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The second NASA Earth Venture Mission, Geostationary Carbon Cycle Observatory

(GeoCarb), will provide measurements of atmospheric carbon dioxide (CO2), methane

(CH4), carbon monoxide (CO), and solar-induced fluorescence (SIF) from Geostationary

Orbit (GEO). The GeoCarb mission will deliver daily maps of column concentrations

of CO2, CH4, and CO over the observed landmasses in the Americas at a spatial

resolution of roughly 10× 10 km. Persistent measurements of CO2, CH4, CO, and SIF will

contribute significantly to resolving carbon emissions and illuminating biotic processes at

urban to continental scales, which will allow the improvement of modeled biogeochemical

processes in Earth System Models as well as monitor the response of the biosphere

to disturbance. This is essential to improve understanding of the Carbon-Climate

connection. In this paper, we introduce the instrument and the GeoCarb Mission, and

we demonstrate the potential scientific contribution of the mission through a series of

CO2 and CH4 simulation experiments. We find that GeoCarb will be able to constrain

emissions at urban to continental spatial scales on weekly to annual time scales. The

GeoCarb mission particularly builds upon the Orbiting Carbon Obserevatory-2 (OCO-2),

which is flying in Low Earth Orbit.

Keywords: GeoCarb, carbon cycle, remote sensing, Greenhouse Gases, carbon monoxide, methane, OCO-2

INTRODUCTION

Global trends in the atmospheric concentrations of carbon dioxide (CO2) and methane (CH4) are
well established. The basic causalities for the observed trends are known; however, the spatial and
temporal pattern of these perturbations and the flux dependence on the underlying processes are
not well known (Stocker et al., 2013). The fundamental roadblock to advancing knowledge of the
carbon cycle is uncertainty about land-atmosphere CO2 and CH4 fluxes (e.g., Cox et al., 2000;
Friedlingstein, 2014).

Already, observations from space hold great promise. The Greenhouse Gas Observing Satellite
(GOSAT) was launched in 2009 and is approaching a nearly continuous 10-year data record. With
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a relatively coarse spatial footprint (100 km2) and three-day
revisit cycle, GOSAT was designed to make measurements that
would constrain the carbon cycle at large scales in regions
that are unobservable in the surface network, such as the
tropical oceans. Numerous papers have assessed the ability of
GOSAT to constrain surface emissions (e.g., Maksyutov et al.,
2013; Houweling et al., 2015; Kondo et al., 2015; Wang et al.,
2018), and the community looks forward to the launch of
GOSAT-2.

The Orbiting Carbon Observatory-2 (OCO-2) is a 3-channel
spectrometer, which measures the concentration of atmospheric
carbon dioxide. It was successfully launched in 2014 to provide
regular global coverage at high spatial resolution to better
sample atmospheric CO2 with the objective, like GOSAT,
of providing a top-down constraint on surface fluxes. The
coverage and density of measurements from OCO-2 is revealing
patterns in atmospheric CO2, which again were unobservable
with the pre-existing ground-based network. The scientific
community is developing strategies for generating estimates
of CO2 surface exchange from these measurements, and the
spatial and temporal scales of GOSAT and OCO-2 observations
mean that they will inform best exchanges at continental
scales. Initial resulting are very promising (e.g., Eldering et al.,
2017).

The need for observations at finer spatiotemporal scales (e.g.,
Sellers et al., 2015) led, in part, to NASA’s recent selection of
the Geostationary Carbon Cycle Observatory (GeoCarb) as the
Earth Venture Mission-2 (EVM-2). GeoCarb is a 4-channel,
slit-scan spectrometer that will measure absorption spectra
at wavelengths 1.61, 2.06, and 2.32µm in sunlight reflected
from the land to retrieve total atmosphere-column amounts of
CO2, CH4, and carbon monoxide (CO) from GEOstationary
orbit (GEO). As with OCO-2, oxygen measurement at 0.76µm
enables the retrieval of column integrated concentrations of
CO2, CH4, and CO (i.e., dry-air mixing ratios XCO2, XCH4, and
XCO), from which the community will infer terrestrial fluxes
of CO2 and CH4, and attribute them to either biogenic or
anthropogenic processes utilizing CO and other information.
The slit-scan concept, described below, will allow GeoCarb
to deliver concentrations at least daily at fine (10 km) spatial
scales over the Americas for terrestrial flux calculations to
directly test and extend our understanding of biogeochemical
processes.

The chosen spectral channel (0.76µm) for total column
oxygen includes Fraunhofer lines from which Solar-Induced
Fluorescence (SIF) can be retrieved (e.g., Frankenberg et al.,
2014). SIF is quasi-proportional to plant photosynthetic
activity, though the constant of proportionality is dependent
on many factors that are being quantified with field
studies, including vegetation type and spatiotemporal
scales of interest (e.g., Damm et al., 2012; Guanter et al.,
2014).

In this paper, we provide an outline of the GeoCarb mission
and some simulation studies that indicate the potential for a
transformative set of measurements, as well as pointing to some
of the issues to be resolved before GeoCarb launches in 2022.

BACKGROUND

Scientific Challenge
Emission quantification for urban and industrial areas was one of
the reasons to use a geostationary orbit and an instrument with
the capability to make daily wall-to-wall measurements (Sellers
et al., 2015) over terrestrial regions at fine spatial scales. The
GeoCarb observations directly address urban emissions, which are
the most rapidly growing source of CO2 (Stocker et al., 2013) and
an increasingly important source for CH4 (Stocker et al., 2013).

GeoCarb’s persistent fine-scale daily mapping measurements
under changing conditions should enable significant advances on
an important range of challenging CO2 biotic issues, including:
CO2 fertilization (e.g., Schimel et al., 2015), change in primary
production because of nitrogen deposition (e.g., de Viesa et al.,
2009), and the influence of broad climatic patterns (e.g., El Niño
and La Niña) on terrestrial sources and sinks (Houghton, 2000;
Sellers et al., 2018). This probes the mechanisms of the observed
inter-annual variability in the atmospheric concentration of CO2

(e.g., Figure 4 of Le Quéré, 2018), and it is the pattern of this
variability that sets the mission timeframe of 3 years (Rayner
et al., 2008). The GeoCarb mission attacks the primary question
of the nature of the net terrestrial sink of CO2.

