X1, Cell+ would be
3 times faster and 11 times more power efficient.

The primary focus for matrix
multiplication on Cell should be the choice of data
storage to minimize the number of DMAs and
TLB misses while maximizing computational
intensity. The decoupling of main memory data
access from the computational kernel guarantees
constant memory access latency since there will
be no cache misses, and all TLB accesses are
resolved in the communication phase.

Matrix multiplication is perhaps the best
benchmark to demonstrate Cell’s computational
capabilities, as it achieves high performance by
buffering large blocks on chip before computing
on them

Double Precision (GFlop/s) Single Precision (GFlop/s)
Cell+ Cell X1 AMD64 IA64 Cell X1 AMD64 IA64
51.1 14.6 11.2 3.9 3.5 204.7 16.4 7.5 3.6

Table 2 - GEMM performance (in GFlop/s) for large square matrices
on Cell, X1, Opteron, and the Itanium2. Only the best performing
numbers are shown. Cell demonstrates an impressive performance
advantage with less than half the power of the other micros.
.

7. Sparse Matrix Vector Multiply
 At first glance, SpMV would seem to be
the worst application to run on Cell since the
SPEs have neither caches nor word gather/scatter
support. Furthermore, SpMV has O(1)
computational intensity. However, these
considerations are perhaps less important than the
low functional unit and local store latency (<2ns),
the task parallelism afforded by the SPEs, the

 8

eight independent load store units, and ability to
stream nonzeros via DMAs.

Two storage formats are presented in this
paper: Compressed Sparse Row (CSR) and
Blocked Compressed Sparse Row (BCSR) (see
Appendix C for details of these storage formats).
Only square BCSR was explored, and only 2x2
BCSR numbers will be presented here. Future
Cell SpMV work will examine the entire BCSR
space. Because of the quadword nature of the
SPEs, all rows within a CSR cache block are
padded to a multiple of 4. This greatly simplifies
the programming model at the expense of
increasing memory traffic. Note that this is very
different than 1x4 BCSR.

7.1 Algorithmic Considerations

Without an accurate performance model of
the MFC “get list” command, one must resort to
cache blocking to provide a reasonable estimate
for performance. Once again, to be clear, the term
cache blocking, when applied to Cell, implies that
blocks of data, in this case the vectors, will be
loaded in the SPEs’ local stores. For simplicity
all benchmarks were run using square cache
blocks. The data structure required to store the
entire matrix is a 2D array of cache blocks, where
each block stores its nonzeros and row pointers as
if it were an entire matrix. This can result in more
row pointer data being loaded and substantial
overhead. We chose not to buffer the source and
destination vector cache blocks as this would
require more local store resources (or more
precisely, result in a smaller block size). These
tradeoffs will be examined in future work.
Collectively the blocks are chosen to be no larger
than ~36K words in SP (half that in DP).

The inner loop of CSR SpMV either
requires significant software pipelining, hefty
loop unrolling, or an approach algorithmically
analogous to a segmented scan [30]. As there are
no conditional stores in the SPU assembly
language, we chose to partially implement a
segmented scan, where the gather operations are
decoupled from the dot products. This decoupled
gather operation can be unrolled and software
pipelined, thereby being performed in close to
three cycles per element (the ISA is not
particularly gather friendly). It is important to
note that since the local store is not a write back

cache, it is possible to overwrite its contents
without fear of either consuming DRAM
bandwidth or corrupting the actual arrays. Future
work will examine a full segmented scan via a
software version of the conditional store.
 As the nonzeros are stored contiguously in
arrays, it is straightforward to stream them in via
DMA. Here, unlike the source and destination
vectors, it is essential to double buffer in order to
maximize the SPEs computational throughput
(remember the source and destination vectors are
not double buffered). Using buffers of 16KB for
SP, allows for 2K values and 2K indices for CSR,
and 1K tiles for 2x2 BCSR. Note that for each
phase – the loading nonzeros and indices – there
is the omnipresent 1000 cycle DMA latency
overhead in addition to the startup and finalize
penalties (as in tradition pipelining).

To partition the work among the SPEs, we
implemented a cooperative blocking model. By
forcing all SPEs to work on the same block, it is
possible to broadcast the blocked source vector
and row pointers to minimize memory traffic.
One approach, referred to as PrivateY, is to
divide work among SPEs within a block by
distributing the nonzeros as evenly as possible.
This strategy necessitates that each SPE contains a
private copy of the destination vector, and
requires an inter-SPE reduction at the end of each
blocked row. The alternate method, referred to as
PartitionedY, partitions the destination vector
evenly among the SPEs. By reducing the size of
the destination vector within each SPE, one can
double the size of the source vector “cached”
within the local store. However there is no longer
any guarantee that the SPEs’ computations will
remain balanced, causing the execution time of
the entire cache block to be limited by the most
heavily loaded SPE. Thus for load balanced
blocks, the PartitionedY approach is generally
advantageous; however, for matrices exhibiting
irregular (uneven) nonzero patterns, we expect
higher performance using PrivateY.
 Note that there is a potential performance
benefit by writing a kernel specifically optimized
for symmetric matrices. For these types of
matrices, the number of operations can effectively
double relative to the memory traffic. However,
the algorithm must block two cache blocks at a
time – thus the symmetric matrix kernel divides

 9

memory allocated for blocking the vector evenly
among the two submatrices, and performs a dot
product and SAXPY for each row in the lower
triangle.

7.2 Evaluation Matrices
 In order to effectively evaluate SpMV
performance, we examine six synthetic matrices,
as well as ten real matrices used in numerical
calculations from the Bebop SPARSITY suite
[3,5] (four unsymmetric and six symmetric).
Table 3 presents an overview of the evaluated
matrices.

