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For the shift σ in Σ = {0, 1}N, we define the renormalization for potentials by

R(V ) := V ◦ σ ◦ H + V ◦ H, with σ2 ◦ H = H ◦ σ.

We show that for a good H, there is a unique fixed point for R. It is the Hofbauer
potential V ∗.

We show that the stable set of the Hofbauer potential, i.e. the set of potentials V
such that Rn(V ) converges to V ∗ is characterized by the germ of these potentials close
to 0∞ = 000 . . . .

Then, we make connections with the Manneville–Pomeau map f : [0, 1] �. In partic-
ular we show that the lift in Σ of log f ′ is in the stable set of V ∗.

In the second part, we characterize “good” H, such that σ2 ◦ H = H ◦ σ.
In the last part, we study the thermodynamic formalism for some special potentials

in the stable set of V ∗. They are called virtual Manneville–Pomeau maps.
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1. Introduction

This paper is the first in a series to come. The goal of the series is to study rela-
tions between renormalization and phase transition, or, equivalently, between the
mathematical and the physical points of view on Renormalization. Beyond the
fact that the two theories have the same name, several hints (see e.g., [5]) sug-
gest that there are a more strong connection between them. In particular, we
show here that for the Manneville–Pomeau case this connection can be made
precise.

Renormalization has indeed different meanings in mathematics or in physics.
From the mathematical point of view, the Renormalization operator acts on dynam-
ics. The prototype is the period doubling renormalization operator as introduced
by Feigenbaum and by Coullet and Tresser in the context of the quadratic map (see
[4, 7, 8, 21, 22, 10]). For f : [0, 1] �, we set

R̃(f)(x) = h−1 ◦ f2 ◦ h(x), (1.1)

where h is an affine map. Then, the point is to study the existence of fixed points
for R̃ and the hyperbolicity of the operator at these fixed points.

On the other hand, the renormalization in physics is associated to phase transi-
tionsa and decays of correlations (see [9, 12, 13, 26, 27]). It acts on potentials and
not on maps (see for instance [9, 6] or [11]). It is also sometimes presented as a way
to rescale the action of a potential. In particular, it is defined for a fixed and single
dynamics.

To make connections between the two theories, we first need to determine a
class of dynamics and deal with it. Here, we have chosen to work with dynamics
on the interval conjugated or semi-conjugated to the full 2-shift Σ = {0, 1}N. The
choice is motivated by some facts:

• In Chap. 5 of [20], the renormalization is associated to Manneville–Pomeau
like maps. There, the justifications of several of the statements are difficult to
be understood from the pure mathematical point of view. One of our moti-
vations was thus to improve our understanding of these results and provide
proofs.
• The dynamics in the shift Σ is a toy model to the study of the problems which

arise in statistical mechanics on a one-dimensional lattice (see [9, 26]): one can
see 0 as a positive spin and 1 as a negative spin.
• Even in this simple situation, it is relatively difficult to find potentials which

exhibit a phase transition.

aSee p. 11 for a definition.
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If V : Σ → R is a continuousb function, we set R(V ) := V ◦H + V ◦ σ ◦H for
some “good” H : Σ → Σ; R is the renormalization operator acting on potentials.
H satisfies

σ2 ◦H = H ◦ σ.
Note that any dynamics f : [0, 1] � in our class produces a potential log f ′◦θ (where
θ is the (semi)-conjugacy between (Σ, σ) and ([0, 1], f)). Then, roughly speaking,
the connection between the two points of view is the following:

A fixed point for R has a phase transition. Its stable set contains some log f ′ ◦θ,
where f is a fixed point for R̃ (for some good h).

Of course, this statement is far from being precise. In particular, we did not say
neither what “good” H means, nor what “stable set” means. One of the purposes
of this paper is to make these two points precise for the Manneville–Pomeau case.
These are the goals, respectively, of Theorem B (see Sec. 4) and Theorem A (see
Sec. 2).

Due to the fact that all the dynamics we consider are (semi-)conjugated to Σ, we
can restrict our study to Σ. There, a heuristic way to understand Theorems A and B
is that for a “good”H we have a unique fixed point for the renormalization operator
R on potentials. This fixed point generates a stable set (for the renormalization
operator). The last result (Theorem C, see Sec. 6) studies the thermodynamic
formalism for some specific potentials which are in this stable set.

Since some results (particularly Theorem C) require quite technical statements,
we have dedicated specific sections to them. Sections 2, 4 and 6 are respectively
devoted to the statements of Theorems A, B and C. Sections 3, 5 and 7 are respec-
tively devoted to the proofs of Theorems A, B and C.

We conclude this introduction with some words about the existence of phase
transitions. In the shift Σ, conditions yielding to the existence and uniqueness
of equilibrium states are well known. It is sufficient that the potential is Hölder
continuous, or satisfies the Walters condition or the Bowen’s condition to ensure
existence and uniqueness of the equilibrium state (see [23, 24]).

Consequently, this means that potentials which present phase transitions have
low regularity. On the other hand, it is quite difficult to study the thermodynamic
formalism for potentials with low regularity, hence to prove that they have a phase
transition. Thus, a difficult task nowadays is to get a way to exhibit potentials with
phase transitions. Several recent works go in that direction (see e.g., [25] for a larger
class of potentials, and [14] for potentials with phase transitions). Concerning our
work, our strategy is to exhibit such potentials via the “good” H ’s. We mention
here that in a second paper of the series (see [2]), Bruin et al., emphasize that the
“good” H can be chosen among the substitutions.

bThe set Σ is a compact and metric space with d((xn), (yn)) = 2−min(n,xn �=yn).
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2. Statement of Theorem A: Connection between the
Renormalizations for the Manneville–Pomeau Map

2.1. Manneville–Pomeau map and renormalizations

We set 
f(x) =

x

1− x, if 0 ≤ x ≤ 1
2
,

f(x) = 2− 1
x
, if

1
2
< x ≤ 1.

Note that one branch above is obtained from the other by the change of coordi-
nate x → (1 − x). The first branch f(x) = x

1−x can be considered as a translation
by −1 in the variable s = 1/x. Seeing it as a shift helps to understand the canonical
partition in fundamental domains close to the fixed point 0: (1

3 ,
1
2 ), . . . , ( 1

k ,
1

(k+1) ), . . .
(see also p. 153 in [16]).

The semi-conjugacy between ([0, 1], f) and (Σ, σ) is very simple: taking x in
[0, 1], we create the word x = x0, x1, x2, . . . by setting

xj =


0 if f j(x) ∈

[
0,

1
2

[
,

1 if f j(x) ∈
]
1
2
, 1
]
.

This is well-defined (one-to-one) except for dyadic points, which explains the semi-
conjugacy.

We point out that f is a fixed point for the renormalization R̃:

∀x ∈
[
0,

1
2

]
, f2

(x
2

)
= (f ◦ f)

(x
2

)
=

1
2
f(x). (2.1)

In other words, setting h(x) = x
2 we have f2 ◦ h = h ◦ f .

Then, taking the logarithm of the derivative in (2.1), and keeping in mind that
h is affine, we get

log f ′ ◦ f ◦ h+ log f ′ ◦ h = log f ′.

Now, we are interested in dynamical systems semi-conjugated to Σ, hence we are
naturally led to study the maps H : Σ→ Σ satisfying

σ2 ◦H = H ◦ σ
and to study the fixed points for the operator

R :V �→ R(V ) := V ◦ σ ◦H + V ◦H.
In Σ, any point is a alternation of sequences of 0’s and sequences of 1’s. There-

fore the point x := (0, . . . , 0︸ ︷︷ ︸
c1

, 1, . . . , 1︸ ︷︷ ︸
c2

, 0, . . . , 0︸ ︷︷ ︸
c3

, 1, . . .) will simply be denoted by
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0c11c20c3 · · · . 0∞ and 1∞ are easily understandable. The cylinders [0] and [1] denote
points starting with 0 or 1. This is trivially extended to any finite word in 0’s and 1’s.

We denote by Mn ⊂ Σ, for n ≥ 1, the cylinder set [0n1] and by M0 the cylinder
set [1]. The collection (Mn)∞n=0 is a partition of Σ. It corresponds to the partition
into fundamental domains for the Manneville–Pomeau map f (and M0 corresponds
to [12 , 1]). Finally we denote by θ the conjugacy between (Σ, σ) and ([0, 1], f). It is
proved in [16] that θ is the usual continued fraction expansion:

θ(0n01n10n2 · · ·) =
1

1 + n0 + 1
n1+ 1

n2+···

.

Then we set Vf := log f ′ ◦ θ. Following what was explained above, this potential
represents the dynamics f .

2.2. Statement of Theorem A

Definition 2.1. We define the renormalization operator in the following way:
For x := 0n01n10n2 · · · we set H(x) := 02n0+11n10n2 .

We left it to the reader to check σ2 ◦H = H ◦ σ on [0].
For x = 0n01n1 · · · , we set n0 =: 	x
. Hence x→ 0∞ means 	x
 → +∞. In the

following, F denotes the set of continuous functions V : Σ→ R such that there exists
a > 0 such that limx→0∞	x
aV (x) exists and is not null if a < 1. For convenience
we denote by F< the set of functions in F such that a < 1, F> if a > 1 and F1 if
a = 1.

Theorem A. The operator R has a uniquec fixed point in F . It is the Hofbauer
potential defined by

V ∗(x) = log
(
n+ 1
n

)
if x ∈Mn, n > 0.

