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Seafloor multiparametric fibre-optic-cabled video observatories are emerging tools for standardized monitoring programmes, dedicated to

the production of real-time fishery-independent stock assessment data. Here, we propose that a network of cabled cameras can be set up and

optimized to ensure representative long-term monitoring of target commercial species and their surrounding habitats. We highlight the im-

portance of adding the spatial dimension to fixed-point-cabled monitoring networks, and the need for close integration with Artificial

Intelligence pipelines, that are necessary for fast and reliable biological data processing. We then describe two pilot studies, exemplary of using

video imagery and environmental monitoring to derive robust data as a foundation for future ecosystem-based fish-stock and biodiversity

management. The first example is from the NE Pacific Ocean where the deep-water sablefish (Anoplopoma fimbria) has been monitored since
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2010 by the NEPTUNE cabled observatory operated by Ocean Networks Canada. The second example is from the NE Atlantic Ocean where

the Norway lobster (Nephrops norvegicus) is being monitored using the SmartBay observatory developed for the European Multidisciplinary

Seafloor and water column Observatories. Drawing from these two examples, we provide insights into the technological challenges and future

steps required to develop full-scale fishery-independent stock assessments.

Keywords: cabled video observatories, ecosystem services, fishery-independent assessment, monitoring, Norway lobster, sablefish

Introduction
The monitoring of marine biodiversity at different spatio-

temporal scales is a key aspect for the conservation of marine eco-

systems, as it serves as a proxy for ecosystem functioning and

services (e.g. Tittensor et al., 2010; Costello and Chaudhary,

2017). There is growing awareness of the importance of biodiver-

sity in deep benthic marine habitats, which are exposed to multi-

ple impacts, spanning from direct physical disturbance (e.g.

mining, bottom contact fisheries, litter, noise, and contaminants)

to indirect effects related to climate change such as deoxygenation

and acidification (Ramirez-Llodra et al., 2011; Sato et al., 2017;

Jamieson et al., 2019; Levin et al., 2019; Costa et al., 2020). The

quantification of megafauna (i.e. animals larger than 2 cm;

Moleón et al., 2020) as major ecosystem service providers and the

extraction of ecological indicators for its monitoring is about to

be prioritized in major international management and conserva-

tion policy programmes (Danovaro et al., 2020).

The identification of new monitoring tools and optimal sam-

pling practices for the assessment of environmental status is at

the core of important international management policies. These

include the Marine Strategy Framework Directive (EC, 2008) of

the European Union, and the Integrated Ecosystem Assessment,

which supports Ecosystem-Based Management programmes in

the United States (Samhouri et al., 2014), as well as for the recent

Intergovernmental Science-Policy Platform on Biodiversity and

Ecosystem Services (Dı́az et al., 2019), the Intergovernmental

Panel on Climate Change (Bindoff et al., 2019), and the Deep-

Ocean Observing Strategy (Levin et al., 2019).

Fishing activities are chiefly carried out in highly productive

deep-water and deep-sea continental margin areas of the planet

(i.e. from shallow shelves to lower slopes, Pauly and Zeller, 2016).

The fishing industry, together with the aquaculture industry, will

likely become an increasingly important source of animal protein

for human and livestock consumption in coming decades (Food

and Agriculture Organization of the United Nations, 2019; Lynch

and MacMillan, 2020). These and other industrial activities (e.g.

drilling and mining) will increase in the future, along with the so-

cial and economic conflicts arising from the exploitation of these

resources. The development and implementation of novel moni-

toring sensors and platforms, which provide accurate data on liv-

ing resources, will be crucial to develop better management

strategies (Danovaro et al., 2017, 2020), and for documenting and

monitoring change. The operational range of these technologies

will also increase along with their development, either in time or

in space, thanks to the implementation of autonomous solutions

(Aguzzi et al., 2019). Two main challenges for this technological

development are (i) the ability to track bio-ecological variables

from coastal areas to the abyss and (ii) the ability to track and

quantify individuals at all life stages (Rountree et al., in press).

Seafloor multiparametric cabled observatories represent a well-

established solution for the remote and continuous monitoring

of the marine environment (Favali and Beranzoli, 2006; Ruhl

et al., 2011; De Leo et al., 2018; Aguzzi et al., 2019; Da~nobeitia

et al., 2020; Rountree et al., 2020). These permanent seafloor

infrastructures host complex and multidisciplinary sets of physi-

cal, chemical, and geological sensors designed to meet the chal-

lenges of integrated and large-scale oriented basic and applied

science. The European Multidisciplinary Seafloor and water col-

umn Observatory (EMSO; http://emso.eu), Ocean Networks

Canada’s NEPTUNE and VENUS observatories (ONC; www.

oceannetworks.ca/), the cabled array of the American Ocean

Observatory Initiative (OOI; https://ooinet.oceanobservatories.

org/; Smith et al., 2018), and the Japanese Dense Oceanfloor

Network System for Earthquakes and Tsunamis (DONET; http://

www.jamstec.go.jp/donet/e/) are presently the largest existing net-

works of observing seafloor cabled stations. DONET was specifi-

cally designed as a seismic geohazard early-warning system

(Kasaya et al., 2009), whereas EMSO, ONC, and OOI were

designed for multidisciplinary monitoring and research in the

fields of geology, physical oceanography, and ecology (e.g. Barnes

and The NEPTUNE Canada Team, 2007; Service, 2007; Taylor,

2009; Ruhl et al., 2011; Aguzzi et al., 2012; Witze, 2013; Moran

et al., 2019).