 Name N NNZ Comments
- 7pt_32 32K 227K 3D 7pt stencil on a 323 grid
- Random 32K 512K Totally random matrix

-
Random

(symmetric)
32K 256K

Random Symmetric matrix –
Total of 512K nonzeros

- 7pt_64 256K 1.8M 3D 7pt stencil on a 643 grid
- Random 256K 4M Totally random matrix

-
Random

(symmetric)
256K 2M

Random Symmetric matrix –
Total of 4M nonzeros

15 Vavasis 40K 1.6M 2D PDE Problem
17 FEM 22K 1M Fluid Mechanics Problem
18 Memory 17K 125K Memory Circuit from Motorola

36 CFD 75K 325K
Navier-Stokes, viscous flow, fully
coupled

06 FEM Crystal 14K 490K
FEM Crystal free vibration stiffness
matrix

09 3D Pressure 45K 1.6M 3D pressure Tube
25 Portfolio 74K 335K Financial Portfolio - 512 Scenarios
27 NASA 36K 180K PWT NASA Matrix with diagonal
28 Vibroacoustic 12K 177K Flexible box, structure only
40 Linear Prog. 31K 1M AAT

Table 3 – Suite of matrices used to evaluate SpMV performance.
Matrix numbers as defined in the SPARSITY suite are shown in the
first column.

7.3 Single Precision SpMV Results

Single and double precision SpMV results
for the SPARSITY matrices are show in Tables 4
and 5. Surprisingly, given Cell’s inherent SpMV
limitations, the SPARSITY unsymmetric matrices
average nearly 4GFlop/s, while the symmetric
matrices average just over 6Gflop/s.
Unfortunately, many of these matrices are so
small that they utilize only a fraction of the
default cache block size. Detailed results showing
single precision SpMV performance on the Cell
for our suite of matrices are shown in Appendix
D.

Since it is clear that for this algorithm
performance is almost entirely limited by the
memory bandwidth, it is not possible for most
unsymmetric matrices to attain the 6.4GFlop/s
peak CSR performance, due to the substantial

cache blocking and DMA overhead. As one
might expect, large matrices with high densities
show closer to peak performance, since the
blocking overheads can be effectively amortized.
Similarly, larger blocks yield higher performance
for large matrices.

Unlike the synthetic matrices, the real
matrices, which contain dense sub-blocks, can
exploit BCSR without unnecessarily wasting
memory bandwidth on zeros. As memory traffic
is key, storing BCSR blocks in a compressed
format (the zeros are neither stored nor loaded)
would allow for significantly higher performance
if there is sufficient support within the ISA to
either decompress these blocks on the fly, or
compute on compressed blocks. This is an area of
future research.

Overall results show that the PrivateY
approach is generally a superior partitioning
strategy compared with PartitionedY. In most
cases, the matrices are sufficiently unbalanced
that the uniform partitioning of the nonzeros
coupled with a reduction requires less time than
the performing a load imbalanced calculation.

Since the local store size is fixed, blocks in
the symmetric kernels are in effect half the size of
the space allocated. When using the PartionedY
approach, the symmetric kernel is extremely
unbalanced for blocks along the diagonal. Thus,
for matrices approximately the size of a single
block, the imbalance between SPEs can severely
impair the performance – even if the matrix is
uniform. In fact, symmetric optimizations show
only about 50% performance improvement when
running the unsymmetric kernel on the symmetric
matrices.

Once again DMA latency plays a
relatively small role in this algorithm. In fact,
reducing the DMA latency by a factor of ten
results in only a 5% increase in performance.
This is actually a good result. It means than the
memory bandwidth is highly utilized and the
majority of bus cycles are used for transferring
data rather than stalls.
 On the whole, clock frequency also plays a
small part in the overall performance. Increasing
the clock frequency by a factor of 2 (to 6.4GHz)
provides only a 1% increase in performance on
the SPARSITY unsymmetric matrix suite.
Similarly, cutting the frequency in half (to

 10

1.6GHz) results in only a 20% decrease in
performance. Simply put, for the common case,
more time is used in transferring nonzeros and the
vectors rather than computing on them.

7.4 Double Precision SpMV Results
 Results from our performance estimator
show that single precision SPMV is almost twice
as fast as double precision, even though the
nonzero memory traffic only increases by 50%.
This discrepancy is due to the reduction in the
number of values contained in a cache block,
where twice as many blocked rows are present.
For example, when using 16K2 SP cache blocks
on a 128K2 matrix, the 512KB source vector must
be loaded 8 times. However, in DP, the cache
blocks are only 8K2 – causing the 1MB source
vector to be loaded 16 times, and thus resulting in
a much higher volume of memory traffic. Future
work will investigate caching mega blocks across
SPEs to reduce total memory traffic.
 Additionally, note that the extreme drop in
floating point throughput (14x) between SP and
DP, has relatively little impact on performance.
This can also be seen in the difference between
Cell and Cell+, where a 3.5x improvement in DP
peak performance results in only a 5% speedup
for SpMV.

 Double (GFlop/s) Single (GFlop/s)

Matrix Cell+ Cell AMD64 IA64 Cell IA64
Vavasis 3.17 3.06 0.44 0.51 6.06 0.52

FEM 3.44 3.39 0.42 0.54 5.14 0.63
CFD 1.52 1.44 0.28 0.25 2.33 0.15

Average 2.71 2.63 0.38 0.43 4.51 0.43

Table 4 - SpMV performance (in GFlop/s) of Cell, Opteron and
Itanium2 using single and double precision on the SPARSITY
unsymmetric matrix suite. Even in double precision, Cell is about six
times faster (with only four times the memory bandwidth).

 Double (GFlop/s) Single (GFlop/s)

Matrix Cell+ Cell AMD64 IA64 Cell IA64
FEM 6.79 6.32 0.93 0.74 12.37 1.21

3D Tube 6.48 6.06 0.86 0.72 11.66 1.24
Portfolio 1.83 1.60 0.37 0.23 3.26 0.19
NASA 1.92 1.66 0.42 0.27 3.17 0.22
Vibro 3.90 3.47 0.57 0.31 7.08 0.41

LP 5.17 4.87 0.47 0.33 8.54 0.66
Average 4.35 4.00 0.60 0.43 7.68 0.66

Table 5 - SpMV performance (in GFlop/s) of Cell, Opteron and
Itanium2 using single and double precision on the SPARSITY
symmetric matrix suite. Cell is more than 9 times faster (with only
four times the memory bandwidth).