Moreover, for V ∈ F ,

Rk(V )
‖ ‖∞−−−→ k→+∞V ∗, (2.2)

if and only if V : Σ→ R satisfies V (x) = 1
n + o( 1

n ) for x ∈Mn (n > 0).
The potential Vf satisfies the condition Vf (x) = 2

n + o( 1
n ) for x ∈Mn.

Equation (2.2) justifies the following definition:

Definition 2.2. The set of potentials V ∈ F such that Rk(V ) →k→+∞ V ∗ is
called the stable set of the Hofbauer potential.

cNote that uniqueness only holds in the “basin of attraction” of the renormalization defined by
H, namely the cylinder [0]. Due to linearity, uniqueness is also up to a multiplicative constant!
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3. Proof of Theorem A

We leave it to the reader to check that V ∗ is a fixed point for R. Uniqueness of the
fixed point follows from a simple computation (Sec. 3.1). This computation also
proves that V ∈ F belongs to the stable set of V ∗ if and only if V belongs to F1.

Section 3.2 is devoted to the proof that Vf belongs to the stable set of the
Hofbauer potential. In Sec. 3.3, we discuss the restrictive condition V ∈ F .

3.1. Uniqueness and the stable set of Hofbauer potential

Let x be the sequence 0n01n102 · · · , with n0 > 0. By induction, we easily show

Rk(V )(x) = S2k(V )(xk), (3.1)

where xk := Hk(x) = (02kn0+2k−1, 1n10n2 , . . .) and Sj(V ) is the Birkhoff sum
V (·) + V ◦ σ(·) + · · ·+ V ◦ σj−1(·).

For 0 ≤ j ≤ 2k − 1, σj(xk) = 02k(n0+1)−1−j1 · · · . Assumption n0 ≥ 1, means
that every σj(xk) starts with at least 2k 0’s. Therefore 	σj(xk)
 goes to +∞ as k
increases (and for every j ≤ 2k − 1).

Let us pick some V in F . Let a > 0 and α be such that limx→0∞	x
aV (x) = α.
The property 	σj(xk)
 → +∞ and Eq. (3.1) yield

Rk(V )(x) =
2k−1∑
j=0

(
α

(2k(n0 + 1)− (j + 1))a
+ o

(
1

(2k(n0 + 1)− (j + 1))a

))

= 2k(1−a)

 1
2k

2k∑
j=1

α

(n0 + 1− j
2k )a

+ o

 1
2k

2k∑
j=1

1
(n0 + 1− j

2k )a

 .
The first term into the brackets on the right-hand side is a Riemann sum, and

converges, as k → ∞, to
∫ 1

0
α

(n0+1−t)a dt. Therefore, the second term goes to zero
(it is a small “o” of a constant).

Therefore, if a < 1, then α > 0 and Rk(V ) goes to +∞ as k goes to +∞. On
the contrary, if a > 1, Rk(V ) goes to 0.

The convergence to a nonzero function can only occur if a = 1, namely for V in
F1. In that case Rk(x) converges to∫ 1

0

α

(n0 + 1− t)dt = α[log(n0 + 1− t)]01 = α log
(

1 +
1
n0

)
.

In other words, Rk(x) converges to αV ∗(x).
This proves that if V belongs to F1, then Rk(V )(x) converges to V ∗(x) (point-

wise convergence). Moreover, for V ∈ F , if V does not belong to F1 (up to a multi-
plicative constant), then our computation shows that for every x, either Rk(V )(x)
goes to +∞ or to 0 (depending on V ∈ F< or V ∈ F>). In other words, V ∈ F
belongs to the stable set of V ∗ if and only if it belongs to F1.
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This also proves the uniqueness of the fixed point in F : if Ṽ is any nonzero fixed
point, equality Ṽ = Rk(Ṽ ) shows that Ṽ belongs to F1. Then Rk(Ṽ ) converges to
V ∗ (up to a multiplicative constant).

The uniform convergence (with respect to x) of Rk(V )(x) to V ∗(x) for V in F1

follows from the control of the convergence of a Riemann sum.
It is well known that∣∣∣∣∣∣ 1n

n−1∑
j=0

ϕ

(
j

n

)
−
∫ 1

0

ϕ(t)dt

∣∣∣∣∣∣ ≤ C

n
‖ϕ′′‖∞

holds for some universal constant C. Here, we have to consider functions ϕ of the
form

ϕ(t) =
1

n0 + 1− t .

They all satisfy (uniformly with respect to n0)

‖ϕ′′‖∞ ≤ 1.

3.2. Manneville–Pomeau is in the stable set

of the Hofbauer potential

For x in [0, 1
2 [, f(x) = x+x2+x3+· · · , and the series converges uniformly. Standard

calculus show that

f ′(x) = 1 + 2x+O(x2).

Hence log f ′(x) = 2x + O(x2). Now, the partition in fundamental domains shows
that x = θ(x) with x in Mn (and n > 1) if and only if x belongs to [ 1

n+2 ,
1

n+1 [. This
shows x = 1

�x� + o( 1
�x� ). Hence we have

log f ′ ◦ θ(x) =
2
	x
 + o

(
1
	x

)
.

Remark 3.1. It is usual to associate the Manneville–Pomeau map and the Hof-
bauer potential. Namely, the existence of the phase transition for −t log f ′ is some-
times only proved for the Hofbauer potential in the shift. The fact that log f ′ ◦ θ
belongs to the stable set of the Hofbauer potential (up to a multiplicative constant)
gives consistence to that proof.

3.3. Discussion on the condition V ∈ F
The point 0∞ is fixed by H . If Ṽ is a fixed point for R,

Ṽ (0∞) = R(Ṽ )(0∞) = Ṽ ◦ σ ◦H(0∞) + Ṽ ◦H(0∞) = 2Ṽ (0∞).

This immediately shows Ṽ (0∞) = 0.

1250005-7
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Therefore, if we are interested in the stable set of any fixed point for R, we have
to restrict our study to continuous potentials vanishing at 0∞. It thus makes sense
to determine the germ close to 0∞.

Then, the condition V ∈ F means that we restrict our study to potentials which
have a specific kind of germ close to 0∞.

The proof of the uniqueness (Sec. 3.1) also works if we weaken the hypothesis.
Indeed, the same proof works for potentials satisfying just one of the conditions
below:

• there exists a < 1, such that the interval [lim infx→0∞	x
aV (x),
lim supx→0∞	x
aV (x)] does not contain 0,
• limx→0∞	x
V (x) exists,
• there exists a > 1 such that lim supx→0∞ |	x
aV (x)| < +∞.

Very roughly speaking, the hypothesis V ∈ F means V = log g′ ◦ θ, with g(x) =
x+ α

a+1x
a+1 + h.o.t. close to 0. This means that we restrict our study to dynamics

with some minimal but fixed regularity close to 0.

4. Statement of Theorem B: Good H’s

Previously we studied the renormalization induced by the map

H : 0n01n10n2 · · · �→ 02n0+11n10n2 · · · .
Following our strategy, we are interested in finding other “good” H . Here, “good”
would mean that H satisfies

σ2 ◦H = H ◦ σ
and the renormalization operator

R :V �→ R(V ) := V ◦ σ ◦H + V ◦H
has a (unique) fixed point which exhibits a phase transition.

On the other hand, we also want to understand why physicists sometime present
renormalization as a way to rescale the action of the potential: as an example, for
the two-dimensional lattice in statistical mechanics (see for instance [6]), one takes
a square box, and then consider a new renormalized box such that each side is
scaled by a factor of 2. The old potential is also rescaled in the new box.

Theorem B. Let H be an increasing function on the shift Σ (for the lexicographic
order), such that

(1) for every x = (1, x2, x3, . . .), H(x) = (0, . . . , 0︸ ︷︷ ︸
a terms

, 1, x2, x3, . . .), where a ≥ 1;

(2) σ2 ◦H = H ◦ σ,
(3) H(0∞) = 0∞.

1250005-8
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Then, for every x = (0, . . . , 0︸ ︷︷ ︸
n0 terms

, 1, xn0+2, . . .), we have H(x) =

( 0, . . . , 0︸ ︷︷ ︸
2n0+a terms

, 1, xn0+2, . . .).

In other words, Theorem B shows that there exists a unique type of maps H : Σ �,
and (as a consequence) a unique type of “good” potential V which satisfy the fixed
point property

R(V ) = V.

Here, the special importance of the Hofbauer potential appears.
We want here to emphasize that the assumptions on H are very natural if we

consider the rescaling procedure described above. The lexicographic order is a good
way to consider blocks at different scales. The assumption “H([1]) = [0a1]” is a
good way to send blocks onto blocks.

Note that 0∞ is a fixed point for σ. Hence, if H satisfies σ2◦H = H◦σ, H(0∞) is
fixed by σ2. Moreover, 0∞ < 10101 · · · , and monotonicity of H yields H(0∞) = 0∞.
In [2], the authors consider H such that H(0∞) = (01)∞, which is fixed by σ2. The
main conclusion here is that a “good” H generates a basin of attraction of the
renormalization procedure. In this paper the basin is {0∞}. In [2] it is the uniquely
ergodic compact set generated by the Thue–Morse substitution.

5. Proof of Theorem B

Let H be an increasing function on the shift Σ (for the lexicographic order), such
that

(1) for every x = (1, x2, x3, . . .), H(x) = (0, . . . , 0︸ ︷︷ ︸
a terms

, 1, x2, x3, . . .), where a ≥ 1;

(2) σ2 ◦H = H ◦ σ,
(3) H(0∞) = 0∞

We want to prove that for every x = (0, . . . , 0︸ ︷︷ ︸
n0 terms

, 1, xn0+2, . . .), we have

H(x) = ( 0, . . . , 0︸ ︷︷ ︸
2n0+a terms

, 1, xn0+2, . . .).

