

The University of Manchester Research

The potential role of exhaled breath analysis in the diagnostic process of pneumonia - a systematic review

DOI: 10.1088/1752-7163/aaa499

Document Version

Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

van Oort, P., Povoa, P., Schnabel, R., Dark, P., Artigas, A., Bergmans, D., Felton, T., Coelho, L., Schultz, M. J., Fowler, S. J., & Bos, L. (2018). The potential role of exhaled breath analysis in the diagnostic process of pneumonia - a systematic review. *Journal of Breath Research*. https://doi.org/10.1088/1752-7163/aaa499

Published in:

Journal of Breath Research

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

ACCEPTED MANUSCRIPT

The potential role of exhaled breath analysis in the diagnostic process of pneumonia – a systematic review

To cite this article before publication: Pouline van Oort et al 2018 J. Breath Res. in press https://doi.org/10.1088/1752-7163/aaa499

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2018 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence <u>https://creativecommons.org/licences/by-nc-nd/3.0</u>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

2 3 1 The Potent 5 2 7	ial Role of Exhaled Breath Analysis in the Diagnostic Process of Pneumonia – A Systematic Review
5 1 The Potent 5 2 7 2	of Pneumonia – A Systematic Review
5 2 7 2 2	of Pneumonia – A Systematic Review
7 2 Deviliae M. D	
8 3 Pouline M. P	. van Oort ^{1*} , Pedro Povoa ^{2,3} , Ronny Schnabel ⁴ , Paul Dark ⁵ , Antonio
10 4 Artigas ⁶ , Der	nis C.J.J. Bergmans ⁴ , Timothy Felton ⁵ , Luis Coelho ^{2,3} , Marcus J.
12 5 Schultz ¹ , Ste	phen J. Fowler ⁵ and Lieuwe D. Bos ¹ on behalf of the BreathDx
14 6 Consortium ⁺	
16 17 7	
18 19 8 ¹ Departmen [*]	t of Intensive Care, Academic Medical Centre, Amsterdam, The
20 21 9 Netherlands	
23 10 ² Hospital de 24	São Fransisco Xavier, Centro Hospitalar Lisboa Ocidental, Lisbon,
25 11 Portu 26	gal
27 12 ³ NOVA Med	ical School, CEDOC, New University of Lisbon, Lisbon, Portugal
29 13 ⁴ Maastricht U	University Medical Centre+, Maastricht, The Netherlands
³¹ 14 ⁵ Division of	nfection, Immunity and Respiratory Medicine, School of Biological
³³ ₃₄ 15 Sciences, Fa	culty of Biology, Medicine and Health, Manchester Academic Health
 36 36 37 36 36 37 	tre, The University of Manchester and University Hospital of South
38 17 Manchester, 39	NHS Foundation Trust, Manchester UK
40 18 ⁶ Critical Care	e Department, CIBER Enfermedades Respiratorias, Corporacion
 42 19 Sanitaria Uni 43 	versitaria Parc Tauli, Sabadell, Spain
44 20 45	
40 21 * Correspond 47	lence: Pouline M.P. van Oort, Dept of Intensive Care, Academic Medical
40 22 Centre, Meib	ergdreef 9, 1105 AZ Amsterdam, The Netherlands. Email:
51 23 pouline.vano	ort@gmail.com
53 24 54	
55 25 [↑] A list of all n 56	tembers of the BreathDx Consortium: Waqar Ahmed, Antonio Artigas,
57 26 Dennis C.J.J	. Bergmans, Lieuwe D. J. Bos, Marta Camprubi, Luis Coelho, Paul Dark,
60 27 Alan Davie, E	Emili Diaz, Gemma Goma, Timothy Felton, Stephen J. Fowler, Royston

28 Goodacre, Hugo Knobel, Oluwasola Lawal, Jan-Hendrik Leopold, Ignacio Martin-

- 29 Loeches, Tamara Nijsen, Pouline M. P. van Oort, Pedro Povoa, Craig Johnson,
- 30 Nicholas J. W. Rattray, Guus Rijnders, Ronny Schnabel, Marcus J. Schultz, Ruud
- 31 Steenwelle, Peter J. Sterk, Jordi Valles, Fred Verhoeckx, Anton Vink, Hans Weda,
- 32 Tineke Winters, Tetyana Zakharkina

- 34 Word count abstract: 237
- 35 Word count text: 3183
- **Running Title:** Exhaled Breath Analysis for Diagnosis of Pneumonia

37 Abstract

38 Diagnostic strategies currently used for pneumonia are time-consuming, lack 39 accuracy and suffer from large inter-observer variability. Exhaled breath contains 40 thousands of volatile organic compounds (VOCs), which include products of host and 41 pathogen metabolism. In this systematic review we investigated the use of so-called 42 'breathomics' for diagnosing pneumonia.

A Medline search yielded 18 manuscripts reporting on animal and human studies using organic and inorganic molecules in exhaled breath, that all could be used to answer whether analysis of VOC profiles could potentially improve the diagnostic process of pneumonia. Papers were categorised based on their specific aims; the exclusion of pneumonia; the detection of specific respiratory pathogens; and whether targeted or untargeted VOC analysis was used.

49 Ten studies reported on the association between VOCs and presence of pneumonia. 50 Eight studies demonstrated a difference in exhaled VOCs between pneumonia and 51 controls; in the individual studies this discrimination was based on unique sets of 52 VOCs. Eight studies reported on the accuracy of a breath test for a specific 53 respiratory pathogen: five of these concerned preclinical studies in animals. All 54 studies were valued as having a high risk of bias, except for one study that used an 55 external validation cohort.

The findings in the identified studies are promising. However, as yet no breath test has been shown to have sufficient diagnostic accuracy for pneumonia. We are in need of studies that further translate the knowledge from discovery studies to clinical practice.

Key words: Exhaled breath analysis; Pneumonia; Diagnosis; Breathomics; Volatile
Organic Compounds

65 Introduction

The prevalence of community-acquired pneumonia (CAP)¹ and nosocomial pneumonia^{2,3} is high with substantial impact on morbidity and mortality^{4–10}. Treatment of pneumonia is a balance between optimal antibiotic therapy for the patient (e.g. a combination of antibiotics that effectively target the causative pathogen) and for the community (e.g. minimizing the duration of exposure to broad spectrum antibiotics to limit antimicrobial resistance)¹¹. In the ideal world, this balance would be met through a diagnostic test that is not only quick, non-invasive, reliable and available in real-time at the bedside, but most of all (1) excludes pneumonia in order to withhold antibiotic treatment from patients without an infection; (2) enables targeting of antibiotic treatment of the causative pathogen; and (3) facilitates evaluation of the treatment response aiming to refine antibiotic de-escalation and duration of antibiotic treatment.

'Breathomics' refers to the analysis of volatile compounds in exhaled breath that resulted from, or are affected by metabolism¹². The complete human breathome consists of thousands of compounds^{13–17}. The volatile organic compounds (VOCs) that are present in the exhaled breath have various origins. Exogenous VOCs are derived from the environment and are taken in through inhalation or ingestion (e.g. via food or drugs). VOCs that are produced within the body can emerge as products of physiological metabolic processes from the host, as products of metabolic processes from microbial pathogens, or results from of a host response to pathological processes such as infection or inflammation^{18–20}. Changes, therefore, in host or microbial metabolism might lead to an impact on the composition of the exhaled breath profile.

