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 3 

Abstract 37 

Diagnostic strategies currently used for pneumonia are time-consuming, lack 38 

accuracy and suffer from large inter-observer variability. Exhaled breath contains 39 

thousands of volatile organic compounds (VOCs), which include products of host and 40 

pathogen metabolism. In this systematic review we investigated the use of so–called 41 

‘breathomics’ for diagnosing pneumonia. 42 

A Medline search yielded 18 manuscripts reporting on animal and human studies 43 

using organic and inorganic molecules in exhaled breath, that all could be used to 44 

answer whether analysis of VOC profiles could potentially improve the diagnostic 45 

process of pneumonia. Papers were categorised based on their specific aims; the 46 

exclusion of pneumonia; the detection of specific respiratory pathogens; and whether 47 

targeted or untargeted VOC analysis was used. 48 

Ten studies reported on the association between VOCs and presence of pneumonia. 49 

Eight studies demonstrated a difference in exhaled VOCs between pneumonia and 50 

controls; in the individual studies this discrimination was based on unique sets of 51 

VOCs. Eight studies reported on the accuracy of a breath test for a specific 52 

respiratory pathogen: five of these concerned preclinical studies in animals. All 53 

studies were valued as having a high risk of bias, except for one study that used an 54 

external validation cohort. 55 

The findings in the identified studies are promising. However, as yet no breath test 56 

has been shown to have sufficient diagnostic accuracy for pneumonia. We are in 57 

need of studies that further translate the knowledge from discovery studies to clinical 58 

practice. 59 

 60 

 61 

Key words: Exhaled breath analysis; Pneumonia; Diagnosis; Breathomics; Volatile 62 

Organic Compounds 63 

  64 
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 4 

Introduction 65 

The prevalence of community-acquired pneumonia (CAP)1 and nosocomial 66 

pneumonia2,3 is high with substantial impact on morbidity and mortality4–10. Treatment 67 

of pneumonia is a balance between optimal antibiotic therapy for the patient (e.g. a 68 

combination of antibiotics that effectively target the causative pathogen) and for the 69 

community (e.g. minimizing the duration of exposure to broad spectrum antibiotics to 70 

limit antimicrobial resistance)11. In the ideal world, this balance would be met through 71 

a diagnostic test that is not only quick, non-invasive, reliable and available in real-72 

time at the bedside, but most of all (1) excludes pneumonia in order to withhold 73 

antibiotic treatment from patients without an infection; (2) enables targeting of 74 

antibiotic treatment of the causative pathogen; and (3) facilitates evaluation of the 75 

treatment response aiming to refine antibiotic de-escalation and duration of antibiotic 76 

treatment.  77 

‘Breathomics’ refers to the analysis of volatile compounds in exhaled breath 78 

that resulted from, or are affected by metabolism12. The complete human breathome 79 

consists of thousands of compounds13–17. The volatile organic compounds (VOCs) 80 

that are present in the exhaled breath have various origins. Exogenous VOCs are 81 

derived from the environment and are taken in through inhalation or ingestion (e.g. 82 

via food or drugs). VOCs that are produced within the body can emerge as products 83 

of physiological metabolic processes from the host, as products of metabolic 84 

processes from microbial pathogens, or results from of a host response to 85 

pathological processes such as infection or inflammation18–20. Changes, therefore, in 86 

host or microbial metabolism might lead to an impact on the composition of the 87 

exhaled breath profile.  88 

In this systematic review we aim to investigate the potential role of exhaled 89 

breath analysis for diagnosing pneumonia, by providing: (1) sensitive detection of 90 

pneumonia; (2) specific detection of the causative organism(s); and (3) a tool to 91 

monitor the treatment response after the initiation of antibiotics (see Figure 1). We 92 
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 5 

hypothesize that changed concentrations of VOCs in exhaled breath can be used to 93 

accurately discriminate patients with pneumonia from patients without pneumonia 94 

and may be used for specific identification of the causative pathogen.  95 

 96 

Methods 97 

Search 98 

This is a systematic review following PRISMA (Preferred Reporting Items for 99 

Systematic Reviews and Meta-Analyses) guidelines, performed by two independent 100 

researchers. We searched Medline for potentially relevant articles up to March 7th 101 