Note that by assumption, this is already proved for every x in the cylinder [1].

First consider the case a ≥ 2.
Let us pick x = 0n01n10n2 · · · . We assume n0 > 1. We point out that σ(x) ≥ x,

because a “1” appears sooner in σ(x) than in x. Therefore we must have

H(σ(x)) > H(x), if x = 0∞, 1∞. (5.1)

1250005-9
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Now, σn0(x) belongs to the cylinder [1], henceH(σn0(x)) = [0ax]. Equality σ2◦H =
H ◦ σ yields σ2n0 ◦H = H ◦ σn0 . Therefore

H(x) = ( ?, . . . , ?︸ ︷︷ ︸
2n0 terms

, 0, . . . , 0︸ ︷︷ ︸
a terms

, 1, xn0+2, . . .), (5.2)

where the first 2n0 digits are unknown.
As H is increasing, its image is in the cylinder [0], and the first digit in (5.2)

is 0. Equality σ2 ◦H = H ◦ σ shows that every σ2k(H(x)) (with k ≤ n0) belongs
to the image of H , hence starts with 0. This means that every odd unknown digit
in (5.2) is 0.

Now, we prove that no even unknown digit can be 1. Let us assume that the
second digit is 1. Doing the same work for σ(x) (here we use n0 > 1), we have

H ◦ σ(x) = (0, ?, . . . , 0, ?︸ ︷︷ ︸
2n0−2 terms

, 0, . . . , 0︸ ︷︷ ︸
a terms

, 1, xn0+2, . . .). (5.3)

Moreover, σ2 ◦H = H ◦ σ shows that each unknown digit at position 2p in (5.3) is
the same digit as the digit in position 2p+ 2 in (5.2).

If the second digit in (5.2) is “1”, then (5.1) shows that the second digit in (5.3)
must also be “1”. Therefore, the cascade rule yields that each even unknown digit
must be 1, in (5.2) and in (5.3). In that case, and as we assumed a ≥ 2, there will
be “1” in H(x) in position 2n0, and “0” for H ◦ σ(x), and the two words coincide
before that position. Hence, H(σ(x)) < H(x), which is impossible by (5.1). This
proves that the assumption is false, and the second unknown digit in (5.2) must
be “0”.

Note that this also holds if n0 = 1. Indeed, in that case we completely know
H ◦ σ(x), by assumption (1) in Theorem B. Therefore the above discussion means
that for every ξ = (0, . . .), H(ξ) starts with three symbols “0”. Here again, the
cascade rule between (5.2) and (5.3) yields that every even unknown digit is “0”.

The case a = 1. In that case, the assumption “the second unknown digit in
(5.2) in 1” yields

H(x) = (0, 1, . . . , 0, 1, 0, 1︸ ︷︷ ︸
2n0 terms

, 0︸︷︷︸
a=1

, 1, xn0+2, . . .),

H ◦ σ(x) = (0, 1, . . . , 0, 1︸ ︷︷ ︸
2n0−2 terms

, 0︸︷︷︸
a=1

, 1, xn0+2, . . .).

Hence, the only possibility which respects the increasing property for H would be
to alternate “0” and “1” for the tail of x. But even in that case, this will be in
contradiction with (5.1). This finishes the proof.

Remark 5.1. The potential defined by log k+a
k+a−1 on Mk (k ≥ 1) is invariant by

R. It is a “Hofbauer-like” potential.

We leave it to the reader to check that this potential exhibits a phase transition.
Indeed, the usual proof for the well knwon Hofbauer potential works directly.
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6. Statement of Theorem C: Thermodynamic Formalism
for Virtual Manneville–Pomeau Maps

6.1. Recall on equilibrium states

We recall that, given a function φ, a probability measure µ is said to be φ-conformal
if there exists a positive real number λφ with the following property: for every Borel
set A such that σ :A→ σ(A) is a homeomorphism, then

µ(σ(A)) = λφ

∫
A

e−φdµ.

If φ is continuous, there necessarily exists a φ-conformal measure. Indeed the Trans-
fer Operator

P(ψ)(x) :=
∑

y,σ(y)=x

eφ(y)ψ(y)

acts on continuous functions, hence its adjoint acts on measures. We then use
the Schauder–Tychonoff theorem to get an eigen-measure. This measure is a φ-
conformal measure. The question is then to study the existence (and uniqueness)
of a σ-invariant probability measure equivalent to the φ-conformal measure. Such a
measure is said to be φ-quasi-conformal. We shall simply say quasi-conformal when
there is no confusion about the function φ.

We denote by hµ the Kolmogorov entropy of the invariant probability µ. We
recall that given a function φ : Σ→ R, an invariant probability measure µ is called
an equilibrium state for the potential φ if it satisfies

hµ +
∫
φdµ = sup

ν

{
hν +
∫
φdν

}
.

In “good” cases, given a potential φ, there exists a unique φ-quasi-conformal prob-
ability; it is also the unique equilibrium state for φ.

In the literature, phase transition means several things. On the one hand, it
means that the map γ �→ P(γ ·φ) loses analyticity at some point (see e.g., [17, 19]).
On the other hand, it means that for some γ0, γ0 ·φ has several equilibrium states or
loses the equilibrium state (this is e.g., the case for the Hofbauer potential). There
are of course connections between these two definitions, but it is not clear at all (at
least for the authors) that in every setting these two definitions coincide. In this
paper we are more likely to use the second definition.

In statistical mechanics, the parameter γ is positive and is the inverse of the
temperature. Roughly speaking, one gets a potential and a system “at equilibrium”.
One studies the variations of equilibrium as the temperature changes.

As we mentioned above, Hölder continuity for φ ensures the existence and
uniqueness of the equilibrium state. It is also well known (see e.g., [18]) that in
this case and with our settings, P(γ) is analytic. Then, the two definitions coincide
and there is no phase transition (whichever the definition we choose).

Therefore, if one wants to produce potentials with phase transitions, it is nec-
essary to find low regular functions. On the other hand, these functions have to be
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sufficiently regular in order to be studied. In [25], Walters defines a class R(X) of
such potentials. They are constant on cylinders of the form [0n1], [10n1], [1n0] or
[01n0]. This essentially means they do not distinguish points by the time their orbit
spent in the two laminar regimes (cylinder [0] and cylinder [1]).

6.2. Virtual Manneville–Pomeau maps and Theorem C

Here we study a special family of potentials. They all belong to the stable set of
the Hofbauer potential (up to a multiplicative constant) and, contrarily to [25],
they are not constant on cylinders of the form [0n1] or [10n1] or [1n0] or [01n0].
Namely, they are obtained as a specific perturbation of −log f ′ ◦ θ, where f is the
Manneville–Pomeau map already defined.

We consider real numbers, α in [1,+∞[, β in ]0, 1], and a natural number a ≥ 0.
We assume that these parameters satisfy

1
(3
2 )β − 1

− 1
2β − 1

=
(

1 +
1

a+ 1

)α

− 1. (6.1a)

1
α

= 2β − 1. (6.1b)

This system of conditions is referred to as (6.1). We shall prove in Lemma 7.4
that for each choice of one parameter, (6.1) gives a unique value for the other
two parameters (except that a may not be an integer). Hence, for each positive
integer value of a we have the corresponding values αa and βa. In this way, several
renormalization operators, with different values a ∈ N, can be considered as in
Theorem B. In the following, we however prefer to keep β as parameter.

Given x = (0n01n10n21, . . .) ∈ Σ = {0, 1}N we define a real number in the
following way:

θβ(x)

=
1

(n0 + 1)β

(n0 + 2)β − (n0 + 1)β
+

1

(n1 + a)α

(n1 + a +1)α − (n1 + a)α
+

1

n
β
2

(n2 + 1)β − n
β
2

+
1

(n3 + a)α

(n3 + a + 1)α − (n3 + a)α
+ · · ·

With these notations, the potential φβ is defined by:

φβ(x) =


−2 log

(
θβ ◦ σ(x)
θβ(x)

)
if x ∈ [0],

−2 log
(

2β − 1− θβ ◦ σ(x)
2β − 1− θβ(x)

)
if x ∈ [1].

Heuristically speaking, the potential φβ should be seen as what one should
expect to be the −log of the derivative of a “global” Manneville–Pomeau map f̂β

defined for the Bernoulli space after the “change of coordinates” θβ . We are studying
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existence of γ-conformal measures for our virtual Manneville–Pomeau maps.

Theorem C. For any γ ∈ ]0, 1
2 ] and for any β there exist a unique γφβ-conformal

measure and a unique quasi-conformal probability.
For γ ∈ ]12 , 1], there exists a critical value βc := βc(γ) > 0, which is maximal

with this property, such that for any β < βc there exist a unique γφβ-conformal
measure and a unique quasi-conformal probability.

In both cases the quasi-conformal probability is the unique equilibrium state asso-
ciated to the potential γφβ.

It is left to the reader to check that φβ(0n01 · · ·) = 1
n0

+ o( 1
n0

) for n0 → +∞.
This means that all the φβ belong to the stable set of the Hofbauer potential V ∗.
Similarly, φβ(1n10 · · ·) = 1

n1+a + o( 1
n1+a ) if n1 → +∞. Following Theorem B, this

means that γ · φβ belongs to the stable set of the Hofbauer-like potential but for
the renormalization close to 1∞.

Regarding this problem of phase transition, several questions are still unsolved.
The case β = γ = 1 should indicate that for γ > 1

2 , there exists another critical value
β̄c = β̄c(γ) such that for β > β̄c there exists no γφβ-quasi-conformal probability.