Deployment and maintenance costs for such marine observa-

tory infrastructures are high because they require extensive ship

assets and specialized equipment (e.g. cable laying ships or the

use of Remotely Operated Vehicles—ROVs), a wide range of ded-

icated personnel including mechanics, engineers, marine scien-

tists, data analysts, and an extensive shore-based data distribution

platform (Pirenne and Guillemot, 2009; Cristini et al., 2016). For

example, the cost to operate ONC’s observatories since the de-

ployment of its first seafloor monitoring assets in 2003 has been

in excess of 114M CA$ (https://www.oceannetworks.ca/about-us/

funders-partners/funders). Such seemingly high operational costs

are justified by the multi-use and multi-stakeholder nature of

ocean observatories, providing curated data and services to scien-

tists, government agencies, policy-makers, and society as a whole

(Moran et al., 2019). In this context, ocean cabled observatories

should also align their strategic planning with the Sustainable

Development Goals set by the United Nations (European

Multidisciplinary Seafloor and water column Observatory, 2020),

which call for the monitoring of essential ecosystem services,

which include healthy fish stocks and sustainable fisheries.

Therefore, it becomes crucial to develop standardized monitoring

programmes specifically dedicated to the production of real-time

biological and environmental data assisting fishery-independent

stock assessments (Aguzzi et al., 2015, 2019; Rountree et al.,

2020).

The installation of video cameras on cabled instrument plat-

forms is a breakthrough for marine ecology and associated moni-

toring programmes and policies (Bicknell et al., 2016; Aguzzi

et al., 2019; Rountree et al., 2020). Biodiversity of megafauna can

be assessed and quantified using time-lapse imaging at frequency

intervals as short as minutes and for the duration of multiple year

Cabled observatory fishery-independent stock assessment 2397
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periods (Aguzzi et al., 2012, 2015; Lelièvre et al., 2017), when

video data are adequately cross-referenced with physical samples

for taxonomic determination (Howell et al., 2019). When the im-

age acquisition is coupled with physical, chemical, and geological

monitoring (via a multiparametric set of sensors installed along-

side the cameras), it is possible to quantify potential cause–effect

relationships between community abundance and composition

and environmental changes (e.g. Burrows et al., 2011; Chauvet

et al., 2018), focusing the analyses on commercially key species

(Chauvet et al., 2019).

At this stage, it is worth mentioning that a comprehensive

monitoring approach should focus not only on the commercially

important species but also on populations of other ecological in-

dicator species within its community, potentially interacting

through predator–prey relationships, resource competition, and

temporal niche partitioning/spatial exclusion (Lima, 1998; Fock

et al., 2002; Aiken and Navarrete, 2014; Choy et al., 2017; Baltar

et al., 2019). Therefore, in order to develop the goal of monitor-

ing the stock of this important fish from an ecosystem point of

view, the acquisition of local data on size distribution and popu-

lation abundance for all species sharing the same habitat of sable-

fish will extend the spatiotemporal knowledge of ecological

interactions (e.g. predators, prey, and competitors).

Vessel-assisted and mobile sampling tools (e.g. via trawl, ROV,

or Autonomous Underwater Vehicle video surveys) can typically

collect data that are representative of a relatively large study area.

Unfortunately, these type of survey methods are also costly and

logistically challenging, and often not temporally representative,

because of seasonal or sporadic sampling (National Research

Council, 2009). In contrast, a network of fixed cameras can de-

liver observations at high frequencies, continually and over long

time periods, but with a rather limited spatial coverage in terms

of any singular species’ natural habitat. In other words, a video

camera has a field of view limited to few cubic metres (depending

on intrinsic and/or environmental conditions).

A network of seafloor cameras can still be set up to ensure a

representative observation coverage of the surrounding geo-

graphic area (e.g. Campos-Candela et al., 2018), but the techno-

logical requirements for spatial data integration are still

challenging (Aguzzi et al., 2020b). For instance, underwater imag-

ery quality can be compromised by suspended particles such as

sediment and organic matter, variable and uncontrolled lighting

conditions, or even by inappropriate resolution of the imaging

sensors (Sun et al., 2016; Zhang et al., 2017; Li et al., 2018). In ad-

dition, camera illumination systems can have a negative impact

on the environment caused by photic contamination that may

cause the avoidance or attraction of particular taxa, thus poten-

tially biasing abundance and community composition estima-

tions (Longcore and Rich, 2004; Trenkel et al., 2004; Widder

et al., 2005; Doya et al., 2014). Moreover, the observatory net-

work spatial set-ups and placement need to be carefully consid-

ered in relation to the range of species displacements within

heterogeneous habitats (Aguzzi et al., 2019). In other words, fixed

cameras might be installed in places of operational convenience

rather than ecological relevance, and also without a coherent

sampling scheme (Thompson, 2012). Therefore, under these un-

desirable circumstances, the acquired video imagery data may not

be suitable for extrapolation to the actual environmental state of

a target species geographic range or stock area.

Despite such technical particularities of observatory infrastruc-

tures and elevated operational and maintenance costs compared

with simpler and potentially more flexible monitoring schemes

(e.g. low-cost, retrievable stand-alone monitoring units), the

(near) real-time output of observatories offers important advan-

tages for stock management. Any sharp changes in stock levels,

distribution, or behaviour could be detected almost instantly (i.e.

in a matter of days or weeks), based on multiple-years averaged

data and new appearing and persistent outlier values (i.e. an

alarm system; Aguzzi et al., 2019) either allowing for a quick reac-

tion by the authorities and relevant management entities. The ca-

pability to set stationary state values (i.e. averages) for ecological

data (including population indicators) would provide valuable

tool to set a surveillance system allowing management strategies

to be developed or adjusted in short time, whereas continuous,

real-time data can also serve the evaluation of the representative-

ness of other data sources. In addition, seafloor observatories are

already utilized in numerous multidisciplinary projects (e.g. geol-

ogy, physical oceanography, ecology, and other fields mentioned

above), which already require real-time data flow. In this way, an

additional societal service (i.e. fishery-independent stock assess-

ment) improves the allocation of resources when compared to in-

dividual deployments, which can be nevertheless useful and

complementary for a more complete spatial resolution (see

“Spatial organization” section).