2017, using the following search terms: “(((Chromatography OR Spectrometry OR 102 

MS OR (Volatile AND Organic) OR Metabol*) AND breath) OR (volatile fingerprint*) 103 

OR (breathprin*) OR (electronic AND nose)) AND (pneumonia OR (lung infection*) 104 

OR (respiratory infection*) OR (lung bacteria*) OR (respirator* bacteria*))”. There 105 

was no restriction with respect to human or animal studies; but articles written in a 106 

language other than English and studies performed in vitro were excluded. Two 107 

authors (PvO and LB) reviewed the abstracts and/or full-text manuscripts 108 

independently and selected those that were regarded to be relevant. No 109 

disagreement on selection of articles was seen between the two reviewers.  110 

Selection criteria   111 

Inclusion criteria were (1) human or animal studies that (2) studied volatiles in 112 

exhaled breath to (3) diagnose bacterial pneumonia or identify the causative 113 

organism of pneumonia. Objective 3 as mentioned in the introduction (the evaluation 114 

of the treatment effect in patients with pneumonia) was let go, due to a lack of 115 

studies specifically investigating this. We excluded in vitro studies and studies that 116 

focused on very specific atypical causative organisms (such as Aspergillus).  117 

Reference test  118 

The diagnosis of pneumonia could be based on clinical symptoms alone, or could be 119 

supported by chest radiography and/or microbiology testing (cultures of endotracheal 120 
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 6 

aspirate (ETA), nondirected bronchial lavage (NBL or mini-BAL) or bronchoalveolar 121 

lavage (BAL)). For community-acquired pneumonia, the combination of clinical signs 122 

and symptoms with an evident infiltrate on the chest radiograph was considered a 123 

good reference test, while anything less was considered too nonspecific. For 124 

ventilator-associated pneumonia, clinical signs, laboratory parameters, an infiltrate 125 

on chest radiography and quantitative cultures of BAL or NBL were considered an 126 

appropriate reference standard.  127 

Index test 128 

Advances in chemical analytics have enabled the measurement of inorganic21,22 and 129 

organic compounds23–25 in biological matrices such as exhaled breath. Volatile 130 

molecules in breath can be studied via a targeted and an untargeted approach12. 131 

With the targeted approach the researcher identifies the molecules of interest 132 

beforehand and uses analytical assays to measure those compounds quantitatively. 133 

The untargeted approach entails analytical techniques that measure multiple 134 

molecules present in the breath. Untargeted analysis can be performed with mass-135 

spectrometry based techniques aimed to identify a variety of VOCs26 or with so-136 

called electronic nose technology that is based on pattern recognition14,27,28. The 137 

analytical details of these techniques are discussed in detail in previous 138 

publications27,29. Figure 2 summarises the analytical methods that will be referred to 139 

in this systematic review. No single method is superior to the others, they provide 140 

different types of information, therefore the quality of the index test was assessed 141 

based on the use of an independent validation cohort, which has been shown to limit 142 

bias27. 143 

Methodological assessment and categorisation 144 

The methodological quality of each selected full manuscript was evaluated using the 145 

QUADAS-2 tool by the same authors as describes above30. Risk of bias was 146 

assessed concerning patient selection, the interpretation or conduct of the index test, 147 

the interpretation or conduct of the reference standard and the patient flow. The 148 
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 7 

papers were classified as either (1) studies concerning sensitive detection of the 149 

presence of pathogenic bacteria, either concerning studies investigating inorganic 150 

compounds, untargeted analysis of VOCs or eNose technology for discrimination 151 

between pneumonia and no pneumonia; or (2) studies investigating the use of VOC 152 

analysis for specific detection of pathogenic bacteria, in animals or in humans. 153 