Similarly and probably consequently, it is expected that for fixed β, the one
family of potentials γ · φβ presents a phase transition: for γ sufficiently large, the
pressure of γ · φβ is affine.

Nevertheless, our computations do not yet prove these expected results. For
this, we should have better bounds in the proof of Proposition 7.1.

6.3. Construction of Gibbs states

In this section we recall the method of construction of Gibbs measures presented in
[15] and developed further in later works of Leplaideur. This is the method we shall
use to prove uniqueness of the equilibrium state for γφβ . In the following, P(γ, β)
denotes the associated pressure.

We consider the first return map g in the cylinder [01]. For y in [01], r(y) denotes
the first return time in [01] of y by iterations of σ. For a real number Z, for x in
[01] and for ψ a continuous function from [01] to R, we define

LZ,γ,β(ψ)(x)
∑

y,g(y)=x

eSr(y)(γφβ)(y)−Zr(y)ψ(y).

This is the transfer operator for the map g associated to the potential Sr(·)(γφβ)(·)−
Zr(·). We study this operator, for fixed γ and β and for large enough Z. Namely,
we set

Zc = Zc(γ, β) := lim sup
n→+∞

1
n

log

 ∑
x=g(y),r(y)=n

eSn(γφβ)(y)

 .
Even if Zc a priori depends on x, it actually does not (see Proposition 7.1) and
Proposition 7.2 shows that for every γ and β, Zc = 0. From here on, we may omit
γ and β when they are not necessary.

1250005-13



September 20, 2012 13:16 WSPC/S0219-4937 168-SD 1250005 14–34

A. Baraviera, R. Leplaideur & A. O. Lopes

Therefore we have, on the one hand the dynamical system (Σ, σ) with the poten-
tial γ · φβ (referred to as the global system), and on the other hand, the dynam-
ical system ([01], g) and the family of potentials γ · Sr(·)(φβ) − Zr(·) (referred
to as the local system). The point is that it is possible to deduce the existence
and uniqueness of the equilibrium state for the global system from the thermo-
dynamic formalism for the local one. The advantage to consider the local sys-
tem is that, Sr(·)(φβ) satisfies the Bowen property (for g) when φβ does not
(for σ).

Proposition 6.1. For every Z > Zc there exists a unique equilibrium state for the
local dynamical system. It is obtained as

dµZ := hZdνZ ,

where νZ is the probability measure satisfying L∗Z(νZ) = λZνZ , hZ is the normalized
eigenfunction LZ(hZ) = λZhZ and λZ is a positive real number.

A sketch of the proof is given in Sec. 7.2.2.

Proposition 6.2. If there exists Z > 0 such that λZ = 1, then the global system
admits a unique equilibrium state for γ · φβ and the pressure is Z. It is a quasi-
conformal measure, and its restriction to [01] is the unique equilibrium state for the
local system, µZ . There exists a unique conformal measure, whose restriction to [01]
is the measure νZ .

Remark 6.1. The “0” in the condition Z > 0 is important. It comes from the fact
that Zc = 0 and is also related to the fact that φβ(0∞) = φβ(1∞) = 0.

7. Proof of Theorem C

In Sec. 7.1 we fix the claims concerning the parameters. In Sec. 7.2 we prove Propo-
sitions 6.1 and 6.2. For this we actually prove that the local system satisfies the
Bowen condition. In Sec. 7.3 we complete the proof of Theorem C.

7.1. Properties for θβ, parameters and virtual

Manneville–Pomeau maps

7.1.1. Convergence of the continued fraction expansion defined by θβ

Here, we define a generalization of the continued fraction expansion. We consider
real numbers, α in [1,+∞[, β in ]0, 1], and the natural number a ≥ 0. These
parameters are not supposed to satisfy (6.1).

Lemma 7.1. Let (ak)k∈N be a sequence of real numbers such that a0 = 0, each
a2k+1 is larger than 1, and all the even terms a2k, k > 0, are positive and uniformly
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bounded away from zero. Then, the sequence of real numbers (rk) defined by

rk =
1

a1 + 1
a2+ 1

...+ 1
ak

,

converges to a real number denoted by [0, a1, a2, a3, . . .].

Proof. Let (ak)k∈N be as in the assumptions. We define two new sequences (pk)k∈N

and (qk)k∈N, by induction:

p0 = 0, p1 = 1, q0 = 1, q1 = a1

∀ k ∈ N, pk+2 = ak+2pk+1 + pk, qk+2 = ak+2qk+1 + qk.

By induction, qk ≥ 1 for every k > 0. Using a2k+1 ≥ 1, we get q2k+1 ≥ k, and then
q2k ≥ A · k, where A is a positive lower bound for all the a2j ’s. Therefore, qk goes
to +∞ as k increases to +∞.

If we set uk = pk+1qk − pkqk+1, then uk+1 = −uk for every k. We claim that
rk =

pk

qk
. Then, the two subsequences (r2k) and (r2k+1) are mutually adjacent and

converge to the same limit. We left it to the reader to check that the even sequence
(r2k) increases and the odd sequence (r2k+1) decreases.

Let δ > 0 be a real number. We define g : (0,∞)→ R, given by

gδ(z) =
1

(1 + 1
z )δ − 1

=
zδ

(z + 1)δ − zδ
.

We have for every z ∈ (0,+∞), g′δ(z) = δ
z2

1
((1+ 1

z )δ−1)2
(1 + 1

z )δ−1, hence gδ is
increasing. Moreover, limz→0 gδ(z) = 0 and limz→+∞ gδ(z) = +∞.

Also, gδ(z) = zδ +o(zδ) when z is close to 0, and, gδ(z) = z
δ − δ−1

2δ +O(1
z ), when

z is close to +∞.

Lemma 7.2. The map gδ is convex for δ > 1 and concave for δ < 1.

Proof. To prove this lemma, first note that g′(z) = δ
z2+z (g(z)+g2(z)). This yields

g′′(z) = −δ 2z + 1
(z2 + z)2

(g(z) + g2(z)) +
δ

z2 + z
(g′(z) + 2g′(z)g(z)).

If we replace in this last expression the value of g′(z) as a function of z and g(z),
we get

g′′(z) = 2δ2
g(z) + g2(z)

(z2 + z)2

(
g(z)−

(
z

δ
− δ − 1

2δ

))
.

Note that z
δ− δ−1

2δ is the asymptote of g close to +∞. Then, the convexity of the map
depends on the position of the graph with respect to the asymptote: it is convex
when the graph is above the asymptote, and it is concave when the graph is below
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the asymptote. Now, remind that a convex map has a non-decreasing derivative,
and a concave map has a non-increasing derivative.

Therefore, easy considerations on the relative position of the graph with respect
to the asymptote prove that the graph cannot cross the asymptote. Hence the map
is convex for δ > 1, and concave for δ < 1.

Moreover, gδ(1) = 1
2δ−1

. Therefore, gα(1) < 1, for α > 1, and gβ(1) > 1, for
β < 1. This shows that for a given sequence n0 ≥ 0, n1 > 0, n2 > 0, . . . of integers,
the sequence defined by a2k = gα(n2k−1 + a) and a2k+1 = gβ(n2k) satisfies the
properties of Lemma 7.1. Therefore the real number [0, a1, a2, . . .] is well-defined.
In other words, for α, β and a satisfying (6.1), and for x = (0n01n10n2 · · · ) ∈ Σ =
{0, 1}N,

θβ(x) = [0, gβ(n0 + 1), gα(n1 + a), gβ(n2), gα(n3 + a), . . .]

=
1

(n0+1)β

(n0+2)β−(n0+1)β + 1
(n1+a)α

(n1+a+1)α−(n1+a)α + 1
n

β
2

(n2+1)β−n
β
2

+ 1
(n3+a)α

(n3+a+1)α−(n3+a)α +···

is well defined.
We claim that θβ(x) belongsd to [0, 2β−1]. Indeed, the odd subsequence (r2k+1)

decreases and the even subsequence (r2k) increases. To minimize the value of θβ(x̄),
it is necessary and sufficient to maximize n0. On the other hand, to maximize the
value of θβ,(x), it is necessary and sufficient to minimize n0 and to maximize n1.
Therefore, for every x,

0 = θβ(0∞) ≤ θβ(x) ≤ θβ(1∞) = 2β − 1.

Remark 7.1. The fact that the sequences (r2k) and (r2k+1) are mutually adjacent
shows that for n0 ≥ 0:

θβ(0n01n1 · · · 0n2p10∞) ≤ θβ(0n01n1 · · · 0n2p1n2p+10 · · ·)
≤ θβ(0n01n1 · · · 0n2p1∞)

θβ(0n01n1 · · · 0n2p1n2p+10∞) ≤ θβ(0n01n1 · · · 0n2p1n2p+10 · · ·)
≤ θβ(0n01n1 · · · 0n2p1n2p+101∞).

Remark 7.2. The number a does not need to be in N to define θβ, but in R
+.

This restriction is due to the fact that we want to see a as a parameter of the
renormalization.

dIt is actually possible to prove that θβ is onto but not one-to-one except for β = 1.
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7.1.2. Lexicographic order and values for θβ

Here, we present a technical lemma which gives inequalities with respect to the
lexicographic order in Σ.

Lemma 7.3. Let an = an(β) := −2 log gβ(n+1)
gβ(n) and bn = bn(β) :=

−2 log
gβ(n+1)+(1+ 1

1+a )α−1

gβ(n)+(1+ 1
1+a )α−1

. Then for (0n 10∞) ≤ w < (0n 1∞) and n > 0 we
have

an ≤ φβ(w) ≤ bn.