There are still technological and methodological milestones to

be achieved before a network of cabled cameras can be considered

as a reliable tool to track and collect biological and ecological

data relevant to broad spatial scales, which is the pre-requisite to

accurately infer relevant ecological indexes, such as species rich-

ness and abundance, and their possible drivers [see review by

Rountree et al. (2020)]. In the present paper, we outline a strate-

gic pathway for a global effort to develop networks of key obser-

vatory infrastructures and associated technologies that are

focused on economically valuable species. First, we define specific

aspects to help make observatory networks infrastructures of

more scientific and socio-economic utility in relation to their spa-

tial organization and data interpolation. Next, we describe two

pilot projects that have begun to implement these strategies as

part of an effort to assess their efficacy and relevance to fishery

stock assessment programmes.

Strategic pathway for the establishment of cabled

observatories’ monitoring programmes
We have identified two main aspects of strategic relevance for the

development of cabled observatory networks, as the pre-requisite

to obtain reliable data on fishery targeted species. These are

(1) network spatial organization allowing data interpolation to

derive demographic indices (e.g. size, density, and biomass)

and behavioural information and

(2) Artificial Intelligence (AI) assistance in data collection and

processing.

Note that the typical goal is to link AI-based animal counts to wa-

ter temperature, salinity, turbidity, and so on. However, here, we

do not focus on this stage of analysis, because multiparametric

data processing at cabled video observatories has been extensively

treated elsewhere (Aguzzi et al., 2012, 2015, 2019, 2020a, b).

Instead, we elaborate on the strategic aspects of spatial organiza-

tion and AI for video surveillance.

2398 J. Aguzzi et al.
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Spatial organization

Development of a cabled observatory network, as a data collec-

tion technology, faces two basic issues at the spatial scale: sample

bias and missing data. Traditional data collection occurs during

surveys (e.g. trawling), that are designed to minimize sample bias

and increase sample representativeness. This is generally not the

case with cabled observatories, which are typically installed at

fixed points of convenience, with a spatial organization that may

not follow relevant ecosystem structures. As a result, data col-

lected in such a way are often not representative of true popula-

tion or community dynamics. Moreover, because observatory

installation cannot be ubiquitous, there are vast areas from which

data are missing. In these cases, we typically proceed with inter-

polation (prediction) of non-available data, which is also largely

influenced on how the observatory network is arranged. Thus, al-

though data representativeness and missing data are two separate

problems, the approach to address these problems is subtly inter-

related, because it depends on the network’s spatial arrangement.

As a result, observatory installations should be carefully pre-

planned to best address both problems. Finally, depending on the

type of targeted stock, a certain level of flexibility and adaptability

of the specific location for some sites might be required, given the

possible changes in distribution of fish stocks because of natural

and/or anthropogenic factors.

Marine observatories should be arranged into integrated geo-

graphic networks (at relevant spatial scales) to efficiently monitor

targeted fish stocks (sensu Rountree et al., 2020). Such an arrange-

ment can lead to a spatially coordinated inventory of organisms

and environmental conditions at all observatories within the net-

work. Information could be subsequently interpolated at different

spatial scales, from local (m2 effective field of view coverage at

each observatory) to large spatial scales (km2 effective area cover-

age of the network), using spatial distribution modelling

approaches (Hengl, 2009; Di Piazza et al., 2011; Li and Heap,

2011). If the arrangement of the network and observation proto-

cols are well designed and planned in consultation with statisti-

cians (Foster et al., 2018), they could possibly be used akin to

Baited Remote Underwater Video Systems (BRUVS) to collect

video estimates of biodiversity metrics such as relative abundance

and size structure (Cappo et al., 2007; Langlois et al., 2012, 2018;

Hill et al., 2014, 2018; Whitmarsh et al., 2017). Fish-stock assess-

ment metrics have been successfully obtained with BRUVS (e.g.

Langlois et al., 2018). Cabled observatories could be used in a

similar fashion to BRUVS, albeit not baited, to provide an inex-

pensive non-invasive method complementary to direct sampling

(e.g. trawling). Thus, ultimately they could yield results compara-

ble to experimental fishery surveys, as advocated by experts of the

International Council for the Exploration of the Sea—ICES

(WKPICS2 report; ICES, 2013).

In this scenario, a spatial network could be conceived to have a

fixed framework of nodes and a group of mobile units in-

between, which could include BRUVS (Rountree et al., 2020).

The use of autonomous mobile platforms such as stand-alone

(non-cabled) lander-nodes (Corgnati et al., 2016; Marini et al.,

2018a) as well as remotely operated underwater crawlers (Aguzzi

et al., 2019; Chatzievangelou et al., 2020), in concert with cabled

observatories, would permit some flexibility with regard to a

maximizing power within a statistically sound survey design

(sensu Hill et al., 2018) and, if necessary, spatially adaptive

adjustments of monitoring in response to changing fishery stock

distributions. Stand-alone repositionable landers, equipped with

mobile underwater crawlers, will be used in future to enforce

different nesting routines for image sampling around fixed

platforms, hence providing important spatial data according to

different scales of seafloor heterogeneity (Aguzzi et al., 2020a).

The observatory mechanical eye is the camera, which, if

endowed with enough measuring functionalities (AI), could be

an effective automatic replacement to physical catch and manual

measurement. Spatial coverage remains a relevant issue (Aguzzi

et al., 2019). A well-planned arrangement of a network of such

cameras, possibly including small mobile platforms, could be a

similarly beneficial replacement to costly and temporally scarce

survey missions (Rountree et al., 2020).

Artificial video intelligence

An AI upgrade for the processing of video data is required to

transform cameras into true ecological effective sensors, opera-

tive in fully natural environments, and capable of autonomous

classification and enumeration of individuals of key target spe-

cies (MacLeod et al., 2010; Dell et al., 2014; López-Vázquez

et al., 2020), alongside the estimation of individual animal char-

acteristics like body size and behaviour (Aguzzi et al., 2020b).

To fully address measuring functionalities, cameras still need a

level of advancement in integration between hardware (e.g. ste-

reo vision) and software (e.g. image-analysis programmes) com-

ponents that are not yet standardized. An increase in

classification efficiency could be achieved by defining appropri-

ate training datasets, in which experts manually classify animals

and AI approaches automatically learn how to detect and dis-

criminate among species (Moniruzzaman et al., 2017; Malde

et al., 2020).