7.5 Performance Comparison
Tables 4 and 5 compare Cell’s estimated

performance for SpMV with results from the
Itanium2 and Opteron using the SPARSITY suite,
a highly tuned sparse matrix numerical library.
Considering that the Itanium2 and Opteron each
have a 6.4GB/s bus compared to the Cell’s
25.6GB/s DRAM bandwidth – one may expect
that a memory bound application such as SpMV
would perform only four times better on the Cell.
Nonetheless, on average, Cell is more than 6x
faster in DP and 10x faster in SP. This is because
in order to achieve maximum performance, the
Itanium2 must rely on the BCSR storage format,
and thus waste memory bandwidth loading
unnecessary zeros. However, the Cell’s high
FLOP to byte ratio ensures that the regularity of
BCSR is unnecessary allowing it to avoid loading
many of the superfluous zeros. For example, in
matrix #17, Cell uses more than 50% of its
bandwidth loading just the DP nonzero values,
while the Itanium2 utilizes only 33% of its
bandwidth. The rest of Itanium2’s bandwidth is
used for zeros and meta data. It should be noted
that where simulations on Cell involve a cold start
to the local store, the Itanium2’s have the
additional advantage of a warm cache.

Cell’s use of on-chip memory as a buffer
is advantageous in both power and area compared
with a traditional cache. In fact, Cell is nearly 20
times more power efficient than the Itanium2 and
15 times more efficient than the Opteron for
SpMV. For a memory bound application such as
this, multicore commodity processors will see
little performance improvement unless they also
scale memory bandwidth.

Comparing results with an X1 MSP,
previously published work showed that a highly
optimized permutation implementation (CSRP),
achieves only 1 GFlop/s on a DP 7pt stencil
matrix, while the standard CSR approach achieves
less that 0.01 GFlop/s. On a similar matrix, Cell is
able to achieve about 1.3GFlop/s. Thus, the Cell
is nearly 50% faster, even though the X1 has 50%
more memory bandwidth. The final paper version
will contain the full set of SpMV results for both
the Opteron and X1.

An alternate approach to cache blocking is
to employ the MFC’s “get list” command. This
would allow for a gather operation either from

 11

main memory, or from all local stores – thus
potentially eliminating the inefficiencies of the
current cache blocking approach, and perhaps
yielding higher overall results. Unfortunately, no
accurate performance information is currently
available for small granularities (word/double).
Therefore, unlike cache blocking where large
granularities can be used to amortize latency, it is
not yet possible to accurately create a SpMV
performance model for this approach. Future
work will explore this approach as hardware,
simulators, or detailed performance
documentation become publicly available.

8. Stencil Computations

Stencil-based computations on regular
grids are at the core of a wide range of important
scientific applications. In these applications, each
point in a multidimensional grid is updated with
contributions from a subset of its neighbors. The
numerical operations are then used to build
solvers that range from simple Jacobi iterations to
complex multigrid and block structured adaptive
methods.

In this work we examine two flavors of
stencil computations derived from the numerical
kernels of the Chombo[24] and Cactus[25]
toolkits. Chombo is a framework for computing
solutions of partial differential equations (PDEs)
using finite difference methods on adaptively
refined meshes. Here we examine a stencil
computation based on Chombo’s demo
application, heattut, which solves a simple heat
equation without adaptivity. Cactus is modular
open source framework for computational
science, successfully used in many areas of
astrophysics. Our work examines the stencil
kernel of the Cactus demo, WaveToy, which
solves a 3D hyperbolic PDE by finite
differencing. The heattut and WaveToy equations
are shown in Figure 2.

Notice that both kernels solve 7 point
stencils in 3D for each point. However, the
heattut equation only utilizes values from the
current time step, while WaveToy requires values
from the current state as well as the previous state.
Additionally, WaveToy has a higher
computational intensity, and can more readily
exploit the FMA pipeline.

Xnext[i,j,k,t+1] =
X[i-1,j,k,t] + X[i+1,j,k,t] +
X[i,j-1,k,t] + X[i,j+1,k,t] +
X[i,j,k-1,t] + X[i,j,k+1,t] +

 αX[i,j,k,t]

X[i,j,k,t+1] =

dt2/dx2(X[i-1,j,k,t]+X[i+1,j,k,t])+
dt2/dy2(X[i,j-1,k,t]+X[i,j+1,k,t])+
dt2/dz2(X[i,j,k-1,t]+X[i,j,k+1,t])+
αX[i,j,k,t] - X[i,j,k,t-1]

Figure 2 - Stencil kernels used in evaluation. Top: Chombo heattut
equation requires only the current time step. Bottom: CACTUS
WaveToy equation requires both the current and previous time steps.

8.1 Algorithmic considerations
 The algorithm used on Cell is virtually
identical to that used on traditional architectures
except that the ISA forces main memory loads
and stores to be explicit, rather than caused by
cache misses and evictions. The basic algorithmic
approach to update the 3D cubic data array is to
sweep across the domain, updating one plane at a
time. Since a stencil requires both the next and
previous plane, a minimum of 4 planes must be
present in the local stores: (z-1,t), (z,t), (z+1,t),
and (z,t+1). Additionally, bus utilization can be
maximized by double buffering the previous
output plane (z-1,t+1) with the next input plane
(z+2,t)
 In order to parallelize across SPEs, each
plane of the 3D domain is partitioned into eight
overlapping blocks. Due to the finite size of the
local store memory, a straightforward stencil
calculation is limited to planes of 2562 elements
plus ghost regions. Thus each SPE updates the
core 256x32 points from a 258x34 slab (as slabs
also contain ghost regions too).
 To improve performance of stencil
computations on cache-based architectures,
previous research has shown multiple time steps
can be combined to increase performance. [26, 27,
28]. This concept of time skewing can also be
effectively leveraged in our Cell implementation.
By keeping multiple planes from multiple time
steps in the SPE simultaneously, it is possible to
double or triple the number of stencils performed
with almost no increase in memory traffic; thus
increasing computational intensity and improving
overall performance. Figure 3 details a flow
diagram for the heat equation, showing both the
simple and time skewed implementations.