 154 

 155 

Results 156 

The search was last updated on March 7th 2017 and yielded 321 articles, of 157 

which 18 were selected after screening on title/abstract and full text (Figure 3). Of 158 

these, 13 studies were in humans and five were performed in murine models. Eight 159 

studies dealt with the detection of specific pathogenic bacteria, the others focused on 160 

discrimination between patients with and without pneumonia. One of the studies 161 

discussed treatment response. Table 1 demonstrates the areas of interest for each 162 

study and summarises the methodology used.  163 

The studies were critically appraised and risk of bias was assessed regarding 164 

patient selection, index test, reference standard and flow and timing (Table 2). The 165 

domain ‘patient selection’ was considered not applicable in the five animal studies. 166 

For most studies the risk of bias was valued as high, except for one that used a 167 

validation cohort31, resulting in a low risk of bias regarding the index test. 168 

 169 

Discrimination between patients with and without pneumonia  170 

Detection of volatile inorganic compounds 171 

NO was not increased in the breath of a small group of patients admitted with 172 

pneumonia, when compared with control patients32. As expected it was elevated in 173 

patients with an exacerbation of asthma. This result was in contrast to the results of a 174 

larger study at less risk of bias (Table 2) in which exhaled NO was measured in 175 

tracheal and nasal gas in patients ventilated within 72 hours of ICU admission31. 176 
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 8 

Some of these patients were later diagnosed with VAP and this was used as the 177 

reference standard. A validation cohort consisting of similar patients to the first group 178 

was used to determine sensitivity and specificity of the NO threshold that was 179 

calculated in the preceding group. NO concentrations were measured at multiple 180 

sampling points in the airway as well as in the nasal cavity, and significantly higher 181 

NO levels were found at all points in patients with pneumonia. Of these, the 182 

maximum (end-expiratory) tracheal NO values resulted in the highest sensitivity and 183 

specificity for the diagnosis of pneumonia: 88% and 76% respectively (see Table 1). 184 

Results from one study with an imperfect reference test, namely subjective 185 

symptoms of lower respiratory infection, suggested a possible relationship between 186 

elevated exhaled CO levels and the clinical presence of pneumonia33. Notably, the 187 

exhaled CO concentration followed similar trends as the patients’ symptoms after 188 

antimicrobial treatment.   189 

 190 

Untargeted analysis of VOCs  191 

The abundance of particular VOCs seems to be different in the breath of 192 

mechanically ventilated patients with pneumonia compared with those without 193 

pneumonia34–36. The results of studies using gas chromatography and mass 194 

spectrometry (GC-MS, see Figure 2), however, were not uniform. The described 195 

VOCs differed between studies and two compounds that were identified as being 196 

associated with VAP (ethanol and heptane) showed conflicting results in two studies 197 

(as shown in Table 3). Differences between studies regarding investigated cohorts, 198 

reference standards and outcome measures (sensitivity, specificity and/or accuracy) 199 

can be found in Table 1. Nevertheless, breath tests showed promising discrimination 200 

between patients with and without pneumonia in the included clinical studies. The 201 

most frequently isolated pathogens in these studies were Staphylococcus aureus, 202 

Haemophilus influenzae, Pseudomonas aeruginosa, Escherichia coli and Klebsiella 203 

pneumoniae34–36. 204 
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 9 

 205 

Electronic nose technology 206 

Preliminary results indicated a potential correlation between chest CT scans37 or 207 

Clinical Pulmonary Infection Score (CPIS)38 and the subsequent eNose sensor 208 

responses in mechanically ventilated patients. The eNose (see Figure 2) seemed to 209 

distinguish patients with and without bacterial infection39 (Table 1). When specifically 210 

focusing on diagnosis of VAP, the eNose appeared to have good accuracy,  211 

moderate sensitivity and a rather poor specificity40.   212 

 213 

Specific detection of pathogens by VOC analysis 214 

Secondary electrospray ionization – mass spectrometry (SESI-MS, see 215 

Figure 2) breathprint analysis was used to investigate the ability to identify respiratory 216 

infection caused by strains of Haemophilus influenzae, Klebsiella pneumoniae, 217 