In this systematic review we aim to investigate the potential role of exhaled breath analysis for diagnosing pneumonia, by providing: (1) sensitive detection of pneumonia; (2) specific detection of the causative organism(s); and (3) a tool to monitor the treatment response after the initiation of antibiotics (see Figure 1). We

hypothesize that changed concentrations of VOCs in exhaled breath can be used to
accurately discriminate patients with pneumonia from patients without pneumonia
and may be used for specific identification of the causative pathogen.

97 Methods

98 <u>Search</u>

This is a systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, performed by two independent researchers. We searched Medline for potentially relevant articles up to March 7th 2017, using the following search terms: "(((Chromatography OR Spectrometry OR MS OR (Volatile AND Organic) OR Metabol*) AND breath) OR (volatile fingerprint*) OR (breathprin*) OR (electronic AND nose)) AND (pneumonia OR (lung infection*) OR (respiratory infection*) OR (lung bacteria*) OR (respirator* bacteria*))". There was no restriction with respect to human or animal studies; but articles written in a language other than English and studies performed in vitro were excluded. Two authors (PvO and LB) reviewed the abstracts and/or full-text manuscripts independently and selected those that were regarded to be relevant. No disagreement on selection of articles was seen between the two reviewers.

111 <u>Selection criteria</u>

112 Inclusion criteria were (1) human or animal studies that (2) studied volatiles in 113 exhaled breath to (3) diagnose bacterial pneumonia or identify the causative 114 organism of pneumonia. Objective 3 as mentioned in the introduction (the evaluation 115 of the treatment effect in patients with pneumonia) was let go, due to a lack of 116 studies specifically investigating this. We excluded in vitro studies and studies that 117 focused on very specific atypical causative organisms (such as Aspergillus).

118 <u>Reference test</u>

119 The diagnosis of pneumonia could be based on clinical symptoms alone, or could be120 supported by chest radiography and/or microbiology testing (cultures of endotracheal

121 aspirate (ETA), nondirected bronchial lavage (NBL or mini-BAL) or bronchoalveolar 122 lavage (BAL)). For community-acquired pneumonia, the combination of clinical signs 123 and symptoms with an evident infiltrate on the chest radiograph was considered a 124 good reference test, while anything less was considered too nonspecific. For 125 ventilator-associated pneumonia, clinical signs, laboratory parameters, an infiltrate 126 on chest radiography and quantitative cultures of BAL or NBL were considered an 127 appropriate reference standard.

128 Index test

Advances in chemical analytics have enabled the measurement of inorganic^{21,22} and organic compounds²³⁻²⁵ in biological matrices such as exhaled breath. Volatile molecules in breath can be studied via a targeted and an untargeted approach¹². With the targeted approach the researcher identifies the molecules of interest beforehand and uses analytical assays to measure those compounds quantitatively. The untargeted approach entails analytical techniques that measure multiple molecules present in the breath. Untargeted analysis can be performed with mass-spectrometry based techniques aimed to identify a variety of VOCs²⁶ or with socalled electronic nose technology that is based on pattern recognition^{14,27,28}. The analytical details of these techniques are discussed in detail in previous publications^{27,29}. Figure 2 summarises the analytical methods that will be referred to in this systematic review. No single method is superior to the others, they provide different types of information, therefore the quality of the index test was assessed based on the use of an independent validation cohort, which has been shown to limit bias²⁷.

144 Methodological assessment and categorisation

The methodological quality of each selected full manuscript was evaluated using the QUADAS-2 tool by the same authors as describes above³⁰. Risk of bias was assessed concerning patient selection, the interpretation or conduct of the index test, the interpretation or conduct of the reference standard and the patient flow. The

papers were classified as either (1) studies concerning sensitive detection of the presence of pathogenic bacteria, either concerning studies investigating inorganic compounds, untargeted analysis of VOCs or eNose technology for discrimination between pneumonia and no pneumonia; or (2) studies investigating the use of VOC analysis for specific detection of pathogenic bacteria, in animals or in humans.

Results

157 The search was last updated on March 7th 2017 and yielded 321 articles, of 158 which 18 were selected after screening on title/abstract and full text (Figure 3). Of 159 these, 13 studies were in humans and five were performed in murine models. Eight 160 studies dealt with the detection of specific pathogenic bacteria, the others focused on 161 discrimination between patients with and without pneumonia. One of the studies 162 discussed treatment response. Table 1 demonstrates the areas of interest for each 163 study and summarises the methodology used.

The studies were critically appraised and risk of bias was assessed regarding patient selection, index test, reference standard and flow and timing (Table 2). The domain 'patient selection' was considered not applicable in the five animal studies. For most studies the risk of bias was valued as high, except for one that used a validation cohort³¹, resulting in a low risk of bias regarding the index test.

170 Discrimination between patients with and without pneumonia

171 Detection of volatile inorganic compounds

NO was not increased in the breath of a small group of patients admitted with pneumonia, when compared with control patients³². As expected it was elevated in patients with an exacerbation of asthma. This result was in contrast to the results of a larger study at less risk of bias (Table 2) in which exhaled NO was measured in tracheal and nasal gas in patients ventilated within 72 hours of ICU admission³¹. Some of these patients were later diagnosed with VAP and this was used as the reference standard. A validation cohort consisting of similar patients to the first group was used to determine sensitivity and specificity of the NO threshold that was calculated in the preceding group. NO concentrations were measured at multiple sampling points in the airway as well as in the nasal cavity, and significantly higher NO levels were found at all points in patients with pneumonia. Of these, the maximum (end-expiratory) tracheal NO values resulted in the highest sensitivity and specificity for the diagnosis of pneumonia: 88% and 76% respectively (see Table 1). Results from one study with an imperfect reference test, namely subjective symptoms of lower respiratory infection, suggested a possible relationship between elevated exhaled CO levels and the clinical presence of pneumonia³³. Notably, the exhaled CO concentration followed similar trends as the patients' symptoms after antimicrobial treatment.

 191 Untargeted analysis of VOCs

The abundance of particular VOCs seems to be different in the breath of mechanically ventilated patients with pneumonia compared with those without pneumonia^{34–36}. The results of studies using gas chromatography and mass spectrometry (GC-MS, see Figure 2), however, were not uniform. The described VOCs differed between studies and two compounds that were identified as being associated with VAP (ethanol and heptane) showed conflicting results in two studies (as shown in Table 3). Differences between studies regarding investigated cohorts, reference standards and outcome measures (sensitivity, specificity and/or accuracy) can be found in Table 1. Nevertheless, breath tests showed promising discrimination between patients with and without pneumonia in the included clinical studies. The most frequently isolated pathogens in these studies were Staphylococcus aureus, Haemophilus influenzae, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae³⁴⁻³⁶.