The Lofoten-Vesterålen (LoVe) observatory, located in a rich

Cold-Water Coral area dominated by the deep-water coral

Lophelia pertusa (Figure 1), provides an example of developed

procedures for implementing a fully automatic underwater

video-surveillance system for deep-sea commercial species such

as rockfish (Sebastes sp.) (Pampoulie et al., 2009). Automation in

fish tracking and counting is being implemented in order to pro-

duce information on population activity patterns at diel and sea-

sonal scales, in relation to oceanographic cycles (Aguzzi et al.,

2020a). To this end, the establishment of large open-access repos-

itories of labelled images of fish should be encouraged, because

the precision of classification depends on the level of representa-

tiveness of that set (e.g. Bird et al., 2014; Matabos et al., 2017;

Konovalov et al., 2019). Such collaboration could be also envis-

aged with the BRUVS Community as operators have a need for

similar AI development related to the creation of a centralized

data repository of ecological annotation data (https://globalarch

ive.org).

To date, popular AI approaches (e.g. based on deep learning)

are rarely used as stand-alone vision algorithms, but rather in

conjunction with more classic imaging, classification, and predic-

tion approaches (Qin et al., 2016; Sun et al., 2016). For instance,

Convolutional Neural Networks (CNNs), a popular deep-

learning approach, typically require some image pre-processing

for good classification performances (Ali-Gombe et al., 2017;

Villon et al., 2018). Recent CNN applications are often performed

under controlled conditions, where image content is mostly un-

ambiguous and the overall number of training examples is rela-

tively high (Siddiqui et al., 2018; Álvarez-Ellacurı́a et al., 2020;

Cabled observatory fishery-independent stock assessment 2399
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Hu et al., 2020). However, deployed cabled cameras should oper-

ate in natural uncontrolled conditions (Spampinato et al., 2010),

where underwater equipment is often subject to power supply

limitations when deployed in a stand-alone mode. However, such

deployments could execute image-analysis operations on board.

The computational costs of trained CNNs could be too high to

sustainably operate inside such underwater equipment. To this

end, synthetic image-representations based on trained evolution-

ary algorithms (Marini et al., 2018b) have been proposed to more

cost-effectively operate inside underwater stand-alone cameras.

Regardless of the AI method used, the recognition and classifica-

tion problem in underwater imaging remain unresolved to date,

especially as an automated tool for stand-alone and networked

observatories (Aguzzi et al., 2020b).

Interestingly, the problem of data representativeness also

applies to camera equipment and computer vision (Aguzzi et al.,

2020b) that are ultimately responsible for data recording. Here,

to effectively replace human intervention, a comparable level of

visual comprehension and detail is needed. This requires an ideal

level of automation, which is presently hindered by camera and

AI technological limitations (see above), and high costs in

planning and deployment of a camera network. At present, a

more realistic configuration is to have a patchy network of conve-

niently arranged cameras with heterogeneous imaging capabilities

(e.g. some yielding only counts, others yielding counts-by-class

plus individual fish lengths, and so on), reflecting the compro-

mise between practical/cost-related issues (e.g. finite number of

nodes within the observatory network, selection of sites based on

seabed geo-morphology and habitat heterogeneity, and adequacy

for connectivity/maintenance) and the optimal spatial arrange-

ment based on ecological representativeness for each targeted spe-

cies or community. On an equally important note, because of the

lack of a globally standardized methodological approach, we are

likely to see different projects having different infrastructure set-

ups and sensing/measuring resolutions. One should expect con-

siderable effort in developing AI and statistical corrections to ad-

dress this less-than-ideal configuration. For instance, one should

practically consider ways to integrate heterogeneous imaging out-

puts at different degrees of individual fish detail.

When possible, one should assess the level of data representa-

tiveness by comparing camera outcomes with data from nearby

commercial fleet landings (or survey missions) carried out in the

Figure 1. Pipeline for the automated rockfish tracking and counting at the LoVe ocean observatory (https://love.statoil.com/) (López-
Vázquez et al., 2020). Video counts (light grey, row output; bold black the three-step moving averaged tendency) were obtained form 17
November 2017 to 27 June 2018, along with environmental parameters (temperature, salinity, and depth of the water column—a proxy for
the local internal tidal regime). First, various filters are applied to the original images and then the background is subtracted. With the help of
binary thresholding, contours are detected and extracted. Afterwards, the global characteristics are extracted for classification. Finally, the
rockfish count per hour (grey plus three-step moving average in bold black) is extracted in order to analyse their diel activity.

2400 J. Aguzzi et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ic
e
s
jm

s
/a

rtic
le

/7
7
/7

-8
/2

3
9
6
/5

9
7
9
9
0
3
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

https://love.statoil.com/


same time windows, assisted by the use of electronic logbook data

with potentially better spatial resolution of catches. Furthermore,

new -omics technologies based on eDNA specific markers trace-

ability and quantification could be used (Knudsen et al., 2019).

Interesting initiatives in this sense are the creation of robotic in

situ omics sensors for water time-lapse collection, fixation, and

markers presence determination (e.g. https://www.aqua.dtu.dk/en

glish/news/2018/10/robot-tracks-environmental-dna-from-fish-

on-seabed? id¼a0d7fd91-b2d7-422f-bb3c-1ddd08acf4a2).

Unfortunately, currently calibration actions are envisaged as the

cross-reference of detected eDNA markers for targeted species

upon images in extensive video-richness data banks form cabled

observatories and stand-alone units (Aguzzi et al., 2019). Such a

cross-validation would also need to be foreseen in terms of

markers’ signal intensity vs. video-reported counts as another

way to get to comprehensive evaluations of abundances. Various

studies suggest potential calibration methods to inter-calibrate

camera-collected data with more accurate field-survey measure-

ments (Deville and Särndal, 1992; Valliant and Dever, 2011;

Baker et al., 2013). For instance, propensity models (Valliant and

Dever, 2011) could use individual fish features to calibrate camera

data with field-survey counts. The idea is to calculate the individ-

uals’ propensity to be included in a camera sample, by using fish

counts and features from both reference population survey data

and camera data. Next, camera counts are re-weighted with those

propensity scores to obtain more representative count estimates.

