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Abstract: The abnormal expansion of body fat paves the way for several metabolic abnormalities
including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic
syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity,
and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of
pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation
and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens,
contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the
function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic
disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies,
dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in
obesity and MetS. The term “Mitochondria nutrients” has been adopted in recent years, and it depicts
the adequate nutrients to keep proper mitochondrial function. Different experimental models show
that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated
fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such
effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related
abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables,
nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-
targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to
decrease the burden of disease and medications at a later stage. In this comprehensive review, we
discuss the effects of the MD and its bioactive components on improving mitochondrial structure
and activity.

Keywords: obesity; mitochondria; Mediterranean diet; metabolic syndrome; plant-based foods;
polyphenols; polyunsaturated fatty acids

1. Introduction

Trends for obesity and metabolic syndrome (MetS) are dramatically increasing world-
wide and represent the “malnutrition” burden of the disease [1]. Obesity is characterized by
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excessive accumulation of adipose tissue combined with adipocytokine-mediated chronic
inflammation, mitochondrial dysfunction, and the inhibition of antioxidant defenses [2].
Obesity is typically linked to metabolic disorders such as hypertension, dyslipidemia, and
insulin resistance predisposing to type 2 diabetes (T2DM). Such metabolic abnormalities
tend to cluster within MetS [3–5].

Mitochondria contribute to the pathogenesis of obesity-related metabolic disorders.
Mitochondria are essential for cellular energy metabolism, as they generate adenosine
triphosphate (ATP) by oxidizing carbohydrates, lipids, and proteins [6–8]. Mitochondria
produce and eliminate the reactive oxygen species (ROS) [9]. The inability of mitochondria
to produce and maintain sufficient levels of ATP is known as “mitochondrial dysfunc-
tion”, which is the result of an imbalance in nutrient signal input, energy production, and
oxidative respiration [8,10]. Several studies suggest that an excessive intake of nutrients
influences mitochondrial function [11], and that obesity predisposes to mitochondrial
dysfunction [12–15].

Basic, translational, clinical research, epidemiological studies, and society guidelines
find that the adoption of a healthy diet and lifestyle has beneficial preventive and therapeu-
tic effects on obesity and MetS. Among all dietary patterns, the typical Mediterranean Diet
(MD) is high in monounsaturated fatty acids, fiber, antioxidants, and glutathione [16,17].
Since adherence to the MD has been associated with a lower risk of obesity, T2DM, MetS,
coronary heart disease, and cardiovascular mortality [18–23], the MD is considered a
potential remedy for the prevention of obesity-related diseases [24].

In this scenario, the term “mitochondrial nutrients” refers to specific nutrients that can
preserve mitochondrial function. Cellular and animal models, as well as clinical studies,
have investigated the effects of components of the MD on dysfunctional mitochondria
in obesity and MetS. Thus, mitochondria represent a promising target for novel, natural
supplements or functional foods designed for the prevention and treatment of obesity-
related MetS. This is a reasonable strategy to decrease the impact of medications at a later
stage of the disease.

In this review, we will discuss the main features of obesity and MetS with respect to
mitochondrial function, as well as the effects of the MD and its bioactive components on
improving mitochondrial structure and activity [25].

2. Obesity
2.1. Definition

From a physiological perspective, body fat consists of brown and white adipose tissue.
By location, fat is found at the subcutaneous and visceral levels. According to the World
Health Organization (WHO), obesity is defined as the excessive accumulation of fat in the
body [26], as a result of sustained positive-energy balance where energy intake exceeds
energy expenditure [27]. Obesity is considered a disease of body-weight regulation [28].
Expanded visceral adipocytes act as an endocrine organ, releasing adipocytokines ac-
tively involved in metabolic control, inflammation, and tissue repair [29,30], as well as
tumorigenesis [31,32]. Excessive visceral adipose tissue is associated with increased efflux
of long-chain fatty acids from adipocytes resulting in ectopic-fat deposition in the liver,
skeletal muscle, pancreas, and heart. These changes are associated with insulin resistance
and systemic gluco-lipidic toxicity. In a clinical context, obesity is associated with higher
cardiovascular risk, mortality, and morbidity [33–36].

Obesity is typically assessed by the calculation of body mass index (BMI), expressed as
body weight in kilograms divided by the square of height in meters (kg/m2) [37]. Specific
reference standards exist for children by age and sex between the ages of 2 and 20 years. In
adults, BMI is independent of age and sex and is a surrogate marker of fat in the body [36].
In adults, BMI is classified into the following categories: underweight (<18.5 kg/m2), nor-
mal weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese (BMI ≥ 30 kg/m2).
Obesity is further classified as class I (BMI 30–34.9 kg/m2), class II (BMI 35–39.9 kg/m2),
and class III obesity (BMI > 40 kg/m2), also known as severe obesity [38,39].
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Although simple to obtain, the classification based on BMI does not take into ac-
count several subtypes of obesity and the interaction between body composition and
cardiometabolic risk [36,40–45]. For example, the concept of metabolically healthy obesity
(MHO) describes a subtype of obese subjects with limited or no features of cardiometabolic
abnormalities. Conversely, some normal-weight subjects can display an elevated risk of
cardiometabolic disorders, termed “metabolically unhealthy normal weight” [46,47]. The
MHO phenotype displays a normal lipid and pro-inflammatory cytokine profile and insulin
sensitivity [48]. These patients have low visceral adiposity, high cardiorespiratory fitness,
and minimal or absent intima media thickness. Caution is required when classifying MHO
for several reasons. Longitudinal studies show that MHO can evolve into the metabolically
altered obesity (MAO) phenotype [49]. Nearly one-third of MHO patients, according to
fasting glycemia, exhibit impaired glucose tolerance or T2DM following an oral-glucose
tolerance test. Individuals with MHO and MAO have similar patterns of inflammatory
biomarkers such as C reactive protein, fibrinogen, uric acid, leukocyte count, serum amy-
loid A and hepatic enzymes, as well as adipokines such as adiponectin, resistin, leptin, and
angiotensin II. In addition, typical inflammatory gene expression in adipose tissue and the
liver shows comparable patterns in MHO and MAO individuals [45,50–52]. Notably, the
MHO phenotype is associated with accelerated age-related declines in functional ability
and jeopardizes the independence in older age [53].

Another phenotype of obesity is sarcopenic obesity (SO), a condition characterized
by the combination of low skeletal-muscle mass and decreased strength, i.e., “dynapenic”
abdominal obesity [54]. In the obesogenic environment, this condition is becoming more
important when considering the aging population [55,56]. A dangerous link exists between
obesity and sarcopenia, characterized by a mismatch between muscle mass and fat mass
with a negative impact on energy balance. This pathway, in turn, paves the way for weight
gain. In addition, obesity-associated chronic inflammation has a catabolic effect on muscle
mass, facilitating the loss of lean muscle combined with an increased risk for developing
metabolic alterations, cardiovascular disease (CVD), and mortality, at a much higher rate
than sarcopenia or obesity alone [57–59].

2.2. Epidemiology of Overweight and Obesity

Overweight and obesity are chronic non-communicable diseases, and since 1980 their
prevalence has doubled worldwide. Over one-third of the population worldwide is now
classified as overweight or obese. By 2030, nearly 38% of the adult population will be
overweight and another 20% will be obese worldwide [60,61]. In 2015, evidence estimated
that obesity affected around 604 million adults and 108 million children worldwide [62]. In
2015, the prevalence of obesity had become higher among women than men, for all age
groups and at all socio-economic levels. From 1980 to 2015, the most pronounced increase
in the prevalence of obesity (11.1% to 38.3%) was observed in men aged 25 to 29 years in
low-to-middle income countries. Continuous increasing trends of severe types of obesity
is an area of concern. For instance, between the years 2007 and 2018, the age-adjusted
prevalence of class III obesity (BMI ≥ 40 kg/m2) increased from 5.7% to 9.2% [63,64]. As
will be discussed in the next sub-section, obesity is the key component of MetS [65–67], and
for this reason overweight and obese [68–71] populations are at elevated risk of several
metabolic disorders, including insulin resistance, dyslipidemia, hyperglycemia, CVD, and
many specific cancers [37,72–76].