Wetland ecosystems, rice paddies and livestock are major, and
highly uncertain, sources of CH4 (Kirschke et al., 2013). Several
approaches have been used to scale up from measurements
at individual plots to estimations of CH4 emissions at the
landscape scale. However, there has been little large-scale top-
down validation. Industrial sources are also poorly quantified
(Miller et al., 2013). The IPCC states that there are “large
uncertainties in the current bottom-up estimates of components
of the global source [of methane], and the balance between
sources and sinks is not yet well known” (Stocker et al., 2013).The
GeoCarb’s high space- and time-measurements of CH4 enable
important analyses of human impacts via agriculture and industry
vs. natural phenomena on methane sources.

The GeoCarb measurements of CO concentrations and
SIF provide essential information for CO2 and CH4 source
attribution. For example, CO helps distinguish between
biotic fluxes of CO2 and CH4 from fluxes associated with
combustion (Palmer et al., 2006; Rayner et al., 2014). SIF
measurements are directly related to gross primary production
(GPP; photosynthesis), and when coupled with inversions
of concentrations, SIF can support partitioning of Net
Ecosystem Exchange (NEE) into GPP and ecosystem respiration.
Determination of GPP, NEE, and ecosystem respiration will
increase our capability to elucidate fundamentally key elements of
the Carbon-Climate connection (Sellers et al., 2015).

Instrument Design and Trace Gas
Retrievals
The GeoCarb instrument will be hosted on a SES Government
Solutions (http://www.ses-gs.com) satellite in GEO orbit at 85◦

(±15◦)West longitude, and it will be launch in 2022. The∼85◦W
slot allows observations of major urban and industrial regions,
large agricultural areas, and the expansive South American
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tropical forests and wetlands, which will help resolve climate-
critical flux variability for CO2 and CH4 (Sellers et al., 2015).
GeoCarb deploys, as noted, a 4-channel slit imaging spectrometer
that measures reflected near-IR sunlight at wavelengths 1.61
and 2.06µm for column integrated CO2 dry air mixing ratio
(XCO2), and 2.32µm for XCH4 and XCO. The fourth channel,
0.76µm, measures total column O2, which allows determination
of mixing ratios. The 0.76µm channel also allows measurement
of SIF and provides valuable information on aerosol and cloud
contamination (Taylor et al., 2012; Nelson, 2015). It is worth
noting that the O2 and CO2 channels are similar to those used
for the OCO-2 mission and that the O2 spectral band is identical
to that of OCO-2.

The retrieval of SIF, XCO2, XCH4, and XCO is accomplished
through the use of an optimal estimation technique that draws
upon the heritage of the Atmospheric Carbon Observing System
(ACOS) algorithm developed initially for OCO and GOSAT,
and with numerous refinements updates for OCO-2 (e.g.,
O’Dell et al., 2012, 2018; Wunch et al., 2017). In brief, a
first guess of each gas profile as well as other atmospheric
parameters are propagated through a radiative transfer model
to produce a simulated spectra, which is compared against
the measured spectra in each band. The difference between
the simulated and measured spectra is propagated back into
updated gas concentrations and atmospheric parameters, and
the process is repeated until the algorithm converges. SIF
is produced separately by a different algorithm, called the
Iterative Maximum a Posteriori Differential Optical Absorption
Spectroscopy (IMAP-DOAS, Frankenberg et al., 2005) algorithm,
which is also used to screen clouds. GeoCarb will employ the
OCO-2 algorithm, modified to include the longest wavelength
band, in which OCO-2 does not take spectra.

The instrument scan slit design allows for a large North-
South (N-S) extent with high spatial resolution along the scan.
The on-board N-S extent of the scan is fixed at a 4.4◦ view
angle, which corresponds to 25◦ in latitude or 2,800 km at
nadir on the Earth’s surface. Each scan is composed of 1016
N-S samples spaced 2.7 km apart on center and collected
with 3 km East-West (E-W) double sampling. Scans involve
a 4.08-s integration time, followed by a 0.3825s E-W step.
This instrument configuration allows GeoCarb to scan the
conterminous United States (CONUS) in <2.5 h. The scan
patterns are flexible; scan blocks can be changed, and the scan
strategy can be updated to observe areas of greater interest or
uncertainty, for calibration and validation, or for transient events
in a campaign mode. Figure 1 shows a sample coverage map for
the Mexico City area for both OCO-2 and GeoCarb. By sweeping
the slit from East to West, GeoCarb provides continental-scale
“mapping-like” coverage, producing daily maps of XCO2, XCH4,
XCO, and SIF over regions of interest, which enables CO2 and
CH4 flux estimation and attribution at unprecedented temporal
and spatial scales.

Science Hypotheses
The ∼85◦W slot enables, as mentioned, observations of most
major urban and industrial regions in the Americas, large
agricultural areas, and the expansive South American tropical

forests and wetlands. Each of these regions plays a key role in
the global carbon cycle, and thus GeoCarb observations will
help to provide a climate-critical insight into the Carbon-Climate
connection (Cox et al., 2000; Friedlingstein, 2014; Sellers et al.,
2018) as well as monitoring large “point” sources (e.g., cities) of
all three gases, and helping to disaggregate anthropogenic and
biogenic emissions using all three gases in tandem.

Several Observing Systems Simulation Experiments (OSSEs)
were performed in order (a) to determine useful measurement
requirements that are technically feasible and (b) to examine
the potential for significant scientific advances that will be made
possible with observations from GeoCarb. These OSSEs were
designed with a set of hypotheses in mind, though there are
numerous other important questions that could be addressed.