Let um = um(β) := −2 log gα(m+a)+2β−1
gα(m−1+a)+2β−1 and vm = vm(β) :=

−2 log gα(m+a)+2(2β−1)
gα(m−1+a)+2(2β−1)

. Then for (1m 0∞) ≤ w < (1m 01∞) and m > 1 we
have

um ≤ φβ(w) ≤ vm.

If m = 1 we have

u1 := −2 log

(
1 +

(3
2 )β − 1

2β − (3
2 )β

)
≤ φβ(w)

≤ −2 log

((
1 +

((
3
2

)β

− 1

)
2.2β − (3

2 )β − 1
(2β − (3

2 )β)(2β − 1)

)(
2β − (3

2 )β

2β − 1

))
=: v1.

Proof. For w satisfying (0n 10∞) ≤ w < (0n 1∞) and n > 0, we have

φβ(w) = −2 log
θβ ◦ σ(w)
θβ(w)

.

We set θ(w) = 1
gβ(n+1)+r and we have θ ◦ σ(w) = 1

gβ(n)+r . Here we use n > 0. We
thus have to give bounds for

gβ(n+ 1) + r

gβ(n) + r
= 1 +

gβ(n+ 1)− gβ(n)
gβ(n) + r

.

A bound from above is obtained when r = 0 and a bound from below is obtained
for r = (1 + 1

1+a )α − 1. Since −2 log decreases, this finally reverses the order.
For w satisfying (1m 0∞) ≤ w < (1m 01∞) and m > 1 we first recall that we

have θ(w) = 1
1

2β−1
+ 1

gα(m+a)+r

. Hence,

2β − 1− θ(w) =
1
1

2β−1

− θ(w) =
(2β − 1)2

gα(m+ a) + r + 2β − 1
.

For m > 1, we want to give bounds for

gα(m+ a) + r + 2β − 1
gα(m− 1 + a) + r + 2β − 1

= 1 +
gα(m+ a)− gα(m− 1 + a)
gα(m− 1 + a) + r + 2β − 1

. (7.1)
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Note that the last expression shows that the function is decreasing in r. Again, a
bound from above is obtained for r = 0 and a bound from below for r = 2β − 1
(remember that we have to compose with −2 log).

If m = 1, we want to give bounds for

(2β − 1− r)
(2β − 1)2

(gα(1 + a) + r + 2β − 1).

This is a decreasing function of r on the interval [0, (3
2 )β − 1].

7.1.3. Choices for parameters α, β and a

We first check that conditions (6.1) are compatible with our assumptions α ≥ 1
and β ≤ 1. Remember that (6.1) means:

1(
3
2

)β − 1
− 1

2β − 1
=
(

1 +
1

a+ 1

)α

− 1. (6.1a)

1
α

= 2β − 1. (6.1b)

Note that β ≤ 1 yields 2β − 1 ≤ 1, and then, we actually have α ≥ 1.
We now want to solve a (from the two equations) as a function of β. For this

we have to consider the map

β �→ a(β) + 1 :=
1(

1
( 3
2 )β−1

− 1
2β−1 + 1

)2β−1 − 1
.

Lemma 7.4. The map A :x→ 1
( 1
( 3
2 )x−1

− 1
2x−1+1)2x−1−1

−1 is a decreasing bijection

from ]0, 1[ onto ]1,+∞].

Proof. We first prove that the function A is one-to-one.
Let us pick some a > 0, and set C := 1 + 1

1+a . Note that C belongs to the
interval ]1, 2[.

We set ϕ(x) = C
1

2x−1 − 1− 1
( 3
2 )x−1

+ 1
2x−1 . Hence we have

A(x) = a⇔ ϕ(x) = 0.

We thus want to prove that there exists a unique x in ]0, 1[ such that ϕ(x) = 0.
Note that ϕ(1) = C − 2 < 0. Moreover 1

2x−1 = 1
x log 2 + o( 1

x) close to 0.

Therefore for x close to 0 we have ϕ(x) = elog C( 1
x log 2+o( 1

x )) − 1 − 1
x log( 3

2 )
+

1
x log 2 + o( 1

x ). This yields

lim
x→0+

ϕ(x) = +∞.

As the function is continuous on the interval ]0, 1], there exists at least one x
such that ϕ(x) = 0. We thus want to prove the uniqueness of this solution.
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Claim 1. The function ϕ is either decreasing on ]0, 1] or there exists c∈ ]0, 1[ such
that ϕ is decreasing on ]0, c[ and increasing on ]c, 1[.

We first explain why Claim 1 gives our result: indeed, the variations of ϕ and
the fact that ϕ(1) < 0 imply that there can be at most one solution for the
equation

ϕ(x) = 0.

Now, we prove Claim 1. Note that ϕ is C∞ and we have

ϕ′(x) =
log(3

2 ) (3
2 )x(

(3
2 )x − 1

)2 − log 2 2x

(2x − 1)2
(1 + logCe

1
2x−1 log C).

Thus we want to know where we have

log(3
2 )(2x − 1)2(3

2 )x

log 2((3
2 )x − 1)22x

≤ 1 + logCe
1

2x−1 log C . (7.2)

Claim 2. The function x �→ 1 + logCe
1

2x−1 log C is decreasing.

Indeed, x �→ 1
2x−1 is decreasing, x �→ ex is increasing and C is larger than 1.

Claim 3. The function x �→ (2x−1)2( 3
2 )x

(( 3
2 )x−1)22x is increasing.

We first explain how these two claims prove that Claim 1 is correct. Note that
for x = 1

(2x − 1)2(3
2 )x

((3
2 )x − 1)22x

= 3.

On the other hand, note that 1+ logCe
1

2x−1 log C ∼ logCe
log C
x log 2 for x close to 0 and

then

lim
x→0+

1 + logCe
1

2x−1 log C = +∞.

We remind that ∼ means that the quotient goes to 1. Hence, Claims 2 and 3 yield
that there exists at most one real number c∈ ]0, 1] such that for

log(3
2 )(2x − 1)2(3

2 )x

log 2((3
2 )x − 1)22x

− (1 + logCe
1

2x−1 log C)

is negative for x < c and positive for x > c. If such a c exist, ϕ is decreasing on
[0, c[ and increasing on ]c, 1]. If c does not exist, then (7.2) holds for every x∈ ]0, 1].
This proves that Claim 1 is correct.
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We now prove Claim 3. It is sufficient to prove that ψ := x �→ log (2x−1)2( 3
2 )x

(( 3
2 )x−1)22x

increases. Equivalently, we want to prove that ψ′ is positive on ]0, 1]. We have

ψ′(x) =
2 log 2 2x

2x − 1
− 2 log(3

2 ) (3
2 )x

(3
2 )x − 1

− log 2 + log
(

3
2

)
.

Hence ψ′(x) > 0 is equivalent to

log 2
(

2 2x

2x − 1
− 1
)
> log
(

3
2

)(
2(3

2 )x

(3
2 )x − 1

− 1
)

�

log 2
2x + 1
2x − 1

> log
(

3
2

)
(3
2 )x + 1

(3
2 )x − 1

�
x log 2

2

(
ex log 2 + 1
ex log 2 − 1

)
>
x log(3

2 )
2

(
ex log( 3

2 ) + 1
ex log( 3

2 ) − 1

)
(7.3)

�

x log 2
2

(
e

x log 2
2 + e−

x log 2
2

e
x log 2

2 − e−x log 2
2

)
>
x log(3

2 )
2

e x log( 3
2 )

2 + e−
x log( 3

2 )
2

e
x log( 3

2 )
2 − e−x log( 3

2 )
2


�

x log 2
2

coth
x log 2

2
>
x log(3

2 )
2

coth
x log(3

2 )
2

.

Now, we leave it to the reader to check that the function x �→ x cothx is increasing
on R+. Therefore (7.3) holds and Claim 3 is correct. This finishes the proof that
the function A is one-to-one.

We let the reader check that, close to 1, we have A(x) = (x − 1)(−2 log 2 −
4 log2(2)− 6 log 3

2 ) +O((x − 1)2).

On the other hand, close to 0 we have A(x) =
1

log 3
2
− 1

log 2

x log x log 2 [1 + κ · 1
log x ] +O(1).

The function A is one-to-one and the limits on the boundaries yield that it is a
decreasing bijection from ]0, 1[ on its image ]0,+∞[.

From the lemma above, we get the property that each positive integer value
of a can be reached. In this way, several renormalization operators, with different
values a ∈ N, can be considered in our future reasoning. For each such value a, we
have the corresponding values αa and βa. We point out, however, that it also has
meaning to consider real values of a (any positive real is possible) in several of our
results (which are not related to the renormalization operator for the shift).
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7.2. Local thermodynamic formalism

7.2.1. Distortion on cylinders

We recall that the potential φβ is defined as follows:

φβ(x) =


−2 log

(
θβ ◦ σ(x)
θβ(x)

)
if x ∈ [0],

−2 log
(

2β − 1− θβ ◦ σ(x)
2β − 1− θβ(x)

)
if x ∈ [1].

The theory of equilibrium states has been developed for many types of dynamics
and different kinds of potentials. It is however noteworthy that in every case, one
of the main points is to control the distortion of Birkhoff sum of the potential on
cylinders.

Proposition 7.1. There exists a positive real number A such that for every k in
N

∗, for every w and w′ in 01m10n11m20n2 · · · 1mk0nk1 (with 0 < mi, ni < +∞) and
for every β,

|S|m|+|n|(φβ)(w) − S|m+n|(φβ)(w′)| ≤ A,

where |m|+ |n| :=∑i mi + ni.