Generally, these correction techniques are popular in statistical

surveys, but their application seems not yet standardized in fish-

ery science, probably because of the difficulty of intensive spatio-

temporal data collection. As finer the sampling in relation to

space and time (sizing, sex/age recognition by specific markers or

length, all the way up to biomass calculation as a function of

three-dimensional volume of individuals etc.; sensu Aguzzi et al.,

2020b) and more data are available through camera sensing,

more those statistical methods could become appealing in fishery

applications. More methodological research might be needed to

better tailor these techniques to monitoring by cabled observato-

ries. Here, the more individual fish features that are determined

(both from cameras and from surveys), the better the calibration

will be. Interestingly, as a result, finer camera functionalities can

be exploited to correct (to a certain degree) the negative impact

of a poor arrangement of the camera network by using post hoc

statistical techniques. Therefore, one of the most urgent current

goals is to rapidly develop AI vision methodologies to empower

general measuring capabilities of cameras that are yet lacking.

Pilot examples that provide a roadmap for cabled

observatory monitoring of fishing stocks
We now present two strategically and operationally relevant pilot

projects that are ready to immediately begin biological (i.e.

image-based) and environmental monitoring of commercially

relevant fishery resources. These projects are set at two existing

major observatories: ONC for sablefish (Anoplopoma fimbria)

and EMSO for Norway lobster (Nephrops norvegicus).

Study case 1: fishery-independent assessment of sablefish

in the NE Pacific

Sablefish is a soniferous, long-lived, deep-sea demersal fish spe-

cies, found at depths from 300 to 3000m, which supports impor-

tant commercial fisheries over its broad distribution in the Pacific

Ocean (Wilkins and Saunders, 1997; Warpinski et al., 2016; Riera

et al., 2020). Sablefish populations include migratory and resident

individuals (Chapman et al., 2012), with complex geographic

movements occurring at small and large basin-scale ranges (i.e.

Pacific coast of North America; Orlov, 2003). Their complex bio-

logical cycle is characterized by horizontal and vertical move-

ments, which vary with sex and maturity (Beamish and

McFarlane, 1988; Sogard and Olla, 1998; Ryer and Olla, 1999;

Jacobson et al., 2001; Maloney and Sigler, 2008; Morita et al.,

2012; Hanselman et al., 2015). Recent studies have proposed dif-

ferent mechanisms for controlling the temporal patterns of sable-

fish movements along the seafloor and through the water

column. Although in Barkley Canyon, British Columbia, sablefish

movements seem to be ruled mainly by tidal cycles (Doya et al.,

2014; Matabos et al., 2014; Chatzievangelou et al., 2016), in other

regions of the NE Pacific, diel vertical migrations of subpopula-

tions have been attributed to the displacement patterns of their

prey (Goetz et al., 2018) and also to the intensity of their near-

bottom foraging behaviour (Sigler and Echave, 2019). However,

other studies have not identified a single major environmental

control over sablefish population movements (Orsi et al., 2006).

The sablefish fishery is an economically important fishery in the

north Pacific (Wilkins and Saunders, 1997; Warpinski et al.,

2016; in 2018, US commercial catches were 17.6 thousand metric

tons valued at US$110.4 million, National Marine Fisheries

Service, 2020) and is currently managed based on fishery-

dependent survey data conducted on board commercial fishing

vessels employing either creels or pots, and on independent trawl

survey data collected by Fisheries and Oceans Canada (DFO)

(Cox et al., 2011) and NOAA Fisheries. However, as with other

demersal trawl fisheries, there are concerns about the potential

impacts of trawl surveys on deep-sea habitats (Clark et al., 2016;

Hiddink et al., 2017).

The NEPTUNE cabled observatory operated by ONC presently

represents the best equipped network for a truly technologically

oriented fishery-independent monitoring of sablefish stocks along

the Pacific coast of North America (map inset in Figure 2). One

of its nodes, located in Barkley Canyon, consists of several cabled

instrument platforms that span a maximum linear distance of

�15 km, and a depth range of 400–985m, which overlaps with

the depth of greatest abundance for sablefish (Goetz et al., 2018;

Kimura et al., 2018). The total of five fixed instrumented plat-

forms and a mobile crawler (with a 70-m radius range) are

equipped with a suite of oceanographic and biogeochemical sen-

sors in addition to the video cameras mounted on pan and tilt

units. This combined scheme of fixed and mobile platforms can

increase the spatial and ecological representativeness of data,

tackling distinct challenges posed by different levels of motility

among targeted species in the monitored community (e.g. highly

motile vs. more sedentary or even sessile animals). The crawler is

able to cover a substantially greater area than the standard field of

view of the fixed platforms and, provided that statistical chal-

lenges of standardizing data from a diverse monitoring setting are

overcome, that platform can help to extrapolate local (site-spe-

cific) results to a broader scale (e.g. more reliable calculations of

densities over a greater surface). The broad range of oceano-

graphic and biogeochemical sensors are set to measure parame-

ters such as temperature, salinity, pressure, dissolved oxygen,

current speeds and direction, acoustic backscatter, turbidity,

chlorophyll, pCO2, pH, and ambient noise. All of these parame-

ters, sampled at high (0.1Hz) frequencies are instrumental for

Cabled observatory fishery-independent stock assessment 2401
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determining environmental fluctuations at multiple temporal

scales, which combined with time-lapse imagery and passive

acoustics may enable the constraining of cause–effect relation-

ships determining temporal and spatial changes of sablefish abun-

dances and size–frequency distributions. However, what remains

to be assessed is how effectively the video and ancillary environ-

mental data from these five different locations can be combined

to generate reliable and complementary information for sablefish

fishery stock assessment representative of a much larger area. A

clear first step for a “proof of concept” of this application would

be to compare the accumulated �10 years of video and environ-

mental data available from the various installations in Barkley

Canyon with regional fishery statistics available for sablefish (e.g.

fishery catch/landings data).