2.3. Metabolic Syndrome

MetS is characterized by specific criteria defined by the National Cholesterol Education
Program Adult Treatment Panel (ATP) III [77] and the International Diabetes Federation
(IDF) [78] (Table 1). The classification is based on the combination of at least three out
of the five following factors: visceral adiposity, increased serum triglycerides, low HDL
cholesterol, arterial hypertension, and elevated serum glucose (Figure 1).
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Figure 1. Criteria for the definition of metabolic syndrome. WC: waist circumference, TG: triglyc-
erides, HDL: high-density lipoprotein, SBP: systolic blood pressure, DSP: diastolic blood pressure,
FPG: fasting plasma glucose.

The estimated prevalence of MetS according to IDF definition is higher than the
prevalence of MetS, according to the ATP III definition [79]. MetS is gaining increasing
epidemiologic relevance [80–82]. According to the Third National Health and Nutrition
Examination Survey, the overall prevalence of MetS was 22%. In 2002 [83], another study
reported a worldwide prevalence of 10–30%, including children and adolescents [84]. An
age-dependent increase was observed from 6.7% to 43.5% to 42.0%, for ages 20 to 29,
60 to 69, and over 70 years, respectively. Ethnic differences exist, with the highest age-
adjusted prevalence among Mexican Americans (31.9%). Among Black Americans and
Mexican Americans, the prevalence of MetS was 57% and 26%, which was higher in women
than men.

Table 1. Criteria for the definition of metabolic syndrome.

National Cholesterol Education Program ATP III [77] International Diabetes Federation
(IDF) [78]

Any three of the following five abnormalities: Central obesity plus any two of the following four factors:

Obesity Abdominal obesity is defined as a waist circumference ≥102 cm in men
and ≥88 cm in females

Increased waist circumference, with ethnic-specific
waist-circumference cut-off points *

Triglycerides Serum triglycerides ≥ 1.7 mmol/L or drug treatment for
elevated triglycerides

Triglycerides ≥ 1.7 mmol/L or drug treatment for
elevated triglycerides

HDL cholesterol Serum high-density lipoprotein (HDL) cholesterol <1 mmol/L in males
and <1.3 mmol/L in females or drug treatment for low HDL cholesterol

HDL cholesterol < 1.03 mmol/L in men or <1.29 mmol/L in
females or drug treatment for low HDL cholesterol

Hypertension Systolic blood pressure ≥ 130mm Hg, diastolic blood pressure ≥ 85 mm
Hg or drug treatment for elevated blood pressure

Systolic blood pressure ≥ 130 mm Hg, diastolic blood
pressure ≥ 85 mm Hg, or treatment for hypertension

Glucose Fasting plasma glucose (FPG) ≥ 100 mg/dL (5.6 mmol/L) or drug
treatment for elevated blood glucose

FPG ≥ 100 mg/dL (5.6 mmol/L) or previously diagnosed
type 2 diabetes; an oral glucose tolerance test is recommended

for patients with an elevated FPG, but it is not required

* Europid populations: males ≥ 94 cm; females ≥ 80 cm; South Asian populations, Chinese populations, and
Japanese populations: males ≥ 90 cm; females ≥ 80 cm; South and Central American populations: use South
Asian recommendations until more specific data are available; Sub-Saharan African, Eastern Mediterranean, and
Middle Eastern populations: use European data until more specific data are available [85].
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The cause of MetS is complex, and the major etiological components are considered to
be genetic, environmental, and lifestyle factors [67,86–90].

Defective cell metabolism is an important contributing factor for MetS because of
an imbalance between nutrient intake and utilization for energy. Diminished fatty-acid
oxidation accelerates elevation in the intracellular aggregation of fatty acyl-CoAs as well as
other fat-derived molecules in the liver, skeletal muscle, and adipose tissue [86]. Patients
with MetS display early evidence of insulin resistance, with initial elevated serum-insulin
levels. At a later stage, and if not properly treated, this condition can progress to T2DM.
Associated conditions with MetS include cholesterol cholelithiasis and liver steatosis [91,92].
Cholesterol cholelithiasis originates from excessive secretion of hepatic cholesterol, which
makes bile supersaturated and prone to the precipitation and aggregation of monohydrate
cholesterol crystals, which grow into stones in the gallbladder [93–97]. The second condition
is non-alcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-
associated fatty liver disease (MAFLD) [98]. NAFLD/MAFLD originates from excessive
intrahepatic influx of circulating long-chain fatty acids, with accumulation of triglycerides
and toxic metabolites in the hepatocytes [69,99–103].

In this metabolically unhealthy scenario, several determining metabolic pathways con-
verge in mitochondria, suggesting that obesity and MetS are associated with mitochondrial
dysfunction, and pointing to a type of metabolic mitochondrial disease [68,69,102,104,105].
In MetS, mitochondrial dysfunction has been identified in various target organs such as
the liver, heart, and skeletal muscle, as well as in tissue and cells such as adipocyte and
pancreatic islet beta cells [106]. Nevertheless, it is still unclear if mitochondrial dysfunction
is the primary cause or a secondary effect of MetS.

3. Mitochondria, Bioenergetics, Obesity, and MetS
3.1. Mitochondria and Bioenergetics

Mitochondria are small intracellular organelles with a double membrane structure,
i.e., the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM),
separated by the intermembranous space [102,107]. Mitochondria are the “powerhouse of
the cell” and the main sites for ATP production. Using beta-oxidation and the citric acid
cycle, mitochondria oxidize the long-chain fatty acids and glucose derived from foods [108].
Starting from chemical bonds in foods, high-energy electrons are produced and captured by
nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD) and later
reduced to NADH and FADH2 [109]. High-energy electrons are donated to the electron
transport chain (ETC) by NADH and FADH2. The ETC is based in IMM and consists of five
complexes [110,111]. NADH donates electrons to complex I, FADH2 donates electrons to
complex II, and both complexes I and II donate electrons to coenzyme Q (CoQ) [68–71,112].

CoQ is freely diffusible through IMM and provides electrons to complex III and
reduces cytochrome c. Complex IV oxidizes cytochrome c and transfers electrons to oxygen
to produce water. The movement of electrons along the transport chain releases free energy
that is used to pump protons at complex I, III, and IV from the mitochondrial matrix into
the intermembranous space, generating a proton gradient [110,113]. Protons diffuse along
its concentration gradient at complex V, releasing energy that is used to create ATP from
ADP [114]. This process is also known as oxidative phosphorylation (OXPHOS) [115]. Over
90% of the total cellular ATP is generated in the mitochondria, and this pathway is at the
center of energy metabolism [102] and can become dysfunctional in MetS.

3.2. Mitochondria and Reactive Oxygen Species (ROS)

Mitochondria play a key role in ATP production but are also an important source of
physiological levels of intracellular ROS [116]. As electrons pass through the ETC, a small
fraction escape and prematurely react with molecular oxygen, generating superoxide radi-
cals that are spontaneously or enzymatically converted into hydrogen peroxide [117,118].
Furthermore, by undergoing the Fenton reaction, hydrogen peroxide can produce hydroxyl
radicals that are harmful and highly reactive molecules [119,120], which can cause cell
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death by damaging membranes, proteins, DNA, and enzymes [121]. Mitochondria host a
very well-structured antioxidant mechanism that includes the homotetrameric Manganese
(Mn) superoxide dismutase (MnSOD = SOD2), which in mammals is found solely in the
mitochondria at the level of the matrix and intermembrane space [122]. SOD2 converts su-
peroxide radicals to hydrogen peroxide and molecular oxygen. In the presence of reduced
glutathione, hydrogen peroxide is converted to water by the enzyme glutathione perox-
idase, minimizing the production of hydroxyl radical [123]. This process is very highly
efficient and scavenges most of the ROS produced locally in mitochondria. Mitochondria
also play a key role in ROS scavenging from other cellular sources, and mitochondrial
dysregulation can lead to unrestricted ROS generation and cell injury [124–127]. Excessive
production of ROS exceeding cellular antioxidant defense causes cellular macromolecule
damage and affects cellular viability and functions, a process called oxidative stress [128].
Oxidative stress is widely recognized as one of the deciding mechanisms for several disease
processes including MetS [129]. An increase in hydrogen peroxide and superoxide in
cells modifies intracellular signaling and can lead to metabolic reprogramming resulting
in increased fat synthesis and storage [130]. Therefore, increased ROS production with
subsequent oxidative stress may add to the pathogenesis of MetS.