Proof. The proof consists of three steps. In the first step we recall some simple
analytical facts. In the second step we do explicit computations to get an upper
bound for the difference S|m|+|n|(φβ)(w)−S|m+n|(φβ)(w′). In the last step we show
that all these upper bounds (depending on w, w′, k and β) are uniformly bounded
from above. This shall gives a value for A.

Some usual analysis arguments. Given A0 > 0, R1 and R2 non-negative, then∣∣∣∣ 1
A0 +R1

− 1
A0 +R2

∣∣∣∣ ≤ |R2 −R1|
A2

0

.

Repeated use of this fact yields (assuming that any Ai is positive)∣∣∣∣∣∣ 1
A0 + 1

A1+···+ 1
An+R1

− 1
A0 + 1

A1+···+ 1
An+R2

∣∣∣∣∣∣ ≤ 1
A2

0A
2
1 · · ·A2

n

|R2 −R1|. (7.4)

We shall use several times estimates of the form∣∣∣∣log
X

Y

∣∣∣∣ = |logX − logY | ≤ 1
min(X,Y )

|X − Y |, (7.5)

with X and Y positive real numbers. In particular, to get a bound from above for
(7.5) we need to get a bound from below for X and Y .
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Computation. We set

w = (01m10n11m20n2 · · · 1mk0nk1W )

and

w′ = (01m10n11m20n2 · · · 1mk0nk1W ′).

We want to estimate

|∆Sm+n| := |Sm1+n1+m2+n2+···+mk+nk
(φβ)(w)

−Sm1+n1+m2+n2+···+mk+nk
(φβ)(w′)|.

For simplicity we drop the indices β. Note that we have

Sm+n(φ)(w) = φ(w)︸ ︷︷ ︸
word starting with initial 0

+ Sm1(φ)(σ(w))︸ ︷︷ ︸
first series of 1’s

+ Sn1(φ)(σm1+1(w))︸ ︷︷ ︸
first series of 0’s

+ Sm2(φ)(σm1+n1+1(w))︸ ︷︷ ︸
second series of 1’s

+ Sn2−(φ)(σm1+n1+m2+1(w))︸ ︷︷ ︸
second series of 0’s

+ · · ·

+ Smk
(φ)(σm1+n1+···+mk−1+nk−1+1(w))︸ ︷︷ ︸

last series of 1’s

+ Snk−1(φ)(σm1+n1+···+mk−1+nk−1+mk+1(w))︸ ︷︷ ︸
last series of 0’s

.

Due to the definition of φ we thus get

Sm+n(φ)(w) = 2 log
θ ◦ σ(w)
θ(w)

+ 2 log
2β − 1− θ ◦ σm1+1(w)

2β − 1− θ ◦ σ(w)

+ 2 log
θ ◦ σm1+n1+1(w)
θ ◦ σm1+1(w)

+ 2 log
2β − 1− θ ◦ σm1+n1+m2+1(w)

2β − 1− θ ◦ σm1+n1+1(w)

+ 2 log
θ ◦ σm1+n1+m2+n2+1(w)
θ ◦ σm1+n1+m2+1(w)

+ · · ·

+ 2 log
θ ◦ σm1+n1+···+mk−1+nk−1+1(w)

θ ◦ σm1+···+mk−1+1(w)

+ 2 log
2β − 1− θ ◦ σm1+n1+···mk−1+nk−1+mk+1(w)
2β − 1− θ ◦ σm1+n1+···+mk−1+nk−1+1(w)

+ 2 log
θ ◦ σm1+n1+···+mk+nk(w)

θ ◦ σm1+n1+···+mk−1+nk−1+mk+1(w)
.

If we just rewrite the first terms we get

Sm+n(φ)(w) = 2 log
θ ◦ σ(w)
θ(w)

+ 2 log
2β − 1− θ ◦ σm1+1(w)

2β − 1− θ ◦ σ(w)

+ 2 log
θ ◦ σm1+n1+1(w)
θ ◦ σm1+1(w)

+ · · ·
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= 2 log
θ ◦ σ(w)
θ(w)

+ 2 log
2β − 1− θ ◦ σm1+1(w)

2β − 1− θ ◦ σ(w)

+ 2 log
θ ◦ σm1+n1(w)
θ ◦ σm1+1(w)

+ 2 log
θ ◦ σm1+n1+1(w)
θ ◦ σm1+n1(w)

+ · · ·

and σm1+n1(w) belongs to [01]. Therefore, the terms which involve the first series of
1’s and 0’s (before the first return in [0, 1]) are the ones listed in this last equality,
except the last one, which already concerns the second series of 1’s.

Due to the chain rule, the term in σm1+n1(w) finally disappears. Therefore, each
pair of series of 1’s and 0’s will produce four terms to compute:

(1) 2 log θ ◦ σ
P

i≤j mi+ni+1(w) − 2 log θ ◦ σ
P

i≤j mi+ni+1(w′),
(2) 2 log(2β − 1− θ ◦ σ

P
i≤j mi+ni+1(w)) − 2 log(2β − 1− θ ◦ σ

P
i≤j mi+ni+1(w′)),

(3) 2 log(2β − 1 − θ ◦ σ
P

i≤j mi+ni+mj+1+1(w)) − 2 log(2β − 1 − θ ◦
σ

P
i≤j mi+ni+mj+1+1(w′)),

(4) 2 log(θ ◦ σ
P

i≤j mi+ni+mj+1+1(w)) − 2 log(θ ◦ σ
P

i≤j mi+ni+mj+1+1(w′)).

Terms of the form (1) or (4) are called type A, and terms of the forms (2) and (3)
are called type B.

Terms of the forms (1) and (2) deal with points starting with 1’s (namely the
j + 1 series of 1’s), and terms of the forms (3) and (4) deal with points starting
with 0’s (namely the j + 1 series of 0’s).

In addition, the initial term in the Birkhoff sum produces the difference
2 log θ(w) − 2 log θ(w′). Similarly, the last one produces the difference 2 log(θ ◦
σm1+n1+···+mk+nk(w)) − 2 log(θ ◦ σm1+n1+···+mk+nk(w′)).

We set

θ(w) = [gβ(1), gα(m1 + a), gβ(n1), . . . , gα(mk + a), gβ(nk), R] and

θ(w′) = [gβ(1), gα(m1 + a), gβ(n1), . . . , gα(mk + a), gβ(nk), R′].

We recall that [a1, a2, . . . , ap] means 1
a1+ 1

a2+ 1

. ..+ 1
ap

.

Using (7.4), (7.5), Lemma 7.3 and also (7.1), we let the reader check that the
following inequalities hold:∣∣∣∣∣log

(
θ ◦ σ

P
i≤j mi+ni+1(w)

θ ◦ σ
P

i≤j mi+ni+1(w′)

)∣∣∣∣∣
≤ 1

((3
2 )β − 1)(gβ(1))2

k∏
j+1

1
(gα(mi + a))2(gβ(ni))2

|R−R′|, (7.6)

1250005-23



September 20, 2012 13:16 WSPC/S0219-4937 168-SD 1250005 24–34

A. Baraviera, R. Leplaideur & A. O. Lopes∣∣∣∣∣log

(
2β − 1− θ ◦ σ

P
i≤j mi+ni+1(w)

2β − 1− θ ◦ σ
P

i≤j mi+ni+1(w′)

)∣∣∣∣∣
≤ 2(2β − 1) + gα(mj+1 + a)

(2β − 1)2(gβ(1))2

k∏
j+1

1
(gα(mi + a))2(gβ(ni))2

|R−R′|, (7.7)

∣∣∣∣∣log

(
2β − 1− θ ◦ σ

P
i≤j mi+ni+mj+1+1(w)

2β − 1− θ ◦ σ
P

i≤j mi+ni+mj+1+1(w′)

)∣∣∣∣∣
≤ 1

(2β − (3
2 )β)(gβ(nj+1))2

k∏
j+2

1
(gα(mi + a))2(gβ(ni))2

|R−R′|, (7.8)

∣∣∣∣∣log

(
θ ◦ σ

P
i≤j mi+ni+mj+1+1(w)

θ ◦ σ
P

i≤j mi+ni+mj+1+1(w′)

)∣∣∣∣∣
≤

1
( 3
2 )β−1

− 1
2β−1 + gβ(nj+1)

(gβ(nj+1))2

k∏
j+2

1
(gα(mi + a))2(gβ(ni))2

|R−R′|. (7.9)

Let us set

U1 :=
1

(3
2 )β − 1

− 1
2β − 1

+
1

2β − (3
2 )β

,

U2 :=
1

(2β − 1)2(gβ(1))2
,

U3 :=
1

((3
2 )β − 1)2(gβ(1))2

+
2

(2β − 1)(gβ(1))2
.

Then, summing term by term the four inequalities (7.6), (7.7), (7.8), (7.9), the left-
hand side term is the contribution of the (j + 1)th series of 1’s and 0’s, and the
right-hand side term can be written as

1
gβ(nj+1)

[
1 +

1
gβ(nj+1)

[
U1 +

1
gα(mj+1 + a)

[
U2 +

1
gα(mj+1 + a)

U3

]]]

×
k∏

j+2

1
(gα(mi + a)gβ(ni))2

|R−R′|. (7.10)

Note that the contribution of the jth series of 1’s and 0’s has the same bound from
above, exchanging j + 1 by j. It thus has an extra factor

1
(gα(mj + a)gβ(nj))2

.
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If we want to add the contribution of the jth series of 1’s and 0’s to the contribution
of the (j + 1)th series, the expression of the upper bound can be factorized. The
common term is

k∏
j+2

1
(gα(mi + a)gβ(ni))2

|R−R′|.