Hypothesis 1: The ratio of the CO2 fossil source to biotic sink for
the conterminous United States (CONUS) is ∼4:1. Top down flux
estimates constrained by the surface network have large posterior
uncertainties relative to the magnitude of the fluxes themselves.
For example, the 2000–2014 mean biological sink as estimated
from CarbonTracker [Peters and Jacobson (2007) with regular
updates at https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/]
for temperate North America is about 0.4 PgC/year, but the
reported uncertainty in this estimate is ∼0.75 PgC/year. The
Modeling Atmospheric Composition and Climate (MACC) re-
analysis product (http://macc.copernicus-atmosphere.eu/about/
documentation/global/; Chevallier et al., 2010) estimates the
sink for the sample year of 2005 to be 0.6 PgC/year stronger
than that of CarbonTracker for the same year (i.e., 0.8 and 0.2
PgC/year, respectively). Complicating this issue is the presence
of large fossil sources concentrated in the extratropical Northern
Hemisphere. The annual total fossil source is about 1.5 PgC/year
for the US, with 7% uncertainty on the total. The mean net
sink is about 0.4 PgC/year (according to CarbonTracker), with
an uncertainty of ∼1 PgC/year. By using a regional scale OSSE
over the conterminous United States (CONUS), we demonstrate
that in the presence of correlated random observation errors
(see section Observing System Simulation Experiments for
details) over moderate length scales (200 km), observations from
GeoCarb will still be sufficient to constrain anthropogenic and
biogenic emissions at the regional scale.

Hypothesis 2: Variation in productivity controls the spatial
pattern of terrestrial uptake of CO2. Previous work shows large
differences in global Gross Primary Production (GPP) estimates
from ecosystem models. For example, Table 3 of Yan et al. (2014)
find a range of larger that 50 PgC/year from small collection of
models. A more diverse ensemble from the most recent Climate
Model Intercomparison Project (CMIP5) finds even larger
differences (Kathe Todd-Brown, personal communication). For
example, the BCC-CSM 1.1 model predicts 131 PgC/year while
the IPSL-CM5A model predicts 218 PgC/year, which is an 87
PgC/year difference. This indicates a large uncertainty in the
amount of carbon being taken up annually by the terrestrial
biosphere.

Numerous papers in the literature (e.g., Guanter et al., 2014)
have demonstrated the strong linear relationship between SIF
and GPP, and specifically on determining parameterizations
of the SIF-GPP coupling for different ecosystems and species.
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FIGURE 1 | Sample field of view for the area surrounding Mexico City. The green parallelograms represent individual OCO-2 soundings, and each track is traversed in

a few minutes, but with a 16 day latency between revisits. By comparison, the red rectangles represent individual GeoCarb soundings, and the shaded region depicts

a single observing slit projection. Every 4.4625s, the shaded red area will shift a half width to the left, allowing the area to be scanned in full in a few minutes. The map

of North America in the upper left shows the full N/S extent of the slit projection. The green triangles represent power plants that produce 3–10 TgC per year in

emissions. GeoCarb would make it possible to verify the reported emissions rates with top down emissions estimates.

Frankenberg et al. (2011) demonstrate that SIF from GOSAT is
strongly correlated with monthly GPP at larger scales of a few
hundred kilometers. Additionally, recent work demonstrates the
ability to estimate monthly GPP using the photosynthesis model
SCOPE together with SIF retrieved from OCO-2, with a global
uncertainty of∼2% (Norton et al., 2018).

Coupling SIF-derived estimates of GPP with satellite
inversions of XCO2 to infer net terrestrial carbon storage allows
the separation of NEE into its component parts: GPP and
ecosystem respiration (Reco), including fire. Being able to isolate
Reco, including the separation of the fire component via CO
measurements and thereby isolate biotic respiration, 0.76µm,
will be extremely valuable in probing the carbon-climate system.
For instance, GeoCarb SIF retrievals and fluxes derived from
XCO2 will be used to test the hypothesis that GPP is much more
sensitive to disturbance than respiration.

Hypothesis 3: The Amazonian Forest is a significant (0.5–1.0
PgC/year) net terrestrial sink for CO2. The Amazon is a key
player in the global carbon sink, as well as one of the
most fragile in terms of carbon-climate sensitivity. The lack
of measurements in the tropics, however, make quantitative
statements about the uptake in the Amazon basin difficult. Even
OCO-2 struggles to make observations over this perennially
cloudy region, though recent progress with cloud screening
algorithms will likely improve coverage. GeoCarb, in concert
with geostationary meteorological observatories such as ABI on
GOES-16/17, has the potential to scan regions that are clear at
different times of day and different seasons in the year. To test
the capabilities of GeoCarb to capture anomalies in productivity

and its associated flux, several experiments were performed in
which estimates from CASA-GFED (Carnegie-Ames-Stanford-
Approach biogeochemical model with the Global Fire Emissions
Database) were inflated by different percentages to explore the
uncertainty space related to this question.

Hypothesis 4: Tropical Amazonian ecosystems are a large
(50–100 PgC/year) source for CH4. The cycle of CH4 in the
tropics is the subject of much debate in the literature and
is strongly tied to temperature and precipitation. The cycle
is also affected by inundation and the resultant microbial
activity, which are difficult to measure. Bloom et al. (2016)
conducted simulation experiments to address satellite constraints
on biogeochemical processes and concluded that a geostationary
satellite is necessary to observe with sufficient frequency to
constrain regional CH4 emissions in tropical South America. As
an example, regional emissions from MACC II (e.g., Massart
et al., 2014) for 2011 and 2012 were dramatically different. In the
surface flask constrained MACC CH4 emissions, the 2012-2011
August emissions difference was positive north of the Amazon
river and negative south of the Amazon river, i.e., the data-
informed efflux was stronger north of the Amazon in 2012 than
2011, and vice versa south of the Amazon river.