3.3. Mitochondrial Biogenesis

Mitochondria have their own DNA, which encodes for only 22 mitochondrial t-RNA
and some components of the ETC [131]. The key master regulator and transcriptional
activator of mitochondrial biogenesis is the peroxisome proliferator–activated receptor
gamma coactivator-1 α (PGC-1α) [132,133]. Furthermore, by activating various other
transcription factors, PGC-1α stimulates the process of mitochondrial biogenesis involved
in nuclear and mitochondrial gene expression [134]. The induction of mitochondrial
transcription factor A (TFAM) is led by the activation of nuclear respiratory factors 1 and 2
(NRF-1 and NRF-2), transcription factors, and estrogen-related receptors (ERRs) [135,136].
TFAM interacts directly with mitochondrial transcription factor B2 (TFB2M) along with the
mitochondrial genome, to induce mitochondrial gene transcription [137]. Mitochondrial
biogenesis is the physiological response to increased energy demand by AMP-activated
kinase (AMPK) to monitor cellular-energy status [138]. The AMPK system responds
to rises in the AMP:ATP ratio rather than to rises in AMP alone [139]. Increased AMP
mediated by AMPK and elevated NAD+ mediated by Sirtuin-1 pathways can cause PGC1α
activation, which in turn decreases cellular oxidative stress by enhancing the expression
of mitochondrial antioxidant enzymes [140,141]. Hence, PGC1α has become a significant
therapeutic target for MetS [142–146]. Therapeutic approaches focusing on enhanced
mitochondrial biogenesis not only improve mitochondrial efficacy for substrate handling
but also decrease oxidative stress, providing multifactorial benefits [147–149].

3.4. Mitochondrial Dysfunction in Obesity

The pathological expansion of body fat is associated with a chronic status of low-
to-medium grade inflammation, oxidative stress, and insulin resistance [30,150]. These
changes can be paralleled by dysregulation of mitochondrial function and biogenesis.

An excessive intake of nutrients, especially lipids and carbohydrates, can promote
mitochondrial dysfunction. Due to high-calorie intakes, the metabolism is shifted towards
the lipid reservoir, reduced mitochondrial function, and biogenesis, with subsequent pro-
duction of ROS and the progression of insulin resistance in the liver, muscle, and adipose
tissue [8]. By using hypertrophic adipocytes as an experimental in vitro cellular model of
obesity, we showed that lipid accumulation and oxidative stress are associated with im-
paired mitochondrial oxygen consumption and alteration of mitochondrial complexes [105].
In addition, lipolysis, adipogenesis, and adipocyte-derived adiponectin production were
abnormal in adipocytes along with deranged insulin sensitivity [151]. In skeletal muscle
obtained from rodents and humans, the obesity-induced status by a high-fat diet increased
the H2O2-emitting potential of mitochondria, shifting the cellular-redox environment to a
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more oxidized state and decreasing the redox-buffering capacity. These events occurred
in the absence of any changes in mitochondrial respiratory function. Notably, the authors
reported that attenuating mitochondrial H2O2 emission by either treating rats with an
antioxidant-targeting mitochondrial or by genetically engineering the overexpression of
catalase in mitochondria of muscle cells in mice, preserved insulin sensitivity despite the
high-fat diet [152].

The relationship between mitochondrial dysfunction and obesity has been also inves-
tigated in animal models. More precisely, db/db mice and mice on a high-fat diet under
diabetes/obesity conditions displayed a reduction in mitochondrial ATP production and
alterations of mitochondrial structure [153]. In high-fat-diet, obese mice, mitochondrial
dysfunction also occurs in the liver, mediated by a decrease in the expression of carnitine
palmitoyltransferase-1 (CPT-1), citrate synthase, nuclear respiratory factor-1 (NRF-1), and
mitochondrial transcription factor A (TFAM) [154].

The role of obesity in mitochondrial dysfunction has been also investigated in humans [155].
Adipocytes collected from omental and/or abdominal subcutaneous adipose samples of
obese patients showed a reduction in mitochondrial oxygen-consumption rates and citrate
synthase activity, compared to non-obese subjects [13]. Mitochondrial biogenesis, mito-
chondrial oxidative phosphorylation, and oxidative metabolic pathways in subcutaneous
adipose tissue are downregulated in obese subjects, when compared to lean subjects [15].
These effects were accompanied by a reduction in the amount of mtDNA and the mtDNA-
dependent translation system. At the molecular level, obese subjects showed reduced
peroxisome proliferator–activated receptor-α (PGC1-α) expression, as a marker of altered
mitochondrial biogenesis [156].

3.5. Mitochondrial Dysfunction in MetS

Mitochondrial dysfunction is a cardinal hallmark of MetS [69]. In the liver, mito-
chondria are involved in the metabolic pathways of lipids, proteins, carbohydrates, and
xenobiotics [157,158]. Mitochondrial dysfunction is documented in NAFLD/MAFLD, the
most common chronic liver disease [69,102,104,105,159]. In the early stages of NAFLD/MAFLD
the increased intrahepatic influx of circulating FFAs causes early mitochondrial biogenesis
mediated by the activation of PGC1-α and increased β-oxidation rates [160,161]. The high
rate of FFA oxidation and ATP synthesis cause the uncontrolled increase in ROS level
and changes in mitochondrial structure/function such as swelling, alteration in the mito-
chondrial electron transporter chain, mitochondrial DNA (mtDNA) damage, and sirtuin
alteration. Despite the endogenous mitochondrial antioxidant system works to counteract
the oxidative stress, the mitochondrial dysfunction occurs with imbalance between ROS
production and mitochondrial defense mechanisms [162].

As NAFLD/MAFLD progresses, the increased levels of ROS severely impairs mtDNA
function [39] and mitochondrial ATP synthesis promoting further hepatic dysfunction [163–166],
and inflammation [167–170]. At the structural level, the mitochondrial electron transfer
chain seems to be altered as consequence of the excessive accumulation of toxic lipids
and mitochondrial ROS (mtROS) with a direct impact on the permeability of the inner
mitochondrial membrane and increased oxidative damage [171]. At the molecular level,
mitochondrial cytochrome P450 2E1 (CYP2E1), which is responsible for long-chain fatty
acid metabolism, is directly involved in mitochondrial ROS production, and is considered
a fundamental player in NAFLD/MAFLD pathophysiology [172]. Indeed, experimental
studies on non-alcoholic steatohepatitis (NASH) in animal models and in humans, showed
an increased activity of CYP2E1 [173,174]. Besides, mitochondrial enzymatic oxidative
defense mechanisms resulted also impaired in NAFLD and NASH with progressive mito-
chondrial dysfunction. Furthermore, alteration of the expression PGC-1α are associated
with NAFLD pathogenesis and to NASH-hepatocellular carcinoma progression [175].

The relationship between insulin resistance and mitochondrial dysfunction is not
fully understood. Increased production of mtROS has been associated with a high glucose
intake and FFAs accumulation, the two principal factors of insulin resistance. Despite
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the established role of genetic and environmental factors associated with T2DM patho-
physiology, different metabolic abnormalities are directly implicated in the etiology of
T2DM.With ongoing insulin resistance and pancreatic β-cell dysfunction, mitochondrial
dysfunction has been indicated as a principal contributor. The reduction in insulin sen-
sitivity in adipocytes, hepatocytes, and skeletal muscles is related to other complications
such as the increased production of ROS and an accumulation of FFAs, both of which
are associated with mitochondrial dysfunction and impaired mitochondrial biogenesis in
diabetic patients [176–178].