1 2		
2 3 4	205	
5 6 7 8 9 10	206	Electronic nose technology
	207	Preliminary results indicated a potential correlation between chest CT scans ³⁷ or
	208	Clinical Pulmonary Infection Score (CPIS) ³⁸ and the subsequent eNose sensor
11 12	209	responses in mechanically ventilated patients. The eNose (see Figure 2) seemed to
13 14 15	210	distinguish patients with and without bacterial infection ³⁹ (Table 1). When specifically
15 16	211	focusing on diagnosis of VAP, the eNose appeared to have good accuracy,
17 18 10	212	moderate sensitivity and a rather poor specificity ⁴⁰ .
20 21	213	
22 23	214	Specific detection of pathogens by VOC analysis
24 25	215	Secondary electrospray ionization – mass spectrometry (SESI-MS, see
26 27	216	Figure 2) breathprint analysis was used to investigate the ability to identify respiratory
28 29	217	infection caused by strains of Haemophilus influenzae, Klebsiella pneumoniae,
30 31	218	Legionella pneumophila, Moraxella catarrhalis, Pseudomonas aeruginosa,
32 33 34 35 36 37 38 39 40 41 42	219	Staphilococcus aureus or Streptococcus pneumoniae in mice41-44. Overall SESI-MS
	220	breathprints seemed to be able to distinguish between respiratory infection and no
	221	infection in mice and enabled differentiation between strains of aforementioned
	222	pathogens. A high degree of variation was seen when translating in vitro experiments
	223	to the <i>in vivo</i> VOC fingerprints ⁴² . The relative contribution of bacterial metabolism and
43 44	224	host response on the exhaled breath profile could be inferred through an experiment
45 46	225	in which mice were exposed to bacterial cell lysates ⁴⁵ . This experimental set-up,
47 48	226	using these bacterial cell lysates, allows for host and pathogen derived metabolites
49 50	227	to be differentiated. The obtained SESI-MS breathprints changed over time after
51 52	228	lysate exposure and appeared to 1) correlate to the host immune response; and 2)
53 54	229	distinguish active infections of <i>P. aeruginosa</i> or <i>S. aureus</i> from cell lysate exposure.
55 56 57	230	Also using GC-MS specific VOCs in the exhaled breath seemed to reflect the
57 58 59	231	presence of particular microorganisms in the respiratory tract and, in line with the use
60	232	of SESI-MS, direct translation of biomarkers from the in vitro to the in vivo setting

proved difficult^{46,47}. In clinical studies, the evidence for specific detection of particular causative pathogens seemed speculative; as the published papers did not provide data on the accuracy of such measurements⁴⁶. The only study that reported a high diagnostic accuracy for the identification of a causative pathogen focused on Acinetobacter baumannii. A set of eight compounds resulted in excellent separation of patients with A. baumannii pneumonia, colonization with the same bacterium and controls. The major limitation of the described studies was that they did not evaluate the diagnostic accuracy of a breath test in the clinical scenario where such a test would be used; e.g. in patients with a clinical suspicion of VAP.

Discussion

 Based on our systematic review, the presence of certain profiles or patterns of volatile molecules in the exhaled breath appeared to be associated with pneumonia. However, the precise identity of these volatile biomarkers remains largely unknown. Furthermore, none of the studied breath tests delivered results with sufficient clinical diagnostic accuracy that would likely impact on clinical decisions. Most of the available studies provided feasibility or proof of concept data with a substantial risk of bias and did not test a clear, pre-defined hypothesis.

There are two leads to follow in the diagnosis of pneumonia: measurement of the host response or direct identification of the pathogen^{48,49}, both important establishing the ideal diagnostic test. In vitro results suggested that different pathogenic bacteria produced different volatile molecules, which might be used for identification²⁰. One of the major challenges is that bacterial growth and metabolism are influenced by the chosen culture media, timing and the selection of particular strains and, therefore, may not be representative of growth in vivo²⁰. A sterile inflammatory response altered the VOC release in several animal models of lung injury²¹. Thus, pneumonia may be recognized through exhaled breath analysis by detection of molecules produced either directly by the pathogen or through an altered host metabolism associated with the host response. Animal studies might offer

advantages enabling the investigation of 1) a single bacterial infection, 2) the
influence of timing on disease progression and 3) post-mortem histology for the goldstandard diagnosis of respiratory infection.

This systematic literature review demonstrates that certain volatile molecules could be useful as possible biomarkers for the diagnosis of pneumonia. One of them is nitric oxide (NO), a compound that has a bronchodilating and vasodilating effect in the respiratory tract and plays a key role in local inflammatory response²². NO is relatively easy to measure and thus forms an attractive candidate for diagnostic purposes^{50,51}. In the airways NO is produced by endothelial, epithelial and inflammatory cells. Generation of NO involves the oxidation of the aminoacid Larginine, a process that is catalysed by the enzyme NO synthase⁵². An increased concentration of exhaled NO is seen in asthma, bronchiectasis and sepsis⁵³, and has also been associated with rhinitis, active pulmonary sarcoidosis and viral respiratory illnesses⁵². Table 3 shows other biomarkers of potential interest regarding the discrimination of patients with and without pneumonia. However, hardly any overlap is seen between the different VOCs reported in separate studies and they also show conflicting results for heptane and ethanol. Two studies found an association between pneumonia and a decrease in exhaled breath acetone. Generally, acetone is present in large quantities in the exhaled breath. Its decrease in the breath of pneumonia patients might be explained by a reduced ketogenesis that is seen during inflammation or infection³⁴.

As soon as a breath test fulfils the requirements for a diagnostic test for pneumonia, it shall be able to fulfil a role alongside the currently available and frequently used alternatives^{54,55} and can either compete with them, or complement them. The diagnosis of pneumonia relies on a combination of physical examination and chest radiography⁵⁶, potentially accompanied by measurement of inflammatory markers in plasma, urinary antigen testing⁵⁴, repeated determination of C-reactive protein (CRP)⁵⁷ and collecting airway samples for microbiology cultures⁵⁸. Current

diagnostics lack clinical accuracy⁵⁹ and have high inter-observer variability⁶⁰. Microbiology results take 48-72 hours to become positive. The unnecessary prescription of antimicrobial treatment increases antimicrobial resistance⁶¹⁻⁶³, whereas applying the wrong antibiotics is likely to increase mortality^{64–66}. In order to withhold antibiotics, the CPIS⁶⁷ combines clinical and physiological data, pulmonary radiography and microbiology results into a numeric score that can be used to exclude pneumonia with moderate accuracy due to substantial inter-observer variability^{68,69}. Additionally, biomarkers like pulmonary interleukin-1ß (IL-1ß) and interleukin-8 (IL-8) measured in BAL fluid have shown promising results as discriminators for VAP^{70,71}. In the near future Polymerase Chain Reaction (PCR) of respiratory samples might be used to identify the causative pathogen rapidly and specifically⁷²⁻⁷⁴ and serum procalcitonin has been proposed as an attractive candidate for determining antibiotic duration^{75,76}. How would exhaled breath analysis compete with these alternatives? In contrast to blood or BAL samples, breath can be collected completely non-invasive and it is continuously available. A breath test could also provide results rapidly and cost-effectively, which is important in the setting of pneumonia. A breath test with the right test characteristics could thus provide real opportunities for improved real-time diagnostic utility, patient acceptability and cost effectiveness.

Many different methods for breath sampling have been described in literature, including but not limited to: glass syringes, needle traps⁷⁷ steel or glass tubes filled with sorbent material and/or breath gas bags (e.g. Tedlar bags). Pre-concentration of the breath sample could be established through the absorption of the VOCs using for instance organic polymers (e.g. Tenax TA), graphitized carbon, activated charcoal or carbon molecular sieves⁷⁸. A challenge in the process of breath sampling is the humidity of exhaled breath - especially true for mechanically ventilated patients -which possibly affects pre-concentration, separation and detection of individual compounds¹⁶. The use of storage containers such as Tedlar Bags has been linked to

317 loss of analytes or contamination of samples⁷⁷. The lack of standardization of 318 analytical methods leads to a wide variation of results among studies. Application of 319 a standardised method of exhaled breath analysis would lead to comparable results, 320 thereby facilitating the potential use of breath biomarkers in the future⁷⁹.