Note that the neighbor communication
required by stencils is not well suited for the

 12

aligned quadword load requirements of the SPU
ISA – i.e. unaligned loads must be emulated with
permute instructions. In fact, for SP stencils with
extensive unrolling, after memory bandwidth, the
permute datapath is the limiting factor in
performance - not the FPU. This lack of support
for unaligned accesses highlights a potential
bottleneck of the Cell architecture; however we
can partially obviate this problem for the stencil
kernel via data padding.

8.2 Stencil Kernel Results

The performance estimation for the heattut
and WaveToy stencil kernels is shown in Table 6 -
detailed results are available in Appendix E.
Results show that as the number of time steps
increases, a corresponding decrease in the grid
size is required due to the limited memory
footprint of the local store. In SP, the heat
equation on the Cell is effectively
computationally bound with two steps of time
skewing, resulting in over 41GFlop/s. More
specifically, the permute unit becomes fully
utilized as discussed in Section 8.1. In DP,
however, the heat equation is truly
computationally bound for only a single time step,
achieving 8.2 GFlop/s. Analysis also shows that
in the Cell+ approach, the heat equation is
memory bound when using a single time step
attaining 10.6 GFlop/s; for time skewing,
performance of Cell+ DP jumps to over 21
GFlops/s.
 We believe the temporal recurrence in the
CACTUS WaveToy example will allow more time
skewing in single precision at the expense of far
more complicated code, and will be the subject of
future investigation.

 Double Precision (GFlop/s) Single Precision (GFlop/s)

 Cell+
(2) Cell+ Cell AMD64 IA64 Cell

(2) Cell AMD64 IA64

Heat 21.1 10.6 8.2 0.53 1.20 41.9 21.2 1.14 1.55
WaveToy 16.7 11.1 10.8 0.68 1.53 33.4 22.3 1.58 2.03

Table 6 - Performance for the heat equation and WaveToy stencils on
Cell, Opteron, and Itanium2. Opteron and Itanium experiments use
1283 and 2563 grids. Cell uses the largest grid that would fit within the
local store (similar sized, but varied with time skewing). The (2)
versions denote a time skewed version where 2 time steps are
computed.

8.3 Performance Comparison
 Table 6 presents a performance
comparison of the stencil computations across our
evaluated set of leading processors. (The final
paper version will contain X1 results.) Note that
stencil performance has been optimized for the
cache-based platforms as described in [22]

In single precision, for this memory bound
computation, even without time skewing, Cell
achieves and 11x and 14x speedup compared with
the Itanium2 and Opteron respectively. Recall that
the Cell has only four times the memory
bandwidth of both of these platforms – indicating
that Cell’s potential to perform this class of
computations in a much more efficient manner is
due to the advantages of software controlled
memory for algorithms exhibiting predictable
memory accesses. Additionally, unlike the
Opteron and Itanium2, simple time skewing has
the potential to significantly increase performance
in either SP (either version of Cell) or in DP on
the Cell+ variant.

Finally, recall that in Section 7 we
examined Cell SpMV performance using 7-point
stencil matrices. We can now compare those
results with the structured grid approach presented
here, as the numerical computations is equivalent
in both cases. Results show that for two time step
calculations, the single precision structured grid
approach achieves a 15x advantage compared
with the sparse matrix method. This impressive
speedup is attained through the regularity of
memory accesses, reduction of memory traffic
(constants are encoded in the equation rather than
the matrix), and the ability to time skew
(increased computational intensity). For double
precision, the stencil algorithm advantage is
diminished to approximately 6x, due mainly to the
lack of time skewing

Z+2

Z+1

Z

Z-1 Z-1

Z
Time t+1

Time t

Z+2

Z+1

Z

Z-1

Z-2

Z-1
Time t+2

Time t

Z

Z-1

Z-2

Time t+1

Figure 3 - Flow Diagram for Heat equation flow diagram. Left:
Queues implemented within each SPE perform only one time
step. Right: Time skewing version requires an additional circular
queue to hold intermediate results.

 13

9. Fast Fourier Transforms

The FFT presents us with an interesting
challenge: its computational intensity is much less
than matrix-matrix multiplication and standard
algorithms require a non-trivial amount of data
movement. Extensive work has been performed
on optimizing this kernel for both vector [31] and
cache-based [23] machines. In addition,
implementations for varying precisions appear in
many embedded devices using both general and
special purpose hardware. In this Section we
evaluate the implementation of a standard FFT
algorithm on the Cell processor.

9.1 Methods

We examine both the 1D FFT
cooperatively executed across the SPEs, and a 2D
FFT whose 1D FFTs are each run on a single
SPE. In all cases the data appears in a single
array of complex numbers. Internally (within the
local stores) the data is unpacked into separate
arrays, and a table lookup is used for the roots of
unity so that no runtime computation of roots is
required. As such, our results include the time
needed to load this table. Additionally, all results
are presented to the FFT algorithm and returned in
natural order (i.e. a bit reversal was required to
unwind the permutation process in all cases).
Note that these requirements have the potential to
severely impact performance.