Thus, the introduction into (7.10) of the upper bound for the jth series, has to be
done by replacing the term U3 by:

U3 → U3 +
1

gβ(nj)

[
1 +

1
gβ(nj)

[
U1 +

1
gα(mj + a)

[
U2 +

1
gα(mj + a)

U3

]]]
.

Let us set

F (t) := U3 + t, Gm,1(t) :=
t

gα(m+ a)
+ U1, Gm,2(t) :=

t

gα(m+ a)
+ U2,

Gn,1(t) :=
t

gβ(n)
+ 1, Gn,2(t) :=

t

gβ(n)
,

and then Hi = Hmi,ni = Gni,2 ◦Gni,1 ◦Gmi,1 ◦Gmi,2 ◦ F.
With these notations, we finally get

|∆Sm+n| ≤ [A+Hk ◦Hk−1 ◦ · · · ◦H2 ◦H1(A)]|R −R′|, (7.11)

where A = ( 2

( 3
2 )

β−1
− 1

2β−1
) 1
(gβ(2))2 > 0 is an upper bound for both terms, the

initial one, due to | log θ(w)
θ(w′) | and the last one due to | log( θ◦σm1+n1+···+mk+nk (w)

θ◦σm1+n1+···+mk+nk(w′) )|.
Obviously, |R − R′| ≤ 2β − 1. Moreover, all the Gn,i and Uj are positive real

numbers, and

1
gβ(n)

≤
(

3
2

)β

− 1,
1

gα(m+ a)
≤
(

1 +
1

1 + a

)α

− 1.

This shows that there exists Fβ :x �→ b(β)x + c(β) such that for every i and for
every x ≥ 0

0 ≤ Hi(x) ≤ Fβ(x).

Hence, (7.11) yields

|∆Sm+n| ≤ (A+ F k
β (A))(2β − 1). (7.12)

It thus remains to prove that the sequence (F k
β (A)) is bounded from above. This

point is a simple consequence of the computation of b(β):

b(β) =

(
1− (3

2 )β − 1
2β − 1

)2

< 1,

hence the sequence (F k
β (A)) is bounded (depending on β).
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End of the proof. Existence and value for A. Now, we prove that the terms
of the form (F k

β (A)) are uniformly bounded from above in k and also in β.
First, remember that

A =
(

2
(3
2 )β − 1

− 1
2β − 1

)
1

(gβ(2))2
≤
(

2
(3
2 )β − 1

− 1
2β − 1

)((
3
2

)β

− 1

)2

.

For β close to 0, aβ − 1 = β log a + o(β). Thus, the family of terms A = A(β) is
uniformly bounded from above.

Arithmetic–geometric sequences are well known, and we have for every β and
every k, ∣∣∣∣F k

β (A) − c(β)
1− b(β)

∣∣∣∣ ≤ bk(β)
∣∣∣∣A− c(β)

1− b(β)

∣∣∣∣ .
We have already seen that A is uniformly bounded (in β). It thus remains to check
that this also holds for c(β)

1−b(β) . Note that b(β) is uniformly bounded away from 1
(in β), hence, it is sufficient to prove that c(β) is uniformly bounded from above
in β. As everything is continuous, it holds in any compact in ]0, 1]. The problem is
when β goes to 0.

Note that for β close to 0, 1
gβ(n) ∼ O(β), 1

gα(m) ∼ O( 1
β ), U1 ∼ O( 1

β ), U2 ∼ O(1),
U3 ∼ O(β), and A ∼ O(β). This yields

O(1) F←− U3 + (A) = O(β)
Gm,2←−−− β

β
+ 1 = O(1)

Gm,1←−−− 1
β

+
1
β

= O(1/β)
Gn,1←−−− β

β
+ 1 = O(1)

Gn,2←−−− O(β).

This proves that c(β) goes to 0 as β goes to 0, thus the terms F k
β (A) are all uniformly

bounded from above in k and β.
We can thus find some A such that for every k, for every β and for every w and

w′ coinciding for
∑

i≤k mi + ni

|∆Sm+n| ≤ A.

This finishes the proof of the proposition.

7.2.2. Proof of Proposition 6.1

We study the existence and uniqueness of equilibrium state for the system ([01], g)
and the potential γ ·Sr(·)(φβ)−Z · r(·). Moreover, we prove that for every Z > Zc,
the unique equilibrium state µZ is the restriction and renormalization to the cylin-
der [01] of some σ-invariant probability measure µ̂Z .

This section deeply relies on results from [15] and developed in further later
works of Leplaideur.
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Lemma 7.5. For every x and x′ in [01]

lim sup
n→+∞

1
n

log

 ∑
x=g(y),r(y)=n

eSn(γφβ)(y)


= lim sup

n→+∞
1
n

log

 ∑
x′=g(y′),r(y′)=n

eSn(γφβ)(y′)

 .
Proof. For any k+m = n, if y = [01k0mx] is a preimage of x, then y′ = [01k0mx′]
is a preimage for x′. Then Proposition 7.1 shows that

|Sn+1(γφβ)(y′)− Sn+1(γφβ)(y)| ≤ γA.

A direct consequence of this lemma is that Zc is independent of the choice of the
initial point x. Moreover, Proposition 7.1 means that the potential γ · Sr(·)(φβ) −
Z · r(·) satisfies the Bowen property (see [25]). It is then well known that this prop-
erty is the minimal one to use the ordinary operator theory and to build equilibrium
states (see e.g., [1]). In our case we also have to check that the operator is well-
defined, namely that the series converges (for every continuous function ψ). This
holds as soon as Z > Zc.

From there, and for every Z > Zc, the spectral radius λZ of the two adjoint
operators LZ and L∗Z is a simple and dominating eigenvalue. If νZ is the asso-
ciated eigen-measure and if hZ is the associated eigenfunction (characterized by∫
[01] hZdνZ = 1), then the measure µZ defined by

dµZ := hZdνZ ,

is the unique equilibrium state associated to Sr(·)(γφβ)(·)−Zr(·) for the dynamical
system (01, g) (see Propositions 4.5, 4.8, 5.7 and 5.9 in [15]). The pressure of the
equilibrium state is logλZ (see Proposition 5.9 in [15]). By construction, the eigen-
measure νZ is a conformal measure for g and γ · Sr(·)(φβ)− Zr(·).

Now, we want to “open out” these measures. It is still true for every Z > Zc that
there exists a unique σ-invariant probability measure µ̂Z such that its restriction
(correctly normalized) to the cylinder [01] is the measure µZ (see Proposition 6.8
in [15]). Then, a simple computation gives (see again Proposition 6.8 in [15])

hbµZ
(σ) +

∫
γφβdµ̂Z = Z + µ̂Z([01]) logλZ . (7.13)

7.2.3. Proof of Proposition 6.2

We shall see later that Zc = 0 (Proposition 7.2). Now, the potential φβ satisfies
φβ(0∞) = φβ(1∞) = 0. Hence the pressure (for the global system) is bigger than

P(γ, β) ≥ hδ0∞ (σ) + γ · φβ(0∞) = 0.

In other words, we get Zc ≤ P(γ, β).
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Let us assume that there exists Z0 > Zc such that λZ0 = 0. We prove now that
necessarily, Z0 = P(γ, β) and µ̂Z0 is the unique equilibrium state for γ · φβ .

First, for every Z > P(γ, β) ≥ 0 = Zc, equality (7.13) shows that λZ ≤ 1. For
Z = Z0, the equality (7.13) also shows

P(γ, β) ≥ hbµZ0
(σ) +

∫
γφβdµ̂Z0 = Z0 > 0.

Now, the potential γ · φβ is continuous, and the variational principle shows that
there exists an equilibrium state for the global system and the potential γ · φβ . We
have just seen that it has positive pressure, hence neither the Dirac measure δ0∞

nor the Dirac measure δ1∞ can be equilibrium states for γ ·φ. Moreover, P(γ, β) > 0
also means that we have measures µZ and µ̂Z for Z = P(γ, β).

Due to the dynamics in Σ, every invariant probability different from δ0∞ and δ1∞

gives positive weight to the cylinder [01], and can thus be induced on this cylinder.
Let µ̂ be a σ-invariant probability, and let µ be its renormalized restriction to [01].
Remember that

∫
rdµ = 1

bµ([01]) . Then we have

hbµ(σ) +
∫
γφβdµ̂− P(γ, β) ≤ 0

�

µ̂([01])
(
hµ(g) +

∫
γ · Sr(x)(φβ)(x) − P(γ, β)r(x)dµ(x)

)
≤ 0,

with equality if and only if µ̂ is an equilibrium state. The last inequality yields
that the pressure for the local system and for Z = P(γ, β) is non-negative. It is
known (see [3]) that Z �→ λZ is decreasing. Then, log λP(γ,β) ≥ 0 = logλZ0 yields
P(γ, β) ≤ Z0. As we already had Z0 ≤ P(γ, β), we finally have equality. Uniqueness
of the equilibrium state follows from uniqueness of the equilibrium state for the local
system.

The fact that µ̂Z is a quasi-conformal measure follows from the fact that µZ

is equivalent to νZ . We leave to the reader to check that νZ can be extended in a
unique way as a conformal measure.

7.3. End of the proof

Proposition 7.2. For every γ and β we have Zc(γ, β) = 0.