Inferring true density estimations of freshwater and marine

fish populations has been explored based on individual counts,

species’ home ranges, and movement patterns (Campos-Candela

et al., 2018). In addition, population density estimations have

been assessed by using simultaneous reference time-series

(Follana-Berná et al., 2019, 2020), individuals’ arrival times at

and geometry of baited cameras (Farnsworth et al., 2007), and by

using stereo vision imagery (Denney et al., 2017). Species home

range was used by Palmer et al. (2011) and Alós et al. (2016,

2019) as the area with 95% probability of finding an individual

during an extended period of time. In applying this interpretation

to our “proof of concept”, the assumption of fixed, homoge-

neously distributed home ranges for sablefish individuals in

Barkley Canyon could be challenged because of the existing

knowledge of the species’ population dynamics around

Vancouver Island. For example, the species is known to be highly

mobile and migratory, albeit with high proportions of resident

individuals (Kimura et al., 2018). Furthermore, individuals may

move either independently at small spatial scales, without aggre-

gation, or rather in large dispersed shoals, and therefore the pres-

ence of an individual is often correlated to other individuals

nearby, swimming at a certain distance (Krieger, 1997). To ac-

count for the intrinsic variability within the population, tackling

uncertainties of the demographic models, fisheries, and indepen-

dent survey data must be used as a reference, in addition to the

systematic tracking of sablefish individuals in Barkley Canyon

Figure 2. A ONC cabled observatory in the NE Pacific depicting the seafloor infrastructure in Barkley Canyon allowing fishery-independent
monitoring of sablefish (Anoplopoma fimbria). Top left: map showing the locations of the instrument platforms in the canyon and adjacent
slope: Barkley Upper Slope (400m), Node (647m), Hydrates (870m), Mid-Canyon (890m), and Canyon Axis (985m). Bottom left: temporal
variability in dissolved oxygen and temperature data from four of these locations from 27 September 2019 to 3 February 2020. Top right:
schematic showing a three-dimensional bathymetric map with observing locations in Barkley Canyon and depicting some of the known
population moments of sablefish (white arrows—Doya et al., 2014). Bottom right: field of view of seafloor cameras installed in four of these
locations in a depth gradient and inside and outside the submarine canyon depicting large densities of sablefish. The collocated
environmental sensors with the seafloor video cameras are nested in spatial scales from 100s of metres up to �15 km, and in a depth
gradient spanning �600m. This allows for deriving individual species population metrics such as abundance and size–class distributions, and
also entire community parameters such as species richness and diversity, in all the locations with potential extrapolation for the entire region.
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(e.g. by using large-scale acoustic tag tracking). At the same time,

one should bear in mind that cabled observatory network nodes

can be also established in key areas for more direct demographic

monitoring such as nurseries.

The first preliminary step towards the development of a model

for the estimation of sablefish density and, subsequently, biomass

in Barkley Canyon is the establishment of an expected number of

counts per observing platform and temporal window, based on

Poisson probabilities and movement patterns of known rhythmic

typology and use them to create baseline simulated time-series.

An example analysis was conducted based on the sablefish counts

recorded every 30min at three Barkley Canyon video platforms,

between mid-October and mid-November 2011 (PODs 1, 3, and

4; Doya et al., 2014). For a detailed description of the methodol-

ogy and results see Supplementary Appendix 1. Briefly, the

expected count rate k was calculated for each platform as a func-

tion of time, and it was subsequently used to simulate time-series

(Supplementary Appendix Figure A1). The next steps would in-

volve the development of a model-scenario for better describing

the movements of sablefish within a wide range of habitats within

Barkley Canyon (based on a constrained distribution, without ac-

counting for individuals entering or leaving the canyon from or

towards the surrounding areas).

Data derived from ONC’s archived video imagery in Barkley

Canyon have already provided valuable information on sablefish

ecology with relevance to fishery-oriented monitoring. Video

counts of sablefish are, at certain periods of the annual cycle, the

highest of all species within the local community, only second to

the also commercially important tanner crab (Chionoecetes tan-

neri) (Matabos et al., 2014; Doya et al., 2017; Chauvet et al., 2018,

2019). Fish counts vary over the topography at small scales within

different camera views (Doya et al., 2014, 2017; Chatzievangelou

et al., 2016), while sizes range from 35 to 95 cm with an average

(6standard deviation) length of 63.66 10.4 cm, indicating that

video counts at depths of �850–900m mostly include adults

(Doya et al., 2014).

The benthic faunal assemblages within Barkley Canyon, also

studied in the ONC network area exhibits distinct seasonal pat-

terns, related to environmental variation (Juniper et al., 2013).

Sablefish counts increase in spring–summer (Doya et al., 2017) at

the hydrate site in the Barkley canyon wall (see the map inset in

Figure 2), but not in the Mid-Canyon and Canyon Axis sites

(Juniper et al., 2013; Matabos et al., 2014; Chauvet et al., 2018),

supporting the need for monitoring the Barkley Canyon popula-

tion using various, extensively arranged in space, imaging sour-

ces. The relationship of the observed seasonal trends with the

local spring–summer upwelling (depth limit 250m) is uncertain

(Chauvet et al., 2018), whereas stochastic meteorological events

(e.g. storms) can also indirectly influence fish counts, through

variation in water mass properties that affect predator and prey

abundances in the water column (Matabos et al., 2014). At apho-

tic depths, fish counts drop when tidal flow speed increases in the

Benthic Boundary Layer (Doya et al., 2014; Matabos et al., 2014;

Chatzievangelou et al., 2016) with the dominant current oriented

down-canyon at mean speeds of 2–4 cm/s and peaks of up to 30–

70 cm/s (Chauvet et al., 2018). Based on successive peaks in

counts from video platforms at different depths, Doya et al.

(2014) hypothesized that sablefish perform diel vertical migra-

tions through Barkley Canyon related to feeding and predator

avoidance strategies. In particular, adults show 24-h based vertical

water column migrations in combination with bathymetric axis-

oriented displacements over the seabed when entering the can-

yon. Seabed movements into the canyon could be performed to

avoid large pelagic predators (e.g. cetaceans; e.g. Mathias et al.,

2012), although no proof for that has been yet provided.