Based on the results from the studies included in this review, we can conclude that the VOCs that are measurable in exhaled breath are altered during pneumonia and can derive from the bacterial metabolism as well as the host response. However, these results do not yet allow us to link specific compounds to particular pathogens or disease states, nor does it allow us to pool data from different experiments or studies due to bias and heterogeneity in experimental procedures. Future studies should utilize this understanding and not only focus on VOCs produced by bacteria or the host, but should also combine these two for optimal diagnostic accuracy. Additionally, a more stringent approach towards the methodological design of the studies is recommended. This includes following the STARD guidelines for reporting studies on diagnostic accuracy to limit the amount of bias^{80,81}. Previous reviews^{27,82} properly summarised the necessary steps to validate preliminary results in breath research. Importantly, future studies should focus more on the clinical application of a breath test. As advocated in this review such a test would 1) exclude pneumonia in order to withhold antibiotic treatment from patients without an infection; 2) enable targeting of antibiotic treatment to the causative pathogen; and/or 3) facilitate evaluation of the treatment response aiming to refine or stopping antibiotics. To date, most focus has been on VAP rather than on community-acquired pneumonia, implicating that currently most evidence is available for this particular respiratory infection aetiology. Therefore, this might also be the clinical problem that might require direct focus in the forthcoming years of breath research.

This systematic review of the literature has several strengths and weaknesses. We chose to apply wide inclusion criteria in order to fully cover the literature in this relatively nascent field of research. Naturally, this resulted in a wide diversity of selected articles and made it impossible to pool data due to the underlying heterogeneity, which can be seen as a limitation of our review. In general one can also wonder to what extent the results provided by animal experiments can be translated to the human situation. This study also has several strengths: clinical and pre-clinical studies with multiple analytical devices were included and the results were clustered into the clinical perspective of three scenarios where a biomarker could alter clinical decision-making.

This review demonstrates that a relationship exists between respiratory infection and the presence of particular VOCs in the exhaled breath. Presently, no available breath test is accurate enough to qualify for a role within the diagnostic process of pneumonia. Future studies should focus on clinical scenarios in which a breath test could impact on antimicrobial stewardship and should limit bias by strictly adhering to the latest guidelines.

 Acknowledgements The authors thank all the members of the BreathDx Consortium: Wagar Ahmed, Antonio Artigas, Dennis C.J.J. Bergmans, Lieuwe D. J. Bos, Marta Camprubi, Luis Coelho, Paul Dark, Alan Davie, Emili Diaz, Gemma Goma, Timothy Felton, Stephen J. Fowler, Royston Goodacre, Hugo Knobel, Oluwasola Lawal, Jan-Hendrik Leopold, Ignacio Martin-Loeches, Tamara Nijsen, Pouline M. P. van Oort, Pedro Povoa, Nicholas J. W. Rattray, Guus Rijnders, Ronny Schnabel, Marcus J. Schultz, Ruud Steenwelle, Peter J. Sterk, Jordi Valles, Fred Verhoeckx, Anton Vink, Hans Weda and T1616ineke Winters.

Author Contributions PvO and LB conceptually designed the manuscript and performed the literature search. PvO and LB prepared the initial version of the paper and PP, RS, PD, AA, DB, TF, LC, MS and SF advised on the composition of the subsequent final manuscript. All authors approved the submitted version of this article. PvO can be regarded the guarantor of the paper, taking responsibility for the

2 3	373	integrity of the work as a whole, from incepton to published article.	
4 5	374	Funding European Union: <i>BreathDx</i> – 611951	
6 7	275	Compating interacts Name dealared	
8 9	375	competing interests None declared	
10 11	376		
12	377		
14			
15 16			
17 18			
19 20			
21 22			
23			
24 25			
26 27			
28 29			
30 31			
32			
33 34			
35 36			
37 38			
39 40			
41 42			
43			
44 45			
46 47			
48 49			
50 51			
52 53			
54 57			
55 56			
57 58			
59 60			
		15	

2 3	378	Refer	rences
5	379	1.	Waterer G, Rello J, Wunderink R. Management of community-acquired
7 8	380		pneumonia in adults. Am J Respir Crit Care Med 2011;183:157–164.
9 10	381	2.	American Thoracic Society. Guidelines for the Management of Adults with
11 12	382		Hospital-acquired, Ventilator-associated, and Healthcare-associated
13 14	383		Pneumonia. Am J Respir Crit Care Med [Internet] 2005;171(4):388–416.
15 16 17	384		Available from: http://www.atsjournals.org/doi/abs/10.1164/rccm.200405-
17 18 19	385		644ST
20 21	386	3.	Ego A, Preiser J-C, Vincent J-L. Impact of diagnostic criteria on the incidence
22 23	387		of ventilator-associated pneumonia. Chest [Internet] 2014;1–28. Available
24 25	388		from: http://www.ncbi.nlm.nih.gov/pubmed/25340476
26 27	389	4.	Klevens RM, Edwards JR, Richards Jr. CL, et al. Estimating health care-
28 29	390		associated infections and deaths in U.S. hospitals, 2002. Public Heal Rep
30 31	391		[Internet] 2007;122(2):160–166. Available from:
32 33 24	392		http://www.ncbi.nlm.nih.gov/pubmed/17357358
34 35 36	393	5.	Restrepo MI, Faverio P, Anzueto A. Long-term prognosis in community-
37 38	394		acquired pneumonia. Curr Opin Infect Dis [Internet] 2013;26(2):151-8.
39 40	395		Available from:
41 42	396		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4066634&tool=pmc
43 44	397		entrez&rendertype=abstract
45 46	398	6.	Rotstein C, Evans G, Born A, et al. Clinical practice guidelines for hospital-
47 48	399		acquired pneumonia and ventilator-associated pneumonia in adults. Can J
49 50	400		Infect Dis Med Microbiol = J Can des Mal Infect la Microbiol médicale / AMMI
51 52 53	401		Canada [Internet] 2008;19(1):19–53. Available from:
55 55	402		http://www.ncbi.nlm.nih.gov/pubmed/19145262%5Cnhttp://www.pubmedcentr
56 57	403		al.nih.gov/articlerender.fcgi?artid=PMC2610276
58 59	404	7.	Kalanuria AA, Zai W, Mirski M. Ventilator-associated pneumonia in the ICU.
60	405		Crit Care [Internet] 2014;18(2):208. Available from:

1 2			
- 3 4	406		http://ccforum.com/content/18/2/208
5 6	407	8.	Chastre J, Fagon J. State of the Art Ventilator-associated Pneumonia. Am J
7 8	408		Respir Crit Care Med 2002;165(23):867–903.
9 10	409	9.	Browne E, Hellyer TP, Baudouin S V, et al. A national survey of the diagnosis
11 12	410		and management of suspected ventilator-associated pneumonia. BMJ open
13 14	411		Respir Res [Internet] 2014;1(1):e000066. Available from:
15 16	412		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4275666&tool=pmc
17 18 19	413		entrez&rendertype=abstract
20 21	414	10.	Melsen W, Rovers M, Groenwold R, Bonten M. Attributable mortality of
22 23	415		ventilator-associated pneumonia: a meta-analysis of individual patient data
24 25	416		from randomised prevention studies. Lancet Infect Dis [Internet]
26 27	417		2013;13(8):665-671. Available from: http://dx.doi.org/10.1016/S1473-
28 29	418		3099(13)70081-1%5Cnpapers2://publication/doi/10.1016/S1473-
30 31	419		3099(13)70081-1
32 33	420	11.	Mandell L, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of
34 35 26	421		America/American Thoracic Society consensus guidelines on the
30 37 38	422		management of community-acquired pneumonia in adults. Clin Infect Dis
39 40	423		2007;44 Suppl 2(Suppl 2):S27-72.
41 42	424	12.	Bos LD, Sterk PJ, Fowler SJ. Breathomics in the setting of asthma and chronic
43 44	425		obstructive pulmonary disease. J Allergy Clin Immunol [Internet]
45 46	426		2016;138(4):970-976. Available from:
47 48	427		http://linkinghub.elsevier.com/retrieve/pii/S009167491630882X
49 50	428	13.	Phillips MHJ. Variation in volatile organic compounds in the breath of normal
51 52	429		humans. J Chromatogr 1999;(729):75–88.
53 54	430	14.	Schee MP van der, Paff T, Brinkman P, Aalderen WMC van, Haarman EG,
55 56 57	431		Sterk PJ. Breathomics in Lung Disease. CHEST J [Internet] 2015;147(1):224.
58 59	432		Available from:
60	433	7	http://journal.publications.chestnet.org/article.aspx?doi=10.1378/chest.14-

2 3	434		0781
4 5	435	15	Lacy Costello B de Amann A Al-Kateb H et al. A review of the volatiles from
6 7	135	10.	the healthy human body. <i>J Breath Res</i> [Internet] 2014;8(1):14001. Available
8 9	430		
10 11	437		from: http://www.ncbi.nlm.nih.gov/pubmed/24421258
12	438	16.	Cao W. Breath Analysis: Potential for Clinical Diagnosis and Exposure
14	439		Assessment. <i>Clin Chem</i> [Internet] 2006;52(5):800–811. Available from:
15 16 17	440		http://www.clinchem.org/cgi/doi/10.1373/clinchem.2005.063545
17 18 10	441	17.	Fens N, Schee MP van der, Brinkman P, Sterk PJ. Exhaled breath analysis by
20 21	442		electronic nose in airways disease. Established issues and key questions. Clin
22	443		Exp Allergy [Internet] 2013;43(7):705–15. Available from:
24 25	444		http://www.ncbi.nlm.nih.gov/pubmed/23786277
26 27	445	18.	Sethi S, Nanda R, Chakraborty T. Clinical application of volatile organic
28 29	446		compound analysis for detecting infectious diseases. Clin Microbiol Rev
30 31	447		2013;26(3):462–475.
32 33	448	19.	Boots AW, Berkel JJBN van, Dallinga JW, Smolinska A, Wouters EF,
34 35	449		Schooten FJ van. The versatile use of exhaled volatile organic compounds in
36 37	450		human health and disease. J Breath Res 2012;6:27108.
38 39 40	451	20.	Bos LDJ, Sterk PJ, Schultz MJ. Volatile Metabolites of Pathogens: A
40 41 42	452		Systematic Review. PLoS Pathog [Internet] 2013;9(5):e1003311. Available
42 43 44	453		from: http://dx.plos.org/10.1371/journal.ppat.1003311
45 46	454	21.	Miekisch W, Schubert JK, Noeldge-Schomburg GF. Diagnostic potential of
47 48	455		breath analysis—focus on volatile organic compounds. Clin Chim Acta
49 50	456		[Internet] 2004;347(1–2):25–39. Available from:
51 52	457		http://linkinghub.elsevier.com/retrieve/pii/S0009898104002256
53 54	458	22.	Yates DH. Role of exhaled nitric oxide in asthma. Immunol Cell Biol
55 56	459		2001;79(2):178–190.
57 58	460	23.	Bos LDJ, Sterk PJ, Schultz MJ. Metabolomics in critically ill patients: focus on
59 60	461	7	exhaled air. In: Vincent JL. (Ed.): Annual update in intensive care and
59 60	461	7	exhaled air. In: Vincent JL. (Ed.): Annual update in intensive care and

2			
3 4	462		emergency medicine. Springer; 2012. p. 53–62.
5 6	463	24.	Moser B, Bodrogi F, Eibl G, Lechner M, Rieder J, Lirk P. Mass spectrometric
7 8	464		profile of exhaled breath—field study by PTR-MS. Respir Physiol Neurobiol
9 10	465		[Internet] 2005;145(2-3):295-300. Available from:
11 12	466		http://linkinghub.elsevier.com/retrieve/pii/S1569904804000266
13 14	467	25.	Wilson A. Advances in Electronic-Nose Technologies for the Detection of
15 16	468		Volatile Biomarker Metabolites in the Human Breath. Metabolites [Internet]
17 18 10	469		2015;5(1):140–163. Available from: http://www.mdpi.com/2218-1989/5/1/140/
20 21	470	26.	Filipiak W, Sponring A, Baur MM, et al. Molecular analysis of volatile
22 23	471		metabolites released specifically by Staphylococcus aureus and
24 25	472		Pseudomonas aeruginosa. BMC Microbiol 2012;12:113.
26 27	473	27.	Leopold JH, Bos LDJ, Sterk PJ, et al. Comparison of classification methods in
28 29	474		breath analysis by electronic nose. J Breath Res [Internet] 2015;9(4):46002.
30 31	475		Available from: http://iopscience.iop.org/article/10.1088/1752-7155/9/4/046002
32 33	476	28.	Kant KD van de, Sande LJ van der, Jöbsis Q, Schayck OC van, Dompeling E.
34 35	477		Clinical use of exhaled volatile organic compounds in pulmonary diseases: a
30 37 29	478		systematic review. Respir Res [Internet] 2012;13(1):117. Available from:
39 40	479		http://respiratory-research.com/content/13/1/117
41 42	480	29.	Bos L, Schultz M, Sterk P. A simple breath sampling method in intubated and
43 44	481		mechanically ventilated critically ill patients. Respir Physiol Neurobiol [Internet]
45 46	482		2014;191:67-74. Available from:
47 48	483		http://www.sciencedirect.com/science/article/pii/S1569904813003674#
49 50	484	30.	Whiting PF, Rutjes AWS, Westwood ME, et al. QUADAS-2: A revised tool for
51 52	485		the quality assessment of diagnostic accuracy studies. Ann Intern Med
53 54	486		2011;155(4):529–536.
55 56 57	487	31.	Adrie C, Monchi M, Dinh-Xuan AT, Dall'Ava-Santucci J, Dhainaut JF, Pinsky
58 59	488		MR. Exhaled and nasal nitric oxide as a marker of pneumonia in ventilated
60	489	7	patients. Am J Respir Crit Care Med 2001;163(5):1143–1149.