Proof. We recall that the transfer operator is defined by

LZ,γ,β(�[01])(w) :=
∑

v∈[01],g(v)=w

eSr(v)(γφβ)(v)−r(v)Z , w ∈ [01].

The point v is of the form v = 01m0n−1w. In that case we have r(v) = 1+m+n−
1 + 1 = m+ n+ 1. Therefore we get

LZ,γ,β(�[01])(w) =
∑
n≥1

∑
m≥1

eS1+m+n(γφβ)(01m0n−1w)−(n+m+1)Z.
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Now we have

S1+m+n(φβ)(01m0n−1w) = φβ(01m0n−1w) + Sm(φβ)(1m0n−1w)

+φβ(10nw) + Sn−1(φβ)(0n−1w),

and using Lemma 7.3 we get for m ≥ 1

S1+m+n(φβ)(01m0n−1w) ≥ a1 +
m∑

k=1

uk +
n−1∑
k=2

ak =
n−1∑
k=1

ak +
m∑

k=1

uk

≥ −2 log(gβ(n+ 1))− 2 log
(
gα(m+ a) + 2β − 1
gα(1 + a) + 2β − 1

)

+ 2 log gβ(1)− 2 log

(
1 +

(3
2 )β − 1

2β − (3
2 )β

)
, (7.14)

S1+m+n(φβ)(01m0n−1w) ≤
n−1∑
k=1

bk +
m∑

k=1

vk

≤ −2 log
(
gβ(n+ 1) +

(
1 +

1
1 + a

)α

− 1
)

− 2 log
(
gα(m+ a) + 2(2β − 1)
gα(1 + a) + 2(2β − 1)

)

+ 2 log
(
gβ(1) +

(
1 +

1
1 + a

)α

− 1
)

+ v1. (7.15)

Let us set

A(β) :=
gβ(1)(

1 + ( 3
2 )β−1

2β−( 3
2 )β

) =
1

(2β − 1)
(
1 + ( 3

2 )β−1

2β−( 3
2 )β

) > 0,

B(β) :=
1(

1 + ((3
2 )β − 1) 2.2β−( 3

2 )β−1

(2β−( 3
2 )β)(2β−1)

)( 2β−( 3
2 )β

2β−1

) 1
(3
2 )β − 1

> 0.

Then, (7.14) and (7.15) yield

LZ,γ,β(�[01])(w)

≥ A2γ(β)e−Z

+∞∑
n=1

((
1 +

1
n+ 1

)β

− 1

)2γ

e−nZ


×
1 +

(
1 +

(3
2 )β − 1

2β − (3
2 )β

)2γ +∞∑
m=2

( (
1 + 1

m+a

)α − 1
1

2β−1
+
(
1 + 1

m+a

)α − 1

)2γ

e−mZ

 ,
(7.16)
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LZ,γ,β(�[01])(w)

≤ B2γ(β)e−Z

+∞∑
n=1

(1 + 1
n+1

)β − 1

1 + (1+ 1
n+1)

β−1

gα(1)


2γ

e−nZ


×
1 +

(
2 +

(3
2 )β − 1

2β − (3
2 )β

)2γ +∞∑
m=2

( (
1 + 1

m+a

)α − 1
1

2β−1 + 2
(
1 + 1

m+a

)α − 2

)2γ

e−mZ

 .
(7.17)

Now, the four series in (7.16) and (7.17) have a general term equivalent to 1
n2γ e

−nZ

or 1
m2γ e

−mZ when n or m go to +∞. Hence, we get Zc = 0 and the proposition is
proved.

Proposition 7.3. For any γ ≤ 1
2 , for any β ≤ 1 and for any w in 01 we have

lim
Z↓0

λZ = +∞.

For any γ > 1
2 , there exists βc = βc(γ) such that for any β < βc and for any w in

01 we have

lim
Z↓0

λZ > 1.

Proof. The function x �→ (1+x)β−1− β
2x is increasing on the interval [0, 2

1
1−β −1].

This interval contains [0, 1]. Therefore, for every β < 1 and for every n ≥ 1,(
1 +

1
n

)β

− 1 ≥ β

2n
.

Therefore, we get

A2γ(β)

+∞∑
n=1

((
1 +

1
n+ 1

)β

− 1

)2γ


≥
(

β

2β − 1

)2γ 1

22γ
(
2 + ( 3

2 )β−1

2β−( 3
2 )β

)2γ (ζ(2γ)− 1), (7.18)

where ζ(z) = 1 + 1/2z + 1/3z + · · · . Then, if γ ≤ 1
2 , for every w,

limZ↓0 LZ,γ,β(�[01])(w) = +∞. This proves the proposition for the case γ ≤ 1
2 .

We now deal with the case γ > 1
2 .

All the terms from the right-hand side in (7.18) are bounded from below away

from 0 when β goes from 0 to 1. This also holds for ( 3
2 )β−1

2β−( 3
2 )β .

Let us set H(Z) :=
∑+∞

m=1(
(1+ 1

m+a+1 )α−1
1

2β−1
+(1+ 1

m+a+1 )α−1
)2γe−mZ. Note that H(0) con-

verges (for fixed β).
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Our strategy is to show that H(0) goes to +∞ when β goes to 0. This yields
that for every β sufficiently small, say β ≤ βc,[

1 +

(
1 +

(3
2 )β − 1

2β − (3
2 )β

)
H(0)

](
β

2β − 1

)2γ 1

22γ
(
2 + ( 3

2 )β−1

2β−( 3
2 )β

)2γ (ζ(2γ)− 1) > 1.

Then, inequality (7.16) shows that for every w in [01],

lim
Z↓0
LZ,γ,β(�[01])(w) > 1.

In other words, the spectral radius λZ is larger than 1 for every Z small enough
(and β ≤ βc).

Hence, we now analyze for β > 0 the function

S(β, γ) =
∞∑

m=1

(
(1 + 1

m+a+1 )α − 1

( 1
2β−1

+ [(1 + 1
m+a+1 )α − 1])

)2γ

,

for fixed values of β, α, γ.
We remind the reader that when β → 0 we have that α→∞ and a→∞.
We are interested now in the upper bound.
Note that

S(β, γ) =
∞∑

m=1

(
1− 1

1 + (2β − 1)
[(

1 + 1
m+a+1

)α − 1
])2γ

.

Consider

u(α,m, a) =
(

1 +
1

m+ a+ 1

)α

− 1 = eα log(1+ 1
m+a+1 ) − 1.

As log(x) ≥ 1− 1
x , we get

u(α,m, a) = eα log(1+ 1
m+a+1 ) − 1 ≥ eα(1− 1+m+a

2+m+a ) − 1 ≥ eα 1
2+m+a − 1.

Then,

S(β, γ) ≥
∞∑

m=1

(
1− 1

1 + (2β − 1)
[
eα( 1

2+m+a ) − 1
])2γ

.

From elementary calculus we get that last summation is, up to a multiplicative
constant, of the same order as the integral∫ ∞

0

(
1− 1

1 + (2β − 1)
[
eα( 1

2+t+a ) − 1
])2γ

dt.

Consider the change of variable s = eα( 1
2+t+a ) − 1. Then,

ds = − α

(2 + t+ a)2
eα( 1

2+t+a )dt = − 1
α

(s+ 1) log2(s+ 1)dt.
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Note that s → 0 as t → ∞, and s → e
α

2+a − 1, as t → 0. We claim that
e

α
2+a − 1 ∼ C

β as β → 0, where C is some universal constant (we remind that ∼
means that the quotient goes to 1).

Indeed, (1 + 1
1+a )α − 1 = 1

( 3
2 )β−1

− 1
2β−1

behaves like log(2)−log( 3
2 )

log(2) log( 3
2 )

1
β =

1
β 1.02361 . . . , as β goes to 0.

As α log(1 + 1
1+a ) ∼ α

1+a , when a and α are large, then e
α

1+a − 1 ∼ C
β . Finally,

from α
2+a = α

1+1+a = α
1+a

1
1

1+a +1
, we get the claim.

We return to our main estimation. After the change of variables we get for some
fixed constants 0 < C′ < C∫ C

β

0

(
1− 1

1 + (2β − 1)s

)2γ [ 1
α

(s+ 1) log2(s+ 1)
]−1

ds

≥
∫ C

β

C′
β

(
1− 1

1 + (2β − 1)s

)2γ [ 1
α

(s+ 1) log2(s+ 1)
]−1

ds.

For any fixed 0 ≤ γ ≤ 1, and any s such that C′/β ≤ s ≤ C/β, the expression(
1− 1

1 + (2β − 1)s

)2γ

,

is bounded from above and from below far away from zero (uniformly in β). There-
fore, there exists a universal positive constant K such that∫ C

β

C′
β

(
1− 1

1 + (2β − 1)s

)2γ [ 1
α

(s+ 1) log2(s+ 1)
]−1

ds

≥ K
∫ C

β

C′
β

[
1
α

(s+ 1) log2(s+ 1)
]−1

ds

= Kα

[ −1
log(s+ 1)

]C
β

C′
β

= Kα

[
1

log
(

C′
β + 1
) − 1

log
(

C
β + 1
)]

= Kα

 log
(

( C
β +1)

( C′
β +1)

)
log(C′+β

β ) log(C+β
β )


∼ K 1

β

C3

(A1 − log(β))(A2 − log(β))
∼ C4

β log2(β)
,

for some constant A1, A2, C3 > 0 and C4 > 0 (remember α = 1
2β−1

). Therefore,
for fixed γ, we have that S(β, γ)→∞ when β → 0.

Now, Propositions 6.2 and 7.3 prove Theorem C.
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