For simplicity we evaluated a naive FFT
algorithm (no double buffering and with barriers
around computational segments) for the single 1D
FFT. The data blocks are distributed cyclically to
SPEs, 3 stages of local work are performed, the
data is transposed (basically the reverse of the
cyclic allocation), and then 9 to 13 stages of local
computation is performed (depending on the FFT
size). At that point the indices of the data on chip
are bit-reversed to unwind the permutation
process and the naturally ordered result copied
back into main memory. Once again, we presume
a large DMA initiation overhead of 1000 cycles.
However, a Cell implementation where the DMA
initiation overhead is smaller, would allow the
possibility of much larger FFT calculations
(including out of core FFTs) using smaller block
transfers, with little or no slowdown using double
buffering to hide the DMA latency.

Before exploring the 2D FFT, we briefly
discuss simultaneous FFTs. For sufficiently small
FFTs (<4K points in SP) it is possible to both
double buffer and round robin allocate a large
number of independent FFTs to the 8 SPEs.
Although there is lower computational intensity,
the sheer parallelism, and double buffering allow
for extremely high performance (up to
76GFlop/s).

Simultaneous FFTs form the core of the
2D FFT. In order to ensure long DMAs, and thus
validate our assumptions on effective memory
bandwidth, we adopted an approach that requires
two full element transposes. First, N 1D N-point
FFTs are performed for the rows storing the data
back to DRAM. Second, the data stored in
DRAM is transposed (columns become rows) and
stored back to DRAM. Third the 1D FFTs are
performed on the columns, whose elements are
now sequential (because of the transpose).
Finally a second transpose is applied to the data to
return it to its original layout. Instead of
performing an N point bit reversal for every FFT,
entire transformed rows (not the elements of the
rows) are stored in bit-reversed order (in effect,
bit reversing the elements of the columns). After
the first transpose, a decimation in frequency FFT
is applied to the columns. The columns are stored
back in bit-reversed order - in doing so, the row
elements are bit reversed. With a final transpose,
the data is stored back to memory in natural order
and layout in less time.

9.2 Single Precision FFT Performance

Table 7 presents performance results for
the Cell 1D and 2D FFT. For the 1D case, more
than half of the total time is spent just loading and
storing points and roots of unity from DRAM. If
completely memory bound, peak performance is
approximately 3.2GHz * 5NlogN/3N cycles ~
2.7logN GFlop/s. This means performance is
limited to 64GFlop/s for a 4K point SP FFT
regardless of CPU frequency. A clear area for
future exploration is hiding computation within
the communication and the minimization of the
overhead involved with the loading of the roots of
unity. Unfortunately the two full element
transposes, used in the 2D FFT to guarantee long
sequential accesses, consume nearly 50% of the
time. Thus, although simultaneous FFTs achieve

 14

76GFlop/s, the 2D FFT reaches only 46GFlop/s –
an impressive figure nonetheless. Without the bit
reversal approach, the performance would have
further dropped to about 40GFlop/s.

9.3 Double Precision FFT Performance

When DP is employed, the balance
between memory and computation is changed by
a factor of 7. This pushes a slightly memory
bound application strongly into the
computationally bound domain. The SP
simultaneous FFT is 10 times faster than the DP
version. On the upside, the transposes required in
the 2D FFT are now less than 20% of the total
time, compared with 50% for the SP case. Cell+
finds a middle ground between the 4x reduction in
computational throughput and the 2x increase in
memory traffic – increasing performance by
almost 2.5x compared with the Cell for all
problem sizes.

9.4 Performance Comparison

The peak Cell FFT performance is
compared to a number of other processors in the
Table 7. These results are conservative given the
naïve 1D FFT implementation we used on Cell
whereas the other systems in the comparison used
highly tuned FFTW [23] or vendor-tuned FFT
implementations [18]. Nonetheless, in DP, Cell is
8x faster than the Itanium2, and Cell+ could be as
much as 20x faster than the Itanium2 on a large
2D FFT. Cell+ more than doubles the DP FFT
performance of Cell for all problem sizes. Cell
performance is nearly at parity with the X1;
however, we believe much headroom remains for
more sophisticated Cell FFT implementations.

 Double Precision (GFlop/s) Single Precision (GFlop/s)
 N Cell+ Cell X1 AMD64 IA64 Cell AMD64 IA64
 4K 12.6 5.6 2.6 2.1 2.7 29.9 3.8 2.8

1D 16K 14.2 6.1 5.8 1.6 2.2 37.4 2.6 2.7
 64K - - 8.8 1.2 1.5 41.8 1.9 2.4
 1K2 15.9 6.6 - 1.1 0.8 35.9 1.5 1.6

2D 2K2 16.5 6.7 - - - 40.5 - -
 4K2 - - - - - 44.9 - -

Table 7 – Performance of 1D and 2D FFT on Cell, X1, Opteron, and
Itanium2. For large FFTs, Cell is more than 10 times faster in SP than
its competitors. Note: the Opteron used here is a 2GHz model.

Note that FFT performance on Cell

performance improves as the number of points
increases, so long as the points fit within the local
store. In comparison, the performance on cache-

based machines typically reach peak at a problem
size that is far smaller than the on-chip cache-size,
and then drop precipitously once the associativity
of the cache is exhausted and cache lines start
getting evicted due to aliasing. The evictions are
unavoidable on cache-based architectures given
the power-of-two problem sizes required by the
FFT algorithm, but such evictions will not occur
on Cell’s software-managed local store.
Furthermore, we believe that even for problems
that are larger than local store, 1D FFTs will
continue to scale much better on Cell than typical
cache-based processors with set-associative
caches since local store provides the same benefits
as a fully associative cache. The FFT
performance clearly underscores the advantages
of software-controlled three-level memory
architecture over conventional cache-based
architectures.