Hypothesis 5: The CONUS methane emissions are a factor
1.6 ± 0.3 larger than in the EPA database. There are numerous
estimates of CH4 emissions in the US, the majority of which are
greater than those of the United States Environmental Protection
Agency (EPA). For example, Miller et al. (2013) produced top-
down CH4 estimates using aircraft that are ∼1.5 times the EPA
values for the total, and much greater for certain industries (e.g.,
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livestock emissions are twice as much as some inventories) and in
certain regions (the South-Central totals were ∼2.7 times larger
than inventories). Recent results show that the topic remains
in flux (e.g., Alvarez et al., 2018). Even more, there are large
discrepancies in estimates of “fugitive” emissions from fossil fuel
production, which amount to leakage at different stages of the
production process. Numerous studies (e.g., Brandt et al., 2016)
conclude that the vast majority of fugitive emissions are from
a small number of large “super-emitters.” Locating large point
sources draws interest from both the environmental monitoring
community and the fossil fuel industry, for whom fugitive CH4

emissions represent lost revenue.
Hypothesis 6: Larger cities are more CO2 emissions efficient

than smaller ones. Multiple hypotheses exist for the manner in
which emissions from urban areas scale with population. For
example, Fragkias et al. (2013) proposes a linear relationship,
while Bettencourt (2013) suggests a scaling law of 1.15. Using
the idealized framework in Rayner et al. (2014), the uncertainty
on monthly, 25 km2 emissions is computed in the presence of
targeted GeoCarb observations of CO2 and CO that account for
pollution and cloudiness typical of urban regions around the
globe. CO serves as an important discriminant of anthropogenic
emissions, in particular combustion, and so is critical for
differentiating urban emissions. The uncertainty on the slope of
emissions vs. size is estimated to be 12%, which is small enough
to discriminate between the two hypotheses. This insight will aid
in the process of urban planning, which is crucial for adaptation
strategies needed to avoid the worst effects of climate change.
Numerical experiments with Shanghai as the target indicate
that the idealizations related to clouds, aerosols and the spatial
distributions of sources in the work of Rayner et al. do not
influence these conclusions significantly (O’Brien et al., 2016).

OBSERVING SYSTEM SIMULATION
EXPERIMENTS

To establish measurement requirements on mixing ratios needed
to meet targeted flux estimates, the GeoCarb team performed
numerous Observing System Simulation Experiments (OSSEs)
under various assumptions of mixing ratio measurement
accuracy. To encompass the range of science issues, we used
different techniques for these OSSEs, including concentration
signal detection experiments, posterior flux uncertainty
reduction calculations, and atmospheric inversions with biased
and unbiased priors.

The OSSEs described below were performed at both regional
scales (∼100 km) and local scales (∼10 km). The sounding
location selection was treated differently for each experiment.
Previous work by Polonsky et al. (2014) assessed the feasibility
of detecting plumes under the assumption of different wind
speeds with different numbers of samples, and the experiments
in O’Brien et al. (2016), on which the results for Hypothesis 6
are based, follow the same procedure by assessing the impacts
with different numbers of soundings for an urban region. At
regional scales, the flexibility of scanning, as well as the limitation
due to number of hours of solar illumination per day, introduce

the potential for an optimization of scanning to meet different
science goals. In this work, we utilize the simplest scanning
scheme possible where all spatial regions are scanned once
per day, and this is described in section Scanning Strategy.
The pseudo-data used in each case utilized a single sounding
uncertainty, described in section Single Sounding Uncertainty
For the regional OSSEs, the single soundings were aggregated
to∼100 km scale for computational purposes, and the treatment
of the uncertainties in this aggregation are described in section
Aggregated Observational Uncertainty. A brief discussion of
community requirements for SIF is presented in section Solar
Induced Fluorescence Measurement Requirements. The models
used in the regional scale and local scale OSSEs are described
in sections Regional/Continental ScaleModeling Framework and
Urban Scale Modeling Framework, respectively.

Scanning Strategy
For the urban scale OSSEs, scanning frequency was treated as a
quantity of interest. Results are reported in Polonsky et al. (2014),
Rayner et al. (2014), and O’Brien et al. (2016). For the regional
scale OSSEs, asmentioned above, the scanning strategy selected is
also a potential optimization problem. For the OSSEs performed
in this study, a simple strategy, described in the next paragraph,
was chosenwith optimization of the scanning left for future work.

The land mass between 50◦S and 50◦N was divided into four
scan blocks as shown in Figure 2. The blocks were scanned in
the same order every day, with the starting time for the scanning
selected empirically to maximize the number of soundings
by month according to seasonal variations of sunlight. The
scanning order is: Tropical South America, Subtropical South
America, Temperate North America, Tropical North America,
Tropical South America, Temperate North America. Depending
on season, this allows for up to two revisits to the Amazon and
the conterminous United States (CONUS per day), allowing the
experiments to target the science questions above effectively. The
observing sequence assumes 4.46s per 1016 footprints N/S, and
the total time for each scan block is just 4.46s times the number
of slits necessary to cover the land mass in the scan block.

Single Sounding Uncertainty
O’Brien et al. (2016) presented an OSSE that is motivated by
introducing more realism into the earlier study by Rayner et al.
(2014). The assumption of a constant 10% cloud free scenes
in Rayner et al. (2014) was thought to be optimistic for urban
regions, as the diurnal cycle of cloud and aerosol in urban
environments is complex. Additionally, Rayner et al. (2014)
assume a static uncertainty for all clear scenes, where “clear”
means that the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) observed a scene with OD
< 0.3. With these considerations in mind, O’Brien et al.
(2016) designed an end-to-end experiment in which realistic
atmospheric fields were simulated using the Weather Research
and Forecasting model along with the chemistry component
(WRF-Chem). The fields included the typical atmospheric state
variables as well as numerous tracers, including CO2, CH4, CO,
cloud water and ice, and various aerosol species. These fields
were used to simulate spectra, which were then presented to a
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FIGURE 2 | Scan blocks used in regional OSSE experiments. The blocks are

named for the region they primarily cover: Temperate North America (red),

Tropical North America (orange), Tropical South America (blue), and

Subtropical South America (magenta).

retrieval algorithm similar to those used by OCO-2 and GOSAT
[ACOS, O’Dell et al. (2012)], to produce retrieved XCO2, XCH4,
XCO, and other parameters. Model error arose for the retrieval’s
ability to adjust a limited parameter set, such as the aerosol optical
depth and type, but not other key optical properties of those
aerosols, which were treated in a more sophisticated way within
WRF-Chem.