Legionella pneumophila, Moraxella catarrhalis, Pseudomonas aeruginosa, 218 

Staphilococcus aureus or Streptococcus pneumoniae in mice41–44. Overall SESI-MS 219 

breathprints seemed to be able to distinguish between respiratory infection and no 220 

infection in mice and enabled differentiation between strains of aforementioned 221 

pathogens. A high degree of variation was seen when translating in vitro experiments 222 

to the in vivo VOC fingerprints42. The relative contribution of bacterial metabolism and 223 

host response on the exhaled breath profile could be inferred through an experiment 224 

in which mice were exposed to bacterial cell lysates45. This experimental set-up, 225 

using these bacterial cell lysates, allows for host and pathogen derived metabolites 226 

to be differentiated. The obtained SESI-MS breathprints changed over time after 227 

lysate exposure and appeared to 1) correlate to the host immune response; and 2) 228 

distinguish active infections of P. aeruginosa or S. aureus from cell lysate exposure.  229 

Also using GC-MS specific VOCs in the exhaled breath seemed to reflect the 230 

presence of particular microorganisms in the respiratory tract and, in line with the use 231 

of SESI-MS, direct translation of biomarkers from the in vitro to the in vivo setting 232 
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 10 

proved difficult46,47. In clinical studies, the evidence for specific detection of particular 233 

causative pathogens seemed speculative; as the published papers did not provide 234 

data on the accuracy of such measurements46. The only study that reported a high 235 

diagnostic accuracy for the identification of a causative pathogen focused on 236 

Acinetobacter baumannii. A set of eight compounds resulted in excellent separation 237 

of patients with A. baumannii pneumonia, colonization with the same bacterium and 238 

controls. The major limitation of the described studies was that they did not evaluate 239 

the diagnostic accuracy of a breath test in the clinical scenario where such a test 240 

would be used; e.g. in patients with a clinical suspicion of VAP.  241 

Discussion 242 

Based on our systematic review, the presence of certain profiles or patterns 243 

of volatile molecules in the exhaled breath appeared to be associated with 244 

pneumonia. However, the precise identity of these volatile biomarkers remains 245 

largely unknown. Furthermore, none of the studied breath tests delivered results with 246 

sufficient clinical diagnostic accuracy that would likely impact on clinical decisions. 247 

Most of the available studies provided feasibility or proof of concept data with a 248 

substantial risk of bias and did not test a clear, pre-defined hypothesis.  249 

There are two leads to follow in the diagnosis of pneumonia: measurement of 250 

the host response or direct identification of the pathogen48,49, both important 251 

establishing the ideal diagnostic test. In vitro results suggested that different 252 

pathogenic bacteria produced different volatile molecules, which might be used for 253 

identification20. One of the major challenges is that bacterial growth and metabolism 254 

are influenced by the chosen culture media, timing and the selection of particular 255 

strains and, therefore, may not be representative of growth in vivo20. A sterile 256 

inflammatory response altered the VOC release in several animal models of lung 257 

injury21. Thus, pneumonia may be recognized through exhaled breath analysis by 258 

detection of molecules produced either directly by the pathogen or through an altered 259 

host metabolism associated with the host response. Animal studies might offer 260 
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 11 

advantages enabling the investigation of 1) a single bacterial infection, 2) the 261 

influence of timing on disease progression and 3) post-mortem histology for the gold-262 

standard diagnosis of respiratory infection. 263 

This systematic literature review demonstrates that certain volatile molecules 264 

could be useful as possible biomarkers for the diagnosis of pneumonia. One of them 265 

is nitric oxide (NO), a compound that has a bronchodilating and vasodilating effect in 266 

the respiratory tract and plays a key role in local inflammatory response22. NO is 267 

relatively easy to measure and thus forms an attractive candidate for diagnostic 268 

purposes50,51. In the airways NO is produced by endothelial, epithelial and 269 

inflammatory cells. Generation of NO involves the oxidation of the aminoacid L-270 

arginine, a process that is catalysed by the enzyme NO synthase52. An increased 271 