10. Conclusions

The high performance computing
community is exploring alternative architectural
approaches to address the performance and power
limitations of conventional processor designs. The
Cell processor offers an innovative architectural
approach that will be produced in large enough
volumes to be cost-competitive with commodity
CPUs. This work presents the first quantitative
study Cell’s performance on scientific kernels and
directly compares its performance to tuned
kernels running on leading superscalar (Opteron),
VLIW (Itanium2), and vector (X1) architectures.
Since neither Cell hardware nor cycle-accurate
simulators are currently publicly available at this
time, we develop an analytic framework to predict
Cell performance on dense and sparse matrix
operations, stencil computations, and 1D and 2D
FFTs. While peak Cell DP throughput, required
by most scientific applications, is far lower than
SP, it still outperforms conventional processors on
many kernels. Overall results demonstrate the
tremendous potential of the Cell architecture for
scientific computations in terms of both raw DP
and SP performance and power efficiency.

Furthermore, we propose Cell+, a modest
architectural variant to the Cell architecture
designed to improve DP behavior. Results show
that, aside from SpMV, the Cell+ significantly
outperforms Cell for all of our evaluated kernels.

 15

It is clear that if Cell is ever to play a leading role
in scientific computing, DP must be promoted to a
first class citizen within Cell.
 Analysis shows that Cell’s three level
memory architecture, which completely decouples
main memory load/store from computation,
provides several advantages over mainstream
cache-based architectures. First, kernel
performance can be extremely predictable as the
average load time from local store is also the
worst case. Second, long block transfers can
achieve a much higher percentage of memory
bandwidth than individual loads in much the same
way a hardware stream prefetch engine, once
engaged, can fully consume memory bandwidth.
Finally, for predictable memory access patterns,
communication and computation can be
effectively overlapped. Increasing the size of the
local store or reducing the DMA startup overhead
on future Cell implementations may further
enhance the scheduling efficiency in order to
better overlap the communication and
computation.
 There are also disadvantages to this
architecture. For example, SpMV, with its
unpredictable access patterns and low
computational intensity achieves a dismally low
percentage of Cell’s peak performance. Even
memory bandwidth may be wasted since SpMV is
constrained to use cache blocking to remove the
unpredictable accesses to the source vector. The
ability, however, to perform a decoupled gather,
to stream nonzeros, and Cell’s low functional unit
latency, tends to hide this deficiency.
Additionally, we see Stencil computations as an
example of an algorithm with performance that is
heavily influenced by the performance of the
permute pipeline. Here, the lack of support for an
unaligned load instruction is a more important
performance bottleneck than either the SP
execution rate or the memory bandwidth
 For dense matrix operations, it is essential
to maximize computational intensity and thereby
fully utilize the local store. However, if not done
properly, the resulting TLB misses adversely
affect performance. For example, in the GEMM
kernel we observe that the BDL data storage
format, either created on the fly or before hand,
can ensure that TLB misses remain a small issue
even as on-chip memories increase in size.

Table 8 compares the advantage in DP of
Cell and Cell+ in terms of performance and power
efficiency for our suite of evaluated kernels and
architectural platforms. (All missing performance
data will appear in the final version.) Observe that
the Cell+ approach greatly increases the already
impressive performance characteristics of Cell –
recall that both the Cell and Cell+ have just one
DP floating-point unit, but the Cell+ can utilize it
more effectively through modest enhancements to
the execution pipeline.

It is important to consider these
performance differences in the context of
imminently prevalent multi-core commodity
processors. The first generation of this technology
will instantiate at most two cores per chip, and
thus will deliver less than twice the performance
of today’s existing architectures. This factor of 2x
is trivial compared with Cell+’s potential of 10–
20x improvement, and does nothing if not widens
the existing power efficiency gap.

 Cell+ Speedup over: Cell+ power efficiency over:
 X1 AMD64 IA64 X1 AMD64 IA64

GEMM 4.5x 13x 15x 11x 29x 49x
SpMV - 7.1x 6.3x - 16x 20x
Stencil - 40x 17.5x - 89x 57x
1D FFT 2.4x 8.9x 6.5x 6x 20x 21x
2D FFT - 14x 20x - 31x 65x

 Cell Speedup over: Cell power efficiency over:
 X1 AMD64 IA64 X1 AMD64 IA64

GEMM 1.3x 3.7x 4.2x 3.3x 8.2x 14x
SpMV - 6.9x 6.1x - 15x 20x
Stencil - 15.5x 6.8x - 34x 22x
1D FFT 1.05x 3.8x 2.8x 2.6x 8.5x 9.1x
2D FFT - 6x 8.2x - 13x 27x

Table 8 - Double precision speedup and increase in power efficiency of
(Top) Cell+ and (Bottom) Cell, relative to the X1, Opteron, and
Itanium2 for our evaluated suite of scientific kernels. Results show an
impressive improvement in performance and power efficiency.

11. Future Work
 A key component missing in this work is
cycle-accurate simulation of the Cell architecture.
We expect to work on validating the prediction
models presented in this paper using a suite of
high level Cell architectural simulators that are
due to be released by IBM Research late this year.
We will report those results in this paper if the
software release proceeds as scheduled and NDA
restrictions abate. The simulation results will also
be checked against runs on Cell-based hardware
when it becomes available.

 16

 In terms of potential algorithmic
improvements, we believe GEMM performs
extremely well and there is little room for
additional gains. SpMV on the other hand, has
many research opportunities from data storage
formats, to cache blocking alternatives, to the
MFC “get list” command. The FFT has perhaps
the most room for improvement. The addition of
double buffering, and reduction in memory traffic
should help improve the peak performance for 1D
FFTs, and alternative strategies to simple
transposes are a necessity for more efficient 2D
FFT versions. Table 9 presents the potential for
further performance speedup for our scientific
kernels on the Cell platform, based on our
algorithmic analysis.

 Potential further speedup on Cell
GEMM ~0x (for N3 approaches)
SpMV ~1.5x
Stencil ~0x
1D FFT 2.25x (single), 1.75x(cell+/double)
2D FFT 2x (single), 1.75x(cell+/double)

Table 9 – Potential for further speedup on Cell based on algorithmic
analysis.