2			
3 4	490	32.	AI-Ali MK, Howarth PH. Exhaled nitric oxide levels in exacerbations of asthma,
5 6	491		chronic obstructive pulmonary disease and pneumonia. Saudi Med J [Internet]
7 8	492		2001;22(3):249–253. Available from:
9 10 11	493		http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med4&NEWS
11 12	494		=N&AN=11307112
13 14	495	33.	Biernacki WA, Kharitonov SA, Barnes PJ. Exhaled carbon monoxide in
15 16	496		patients with lower respiratory tract infection. Respir Med 2001;95(12):1003-
17 18 10	497		1005.
20 21	498	34.	Schnabel R, Fijten R, Smolinska A, et al. Analysis of volatile organic
22 23	499		compounds in exhaled breath to diagnose ventilator-associated pneumonia.
24 25	500		Sci Rep [Internet] 2015;5(October):17179. Available from:
26 27	501		http://www.nature.com/articles/srep17179
28 29	502	35.	Fowler SJ, Basanta-Sanchez M, Xu Y, Goodacre R, Dark PM. Surveillance for
30 31	503		lower airway pathogens in mechanically ventilated patients by metabolomic
32 33	504		analysis of exhaled breath: a case-control study. Thorax [Internet] 2015;320-
34 35	505		325. Available from: http://thorax.bmj.com/cgi/doi/10.1136/thoraxjnl-2014-
30 37 29	506		206273
30 39 40	507	36.	Oort PMP Van, Bruin S De, Weda H, Knobel HH, Schultz MJ, Bos LD.
40 41 42	508		Exhaled Breath Metabolomics for the Diagnosis of Pneumonia in Intubated
43 44	509		and Mechanically-Ventilated Intensive Care Unit (ICU) -Patients. Int J Mol Sci
45 46	510		2017;18:1–14.
47 48	511	37.	Hockstein NG, Thaler ER, Torigian D, Miller WT, Deffenderfer O, Hanson CW.
49 50	512		Diagnosis of pneumonia with an electronic nose: correlation of vapor signature
51 52	513		with chest computed tomography scan findings. Laryngoscope [Internet]
53 54	514		2004;114(10):1701–5. Available from:
55 56	515		http://www.ncbi.nlm.nih.gov/pubmed/15454757
57 58 59	516	38.	Hockstein NG, Thaler ER, Lin Y, Lee DD, Hanson CW. Correlation of
60	517		pneumonia score with electronic nose signature: A prospective study. Ann

2			
3 4	518		Otol Rhinol Laryngol 2005;114(7):504–508.
5 6	519	39.	Geffen WH van, Bruins M, Kerstjens HAM. Diagnosing viral and bacterial
7 8	520		respiratory infections in acute COPD exacerbations by an electronic nose: a
9 10	521		pilot study. J Breath Res 2016;10(3):36001.
11 12	522	40.	Schnabel RM, Boumans MLL, Smolinska A, et al. Electronic nose analysis of
13 14	523		exhaled breath to diagnose ventilator-associated pneumonia. Respir Med
15 16 17	524		[Internet] 2015;Available from:
17 18 10	525		http://linkinghub.elsevier.com/retrieve/pii/S0954611115300615
20 21	526	41.	Zhu J, Bean HD, Jimenez-Diaz J, Hill JE. Secondary electrospray ionization-
22 23	527		mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung
24 25	528		pathogens, a mouse model study. J Appl Physiol 2013;114(11):1544–1549.
26 27	529	42.	Zhu J, Bean HD, Wargo MJ, Leclair LW, Hill JE. Detecting bacterial lung
28 29	530		infections: in vivo evaluation of in vitro volatile fingerprints. J Breath Res
30 31	531		2013;7(1):16003.
32 33	532	43.	Zhu J, Jimenez-Diaz J, Bean HD, et al. Robust detection of P. aeruginosa and
34 35	533		S. aureus acute lung infections by secondary electrospray ionization-mass
36 37 39	534		spectrometry (SESI-MS) breathprinting: from initial infection to clearance. J
30 39 40	535		Breath Res 2013;7(3):37106.
40 41 42	536	44.	Bean HD, Zhu J, Sengle JC, Hill JE. Identifying methicillin-resistant
43 44	537		Staphylococcus aureus (MRSA) lung infections in mice via breath analysis
45 46	538		using secondary electrospray ionization-mass spectrometry (SESI-MS). J
47 48	539		Breath Res 2014;8(4):41001.
49 50	540	45.	Bean HD, Jimenez-Diaz J, Zhu J, Hill JE. Breathprints of model murine
51 52	541		bacterial lung infections are linked with immune response. Eur Respir J
53 54	542		2015;45(1):181–190.
55 56	543	46.	Filipiak W, Beer R, Sponring A, et al. Breath analysis for in vivo detection of
57 58	544		pathogens related to ventilator-associated pneumonia in intensive care
60	545		patients: a prospective pilot study. <i>J Breath Res</i> [Internet] 2015;9(1):16004.
	5.5		

1 2			
- 3 4	546		Available from: http://stacks.iop.org/1752-
5	547		7163/9/i=1/a=016004?key=crossref.798f068dedadbc97df4cca8b842a921c
7 8	548	47.	Gao J, Zou Y, Wang Y, et al. Breath analysis for noninvasively differentiating
9 10	549		Acinetobacter baumannii ventilator-associated pneumonia from its respiratory
11 12	550		tract colonization of ventilated patients. <i>J Breath Res</i> 2016;10(2):27102.
13 14	551	48.	Murdoch DR. How best to determine causative pathogens of pneumonia.
15 16	552		Pneumonia [Internet] 2016;8(1):1. Available from:
17 18	553		http://pneumonia.biomedcentral.com/articles/10.1186/s41479-016-0004-z
19 20 21	554	49.	Ginsburg GS, Woods CW. The host response to infection: advancing a novel
22 23	555		diagnostic paradigm. Crit Care [Internet] 2012;16(6):168. Available from:
24 25	556		http://www.ncbi.nlm.nih.gov/pubmed/23134694
26 27	557	50.	Cameli P, Bargagli E, Refini RM, Pieroni MG, Bennett D, Rottoli P. Exhaled
28 29	558		nitric oxide in interstitial lung diseases. Respir Physiol Neurobiol 2014;197:46-
30 31	559		52.
32 33	560	51.	Cameli P, Bargagli E, Fossi A, et al. Exhaled nitric oxide and carbon monoxide
34 35 26	561		in lung transplanted patients. Respir Med 2015;109(9):1224–1229.
30 37 38	562	52.	Ricciardolo FLM, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and
39 40	563		disease of the respiratory system. <i>Physiol Rev</i> 2004;84(3):731–765.
41 42	564	53.	Hyde RW, Geigel EJ, Olszowka AJ, et al. Determination of production of nitric
43 44	565		oxide by lower airways of humanstheory. J Appl Physiol [Internet]
45 46	566		1997;82(4):1290–1296. Available from:
47 48	567		http://www.ncbi.nlm.nih.gov/pubmed/9104867
49 50	568	54.	Sinclair A, Xie X, Teltscher M, Dendukuri N. Systematic review and meta-
51 52	569		analysis of a urine-based pneumococcal antigen test for diagnosis of
53 54 55	570		community-acquired pneumonia caused by Streptococcus pneumoniae. J Clin
55 56 57	571		Microbiol 2013;51(7):2303–2310.
58 59	572	55.	Badoux P, Euser SM, Bruin JP, Mulder PPG, Yzerman EPF. Evaluation of the
60	573	7	bioNexia Legionella test including the impact of incubation time extension for