The retrieval algorithm produces not only column
concentrations, but also an estimate of the uncertainty in
those concentrations. With the complete knowledge of the
atmospheric state, the signal to noise ratio (SNR) can be
calculated. The relationship between SNR and posterior
uncertainty was parameterized with a function of the form
σ =

a
(1+bSNRc)

for each species. The coefficients a, b and c are

given in Table 8 of O’Brien et al. (2016), and are reprinted here
in Table 1. These functional relationships are used to estimate
single sounding uncertainties in all the OSSEs.

To compute uncertainty, we first compute SNR =
I
N . The

signal value I is given by the relationship:

I = αE
Fsun

π
(1)

where Fsun
π

is the top of atmosphere solar irradiance, and αE is
the “effective albedo” that incorporates surface reflectance and
attenuation by scatterers:

αE = α cos (SZA) exp (−mτ) (2)

TABLE 1 | Constants for uncertainty parameterization as a function of SNR as in

O’Brien et al. (2016).

Gas Parameters

a b c

CO2 10 ppm 0.068 0.915

CH4 100 ppb 0.36 0.852

CO 100 ppb 2.321 0.537

The constant a gives the upper bound on uncertainty for an SNR of 0, though in practice

soundings were only used with SNR above a given threshold: 200 for CO2 and 140 for

CH4/CO.

TABLE 2 | Noise model coefficients used to calculate SNR and the resultant

uncertainties for each retrieved gas.

Gas N0 N1

CO2 0.1296 0.00175

CO/CH4 0.1071 0.00165

Here α is the MODIS MCD43C3 white sky albedo (Band 6 for
CO2 and Band 7 for CH4/CO), m is the airmass factor (i.e.,
m =

1
cos (SZA)

+
1

cos (ZA)
for the solar zenith angle SZA and sensor

zenith angle ZA), and τ is the OD of clouds and aerosols, taken
from 5◦ × 5◦ monthly histograms of CALIPSO total OD (e.g., as
was used in Crowell et al., 2018). The noise is derived from the
instrument model:

N =

√

N2
0 +N1I (3)

with band-specific empirical parameters that relate instrument
design to a signal independent noise term N0 and signal
dependent noise term N1, given in Table 2.

Single sounding uncertainty curves for each gas are given by
Figure 11 of O’Brien et al. (2016). All uncertainties decrease as
SNR increases, with XCO2 bounded above by ∼1.0 ppm for SNR
>200, XCH4 bounded above by ∼5 ppb and XCO by ∼3 ppb for
SNR >150. Also included in this plot are “actual errors” that
show the result of the inadequacies of the forward model. These
actual errors are used in the urban scale uncertainty reduction
calculations. In the regional scale OSSEs, this additional error
is assumed to be part of an irreducible error component that is
described in the next section.

Aggregated Observational Uncertainty
In the regional OSSEs, the individual GeoCarb footprints are not
used. Rather, in the spirit of Baker et al. (2010) and Crowell
et al. (2018), an effective “super-observation” of soundings is
calculated at the resolution of the inversion model. To use this
approach, we must estimate the uncertainty at the scale of the
model, which is∼100 km. This is modeled using an uncorrelated
random error component and a correlated/systematic error
component. We assume that the random error component,
computed as detailed in section Single Sounding Uncertainty,
reduces by the square root of the number of soundings. The
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correlated/systematic error component is treated as irreducible,
in line with the conclusions of (Kulawik et al., 2016).

The systematic error component for GeoCarb cannot be
known in advance, so we must make a reasonable estimate. These
errors will tend to be worse for high view and solar zenith angles
due to lower signals and larger cloud and aerosol effects. We
parameterize the single-sounding systematic error term for CO2

as a function of air mass factor m: σsys(m) = 0.3 ppm + 0.2 ppm
× (m-2), where the constant is based on Kulawik et al. (2016)
and derived from comparisons GOSAT/OCO-2 and the Total
Column Carbon Observing Network (TCCON). For methane,
we set σsys(m) = 6 ppb + 2 ppb × (m-2); O’Brien et al. (2016)
indicates that the constant term in σsys could be as low as 3 ppb.

For sampling, we compute the SNR and exclude any
soundings with SNR <200 for CO2 and SNR <150 for CH4

and CO. We also exclude soundings in which the two-way slant
optical depth τ (in)/cos(SZA) + τ (out)/cos(ZA) is >0.6. The
mean value of XCO2 at 1◦ × 1◦ then has a total uncertainty

σXCO2 =

√

σsys
2 +

σp
2

n , where n is the number of soundings
that have sufficient SNR and meet the OD threshold. In this way,
σXCO2 varies from ∼0.3 ppm at low view and zenith angles and
multiple high SNR soundings to about 3 ppm for a large airmass
factor and a minimal number of low SNR soundings. To account
for correlations between systematic errors of neighboring 1◦ ×

1◦ mean values, we further inflate the 1◦ × 1◦ errors by a factor
of 2.5, which assumes a spatial de-correlation length of 2◦ for
the correlated/systematic error. The 1◦ × 1◦ errors for June 1
and December 1 (without the extra scaling by 2.5) are shown
in Figure 3. As might be expected, the aggregated uncertainties
are largely dominated by the systematic component at regional
scales, due to the large number of soundings in each 1◦ × 1◦ grid
box.

Crowell et al. (2018) found that for narrow swath polar
orbiting satellites such as OCO-2, transport errors were on the
order of 0.5 ppm. No transport errors are explicitly included in
the regional simulations, as they are expected to be small given
the daily revisit cycle of GeoCarb. The impact of transport errors
on flux inversions is a long-standing topic of interest in the
atmospheric community, and the assertion of reduced transport
errors will be tested in future work.