Chatzievangelou et al. (2016) expanded on this observation, sug-

gesting that sablefish may synchronize their displacement accord-

ing to weak tidal flows to disperse long distances through the

hypoxic waters of Barkley Canyon at low energetic costs.

Automated scripts for counting of individuals (Qin et al.,

2016; Marini et al., 2018a, b; López-Vázquez et al., 2020) should

be at the core of any established video-monitoring programme at

ONC. Those scripts could be implemented by focusing on the de-

velopment of the recognition, counting, and size–class measuring

of fishes (Fier et al., 2015). Count results obtained at each single

node could be extrapolated over the whole network area (see

Figure 2), for instance using kriging regression techniques

(Hengl, 2009), and then compared and validated with those de-

rived from commercial pot fishing and trawling, using propensity

modelling (Valliant and Dever, 2011). Here, trawling surveys

would produce the reference data with which non-probability

sampling camera data could be calibrated, as described above.

Alternatively to kriging regression for inter-node extrapolation,

one could also use a combination of Poisson modelling of all lo-

cally derived (i.e. site-specific) count data, individual arrival pat-

terns, the available or inferred information on sablefish home

range, displacement pattern, and movement speed within Barkley

Canyon, to estimate regional abundances through Bayesian-based

simulations (Follana-Berná et al., 2019, 2020).

Such an approach could be further strengthened by combining

video imaging with high-frequency acoustic cameras, which have

greater projection range into the water column and are not de-

pendent on light or water clarity (Rountree et al., 2020), as well as

passive acoustics, given that sablefish sounds have recently been

described (Riera et al., 2020). Species morphometric characteris-

tics in three-dimensional-image outputs and their traceability

based on sound markers, may complement image counting ca-

pacity as well the computing of other demographic indicators as

class–size distribution frequencies (Aguzzi et al., 2019).

Acquisition of size–class frequencies (Beamish and Chilton, 1982)

and the assessment of the role of canyon morphology on popula-

tion dynamisms (e.g. the presence of adults and juveniles in dif-

ferent areas) is an ongoing effort, as a proof of concept of

potential services ONC may provide to Fisheries and Oceans

Canada (DFO) and the Canadian Fishery Associations.

Study case 2: fishery-independent assessment of Norway

lobster in Galway Bay, Ireland

In the European Union, the EMSO network relies on the previous

successful experiences and know-how from ONC in setting a

guideline for its service-oriented installations in the Atlantic and

Mediterranean, which host fully developed fishery industries. The

Norway lobster is one of the most important commercial fishery

resources in Europe (Ungfors et al., 2013). European landings of

Norway lobsters were around 44 000 tonnes valued at �360 mil-

lion EUR in 2016 (EUROSTAT, ec.europa.eu/eurostat/web/fish-

eries/data/database). Norway lobsters dig and inhabit complex

burrow systems in muddy habitats used for shelter and for terri-

torial control, from which they emerge to find food (Sbragaglia

et al., 2017). Burrow emergence patterns differ with relation to

depth and time of the day (Aguzzi and Sardà, 2008): from

Cabled observatory fishery-independent stock assessment 2403
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nocturnal to crepuscular on upper and lower shelves to diurnal

on slopes. Emergence is modulated not only by the stage of the

reproductive cycle but also by size and other more contingent

ecological factors (e.g. the presence of predators or prey;

Sbragaglia et al., 2017). Such modulation represents a behavioural

mechanism that protects this commercially exploited population

from trawling because when individuals are in their burrows they

are inaccessible to trawling.

The behaviour of free-living Norway lobster individuals has

never been monitored over time with video-cabled observatory

technology. Continuous video tracking of populations would be

highly informative for fishery assessment and management in

both the Atlantic Ocean and Mediterranean Sea (Morello et al.,

2007). Trawling surveys have been used to provide indirect bio-

mass estimates by means of abundance indices derived from sur-

face density data (i.e. the number of animals per swept area;

Maynou et al., 1998). However, this method does not account for

temporal and spatial changes in susceptibility to trawl capture be-

cause of the lobster’s burrowing behaviour (Sardà and Aguzzi,

2012). In part because of the inherent bias of trawl data, video

surveys were first instituted for Norway lobster assessment in the

1970s (Leocádio et al., 2018). The visual direct method of assess-

ment counts burrows (and thus inhabiting individuals) based on

the characteristic morphological traits of these structures within

the substrate (Campbell et al., 2009). The video, or “Under Water

TeleVision” (UWTV), survey is a less invasive methodology com-

pared to trawling and is conducted using towed camera-sledges

(Leocádio et al., 2018). A comprehensive monitoring and a

UWTV-based stock assessment programme have been developed

in several European countries coordinated by ICES, which hosts

the Working Group on NEPhrops Surveys (WGNEPS; ICES,

2019).

Three major uncertainties have been identified with UWTV

methodology (Leocádio et al., 2018). Current stock assessment

procedures make assumptions to address these uncertainties. The

first relates to burrow occupancy, which is currently assumed to

be that one individual >17-mm carapace length occupies one

identifiable burrow system. The second relates to burrow system

size and the “edge effect” (i.e. burrows systems only partially in-

cluded in the field of view, leading to errors in counting), both bi-

asing the density estimates of the effective area surveyed. The

third relates to the accuracy of burrow identification because

other sympatric fish and decapod species construct tunnels with

morphology similar to those of Nephrops and may bias assess-

ment by underwater photography (Sardà and Aguzzi, 2012).