In overweight/obesity and MetS, high fat and carbohydrate intake leads to lipid depo-
sition resulting in the expansion of visceral adipocytes and an excessive influx of circulating
FFAs [36]. The involvement of metabolic abnormalities (e.g., visceral fat accumulation,
insulin resistance, and inflammation) in obesity is closely related to mitochondrial dysfunc-
tion and vice versa [179,180]. In experimental animal models, the accumulation of fat and
formation of adipose tissue in obesity are correlated with increased ROS production. In
addition, obese mice showed a mitochondrial dysfunction phenotype indicated by increas-
ing NADPH oxidase expression and reducing antioxidative enzymes [181,182]. In obese
mice, Choo et al. [183] showed that the number of mitochondria and mtDNA are reduced
in adipocytes. Dysfunctional fatty acid oxidation and mitochondrial respiration were also
observed. Similarly, mitochondrial biogenesis was strongly suppressed in the adipocytes of
obese mice. Mitochondrial ATP production occurred with molecular (PGC-1α/β, estrogen-
related receptor alpha, and PPAR-α) and structural (outer and inner membrane translocases
and mitochondrial ribosomal proteins) alteration in adipose tissue [153].

Two main mechanisms of damage include ATP depletion and excessive ROS produc-
tion. Mitochondrial dysfunction in association with adipose tissue dysfunction, plays a
role in aging [184,185]. Thus, based on the pivotal role of mitochondria in the pathogenesis
of MetS, targeting mitochondrial dysfunction for the treatment of MetS is of great inter-
est. There is growing evidence from animal and human models that sheds light on the
beneficial effects of nutrition-based intervention targeting mitochondria in MetS. Diets
rich in polyphenols such as the MD could represent one of the healthiest approaches for
nutritional intervention for the prevention and/or treatment of MetS.

4. Diet, Features, and Effects

The proper maintenance of metabolic homeostasis is closely related to food and
nutrient intake. Both epidemiological and clinical evidence suggests that dietary patterns
are closely related to the incidence and complications of MetS [186,187]. The Western diet,
characterized by the high intake of refined grains, red meat, and fried foods, is associated
with a greater risk of developing one or more components of MetS [188]. Low-fat diets
such as the vegan diet, characterized by the absence of all animal-based products, if well-
balanced, can promote health and reduce the risk of MetS [189]. A well-balanced diet, such
as the MD is associated with lower incidence and risk of MetS (Table 2).

Table 2. Principal features of Western diet, Vegan diet, and Mediterranean diet.

Western Diet Vegan Diet Mediterranean Diet

Characteristics High fat and sugar
High vegetable Low meat

Low fat High vegetable and olive oil
No meat High plant-based foods

Main components

Red meat Fiber Fiber
(Saturated fat and cholesterol) Grain Antioxidants

Refined grains Cereals Unsaturated fats
Fructose beverage Whole grain

Health consequences

Obesity

Healthy (if balanced)
Deficiency of essential macro and

micronutrients (if unbalanced)
Healthy

Insulin resistance
NAFLD
Diabetes

CVD
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Table 2. Cont.

Western Diet Vegan Diet Mediterranean Diet

Mechanisms

↑ Adipose tissue
↑ Circulating FFAs

↑ Hepatic lipid accumulation
↑ Triglycerides
↑ Cholesterol
↑ Fasting glucose

↑ De novo lipogenesis
↑ VLDL
↑ ER stress

↑ Lysosomal permeabilization
↓ Insulin sensitivity

↓ Circulating FFAs
↓ Hepatic steatosis
↓ Lipolysis

↓ De novo lipogenesis
↑ Insulin sensitivity

↓ Circulating FFAs
↓ Hepatic steatosis
↓ Triglycerides
↓ Cholesterol
↓ Inflammation
↓ Lipolysis

↓ De novo lipogenesis
↓ ROS
↓ CRP

↑ Insulin sensitivity
↓ Inflammatory markers

Effect on Mitochondria
↑mtROS ↓mtROS ↓mtROS

↓mitochondrial biogenesis ↑mitochondrial biogenesis ↑mitochondrial biogenesis
↓mitochondrial respiration ↑mitochondrial respiration ↑mitochondrial respiration

References [188,190,191] [189,192,193] [194–199]

Abbreviation: NAFLD: non-alcoholic fatty liver disease, CVD: cardiovascular disease, FFAs: free fatty acids, ROS:
reactive oxygen species, CRP: C-reactive protein, mtROS: mitochondrial reactive oxygen species, ER: endoplasmic
reticulum, ↑: increased, ↓: decreased.

Mediterranean Diet and Beneficial Effects

The Mediterranean dietary pattern is particularly popular among people living in the
Mediterranean Sea basin. The MD is mainly characterized by a high intake of vegetables,
fruits, nuts, cereals, and whole grains, a moderate intake of white meat such as fish and
poultry, and low intake of dairy products, sweets, red meat, processed meat, and red
wine. Extra virgin olive oil becomes the principal source of fat [200–203] (Figure 2). The
promotion of a healthy lifestyle is an effective strategy is to decrease the risk of MetS
onset by promoting healthy lifestyle. Evidence suggests that the MD possesses antioxidant
and anti-inflammatory properties [25] with protective effects in regard to the disorders
associated with MetS and in the prevention of cardiovascular disease (CVD) [201].
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food, weekly intake in relation to standard portions, and the role of macro- and micro-nutrients. The
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idea is that of promoting healthy lifestyles among different populations. The importance of regular
physical activity and social relationships is also indicated. The final design of the MD pyramid today
and a brief complementary text for the general public have been developed by the Mediterranean Diet
Foundation Expert Group that includes the Mediterranean Diet Foundation’s International Scientific
Committee expertise, the in situ discussions by a representative group of members that met within
the Barcelona VIII International Congress on the Mediterranean diet, and several other experts who
provided support on the design, editing, and translation to 10 different languages (English, French,
Italian, Spanish, Catalan, Basque, Galician, Greek, Portuguese, and Arabic). With permission from
Cambridge University Press, 2022 [200]. Website http://dietamediterranea.com/en/ (accessed on
4 June 2022).

Studies show that adherence to the MD has protective effects against obesity, stroke,
CVD, hypertension, diabetes, some types of cancer, allergic diseases, and Alzheimer and
Parkinson’s disease [204–215]. The American Diabetes Association and the American Heart
Association both recommend the MD in order to decrease cardiovascular risk factors in
T2DM and to improve glycemic control [216]. In younger subjects, low adherence to the
MD can trigger functional gastrointestinal symptoms, as component of the irritable bowel
syndrome and functional dyspepsia, mainly in younger subjects [217]. Unprocessed plant-
based food such as fruits, vegetables, legumes, seeds, spices, and nuts, rich in polyphenols,
are the principal aspect of the MD with a wide range of biological and pharmacological
effects [218–221]. The polyphenols undergo biotransformation process by gut microbiota
before reaching the liver by the portal vein with beneficial effects either locally (i.e., intes-
tine) and systemically (i.e., liver, brain) [222]. In contrast, the Western diet, high in calories,
is characterized by the high intake of processed macronutrients (cholesterol, fat, protein,
and sugars) and salt (sodium chloride), trans fats, and the low intake of fiber and magne-
sium. In the long term, this diet predisposes to obesity, insulin resistance, T2DM, CVD, and
MetS. At the molecular level, the Western diet stimulates oxidative stress and inflammation
by inducing mitochondrial dysfunction, decreasing the activity of antioxidant enzymes
such as catalase, dismutase, and glutathione peroxidase, and peroxisomal oxidation of fatty
acids [223]. As discussed earlier, the protective effects of the MD are the result of the diet
as a whole, rather than individual components, reinforcing the idea that the interaction
of various dietary components can have a beneficial synergistic effect [222]. However,
several scientific-based evidence about the beneficial effects of individual components of
the MD have been documented. For example, olive oil exerts antidiabetic, cardioprotective,
neuroprotective, and nephroprotective effects due to the presence of tyrosol, oleocanthal,
and hydroxytyrosol [224]. The long-term consumption of olive oil counteracts inflamma-
tion, promotes blood vessels’ relaxation, protects against T2DM, reduces blood pressure,
and increases insulin circulation [225]. The MD contains sea foods and fish rich in by
fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acids (EPAs), which
are metabolized producing 5-series leukotrienes and resolvins (RvE1 and RvE2). These
metabolites possess anti-inflammatory effects in vivo [226]. Red grapes and wine found in
the MD contain the polyphenol resveratrol (3,40,5-trihydroxystilbene), which not only has
cardioprotective, antiaging, and anticarcinogenic effects but also promotes neuroprotective
activities leading to anti-inflammatory, antioxidant, and gene-modulating effects. Resvera-
trol in patients with T2DM modulates the genes that influence mitochondrial function, such
as PGC-1α, which is a key regulator of mitochondrial biogenesis and leads to elevation of
mitochondrial content [227]. Furthermore, resveratrol indirectly activates AMP-activated
protein kinase (AMPK), leading to increased mitochondrial biogenesis, improved glucose
tolerance, insulin sensitivity, physical endurance, and a reduction in fat accumulation [228].
Moreover, due to its structural similarity to the synthetic estrogen diethylstilbesterol, resver-
atrol interacts with estrogen receptors inducing favorable cardiovascular effects. Several
studies have demonstrated that the overall pattern of the MD produces beneficial effects by
reducing the risk of obesity, hypertension, dyslipidemia, glucose metabolism, and CVD
in T2DM patients [229,230]. The MD includes a high consumption of green vegetables