concentration of exhaled NO is seen in asthma, bronchiectasis and sepsis53, and has 272 

also been associated with rhinitis, active pulmonary sarcoidosis and viral respiratory 273 

illnesses52. Table 3 shows other biomarkers of potential interest regarding the 274 

discrimination of patients with and without pneumonia. However, hardly any overlap 275 

is seen between the different VOCs reported in separate studies and they also show 276 

conflicting results for heptane and ethanol. Two studies found an association 277 

between pneumonia and a decrease in exhaled breath acetone. Generally, acetone 278 

is present in large quantities in the exhaled breath. Its decrease in the breath of 279 

pneumonia patients might be explained by a reduced ketogenesis that is seen during 280 

inflammation or infection34.  281 

As soon as a breath test fulfils the requirements for a diagnostic test for 282 

pneumonia, it shall be able to fulfil a role alongside the currently available and 283 

frequently used alternatives54,55 and can either compete with them, or complement 284 

them. The diagnosis of pneumonia relies on a combination of physical examination 285 

and chest radiography56, potentially accompanied by measurement of inflammatory 286 

markers in plasma, urinary antigen testing54, repeated determination of C-reactive 287 

protein (CRP)57 and collecting airway samples for microbiology cultures58. Current 288 

Page 11 of 35 AUTHOR SUBMITTED MANUSCRIPT - JBR-100700.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 12 

diagnostics lack clinical accuracy59 and have high inter-observer variability60. 289 

Microbiology results take 48-72 hours to become positive. The unnecessary 290 

prescription of antimicrobial treatment increases antimicrobial resistance61–63, 291 

whereas applying the wrong antibiotics is likely to increase mortality64–66. In order to 292 

withhold antibiotics, the CPIS67 combines clinical and physiological data, pulmonary 293 

radiography and microbiology results into a numeric score that can be used to 294 

exclude pneumonia with moderate accuracy due to substantial inter-observer 295 

variability68,69. Additionally, biomarkers like pulmonary interleukin-1β (IL-1β) and 296 

interleukin-8 (IL-8) measured in BAL fluid have shown promising results as 297 

discriminators for VAP70,71. In the near future Polymerase Chain Reaction (PCR) of 298 

respiratory samples might be used to identify the causative pathogen rapidly and 299 

specifically72–74 and serum procalcitonin has been proposed as an attractive 300 

candidate for determining antibiotic duration75,76. How would exhaled breath analysis 301 

compete with these alternatives? In contrast to blood or BAL samples, breath can be 302 

collected completely non-invasive and it is continuously available. A breath test could 303 

also provide results rapidly and cost-effectively, which is important in the setting of 304 

pneumonia. A breath test with the right test characteristics could thus provide real 305 

opportunities for improved real-time diagnostic utility, patient acceptability and cost 306 

effectiveness.  307 

Many different methods for breath sampling have been described in literature, 308 

including but not limited to: glass syringes, needle traps77 steel or glass tubes filled 309 

with sorbent material and/or breath gas bags (e.g. Tedlar bags). Pre-concentration of 310 

the breath sample could be established through the absorption of the VOCs using for 311 

instance organic polymers (e.g. Tenax TA), graphitized carbon, activated charcoal or 312 

carbon molecular sieves78. A challenge in the process of breath sampling is the 313 

humidity of exhaled breath – especially true for mechanically ventilated patients – 314 

which possibly affects pre-concentration, separation and detection of individual 315 

compounds16. The use of storage containers such as Tedlar Bags has been linked to 316 
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loss of analytes or contamination of samples77. The lack of standardization of 317 

analytical methods leads to a wide variation of results among studies. Application of 318 

a standardised method of exhaled breath analysis would lead to comparable results, 319 

thereby facilitating the potential use of breath biomarkers in the future79.  320 

Based on the results from the studies included in this review, we can 321 

conclude that the VOCs that are measurable in exhaled breath are altered during 322 

pneumonia and can derive from the bacterial metabolism as well as the host 323 

response. However, these results do not yet allow us to link specific compounds to 324 

particular pathogens or disease states, nor does it allow us to pool data from different 325 

experiments or studies due to bias and heterogeneity in experimental procedures. 326 