UWTV surveys have seldom been used to derive behavioural

information on burrow emergence rhythms as a source of animal

availability to capture. A fixed-point-cabled camera installed on

the SmartBay observatory (https://www.smartbay.ie/) as an

EMSO testing site, may help in gathering those behavioural data

as ancillary information to stock assessment. This cabled observa-

tory presently operates at a depth of 20m in the Galway Bay area,

within an important fishing ground for Norway lobsters

(Gaughan and Kolar, 2010). Technological platforms like this one

can provide critical information on burrow usage by several indi-

viduals at once, including temporal patterns in emergence, occu-

pancy, and changes in the visual signature of the burrows

(Figure 3). The burrowing emergence behaviour of several indi-

viduals could then be monitored by means of continuous day–

night video and multiparametric environmental data collection,

to assess the control of ecological (e.g. presence of predators and

prey) and environmental (oceanography and meteorology with

special focus on light) factors in modulating individual variable

predisposition towards burrow emergence. At the same time, the

role of social aggressive interactions in modulating emergence

timing and duration in a group of neighbours could be evaluated

(Sbragaglia et al., 2017).

SmartBay monitoring could be spatially facilitated by using

stand-alone camera set-ups for long-lasting deployment, follow-

ing BRUV sampling strategies (e.g. GUARD1/DeepEye; Marini

et al., 2018a) as well as coastal crawlers (Aguzzi et al., 2015,

2020a). Recently, both technological platforms have been

installed at the Mediterranean OBSEA cabled observatory

(https://obsea.es) (Aguzzi et al., 2018), that like SmartBay, is an

EMSO technology testing site (Del Rı́o et al., 2020). A coastal

crawler is being used to scale local camera information to larger

video-transect areas (Aguzzi et al., 2015). Moreover, preliminary

trials on Nephrops behavioural tracking by cabled observatory

cameras have already started. During 2019, a first trial to evaluate

the technology and the use of a video camera to study the behav-

iour of Nephrops was executed. A 3 � 3 m cage was built and

deployed on the seabed close to OBSEA, where the real-time

video camera is installed (Figure 4). Artificial burrows were also

installed inside the cage. By using the video camera, the move-

ment of the animals was recorded in relation to the establishment

of deep-water pot fishing and release (i.e. as required in fishery

no-take zones) procedures. Time-lapse image monitoring, animal

confinement, and in situ caging are helping to establish similar

procedures at the SmartBay observatory (see Figure 3).

As for sablefish, the establishment of an automated video-

imaging protocol would be required to achieve the status of an

autonomous monitoring programme useful on a stock assess-

ment scale. In the case of lobsters, this would encompass AI-

aided detection of burrow emergence, tracking of animal move-

ment, and identification of social interactions (Garcı́a et al.,

2019), altering burrow emergence behaviour (Sbragaglia et al.,

2017). Such long-term in situ observations will be particularly in-

formative in addressing the burrow occupancy assumption used

in the UWTV-based stock assessment. Refining the automation

of burrow counting on the UWTV surveys through AI or deep

learning could also greatly improve the quality and reproducibil-

ity of what is currently a subjective process, albeit based on the

judgement of trained experts, overcoming challenges such as the

capability of the algorithms to distinguish between burrows of

different species and the lack of appropriate ground truth for

their training (Lau et al., 2012; Sooknanan et al., 2013, 2014;

Corrigan et al., 2019).

Conclusions
In the near future, the growing demand for the implementation

of strategic marine habitat conservation areas and the ensuing de-

bate surrounding their exploitation will encourage a multidisci-

plinary dialogue between oceanographers, geologists, ecologists,

fishery biologists, policy-makers, and the public. Advancements

in biological and environmental automated data collection via ca-

bled digital cameras, environmental sensors, and probes, AI vision

and data processing promise to revolutionize how such marine

zones might be monitored and managed. However, to date, the

ideal level of required automation is a long way from reaching a

development stage suitable for fisheries applications. This is be-

cause of intrinsic limitations in automatic imaging (in both camera

2404 J. Aguzzi et al.
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Figure 3. The ESMO SmartBay observatory location within Galway Bay (Ireland) in relation to the Norway lobster (Nephrops norvegicus)
fishery grounds. The node infrastructure is visible over the muddy seabed area (a), where an individual clawed lobster (Homarus gammarus;
b) is depicted in relation to the node infrastructure. Two specimens of Nephrops (c) are depicted from another angle of view. Time-series
graphs of multiparametric environmental data are shown from the observatory web interface for data management and visualization (d).

Figure 4. The OBSEA trials (Vilanova i la Geltrú, Spain) for the video monitoring of Norway lobster (Nephrops norvegicus) behaviour. Top
left: cage to prevent animals escaping form the camera field of view. Top right: deployment and installation of the cage in front of the video
camera. Bottom right: animal inside the cage with a plastic tag used for its identification. Bottom left: animal inside the artificial (PVC plus
concrete) burrow.
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and AI) and the lack of strategic planning of the arrangement of

cameras into a useful network with adequate observation coverage.

Here, we have provided two cases where existing infrastruc-

tures (and their data collections) may be used for the develop-

ment and testing of methods and strategies for automated marine

observation in relation to potential fishery-independent stock as-

sessment of key commercial species. A highly integrated spatial

network containing fixed nodes and a group of mobile units op-

erating in-between could be the most appropriate set-up for de-

riving fish-stock assessment information and an ecosystem-based

monitoring of biodiversity. Such a framework would enable the

non-invasive acquiring of local data on size distribution and pop-

ulation abundance for all species sharing the same habitat regard-

less of their motility, to extend the spatiotemporal knowledge of

ecological interactions and other highlighted ecological indicators

along time.

The development of the AI vision capabilities and a more inte-

grated collection and exchange of information at an adequate

spatial scale between cabled observatories will expand this poten-

tial. If proven feasible, implementation of these actions will be ex-

pensive. Therefore, there is need for a timely debate of socio-

economic relevance and benefit of extending fixed camera obser-

vatory networks and their capabilities to produce spatially reliable

and efficient biodiversity monitoring programmes and fish-stock

assessments.
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Follana-Berná, G., Palmer, M., Campos-Candela, A., Arechavala-
Lopez, P., Diaz-Gil, C., Alós, J., Catalan, I. A., et al. 2019.
Estimating the density of resident coastal fish using underwater
cameras: accounting for individual detectability. Marine Ecology
Progress Series, 615: 177–188.
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