Solar Induced Fluorescence Measurement
Requirements
Diurnal SIF data from laboratory and field observations suggest a
SIF measurement requirement for diagnosing variability in GPP
and plant physiology changes due to stress is 13–20% of peak
SIF (∼2–2.5W m−2 nm−1 sr−1). GeoCarb will have sufficient
spectral resolution (equivalent to that of OCO-2) to meet this
requirement.

Regional/Continental Scale Modeling
Framework
The experiments performed for Hypotheses 1, 2, 3, and 4 in
section Background utilize the atmospheric tracer transport
model TM5 (Krol et al., 2005). TM5 translates surface emissions
into atmospheric concentrations using the ERA-Interim (Dee

et al., 2011) meteorological fields at 1◦ by 1◦. To produce pseudo-
observations, the resultant model concentrations are sampled
with a pressure weighted averaging kernel to produce column
concentrations of XCO2 and XCH4. Uncertainties are assigned
as discussed in 3.2 and 3.3 at 1◦ by 1◦ resolution. For the flux
inversion experiments that address Hypotheses 1 and 2, the Four
Dimensional Variational (4DVAR) data assimilation algorithm
is used (e.g., Basu et al., 2013; Babenhauserheide et al., 2015;
Crowell et al., 2018) to estimate surface fluxes that best match
the observed concentrations.

Urban Scale Modeling Framework
Hypothesis 5 is addressed using the framework discussed in
Rayner et al. (2014). Briefly, a Gaussian plume model is driven
by WRF derived winds that are appropriate for different regions
(e.g., Shanghai and Mexico City) to generate concentrations that
are sampled to create pseudo-data, which is perturbed as in
Rayner et al. (2014). The uncertainty reduction is computed using
the method of Rayner and O’Brien (2001).

RESULTS AND DISCUSSION

The results are broken down by Hypothesis. Where necessary,
further details specific to each experiment (e.g., prior
uncertainties) are elucidated for clarity.

Hypothesis 1: The Ratio of the CO2 Fossil
Source to Biotic Sink for CONUS Is ∼4:1
TM5-4DVARwas employed to compute the expected uncertainty
reduction in surface fluxes for this hypothesis. In this OSSE, the
ensemble of prior fluxes is composed of statistical perturbations
of truth fluxes that is built from the Carnegie-Ames-Stanford
Approach (CASA, Potter et al., 1993) biogenic fluxes and
the Global Fire Emissions Database Version 3 for fire fluxes
(GFEDv3, Takahashi et al., 2009; van der Werf et al., 2010) for
ocean fluxes, and fossil fuel emissions from the Carbon Dioxide
Information Analysis Center (CDIAC, Andres et al., 2015). The
perturbations are random draws from a Gaussian distribution
with mean zero and variance equal to the absolute value of the
difference between the Lund-Potsdam-Jena (Sitch et al., 2003)
and CASA land fluxes and the NCAR Ocean Biogeochemistry
Model (Doney et al., 2009) and Takahashi fluxes for the ocean.
No spatial or temporal correlations are included in the prior
uncertainty.

A measure of information content of observations is how
much the pseudo-data reduce the spread of the distribution, in
this case measured by the RootMean Square Error (RMSE) of the
50-member ensemble. The daily flux uncertainty reduction for a
1◦ × 1◦ regional inversion over CONUS is shown in Figure 4.
The left panel shows the prior daily flux uncertainty (i.e., RMSE
of the prior flux ensemble) for June; the right panel shows the
reduction in RMSE (as a percentage of the prior RMSE) using a
Monte Carlo ensemble of TM5-4DVAR flux inversions with 1◦

× 1◦ GeoCarb observations and errors as described above. In the
most uncertain areas, GeoCarb achieves reductions of+75%, and
30–50% over much of the CONUS domain at the 1◦ × 1◦ pixel
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FIGURE 3 | GeoCarb 1◦ × 1◦CO2 uncertainty (Top) and CH4 uncertainty (Bottom) consisting of both random and correlated systematic errors, but without the

extra scaling by 2.5 that accounts for a spatial correlation length scale of 2◦. For June (Left), the uncertainties are largely driven by the systematic errors parametrized

in terms airmass factor, while in December (Right), we see the impacts of cloudiness and lower surface albedos in the Amazon region in the reduced number of

soundings as evinced by the larger uncertainties than would be apparent in airmass alone.

scale in for daily fluxes using 1 month of observations. Results
improve significantly with longer observing times.

The annual total fossil source is about 1.5 PgC/year for

the US, with 7% uncertainty on the total. The mean net
sink is about 0.4 PgC/year (according to CarbonTracker),

with an uncertainty of ∼1 PgC/year. The stated uncertainty
reduction implies an aggregate net sink uncertainty of 0.15

PgC/year, on par with the fossil uncertainty, which supports

the disaggregation of these two terms for the total US carbon
budget.

Hypothesis 2: Variation in Productivity
Controls on the Spatial Pattern of
Terrestrial Uptake of Co2
As noted earlier (Hypothesis Two), annual GPP estimates of
North America from various models show large inter-model
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FIGURE 4 | (Left) Prior uncertainty for the CONUS experiment for the month of June (expressed in gC m−2 y−1), equal to the absolute difference between the

Lund-Potsdam-Jena [LPJ, (Sitch et al., 2003)] and CASA-GFEDv3 terrestrial fluxes. The majority of the prior uncertainty is in the growing regions of the US. (Right)

The reduction in ensemble daily flux RMSE for June, expressed as a percentage, when GeoCarb pseudo-observations are used to update the perturbed prior fluxes.

differences, ranging from 12 to 33 PgC per year. Such large
uncertainty in model performance clearly indicates the limits
of in-situ data (e.g., eddy flux tower sites) for model evaluation
and calls for broader coverage from space-borne observations
to evaluate models at regional to global scales. Laboratory and
in situ observations show strong correlation between GPP and
SIF; moreover, analysis of existing space-based oxygen A-band
measurements has revealed that SIF can be usefully retrieved for
about 80% of soundings.