Future studies should utilize this understanding and not only focus on VOCs 327 

produced by bacteria or the host, but should also combine these two for optimal 328 

diagnostic accuracy. Additionally, a more stringent approach towards the 329 

methodological design of the studies is recommended. This includes following the 330 

STARD guidelines for reporting studies on diagnostic accuracy to limit the amount of 331 

bias80,81. Previous reviews27,82 properly summarised the necessary steps to validate 332 

preliminary results in breath research. Importantly, future studies should focus more 333 

on the clinical application of a breath test. As advocated in this review such a test 334 

would 1) exclude pneumonia in order to withhold antibiotic treatment from patients 335 

without an infection; 2) enable targeting of antibiotic treatment to the causative 336 

pathogen; and/or 3) facilitate evaluation of the treatment response aiming to refine or 337 

stopping antibiotics. To date, most focus has been on VAP rather than on 338 

community-acquired pneumonia, implicating that currently most evidence is available 339 

for this particular respiratory infection aetiology. Therefore, this might also be the 340 

clinical problem that might require direct focus in the forthcoming years of breath 341 

research.  342 

This systematic review of the literature has several strengths and 343 

weaknesses. We chose to apply wide inclusion criteria in order to fully cover the 344 
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literature in this relatively nascent field of research. Naturally, this resulted in a wide 345 

diversity of selected articles and made it impossible to pool data due to the 346 

underlying heterogeneity, which can be seen as a limitation of our review. In general 347 

one can also wonder to what extent the results provided by animal experiments can 348 

be translated to the human situation. This study also has several strengths: clinical 349 

and pre-clinical studies with multiple analytical devices were included and the results 350 

were clustered into the clinical perspective of three scenarios where a biomarker 351 

could alter clinical decision-making.  352 

This review demonstrates that a relationship exists between respiratory 353 

infection and the presence of particular VOCs in the exhaled breath. Presently, no 354 

available breath test is accurate enough to qualify for a role within the diagnostic 355 

process of pneumonia. Future studies should focus on clinical scenarios in which a 356 

breath test could impact on antimicrobial stewardship and should limit bias by strictly 357 

adhering to the latest guidelines.  358 
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 695 

Table Legends 696 

Table 1. Full text selected articles 697 

The selected articles either concern clinical (C) or pre-clinical (P) studies. 698 

Investigated inorganic compounds include nitric oxide (NO) and carbon monoxide 699 

(CO). The investigated study population could be on ICU patients in general, or could 700 

involve a specific target group, e.g. patients with COPD (Chronic obstructive 701 

pulmonary disease), Community-acquired pneumonia (CAP) or Ventilator-associated 702 

pneumonia (VAP). As a reference test a protected specimen brush (PSB), 703 

bronchoalveolar lavage (BAL) or endotracheal aspirate (ETA) was used. The used 704 

index test to analyse Volatile Organic Compounds (VOCs) could involve secondary 705 

electrospray ionization – mass spectrometry (SESI-MS), Clinical Pulmonary Infection 706 

Score (CPIS), eNose technology or gas chromatography – mass spectrometry (GC-707 

MS): either sensitivity (sens) and specificity (spec), or accuracy has been displayed 708 

in the Table.   709 

*For details: see Table 3. 710 

 711 

Table 3. VOCs identified by GC-MS: The VOCs are either increased (↑) or 712 

decreased (↓) in the exhaled breath of pneumonia patients when compared to 713 

patients without pneumonia.  714 

Page 28 of 35AUTHOR SUBMITTED MANUSCRIPT - JBR-100700.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 29 

T
a
b

le
 1

. F
u

ll te
x
t s

e
le

c
te

d
 a

rtic
le

s
 

                             

Page 29 of 35 AUTHOR SUBMITTED MANUSCRIPT - JBR-100700.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 30 

Table 2. QUADAS-2 (adapted version) 