 While peak Cell DP performance is
impressive relative to its commodity peers, Cell
will not reach its true potential for scientific
computing until an SPE implementation that
includes at least one fully utilizable pipelined DP
floating point unit becomes available, as proposed
in our Cell+ implementation. Until then, studies
of Cell can provide insights into enhancements
that may prove useful for mainstream desktop
processors as well as Cell variants that include
other HPC-oriented features.

References
[1] B. Flachs et al., A Streaming Processor Unit for a Cell Processor,

ISSCC Dig. Tech. Papers, Paper 7.4, 134-135, February, 2005.
[2] D. Pham et al., The Design and Implementation of a First-Generation

Cell Processor, ISSCC Dig. Tech. Papers, Paper 10.2, 184-185,
February, 2005.

[3] R. W. Vuduc. Automatic performance tuning of sparse matrix
kernels. PhD thesis, University of California, Berkeley, 2003.

[4] E. F. D'Azevedo, M. R. Fahey, R. T. Mills. Vectorized Sparse Matrix
Multiply for Compressed Row Storage Format. ICCS, 99-106, 2005

[5] E.-J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework
for sparse matrix kernels. International Journal of High Performance
Computing Applications, 2004.

[6] L. Cannon. A Cellular Computer to Implement the Kalman Filter
Algorithm. PhD thesis, Montana State University, 1969.

[7] N. Park, B. Hong, and V. K. Prasanna. Analysis of Memory
Hierarchy Performance of Block Data Layout, International
Conference on Parallel Processing (ICPP), August 2002.

[8] M. Oka, et al. Designing and programming the emotion engine.
Micro, IEEE, Volume: 19, Issue: 6, Nov.-Dec. 1999

[9] A. Kunimatsu, et al. Vector Unit Architecture for Emotion Synthesis.
Micro, IEEE, Volume: 20, Issue: 2, March-April 2000.

[10] M. Suzuoki, et al. A Microprocessor with a 128-Bit CPU, Ten
Floating-Point MAC’s, Four Floating-Point Dividers, and an MPEG-
2 Decoder. Solid-State Circuits, IEEE Journal, Volume: 34, Issue:
11, November 1999.

[11] B. Khailany, et al. Imagine: Media Processing with Streams. Micro,
IEEE, Volume: 21, Issue: 2, March-April 2001

[12] M. Kondo, et al. SCIMA: A Novel Processor Architecture for High
Performance Computing. High Performance Computing in the Asia-
Pacific Region, 2000. Proceedings. The Fourth International
Conference/Exhibition on, Volume: 1, 14-17 May 2000.

[13] P. Keltcher, et al. An Equal Area Comparison of Embedded DRAM
and SRAM Memory Architectures for a Chip Multiprocessor. HP
Laboratories Palo Alto. April 2000.

[14] The Berkeley Intelligent RAM (IRAM) Project, Univ. of
California, Berkeley, at http://iram.cs.berkeley.edu.

[15] S. Tomar, et al. Use of Local Memory for Efficient Java Execution.
Computer Design, 2001. ICCD. Proceedings. 23-26 September 2001.

[16] M. Kandemir, et al. Dynamic Management of Scratch-Pad Memory
Space. Design Automation Conference. Proceedings, 18-22 June
2001.

[17] P. Francesco, et al. An Integrated Hardware/Software Approach For
Run-Time Scratchpad Management. 41st Design Automation
Conference. Proceedings, June 7-11, 2004.

[18] ORNL Cray X1 Evaluation.
http://www.csm.ornl.gov/~dunigan/cray.

[19] Sony press release
http://www.scei.co.jp/corporate/release/pdf/050517e.pdf

[20] S. Mueller, et al. The Vector Floating-Point Unit in a Synergistic
Processor Element of a CELL Processor.. 17th IEEE annual
Symposium on Computer Arithmetic. June 27-29, 2005. (to appear)

[21] IBM Cell Specifications
 http://www.research.ibm.com/cell/home.html
[22] S.A. Kamil, et al. Impact of Modern Memory Subsystems on Cache

Optimizations for Stencil Computations, ACM-MSP, June 2005.
[23] FFTW Speed tests
 http://www.fftw.org
[24] Chombo homepage

http://seesar.lbl.gov/anag/chombo
[25] Cactus homepage

http://www.cactuscode.org
[26] Zhiyuan Li, Yonghong Song, Automatic tiling of iterative stencil

loops. ACM Trans. Program. Lang. Syst. 26(6): 975-1028, 2004
[27] David Wonnacott, Using Time Skewing to Eliminate Idle Time due

to Memory Bandwidth and Network Limitations. IPDPS, 171-180,
2000

[28] Guohua Jin, et al., Increasing temporal locality with skewing and
recursive blocking, SC, 43, 2001

[29] J. A. Kahle, et al., Introduction to the Cell MultiProcessor, IBM
Journal of R&D, Volume 49, Number 4/5, 2005. pp. 589-604.

[30] G. Blelloch, et. al, Segmented Operations for Sparse Matrix
Computation on Vector Multiprocessors, CMU-CS-93-173, 1993.

[31] L. Oliker, et al., A Performance Evaluation of the Cray X1 for
Scientific Applications, VECPAR'04, 2004.

 17

APPENDIX

A. GEMM Storage Formats
For GEMM, two storage formats were

explored. The default is a column major format
for all three matrices. The second format, block
data layout, or BDL, organizes matrix sub-blocks
into contiguous blocks of memory [7]. This can
be particularly advantageous as it not only
minimizes the number of DMAs required, but also
minimizes the number of pages touched when
loading a sub-block. Although a matrix might not
be stored in BDL, it can quickly be converted on
the fly. Figure A.1 shows a matrix stored in the
two formats.

B. SGEMM Detailed Results

Figure B.1 shows SGEMM performance
for various matrix dimensions, cache block sizes,
and storage formats. Small cache blocks lack the
computational intensity to keep the processor
computationally bound.