http://dietamediterranea.com/en/
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rich in magnesium, which is a main constituent of chlorophyll. The magnesium present in
chlorophyll plays a crucial role in the metabolism of insulin and glucose by translocating
the phosphate from ATP to protein through its influence on tyrosine kinase activity of the
insulin receptor. Magnesium is one of the cofactors of more than 300 enzymic reactions and
it is important for ATP metabolism. It is also necessary for the regulation of blood pressure,
insulin metabolism, muscle contraction, cardiac excitability, neuromuscular conduction,
and vasomotor tone. The deficiency of magnesium is known to be associated with the
onset of T2DM, while its consumption reduces the intensity of diabetes by sensitizing
insulin [231,232].

The MD also has significant protective effects in MetS [19,233]. Scientific-based ev-
idence suggest that many component of the MD display anti-inflammatory effects by
reducing the activation of NF-κB signaling pathway and the expression of chemokine and
proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 [234]. The decreased expression
of cytokines reduces oxidative stress, low-grade inflammation, and apoptotic cell death in
brain and visceral tissues [235]. Another biomarker for inflammation is C-reactive protein
(CRP), and prolonged intake of the MD diminishes CRP and unusual quantity of cytokines
and adipokines irrespective of weight loss increase [235–237]. Furthermore, the MD is
associated with lower mortality and a decreased incidence of common chronic diseases
such as CVD [238], several cancers [239], T2DM [240], fatty liver disease [241], and some
types of allergies [242] as a result of the inhibition of oxidative stress, reduction in inflamma-
tion, and improved lipid profiles [218,219,243–245]. Along with improving physical health,
long-term adherence to the MD also improves the quality of life and longevity [246,247].

5. MD and Mitochondrial Activity
5.1. Preclinical Studies

The MD is characterized by the high intake of several ingredients with beneficial,
nutraceutical and pharmaceutical properties, involved in the prevention and recovery of
metabolic diseases. This is achieved through different pathways, including the attenuation
of mitochondrial dysfunction (Table 3). Despite the difference in some components of the
MD between different countries, most essential ingredients are the same, such as olive oil,
PUFA (Omega-3), fruits, and polyphenol-rich plants and vegetables.

Table 3. Summary of in vitro and in vivo studies about effects of Mediterranean diet on metabolic
diseases targeting mitochondria.

Compound Study Model Effects Reference

Chlorogenic Acid (CGA) In vitro
OxLDL-treated HUVECs

Oxidative Damage/Mitochondrial
Dysfunction

↑ SIRT1 expression
↓ OxLDL-impaired SIRT1 Level

↓ ROS
↑ SIRT1, AMPK, and PGC-1α

pathway

[248]

Delphinidin In vitro
VEGF-treated HUVECs Post-ischemic neovascularization

↑ NRF1, Tfb2m, Tfam and PolG
↓ Abnormal increase in

mitochondrial respiration,
mtDNA content, and complex IV

activity

[249]

Lycopene (LYC) In vivo
LPS-treated mice Inflammation

↑ SIRT1
↑ PGC1α

↑ Cox5b, Cox7a1, Cox8b, and Cycs
↑ Complexes I, II, III, and IV

[250]

Lycopene (LYC) In vitro
H2O2-treated SH-SY5Y Oxidative stress /Apoptosis

↑ Depolarization
↑ Bcl2
↓ Bax

[251]

5-Heptadecylresorcinol
(AR-C17)

In vitro
H2O2-treated PC-12

Apoptosis/Mitochondrial
dysfunction

↓ ROS
↑Mitochondrial respiration

↑ ATP
↑ SIRT-3
↑ FOXO3a

↓ H2O2-cell apoptosis

[252]
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Table 3. Cont.

Compound Study Model Effects Reference

Resveratrol In vivo
Mice Insulin resistance/Obesity

↑ SIRT1 activity
↑ PGC-1α activity

↑Mitochondrial activity
↑ Aerobic capacity

[253]

Resveratrol

In vitro
solubilized complex I

In vivo
Mice

Aging

↑ Complex I activity in vitro
↑ Complex I activity in young

mice
↑ Oxidative stress in old mice

[227]

Resveratrol In vivo
HFD mice Obesity/Ageing

↑ SIRT1 enzymatic activity
↑ PGC-1α deacetylation and

activity
[254]

Butyric acid In vivo
HFD mice Metabolic syndrome

↑ PGC-1α
↑ CPT1b
↑ COX-I
↑ PPAR-δ

↑ Fatty acid oxidation

[255]

Butyrate and its synthetic
derivative FBA

In vivo
mice

In vitro
HepG2 cells

Insulin resistance/Obesity

↑ Oxygen consumption
↑ Citrate synthase activity

↓ H2O2
↑ Aconitase activity
↑Mfn1, Mfn2, Opa1
↓ Drp1 and Fis1

[256]

Ginger extract (GE)/
6-gingerol

In vivo
mice

In vitro
HepG2 cells

-

↑mtDNA
↑ OXPHOS
↑ATP

↑ Complex I and IV activity
↑ AMPK-PGC-1α signaling

[257]

Ferulic acid (FA)

In vivo
HFD mice

In vitro
PBMC and EPC

Cardiovascular disease

↑Mitochondrial biogenesis
markers

↓ Oxidative stress
↓ PBMC apoptosis
↑ PGC-1α

[258]

Differentω-3/ω-6 PUFAs
ratios

In vivo
mice Metabolic syndrome

↓Metabolic risk factors
↓ p-mTOR

↑Mitochondrial electron transport
chain

↑ Tricarboxylic acid cycle
↑Mitochondrial activities

↓ Fumaric acid
↓ Oxidative stress

[259]

Extra virgin olive oil
(EVOO) and
nitrite (NO3)

In vivo
mice NAFLD

↑ HO-1 expression
↑ Complexes II and V

↑ NO2-OA
↓ Cholesterol
↓ LDL

↓ Endothelial dysfunction
↓ Blood pressure
↓ Thrombosis
↓ Hyperglycemia

[260]

Hydroxytyrosol (HT) In vivo
mice Metabolic syndrome

↓ Drp1
↑ Complex I and II
↓ Complex V
↓ PARP

[261]

Hydroxytyrosol (HT)

In vivo
HFD-Megalobrama amblycephala

fish
In vitro

hepatocytes

Hepatic fat deposition

↑ Citrate synthase activity
↑ ATP content

↑Mitochondria number
↑ PGC-1α, PGC-1β, NRF1 and

TFAM

[262]

Ellagic acid (EA) In vivo
chronic arsenic-rats Diabetes/Cancer

↓ ROS
↓Mitochondrial damage
↑ Dehydrogenase complex

II-associated activity

[263].