The LEO missions make SIF observations at varying spatial
resolutions [∼30 km2 for GOSAT and GOME-2; ∼10 km2

for OCO-2; ∼0.1 km2 for the Fluorescence Explorer (FLEX)
mission] and temporal resolutions (16-days for OCO-2, nearly a
month for GOME-2, GOSAT, FLEX). GeoCarb will make daily
SIF observations at 5–10 km spatial resolution. In comparison
to the current and future LEO missions (OCO-2, GOME-2,
FLEX), GeoCarb SIF has more frequent revisits, similar spatial
resolution and comparable radiometric precision. LEO missions
generate gridded data products by using samples within a
grid-cell (0.25◦-1.0◦) over 16 days to 30 days. The global
land cover maps show landscapes within such a grid cell are
diverse and have varying temporal dynamics. The footprint
of GeoCarb is larger than OCO-2 and FLEX; however, since
SIF measurements from GeoCarb are spatially additive, area
averages will act as direct proxies for area-integrated SIF;
no upscaling or multi-orbit averaging of spatial samples is
required for gridded SIF products due to GeoCarb’s mapping
capability.

SIF reveals signals directly associated with photosynthesis;
therefore, sub-daily measurements of SIF coupled with retrievals
of net fluxes from XCO2 across large environmental gradients
provides a path to attributing terrestrial net CO2 flux to variations
in photosynthesis or respiration. The net fluxes (NEE) from
inversion of mixing ratios combined with SIF-based estimates
of GPP at the same spatial scale will allow GeoCarb to probe
climate sensitivity of productivity and respiration (GPP-NEE).
In particular, we will resolve the large differences in both GPP
and NEE. This will also help elucidate the sensitivity of the
carbon cycle to climate and thereby addresses a key uncertainty of
climate prediction. Finally, we acknowledge again that this is still

a speculative Hypothesis; however, the ability to isolate ecosystem
respiration is a very powerful new tool.

Hypothesis 3: The Amazonian Forest Is a
Significant (∼0.5–1.0 pgc per year) Net
Terrestrial Sink for Co2
The TM5-4DVAR flux estimation utilized for Hypothesis 1 was
also used to investigate the ability of GeoCarb to investigate
the hypothesis that there is a substantial terrestrial sink in the
Amazon that is currently not captured in ecosystem models.
To investigate this question, we amplified GPP from the Simple
Biosphere Model [SiB, (Baker et al., 2003)], Version 3, model
in the tropics by 1, 2.5, and 5%, and attempted to recover the
enlarged sink starting from the baseline flux (CASA-GFED +

Takahashi + CDIAC). The prior uncertainty was taken to be the
difference between CASA and LPJ biosphere models, except over
the Amazon, where it was set to be the prior mismatch of the sink
everywhere that GPP was inflated. The annual results for a 5%
inflation (∼1 PgC difference) are displayed in Figure 5; GeoCarb
observations reduce RMSE by >90% over the Amazon basin
annually, and >40% on monthly time scales. For the reduced
signal cases (1 and 2.5% inflation), the error reductions are
smaller, but the posterior RMSEs are comparable to the 5% case,
where posterior errors are about 75 gC m−2 y−1. This degree of
uncertainty is more than sufficient to test the Hypothesis.

Hypothesis 4: Tropical Amazonian
Ecosystems Are a Large (50–100 MtC)
Source for CH4
To test the ability of GeoCarb to detect CH4 variations, we
performed a signal detection experiment using TM5 to propagate
different CH4 emissions into XCH4 pseudo-observations. TM5
was driven by the surface flask constrained MACC-II CH4 flux
inversion estimates (http://apps.ecmwf.int/datasets/data/macc-
ghg-inversions/?version=v10-S1NOAA). The difference between
the August emissions for 2011 and 2012 is displayed in Figure 6.
Climatologically, the time period in question was a drought for
the Amazon, which is believed to increase the outgassing of CH4

to the atmosphere (Ringeval et al., 2014). The 2011 MACC-II
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FIGURE 5 | (Left) Prior ensemble annual flux RMSE for the Amazon CO2 OSSE, which represents a 5% underestimate of annual GPP relative to CASA-GFED.

(Right) RMSE reduction after assimilating GeoCarb observations for a single year. This reduction leads to posterior errors of about 75 gC m−2 y−1 over the Amazon

basin. Similar experiments with smaller prior mismatch led to a similar posterior RMSE (not shown), indicating the strong data constraint of GeoCarb observations.

annual Amazon CH4 emissions were approximately 71MtC, and
the enhancement (2011–2012) for August in the region north
of the Amazon was approximately 1.04 MtC. The deficit in the
region south of the Amazon was about 0.52 MtC for August.
These numbers are within the reported uncertainties (Ringeval
et al., 2014).

The difference between the resulting XCH4 data, normalized
by the standard error of the mean for a 10-day average is shown
in Figure 6. The elevated emissions north of the Amazon River
are detected at a 3σ level, and the reduced emissions south
of the Amazon are detected at 1σ level. For longer (20-day)
averaging times, the southern is detectable at 3σ as well (not
shown). Clearly, Hypothesis 4 can be addressed successfully by
the GeoCarb Mission.

Hypothesis 5: The CONUS Methane
Emissions Are a Factor 1.6 ± 0.3 Larger
Than in the EPA Database
To demonstrate the ability of GeoCarb to address Hypothesis 5,
we performed a signal detection experiment using the surface
emissions compiled for the Transcom CH4 intercomparison
project (Patra et al., 2011), which contains anthropogenic CH4

emissions from the Emission Database for Global Atmospheric
Research [EDGAR, (Olivier et al., 2005)], as well natural
emissions from various other sources, which generally agree with
EPA on national scales. We amplified the EDGAR anthropogenic
flux component by 1.6 in line with the conclusions of Miller et al.
(2013), and the difference between the baseline and enhanced
emissions is displayed in Figure 7. There are several hot spots
corresponding to natural gas production and mines in the West,
South, and Appalachia. Due to the stationarity of these emissions,
the model was run with each set of fluxes for 30 days, and then
the differences in XCH4 were examined. These differences, scaled
by the uncertainty for a single regional scan, are displayed in
Figure 7. Notably, the hot spots are detected at greater than the
2σ level for 1◦ resolution (the minimum permitted by TM5)
with only a single measurement scan. The spatial pattern in

the observation differences is a result of atmospheric transport,
which smooths spatial gradients. In a real monitoring scenario,
multiple days of soundings would be used to isolate the effects of
transport in order to estimate emissions.