0

25.6

51.2

76.8

102.4

128

153.6

179.2

204.8

N=256,
32x32

N=2048,
32x32

N=512,
64x64

N=2048,
64x64

N=768,
96x96

N=2304,
96x96

Matrix Dimension, Cacheblock Size

G
F

L
O

P
/s

Column Major BDL
Figure B.1 - SGEMM on Cell. Even with the minimum overhead of BDL,
the lack of computational intensity prevents 322 cache blocks from
attaining 60% of peak. The inefficiency of column major layout prevents it
from reaching peak performance without very large cache blocks.

C. SpMV Storage Formats

For SpMV, three storage formats were
examined: compressed sparse row (CSR),
compressed sparse column (CSC), and blocked
compressed sparse row (BCSR). CSR collects the
nonzeros from one row at a time and appends

three arrays: the values, the corresponding
columns for the values, and the locations in the
first two arrays where the row starts. BCSR
behaves in much the same way as CSR. The
difference is that CSR operates on what are in
effect 1x1 blocks, and BCSR operates on r x c
blocks. Thus the values array is grouped into r*c
segments which include zeros. CSC is organized
around columns rather than rows.

All three storage formats provide regular
access patterns to the nonzeros. However, CSR
and CSC force a very irregular access pattern to
the source and destination vectors respectively.
For SIMD sized granularities BCSR provides
regular access within a block, but requires
irregular accesses outside. BCSR also has the
pitfall that zeros are both loaded and computed
on. Only the 2x2 BCSR data will be shown as the
4x4 blocks showed poor performance. Figure C.1
provides an example matrix and the
corresponding data structures used in CSR and
BCSR.

Figure C.1 - A 4x4 matrix with columns numbered from 0 to 3 is shown
stored in 1x1 BCSR (CSR), and 2x2 BCSR. CSC would look similar to
CSR except that it is organized along columns rather than rows.

 A CSR/BCSR pseudocode overview can
be illustrative. In CSR, Y[r], values[i], and
X[columns[i]] are all scalars. In BCSR, Y[r], and
X[columns[i]] now are segments of the vectors,
and the values[i] are blocks. The X[columns[i]]
statement is referred to as a gather operation.
CSR performs a dot product for each row.

 for all rows r
 for all elements i in row r
 Y[r] = Y[r] + values[i]*X[columns[i]]

1 2 3
4 5

6
7

CSR
Values = {1,2,3,4,5,6,7}
Columns = {0,2,3,1,3,2,3}
RowStart = {0,3,5,6,7}

BCSR (2x2)
Values = {1,0,0,4, 2,3,0,5, 6,0,0,7}
Columns = {0, 2, 2 }
RowStart = {0,8,12}

0 1 2 3

1

N

N+1 1

n

n+1

Figure A.1 - Left: column major layout. Right: BDL. Within each n
x n block, values are stored in column major order

 18

For completeness, the following is pseudo code
for CSC.

 for all columns c
 for all elements i in column c
 Y[rows[i]] = Y[rows[i]] + values[i]*X[c]

CSC performs a SAXPY for each column.

The write to Y is a scatter operation. Thus there
is a dependency from the gather to the scatter, and
there is a potential dependency from the scatter
for one column to the gather on the next.

D. Detailed Single Precision SpMV Results

Cell SpMV performance is detailed in
figures D.1 & D.2. For each matrix a number of
storage and partitioning strategies were employed.
BCSR does well on real world matrices, dense
matrices achieve higher performance, and
unbalanced matrices perform poorly in the
PartitionedY strategy.

0.00

1.60

3.20

4.80

6.40

8.00

7pt Stencil
(N=32K)

random
(N=32K)

random
symetric
(N=32K)

7pt Stencil
(N=256K)

random
(N=256K)

random
symetric

(N=256K)

G
F

L
O

P
/s

0.00

0.80

1.60

2.40

3.20

4.00

4.80

5.60

6.40

2D PDE FEM Memory CFD Average

G
F

L
O

P
/s

CSR, PrivateY, 16K BCSR, PrivateY, 16K
CSR, PartitionedY, 16K BCSR, PartitionedY, 16K
CSR, PartitionedY, 32K BCSR, PartitionedY, 32K

Figure D.1 - Top: SP SpMV using synthetic matrices – clear benefits from
density and uniformity. Bottom: using SPARSITY unsymmetric matrices
– PrivateY shows superior performance due to unbalance.

0.00

1.60

3.20

4.80

6.40

8.00

9.60

11.20

12.80

FEM
Crystal

Pressure
(3D)

Portfolio NASA Vibro-
acoustic

LP Average

G
F

L
O

P
/s

CSR, PrivateY, 8K/8K BCSR, PrivateY, 8K/8K

CSR, PartitionedY, 8K/8K BCSR, PartitionedY, 8K/8K
CSR, PartitionedY, 16K/16K BCSR, PartitionedY, 16K/16K

Figure D.2 - SP SpMV using SPARSITY symmetric matrices – Significant
performance boost from minimization of nonzero traffic. Each of the cache
blocks is half as big. Imbalance in PartitionedY strategy can generate
serious performance degradation.

E. Detailed Stencil Results
 The performance estimates for the heattut
and WaveToy stencil kernels on the Cell is
detailed in Figure E.1. Note that as the number of
time steps increases, a corresponding decrease in
the grid size is required due to the limited memory
footprint of the local store. Observe that in SP,
the heat equation is effectively computationally
bound when time skewing with two time steps.
More specifically, the permute unit becomes fully
utilized as discussed in Section 6.1. In DP,
however, the heat equation is truly
computationally bound for only a single time step.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1 step 2 steps 3 steps 1 step 1 step 2 steps 3 steps

Single Double Double

Cell Cell+

G
FL

O
P

/s

Heat Equation WaveToyC Equation

Figure E.1 - Performance in GFlop/s for the two stencils examined. For
each, up to 3 time steps (time skewing) were taken. On Cell, DP is
computationally bound with only a single time step. The Cell+ analysis
showed that the heat equation is memory bound with a one time step, but
time skewing will improve performance.