1 2			
3 4	574		the detection of Legionella pneumophila serogroup 1 antigen in urine. J Clin
5 6	575		Microbiol [Internet] 2017;(March):JCM.02448-16. Available from:
7 8	576		http://jcm.asm.org/lookup/doi/10.1128/JCM.02448-16
9 10	577	56.	Lim WS, Baudouin S V, George RC, et al. BTS guidelines for the management
11 12	578		of community acquired pneumonia in adults: update 2009. Thorax [Internet]
13 14	579		2009;64 Suppl 3(6):iii1-55. Available from:
15 16	580		http://www.ncbi.nlm.nih.gov/pubmed/21502103%5Cnhttp://www.ncbi.nlm.nih.g
17 18	581		ov/pubmed/19783532
19 20 21	582	57.	Póvoa P, Martin-Loeches I, Ramirez P, et al. Biomarker kinetics in the
22 23	583		prediction of VAP diagnosis: results from the BioVAP study. Ann Intensive
24 25	584		Care 2016;6(1):32.
26 27	585	58.	Kalil AC, Metersky ML, Klompas M, et al. Management of Adults With
28 29	586		Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical
30 31	587		Practice Guidelines by the Infectious Diseases Society of America and the
32 33	588		American Thoracic Society. Clin Infect Dis [Internet] 2016;ciw353. Available
34 35 26	589		from: http://cid.oxfordjournals.org/lookup/doi/10.1093/cid/ciw353
36 37 38	590	59.	Fabregas N, Ewig S, Torres A, et al. Clinical diagnosis of ventilator associated
39 40	591		pneumonia revisited: comparative validation using immediate post-mortem
41 42	592		lung biopsies. Thorax [Internet] 1999;54(10):867–73. Available from:
43 44	593		http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1745365&tool=pmc
45 46	594		entrez&rendertype=abstract
47 48	595	60.	Masterton RG, Galloway A, French G, et al. Guidelines for the management of
49 50	596		hospital-acquired pneumonia in the UK: Report of the working party on
51 52	597		hospital-acquired pneumonia of the british society for antimicrobial
53 54	598		chemotherapy. J Antimicrob Chemother 2008;62(1):5-34.
55 56 57	599	61.	Neu HC. The crisis in antibiotic resistance. Science [Internet]
58 59	600		1992;257(5073):1064–73. Available from:
60	601		http://www.ncbi.nlm.nih.gov/pubmed/1509257

2			
3 4	602	62.	Goossens H, Ferech M, Stichele R Vander, Elseviers M. Outpatient antibiotic
5 6 7 8 9 10 11 12 13 14 15 16 17 18	603		use in Europe and association with resistance: A cross-national database
	604		study. Lancet 2005;365(9459):579–587.
	605	63.	Lipsitch M, Samore MH. Antimicrobial use and antimicrobial resistance: A
	606		population perspective. <i>Emerg Infect Dis</i> 2002;8(4):347–354.
	607	64.	Melsen WG, Rovers MM, Bonten MJ. Ventilator-associated pneumonia and
	608		mortality: a systematic review of observational studies. Crit Care Med
	609		[Internet] 2009;37(10):2709–2718. Available from:
19 20	610		http://www.ncbi.nlm.nih.gov/pubmed/19885994%5Cnhttp://graphics.tx.ovid.co
21 22 23	611		m/ovftpdfs/FPDDNCLBABFAPH00/fs046/ovft/live/gv025/00003246/00003246-
23 24 25	612		200910000-00005.pdf
26 27	613	65.	Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	614		delays in the initiation of appropriate antibiotic treatment for ventilator-
	615		associated pneumonia. Chest [Internet] 2002;122(1):262–268. Available from:
	616		http://dx.doi.org/10.1378/chest.122.1.262
	617	66.	Kuti EL, Patel AA, Coleman CI. Impact of inappropriate antibiotic therapy on
	618		mortality in patients with ventilator-associated pneumonia and blood stream
	619		infection: A meta-analysis. J Crit Care 2008;23(1):91–100.
	620	67.	Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM. Diagnosis
	621		of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic
45 46	622		and nonbronchoscopic "blind" bronchoalveolar lavage fluid. Am Rev Respir
47 48	623		Dis [Internet] 1991;143(5 Pt 1):1121–9. Available from:
49 50	624		http://www.ncbi.nlm.nih.gov/pubmed/2024824
51 52	625	68.	Shan J, Chen H-L, Zhu J-H. Diagnostic accuracy of clinical pulmonary
53 54	626		infection score for ventilator-associated pneumonia: a meta-analysis. Respir
55 56 57	627		<i>Care</i> 2011;56(8):1087–1094.
57 58 59	628	69.	Zilberberg MD, Shorr AF. Ventilator-Associated Pneumonia: The Clinical
60	∇		
			D /
			24

1 2												
3 4	629		Pulmonary Infection Score as a Surrogate for Diagnostics and Outcome. Clin	7								
5 6	630		Infect Dis [Internet] 2010;51(S1):S131–S135. Available from:									
7 8	631		http://cid.oxfordjournals.org/lookup/doi/10.1086/653062									
9 10	632	70.	Conway Morris A, Kefala K, Wilkinson TS, et al. Diagnostic importance of pulmonary interleukin-1beta and interleukin-8 in ventilator-associated									
11 12	633											
13 14	634		pneumonia. <i>Thorax</i> 2010;65(3):201–207.									
15 16	635	71.	Hellyer TP, Conway Morris A, McAuley DF, et al. Diagnostic accuracy of									
17 18	636		pulmonary host inflammatory mediators in the exclusion of ventilator-acquired									
19 20 21	637		pneumonia. <i>Thorax</i> [Internet] 2015;70(1):41–47. Available from:									
22 22 23	638		http://thorax.bmj.com/lookup/doi/10.1136/thoraxjnl-2014-205766									
24 25	639	72.	Schulte B, Eickmeyer H, Heininger A, et al. Detection of pneumonia									
26 27	640		associated pathogens using a prototype multiplexed pneumonia test in									
28 29	641		hospitalized patients with severe pneumonia. PLoS One 2014;9(11).									
30 31	642	73.	Ost DE, Poch D, Fadel A, Wettimuny S, Ginocchio C, Wang X-P. Mini-									
32 33	643		bronchoalveolar lavage quantitative polymerase chain reaction for diagnosis of									
34 35 26	644		methicillin-resistant Staphylococcus aureus pneumonia. Crit Care Med									
30 37 38	645		[Internet] 2010;38(7):1536–41. Available from:									
39 40	646		http://www.ncbi.nlm.nih.gov/pubmed/20473148									
41 42	647	74.	Gadsby N, Hellyer T, Mcmullan R, et al. 16S pan-bacterial PCR can accurate	əly								
43 44	648		identify patients with ventilator associated pneumonia. Thorax [Internet]									
45 46	649		2016;Available from:									
47 48	650		http://www.embase.com/search/results?subaction=viewrecord&from=export&	&i								
49 50	651		d=L71630018%5Cnhttp://dx.doi.org/10.1007/s00134-013-3451-									
51 52	652		5%5Cnhttp://elvis.ubvu.vu.nl:9003/vulink?sid=EMBASE&issn=03424642&id=	=d								
53 54	653		oi:10.1007%2Fs00134-013-3451-5&atitle=16S+pan-bacterial+P									
55 56 57	654	75.	Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High									
58 59	655		serum procalcitonin concentrations in patients with sepsis and infection.									
60	656		Lancet (London, England) [Internet] 1993;341(8844):515–8. Available from:									
		/		25								