The coarse resolution permitted by TM5 is not the
model production system planned for use with the extremely
high volume of GeoCarb observations. Current efforts are
underway to develop chemical tracer transport models and data
assimilation techniques that will use GeoCarb data at their
native resolution as well as incorporating the state of the art in
numerical weather prediction information.

Hypothesis 6: Larger Cities Are More
Emissions Efficient Than Smaller Ones
To test this hypothesis, we must be able to estimate the CO2

emissions from cities over a wide range of populations (at
least one order of magnitude). By extending the calculations of
Rayner et al. (2014), we estimate the posterior flux uncertainties
for an idealized urban geometry and notional concentration
uncertainties. Here we use, as an example, urban geometry
corresponding to the megalopolis of Mexico City. As always
for a flux inversion OSSE, the three ingredients are (1) prior
errors in the emissions, (2) errors in the concentrations, and (3)
an observation operator mapping emissions to concentrations.
Again, following our earlier work, we estimate emissions on
a 5 × 5 km grid. The diurnal cycle is subdivided into 4
periods. Reflecting the annual nature of the hypothesis, we
solve for monthly averaged fluxes. Emission uncertainties are
set at 25% of the emissions. These emissions, in turn, are
derived from the 1 km version of the fossil fuel emission
aggregated to 5 × 5 km. Sampling density is set by assuming 3
scans of the notional Mexico City location each day at 8 a.m.,
midday and 4 p.m. We assume that 10% of available soundings
yield usable retrievals, a conservative assumption consistent
with highly polluted environments. The observation operator is
provided by the statistical SatPlume model, which models the
development of tracer plumes from point sources according to
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FIGURE 6 | (Left) Difference between 2011 and 2012 emissions for August, which demonstrates the enhanced source in 2012 north of the Amazon, and diminished

source south of the Amazon, according to MACC. (Right) The resulting gridded differences in XCH4 as would be seen from GeoCarb, averaged over 10 days and

scaled by the uncertainty. After 10 days, a detectability threshold of 3 standard deviations is achieved for the northern region, and 1–2 standard deviations for the

southern region. Longer averaging times of ∼20 days led to greater detectability due to daily sampling, even in the presence of clouds.

FIGURE 7 | (Left) The emissions difference used for the CONUS fugitive methane experiment, equal to 0.6 times the EDGAR inventory in line with Miller et al. (2013).

(Right) The resulting gridded differences in XCH4 as would be seen from a single GeoCarb daily scan after 30 days of transport, averaged over 100 km and scaled by

the uncertainty. The role of atmospheric transport is evident in the figure, as the spatial signatures are diffused by the atmosphere.

the advection of the plume’s centroid and its three-dimensional
spread (Rayner et al., 2014). The resulting tracer distributions are
sampled consistently with the viewing geometry and weighting
function of the retrieval. These OSSEs use both CO2 and CO
measurements.

We test the hypothesis by calculating the slope of emissions
vs. size. We calculate the uncertainty of emissions for
10 fictitious cities. Each city has the same geometry as
Mexico City but emissions scaled from 10 to 100% of
the nominal value in steps of 10%. Because the emission
prior uncertainties are set at 25% of emissions, the prior
uncertainty grows with the emissions from the city. We
calculate the slope of emissions vs. size using standard
weighted least squares. The uncertainties in the emissions
imply an uncertainty in this slope. This uncertainty must be
small enough to falsify the linear hypothesis for the prior
emissions; this uncertainty is 19%. Without observations, this
is insufficient to separate the linear hypothesis of Fragkias et al.
(2013) from the scaling law of 1.15 proposed by Bettencourt
(2013).

The inversion, however, reduces the uncertainty in the
total emissions. Reductions are larger for larger emissions,
ranging from 33% for Mexico City case down to only
2% for a city with one tenth these emissions. This also
improves our confidence in the slope of emissions vs. size
which now has an uncertainty of 12%. This is already
enough to meaningfully separate the two hypotheses, and this
separation would greatly increase with a full year of data vs. 1
month.

CONCLUSIONS AND FUTURE WORK

By carefully connecting measurement requirements to flux
uncertainties, we have demonstrated the potential for GeoCarb
to revolutionize our understanding of the carbon cycle using
the OSSEs detailed above. Though these experiments are not
exhaustive explorations of the scientific capabilities of GeoCarb,
they address the goals of the mission, i.e., quantifying urban and
regional scale CO2 emissions, diagnosing GPP through SIF, and
better understanding the biogenic and anthropogenic sources
of CH4. Importantly, the OSSEs make this demonstration in
the presence of uncertainties derived using existing validated
observations from space, i.e., albedos from MODIS and cloud
and aerosol statistics from CALIPSO. With more OSSEs planned
in the period leading up to launch, we will quantify the
impacts of imperfect knowledge of clouds and aerosols in terms
of measurement bias, and the corresponding impact on flux
estimates through regional scale OSSEs. By leveraging these
simulation experiments as well as the lessons learned from
OCO-2, GeoCarb will be able to make the leap from launch to
science.

Existing unpublished work (Crowell et al, in preparation)
suggests that three geostationary satellites with strategic
placements [e.g., over the Americas (∼85◦W), Africa (∼70◦E),
and Tropical Asia (∼110◦E)] as well as a passive Low Earth
Orbiter with a wide swath would be sufficient to constrain
the carbon cycle across scales from urban to the globe.
Further exploration of the use of a constellation of satellites,
particularly with different systematic errors, is crucial for better
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understanding the potential of such an approach (Sellers et al.,
2015, 2018).
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