Apigenin (APG)
In vivo

multiwall CNT
(MWCNT)-exposed rats

Kidney toxicity

↑ Succinate dehydrogenase
↓ ROS

↑Mitochondrial membrane
potential

↓Mitochondrial swelling
↓ Release cytochrome

[264]

Apigenin (APG) In vivo
aged Mice Muscle Atrophy

↑ Basal oxygen consumption
↑ Complexes I, II, and IV activity

↑ ATP content
↑ PGC-1α, TFAM, and NRF-1
↓ Cyt-C release to cytosol

[265]
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Table 3. Cont.

Compound Study Model Effects Reference

Cocoa Flavanols In vivo
mice

Healthy and
SIRT3-/-mice

↑Mitochondrial respiration
↑ AMPK phosphorylation
↑Mitochondria mass
↑ NAD+/NADH

↑ Complex I and IV activity

[266]

Abbreviations: Drp1: mitochondrial fission-related protein, Bak, Bax, and Bad: proapoptotic Bcl-2 members,
Bcl-2 and Bcl-XL: antiapoptotic Bcl-2 proteins, PARP: poly(ADP-ribose) polymerase, HFD: high-fat diet, EVOO:
extra virgin olive oil, HO-1: heme oxygenase-1, NO2-OA: nitro-fatty acids, LDL: low-density lipoprotein, LYC:
lycopene, SH-SY5Y: human neuroblastoma cells LPS: lipopolysaccharides, SIRT1: sirtuin 1, PGC1α: perox-
isome proliferator–activated receptor gamma coactivator-1α, Cox: cyclooxygenase, PBMC: peripheral blood
mononuclear cell, EPC: endothelial progenitor cells, ROS: reactive oxygen species, HUVECs: human umbilical
vein endothelial cells, OxLDL: oxidized low-density lipoprotein, FOXO3a: forkhead box O3 (transcription fac-
tors), HepG2: human liver cancer cell line, OXPHOS: oxidative phosphorylation, NAD+: nicotinamide adenine
dinucleotide, CPT1b: carnitine palmitoyltransferase 1B, COX-1: cytochrome c oxidase I, PPAR-δ: peroxisome
proliferator–activated receptor-δ, FBA: N-(1-carbamoyl-2-phenyl-ethyl) butyramide, MetS: metabolic syndrome,
↑: increased, ↓: decreased.

In vitro studies evaluated the beneficial effects of polyphenol-rich foods on MetS
mediating mitochondrial modulation. In detail, the protective role of chlorogenic acid
(CGA) found in coffee beans and apples against ox-LDL-induced endothelial cells dys-
function as cellular model of atherosclerosis was evaluated using human endothelial cells
HUVECs. CGA displayed mitochondria-mediated effects by enhancing SIRT1 activity
and up-regulating AMPK and PGC-1 expression to maintain mitochondrial biogenesis. In
addition, CGA treatment exhibited a cytoprotective effect by reducing ROS production
in endothelial cells. [248]. Similarly, in endothelial cells with VEGF-induced mitochon-
drial dysfunction, delphinidin (a flavonoid present in red wine and berries) restored the
elevated level of mitochondrial respiration, mtDNA content, and complex IV activity. In
addition, delphinidin increased the expression of NRF1, Tfb2m, Tfam, and PolG, all of
which are involved in the regulation of mitochondrial biogenesis [249]. Lycopene (LYC), a
member of the carotene phytochemical family, present in tomatoes and grapefruits, exerted
an anti-inflammatory effect on mice exposed to LPS through improving mitochondrial
dysfunction. In detail, LYC upregulated the expression of SIRT1, PGC1α, Cox5b, Cox7a1,
Cox8b, and Cycs. In addition, a partial effect of LYC was proved in regulating the expres-
sion of many complexes in the respiratory chain [250]. Another in vitro study using human
neuroblastoma cells SH-SY5Y showed a protective effect of lycopene against H2O2-induced
depolarization of the mitochondrial membrane [251]. LYC increased the expression of Bcl2
and decreased Bax expression [251]. Whole grains also represent an important category in
the MD, with a beneficial impact on metabolic diseases. Especially, 5-heptadecylresorcinol,
a biomarker of whole grain rye consumption, protects against H2O2-induced oxidative
stress in rat pheochromocytoma (PC-12) by activating the SIRT3-FOXO3a signaling path-
way. In addition, it reduced mitochondrial ROS levels and maintained the mitochondrial
respiration and membrane potential, which leads to an increase in ATP production and cell
respiration [252].

Another study found that the antioxidant effect of resveratrol found in grapes, berries,
and cacao is dose- and age-dependent [253]. This polyphenol competes with NAD+ in a
solubilized complex of mitochondria to improve their activity [253]. In addition, resveratrol
prevents metabolic diseases (obesity and insulin resistance) in mice through improving
mitochondrial function via PGC-1α and SIRT-1 activation [227]. These results have also been
confirmed by Baur et al. [254] using a high-calorie-diet mice model which demonstrated
a SIRT-1-dependent effect of resveratrol on the activation of PGC-1α resulting in the
improvement of mitochondrial biogenesis.

By monitoring the increase in CO2 level in skeletal muscle tissue and L6 muscle cells
in butyrate-treated mice, an increase in PGC-1α level accompanied by an increase in CPT1b
and COX-I genes expression was observed. Moreover, the levels of peroxisome proliferator–
activated receptors (PPARs) were also increased in the treated group. Overall, these data
suggest that butyrate (found in legumes, fruits, and nuts) promotes fatty acid oxidation
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and improves mitochondrial function [255]. In addition, butyrate increased citrate synthase
activity, aconitase activity, and oxygen consumption in butyrate-treated mice and FBA-
treated human HepG2 cells, with a decrease in H2O2 yield. In mitochondrial dynamics,
butyrate and FBA upregulated the expression of fusion genes (Mfn1, Mfn2, and Opa1) and
decreased the expression of fission-related genes (Drp1 and Fis1) [256].

Ginger extract and its bioactive compound 6-gingerol promote mitochondrial biogen-
esis and function through improving AMPK-PGC1α signaling in vivo (skeletal muscle,
liver, and BAT) and in vitro (HepG2 cells). Furthermore, 6-gingerol enhanced p-AMPKα,
PGC-1α, NRF1, and TFAM protein expression and stimulated the subunits of OXPHOS
complexes in HepG2 cells [257]. Further study links the role of ferulic acid (FA), the main
active phenolic acid in rice bran, with the improvement of mitochondrial biogenesis and
dynamic by increasing the expression of Pgc-1α, Pgc-1β, Nrf-1, Mfn1, Mfn2, Fis1, and Beclin-
1. In addition, the rice bran enzymatic extract (RBEE) diet upregulated AMPK activity with
enhanced PGC-1α expression in mice. The latter was also observed in peripheral blood
mononuclear cell (PBMC) and endothelial progenitor cells (EPC), in addition to an increase
in fusion MFN1 [258].

The effect of a high omega-3 to omega-6 ratio (ω-3/ω-6) on metabolic syndrome was
investigated in vivo using high-fat-diet mice. A highω-3/ω-6 ratio significantly decreased
the insulin index, body weight, atherosclerosis markers, and accumulation of hepatic lipid.
These effects were mediated by a reduction in p-mTOR expression, accompanied by an
upregulation of the mitochondrial electron-transport chain and tricarboxylic acid-cycle
pathway, when compared to a diet with a low or moderate ω-3/ω-6 ratio. Therefore, a
diet with a high ω-3/ω-6 ratio displayed an enhancement of mitochondrial complexes
activities, accompanied by an alleviation of fumaric acid and oxidative stress [259]. The
Mediterranean diet also contains a variety of vegetables rich in NO2− and nitrate (NO3).
Sánchez-Calvo et al. analyzed the involvement of nitro-fatty acids (NO2-FA) on the benefi-
cial effects of extra virgin olive oil (EVOO) consumption on an NAFLD experimental animal
model. EVOO and nitrite supplementation improved the function of liver mitochondrial
complexes II and V and exerted antioxidant and anti-inflammatory effects. The authors
concluded that EVOO-NO2− consumption may promote additional nutraceutical effects in
NAFLD patients [260].