Study   Risk of Bias       

  Year Patient 
selection 

Index 
test 

Reference 
standard 

Flow and 
timing 

Adrie31  2001 No No No No 

Ali-Ali32 2001 Yes Yes Yes No 

Bean44 2014 N/A Yes No No 

Bean45 2015 N/A Yes No No 

Biernacki33 2001 Yes Yes Yes No 

Chiu83 2014 Yes Yes Yes Unclear 

Filipiak46 2015 Yes Yes No No 

Fowler35  2015 Unclear Yes No No 

Gao47 2016 Yes Yes No No 

Hockstein37 2004 Yes Yes Yes No 

Hockstein38 2005 Yes Yes Yes No 

Schnabel34  2015 Unclear Yes No No 

Schnabel40 2015 No Yes No No 

Van Geffen39 2016 Yes Yes No No 

Van Oort36 2017 No Yes No No 

Zhu42  2013 N/A Yes No No 

Zhu41  2013 N/A Yes No No 

Zhu43  2013 N/A Yes No No 
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Table 3. VOCs identified by GC-MS: increased (↑) or decreased (↓) in breath of 

pneumonia vs. no pneumonia patients 

Classification Volatile Organic Compound Reporting article 

    Schnabel34 Fowler35 Van Oort
36

 

Ketone Acetone ↓  ↓ 

 2-methyl cyclopentanone  ↓  

 Methylisobutylketone   ↓ 

Aldehyde Acrolein ↓   

 Nonanal   ↑  

 Tetradecanal ↑   

Ether Sevoflurane   ↓ 

 Tetrahydrofuran ↓   

Alkane 2-methyl butane ↑   

 2-ethoxy-2-methyl propane   ↓ 

 Carane ↑   

 Dodecane ↓   

 Heptane ↑ ↓  

 Tetradecane ↑   

 2,6,11,15-tetramethyl-hexadecane  ↑  

Alkene Cyclohexene   ↓ 

Terpene 3-carene  ↑  

Alcohol Ethanol ↑ ↓  

 Isopropyl Alcohol ↓   

 Hexafluoroisopropanol   ↓ 

 1-propanol   ↓ 

Arene Ethylbenzene ↑   

Ester N-butyric acid 2-ethylhexyl ester  ↑  

Sulfide Carbon disulfide   ↓ 

Amide N-cyclohexyl-N'(2-hydroxyethyl)thio-urea ↓   

Page 31 of 35 AUTHOR SUBMITTED MANUSCRIPT - JBR-100700.R1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 32 

Figure Legends 

Figure 1. The aspired contribution of breath analysis regarding antibiotic stewardship 

for pneumonia (↑: increase)   

 

Figure 2.  

Exhaled breath analysis for the prediction of pneumonia: several available 

techniques and accompanying analytical principles. 

 

eNose: Conventional electronic noses consist of an array of gas sensors using 

transducer principles (e.g. through metal oxide sensors, conducting polymer sensors 

or surface or bulk acoustic wave sensors)84, whereas new approaches involve optical 

sensor systems and colorimetric sensors17; GC-MS: Gas chromatography – mass 

spectrometry is currently seen as the preferred method for separation, detection and 

identification of individual VOCs; SESI-MS: Secondary electrospray ionization – 

mass spectrometry enables rapid detection of VOCs without the need for sample 

pretreatment85. After introduction into the SESI reaction chamber the sample passes 

through an electrospray cloud that ionizes the volatiles, after which the ionized VOCs 

are detected in the mass spectrometer. The method cannot be used to quantify 

individual VOCs, as many volatiles have similar molecular weights and the 

methodology relies on pattern recognition. GC-MS and SESI-MS can both be used 

for targeted and untargeted analysis.  

 

Figure 3. Flow diagram of article selection.  

 

VOC: Volatile Organic Compound; GC-MS: Gas chromatography – mass 

spectrometry; SESI-MS: Secondary electrospray ionization – mass spectrometry. 
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Figures 

Figure 1 
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Figure 2.  
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Figure 3.  
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