Hydroxytyrosol (HT), a polyphenol from olive oil, was effective in the regulation
of multiple HFD-induced MetS, especially those related to mitochondrial dysfunction,
through the modulation of mitochondrial apoptotic pathway in the liver and skeletal mus-
cles. Moreover, HT treatment normalized the down-expression of Complex I and II and the
up-expression of complex V, while Drp1 and PARP were decreased after treatment [261].
HT may also improve mitochondrial biogenesis (increase mtDNA and number of mito-
chondria) through the AMPK pathway, by enhancing the expression of involved genes
(PGC-1α, NRF-1, and TFAM). ATP content and citrate synthase activity were also shown
to increase after HT treatment of HFD (high-fat diet) and LFD (low-fat diet) groups [262].
Another phenolic acid, ellagic acid, which is found in strawberries and walnuts, prevents
metabolic disorders by targeting the mitochondria via two ways: directly, by decreasing
the ROS amounts and mitochondrial damage, or indirectly, by restoring the total dehydro-
genase activity in mitochondria through complex II maintenance [263]. Apigenin (APG),
a flavonoid found in many fruits and vegetables, increased the respiratory complex II
succinate dehydrogenase (SDH) activity on carbon-nanotubes-induced mitochondrial dam-
age. APG acts as antioxidant by decreasing ROS generation in kidney, which leads to a
decrease in MMP collapse [264]. Results were confirmed in another study in old mice
by Wang et al. [265]. In addition, APG improves mitochondrial biogenesis (by increasing
mtDNA, PGC-1α, TFAM, and NRF-1), and the activity of complexes I, II, and IV and ATP
synthesis [265]. Cocoa flavanol supplementation boosted the NAD metabolism, which
stimulates sirtuins metabolism and improved mitochondrial function. These results suggest
that flavanols likely contributed to the observed whole-body metabolism adaptation, with
a greater ability to use carbohydrates, at least partially through Sirt3 [266].
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5.2. Clinical Studies

In subjects with NASH, a six-month treatment with omega-3 showed a regulation of
lipogenesis, ER stress, and mitochondrial function [267]. These effects were mediated by an
overexpression of FABPL and PRDX6, with a reduction in PGRMC1 level. Meanwhile, an
up-representation of PEBP1 and ApoJ was detected after the oral consumption of omega-3,
confirming its role in the modulation of insulin resistance. In addition, FASTKD2, mitochon-
drial proteins related to aerobic-cell respiration, was overexpressed in this situation [267].
A study in patients on 2–3 weeks of a PUFA diet before elective cardiac surgery confirmed
that omega-3 fatty acids from fish oil upregulated the nuclear transactivation of peroxisome
proliferator–activated receptor-γ (PPARγ). This effect improved the mitochondrial oxida-
tion of fatty acid and enhanced the antioxidant effect in the human atrial myocardium [268].
An EPA+DHA diet increases the expression of mitochondrial uncoupling protein 3 (UCP3)
and ubiquinol cytochrome c reductase (UQCRC1) genes, which reduces ROS production.
In addition, this diet improved oxidative phosphorylation activity and the extracellular
matrix (ECM)-related pathways [269]. DHA, an omega 3 fatty acid, present in marine
foods, increases the expression of the genes responsible for integrating fatty acid into
mitochondria, as a new source of energy. In addition, DHA-enriched food consumption
enhanced mitochondrial antioxidant capabilities and decreased mitochondrial ROS produc-
tion [270]. The effect of resveratrol was studied in overweight/T2DM patients. Resveratrol
improves the mitochondrial function through increasing state 3 respiration, while decreas-
ing complex IV [271]. Resveratrol can stimulate the ENDOG gene to further stimulate the
PGC-1α activity in biogenesis and to increase the number of mitochondria [272]. Resvera-
trol combined with epigallocatechin-3-gallate (EGCG) increases complexes III and V and
improves the electron transport chain capacity, in addition to the upregulation of the citric
acid cycle and fat oxidation in muscles during fasting [273]. Furthermore, a mixture of
ancient peat and apple extract exerts a beneficial effect on mitochondrial function and
ATP production, accompanied with a decrease in ROS production and oxidative stress in
resistance-trained [274] (Table 4).

Table 4. Clinical studies in metabolic syndrome assessing the efficacy of MD components on mitochondria.

Authors Year Sample Size Gender M/F
(Age) Participants Format, Dose Duration of Study Main Findings

Anderson et al.
[268] 2014 24 16/8

(63.1 ± 8.4; 65.8 ±9.9)
Elective cardiac

surgery for patients

Oral consumption
of EPA and DHA

capsule,
3.4 g/day

2–3 weeks

↑ PPARγ
↑Mitochondrial

fatty acid oxidation
↑ TxnRd2 enzyme

Capo et al.
[270] 2014 15 15/0

(20.4 ± 0.5)
Exercise-induced
oxidative stress

Beverage enriched
with DHA 2 months

↑ Antioxidant
activity

↓ ROS production
↑ DHA

Yoshino et al.
[269] 2016 20 60 to 85 Large hypertrophic

response

Consumption of 4
pills (1.86g EPA+

1.50 g DHA)
6 months

↑ Respiratory
electron transport

activity
↑ Oxidative

phosphorylation
↑ ECM

organization
↑ UCP3 and

UQCRC1

Most et al.
[273] 2016 38 18/20 (38 ± 2) Subjects with

obesity

Consumption of
282 mg EGCG + 80

mg RES
12 weeks

↑ Complexes III
and V

↑ Citric acid cycle
↑ Respiratory

electron-transport
chain

↑ Fat oxidation

Joy et al. [274] 2016 25 25/0 (28± 5) Resistance-trained
subjects

Consumption of
150 mg (ancient
peat and apple
extract (TRT))

12 weeks

↑Mitochondrial
ATP production

↓ ROS
↓ Oxidative stress
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Table 4. Cont.

Authors Year Sample Size Gender M/F
(Age) Participants Format, Dose Duration of Study Main Findings

Pollack et al.
[272] 2017 30 19/11

(67 ± 7)

Older
glucose-intolerant

patients

Treated with 2−3 g
Resveratrol/day 6 weeks

↑Mitochondrial
number
↑ Oxidative

phosphorylation
↑ ENDOG
↑ P GC1α

Samara et al.
[267] 2018 60 18–75 years Patients with

NASH

Oral consumption
of n − 3 PUFA
capsules, 0.945

g/day

6 months

↑ ALA, EPA, glyc-
erophospholipids
↓ Arachidonic acid

↑ FABPL
↑ PRDX6
↓ PGRMC1
↑ PEBP1, ApoJ
↑ FASTKD2

de Ligt et al.
[271] 2018 13 13/0

(59.2 to 67.6)
Patients with

overweight/T2DM

Consumption of
150 mg

Resveratrol/day
6 months

↑ State 3
respiration
↓ Complex IV
↑Mitochondrial

function

Abbreviations: ALA: alpha-linolenic acid, EPA: eicosapenteanoic acid, FABPL: fatty acid binding protein—liver
type, PRDX6: peroxiredoxin 6, PEBP1: phosphatidylethanolamine-binding protein 1, ApoJ: apolipoprotein J,
FASTKD2: FAST kinase domain-containing protein 2, PGRMC1: progesterone receptor membrane component
1 protein, DHA: doxosahexaenoic acid, ECM: extracellular matrix, UCP3: l uncoupling protein 3, UQCRC1:
ubiquinol cytochrome c reductase, EGCG: epigallocatechin-3-gallate, RES: resveratrol, ENDOG: endonuclease G,
↑: increased, ↓: decreased.

6. Summary

Mitochondrial dysfunction can occur along with many diseases, and the dysfunction is
associated with changes in gene expression reflecting on both cell morphology and function.
Key events include disrupted mitochondrial ATP production, impaired metabolism, and
regulation of apoptosis. Altered metabolic homeostasis will also influence the physiological
mitochondrial dynamics. [275]. In the last decade, so-called “mitochondrial medicine” and
“mitochondrial nutrients” have attracted the attention of researchers, with the idea that
improving mitochondrial structure and function is a plausible strategy for MetS prevention
and treatment. It is important to note that the MD is rich in polyphenols and other naturally
derived compounds that have substantial antioxidant properties, the capacity to scavenge
free radicals, and the ability to modulate endogenous antioxidant defense mechanisms.
These effects involve mitochondrial antioxidant enzymes. Due to their antioxidant proper-
ties, polyphenols can reduce the inflammation and mitochondrial dysfunction characteristic
of MetS. Hereby, we discussed the effects of the main nutrients and polyphenols in the
MD on mitochondrial dysfunction in MetS. Preclinical studies (in vitro cellular and in vivo
animal studies) show that the nutrients and polyphenols present in the MD, such as chloro-
genic acid, resveratrol, hydroxytyrosol, and apigenin, exert a vast range of beneficial effects
on mitochondrial dysfunction. Figure 3 summarizes the possible mechanisms, including
the effects on key regulators of mitochondrial function and biogenesis such as SIRT-1,
AMPK, and PGC-1α. In addition, the antioxidant properties of the polyphenols present in
the MD reduced mtROS production and ameliorated mitochondrial damage and apoptosis
in different experimental studies. Several studies reported the health-promoting effects of
the MD due to its high fiber content.

Short-chain fatty acids are the end products of the fermentation of insoluble fiber by
the gut microbiota. Evidence suggests SCFAs can modulate several metabolic disorders
such as obesity, insulin resistance, and T2DM [276]. Butyrate, an SCFA present in the MD,
promotes fatty acid oxidation and improves mitochondrial function. The vegetables, nuts,
and fish characteristics of the MD contain significant amounts of PUFA. The correlation
between PUFA intake (especiallyω-3) and decreased cardiometabolic risk has been well-
documented [277]. Additionally, dietary n-3 PUFAs have shown substantial positive
effects on mitochondrial function and structure [278]. These effects seem to be mediated
by a reduction in the expression of p-mTOR, accompanied by the upregulation of the
mitochondrial electron-transport chain and tricarboxylic acid cycle. Several studies in
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humans have demonstrated the beneficial effect of the bioactive compounds present in
the MD on MetS, suggesting advanced health-promoting effects through the targeting of
mitochondria. This could be used to promote additional pharmacological and nutraceutical
effects, especially on the gastrointestinal system and muscle strength.
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Figure 3. Potential molecular mechanisms of MD on mitochondrial dysfunction in MetS. The dotted
red line represents inhibitory pathways. Abbreviations: AMPK: AMP-activated protein kinase;
BAX: bcl2-like protein 4; Bcl−2: B-cell lymphoma 2; NRF−1: nuclear respiratory factor 1; PPARs:
peroxisome proliferator–activated receptors; PGC−1α: peroxisome proliferator–activated receptor-
gamma coactivator-1α; SIRT−1: sirtuin 1; TFAM: transcription factor A, mitochondrial.

7. Conclusions

Obesity is closely linked to metabolic disorders that pave the way for organ, tissue,
cellular, and sub-cellular dysfunction. Mitochondria are dynamic cell organelles, which are
essential for energy metabolism and represent cardinal players in obesity and metabolic
disease. Cumulative evidence from pre-clinical studies indicates that the MD is rich in
polyphenols, essential oils, and fiber and plays a beneficial role by stimulating mitochon-
drial biogenesis and exerting an antioxidant effect.

Despite the substantial positive effects reported for the MD and its components in
obesity and MetS, the bioactive mechanisms of the MD on mitochondrial dysfunction
are not fully understood. Therefore, further animal and human studies are necessary to
elucidate the translational aspects of “mitochondrial nutrition” and to fully characterize its
role in the prevention and treatment of obesity-related MetS.
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ATP Adenosine triphosphate

ATP III Adult Treatment Panel III

AMPK AMP-activated protein kinase

APG Apigenin

ApoJ Apolipoprotein J

BMI Body mass index

Bcl2 B-cell lymphoma 2

Bax BCl2-associated X

CV Cardiovascular

CoQ Coenzyme Q

CoA Coenzyme A

CPT-1 Carnitine palmitoyltransferase-1

CYP2E1 Mitochondrial Cytochrome P450 2E1

CVD Cardiovascular disease

CRP C-reactive protein

CGA Chlorogenic acid

Cox Cytochrome C oxidase

Cycs Cytochrome C

CO2 Carbon dioxide

CPT1b Carnitine palmitoyltransferase 1B

DNA Deoxyribonucleic acid

DHAs Docosahexaenoic acids

Drp1 Dynamin-related protein 1

DHA Doxosahexaenoic acid

ETC Electron transport chain

ERR Estrogen-related receptors

EPAs Eicosapentaenoic acids

EPC Endothelial progenitor cells

EVOO Extra virgin olive oil

ER stress Endoplasmic reticulum stress

EPA Eicosapenteanoic acid

ECM Extracellular matrix

EGCG Epigallocatechin-3-gallate

ENDOG Endonuclease G

FAD Flavin adenine dinucleotide

FFA Free fatty cid

FOXO3a Forkhead box O3 (transcription factors)

FBA
N-(1-carbamoyl-2-phenyl-ethyl)
butyramide

Fis1 Mitochondrial fission protein1
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FA Ferulic acid
FABPL Fatty acid binding protein—liver type
FASTKD2 FAST kinase domain-containing protein 2
H2O2 Hydrogen peroxide
HFD High-fat diet
HUVECs Human endothelial cells
HT Hydroxytyrosol
HepG2 Human liver cancer cell line
HDL High-density lipoprotein
IDF International Diabetes Federation
IMM Inner mitochondrial membrane
IL-1β Interleukin 1 beta
IL-6 Interleukin 6
LYC Lycopene
LFD Low-fat diet
MetS Metabolic Syndrome
MD Mediterranean diet
MHO Metabolically healthy obesity
MAO Metabolically altered obesity
MAFLD Metabolic dysfunction associated fatty liver disease
mtROS Mitochondrial reactive oxygen species
mtDNA Mitochondrial Deoxyribonucleic Acid
Mfn1 Mitofusin-1
Mfn2 Mitofusin-2
MWCNTs Multi-walled carbon nanotubes
NAFLD Non-alcoholic fatty liver disease
NAD Nicotinamide adenine dinucleotide
NRF Nuclear respiratory factors
NRF-1 Nuclear respiratory factor 1
NASH Non-alcoholic steatohepatitis
NADPH Nicotinamide adenine dinucleotide phosphate oxidase
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NO2-OA Nitro-fatty acids
OMM Outer mitochondrial membrane
OXPHOS Oxidative phosphorylation
ox-LDL Oxidized low-density lipoprotein
PGC-1α Peroxisome proliferator–activated receptor gamma coactivator-1 α
PUFA Polyunsaturated fatty acid
PPAR-α Peroxisome proliferator–activated receptor-α
PolG DNA polymerase subunit gamma
PC-12 Pheochromocytoma
PBMC Peripheral blood mononuclear cell
PRDX6 Peroxiredoxin 6
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PGRMC1 Progesterone receptor membrane component 1 protein
PEBP1 Phosphatidylethanolamine-binding protein 1
ROS Reactive oxidative atress
RBEE Rice bran enzymatic extract
SO Sarcopenic obesity
SIRT1 Sirtuin 1
SH-SY5Y Human neuroblastoma cells
SDH Succinate dehydrogenase
SCFAs Short-chain fatty acids
T2DM Type 2 diabetes mellitus
TOFI Thin-outside-fat-inside
t-RNA Transfer ribonucleic acid
TFAM Mitochondrial transcription factor A
TFB2M Mitochondrial transcription factor B2
TNF-α Tumor necrosis factor
Tfb2m Transcription factor B2, mitochondria
UCP3 Uncoupling protein 3
UQCRC1 Ubiquinol cytochrome c reductase
VEGF Vascular endothelial growth factor
WHO World Health Organization
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