657		http://www.ncbi.nlm.nih.gov/pubmed/8094770
658	76.	Becker KL, Snider R, Nylen ES. Procalcitonin in sepsis and systemic
659		inflammation: A harmful biomarker and a therapeutic target. Br J Pharmacol
660		2010;159(2):253–264.
661	77.	Filipiak W, Filipiak A, Ager C, Wiesenhofer H, Amann A. Optimization of
662		sampling parameters for collection and preconcentration of alveolar air by
663		needle traps. J Breath Res [Internet] 2012;6(2):27107. Available from:
664		http://stacks.iop.org/1752-
665		7163/6/i=2/a=027107?key=crossref.4c1053321294512bd66677cb52135658
666	78.	Schubert JK, Miekisch W. Breath Analysis in Critically III Patients—Potential
667		and Limitations. Volatile Biomarkers [Internet] 2013;155–176. Available from:
668		http://linkinghub.elsevier.com/retrieve/pii/B978044462613400009X
669	79.	Horváth I, Barnes PJ, Loukides S, et al. A European Respiratory Society
670		technical standard: exhaled biomarkers in lung disease. Eur Respir J [Internet]
671		2017;49(4):1600965. Available from:
672		http://erj.ersjournals.com/lookup/doi/10.1183/13993003.00965-2016
673	80.	Bossuyt P, Reitsma J, Bruns D, et al. Towards complete and accurate
674		reporting of studies of diagnostic accuracy : the STARD initiative. BMJ Br Med
675		J 2003;326:41–44.
676	81.	Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: An updated list of
677		essential items for reporting diagnostic accuracy studies. Clin Chem
678		2015;61(12):1446–1452.
679	82.	Boots AW, Bos LD, Schee MP van der, Schooten FJ van, Sterk PJ. Exhaled
680		Molecular Fingerprinting in Diagnosis and Monitoring: Validating Volatile
681		Promises. Trends Mol. Med. 2015;21(10).
682	83.	Chiu S-W, Wang J-H, Chang K-H, et al. A fully integrated nose-on-a-chip for
683		rapid diagnosis of ventilator-associated pneumonia. IEEE Trans Biomed
684		<i>Circuits Syst</i> 2014;8(6):765–778.
	 657 658 659 660 661 662 663 664 665 666 667 668 667 671 672 673 674 675 676 677 678 679 680 681 682 683 684 	 657 658 76. 659 660 77. 662 663 664 665 666 78. 666 78. 667 78. 667 78. 667 79. 670 79. 671 672 80. 674 675 676 81. 677 678 679 82. 680 681 682 83. 684

686

687

688

689

690

691

692

693

694

84.

85.

Available from:

1

Rock F, Barsan N, Weimar U, Röck F, Barsan N, Weimar U. Electronic nose:

Current status and future trends. Chem Rev [Internet] 2008;108(2):705–725.

http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/cr068121g%5Cnp

Bean HD, Zhu J, Hill JE. Characterizing bacterial volatiles using secondary

apers://316bc3e6-3d1b-427b-a4e3-80bd1b4d480e/Paper/p1578

2	
3	
4	
5	
6	
7	
8	
9 10	
10	
12	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
27 28	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
50 50	
59	
00	

electrospray ionization mass spectrometry (SESI-MS). J Vis Exp
2011;2(52):3-6.

695 696	Table Legends
697 698	Table 1. Full text selected articles The selected articles either concern clinical (C) or pre-clinical (P) studies.
699	Investigated inorganic compounds include nitric oxide (NO) and carbon monoxide
700	(CO). The investigated study population could be on ICU patients in general, or could
701	involve a specific target group, e.g. patients with COPD (Chronic obstructive
702	pulmonary disease), Community-acquired pneumonia (CAP) or Ventilator-associated
703	pneumonia (VAP). As a reference test a protected specimen brush (PSB),
704	bronchoalveolar lavage (BAL) or endotracheal aspirate (ETA) was used. The used
705	index test to analyse Volatile Organic Compounds (VOCs) could involve secondary
706	electrospray ionization - mass spectrometry (SESI-MS), Clinical Pulmonary Infection
707	Score (CPIS), eNose technology or gas chromatography – mass spectrometry (GC-
708	MS): either sensitivity (sens) and specificity (spec), or accuracy has been displayed
709	in the Table.
710	*For details: see Table 3.
711	
712	Table 3. VOCs identified by GC-MS: The VOCs are either increased (\uparrow) or
713	decreased (\downarrow) in the exhaled breath of pneumonia patients when compared to
714	patients without pneumonia.
$\sqrt{7}$	

29 of 35	U	A T	итно ••	DR S	UB	MITT	ED o	MAN	NUSC	RIP	0	JBR-1 ດ	00	700 ი	.R1	0	c	c	J			
	4	4	4	4	4	ω	ω	ü	ω	ω	ω	4	<u>د</u>	4	8	4	ω	G	rpe s			
	N	0	-	4	ω	G	00	9	ω	7	ത	o	4	cn	0	7	N	x	tudy	20	7° L	
	Mice	Mice	Mice	Mice	Mice	ICU patients	COPD patients	ICU patients	ICU patients	ICU patients	ICU patients	ICU patients	ICU patients	ICU patients	ICU patients	Outpatient clinic	General ward	ICU patients	Population	e I. Lui levi a	> 1 Enll +Av+ o	
	ా	42	<i>ي</i> ،	87	12	93	43	125	100	44	25	60	46	28	76	72	42	49	Sample			
	SESI-MS	SESI-MS	SESI-MS	SESI-MS	SESI-MS	GC-MS	eNose	eNose	GC-MS	eNose	eNose	GC-MS	GC-MS	GC-MS	eNose	CO analysér	NO analyser	NO analyser	Index test	Incles	**:> >>	
	Instillation of Pseudomonas or Staphylococcus	Instillation of seven different bacterial strains	Instillation of Pseudomonas or Staphylococcus	Instillation of alive or lysated bacteria	Instillation of MRSA or MSSA	VAP; Clinical signs + radiology + culture of ETA	CAP; Sputum cultures	VAP; Clinical signs + radiology + culture of BAL	VAP; Clinical signs + radiology + culture of BAL	VAP; CPIS > 6	VAP; Chest CT scan	VAP; Clinical signs + radiology + culture of BAL / PSB / ETA	VAP; Culture of ETA	VAP: Culture of BAL / ETA	VAP: Clinical signs	CAP; Clinical signs	CAP; Clinical signs + X-ray	VAP; Clinical signs + culture of unknown specimen	Disease under study; Reference test			
						75%	73%	76%	76%				98%					88%	Sens			
						72%	76%	56%	73%				98%					76%	Spec			
	Unknown	Unknown	Unknówn	100%	100%	73%				70%	91-100%	88-89%		Unknown	~90-100%	~90%			Accuracy			
	Quantification of dynamic changes in breath VOCs	Quantification of difference between pathogens	Quantification of difference between in vitro and in vivo	Experimental model with alive or dead bacteria	Experimental model with Staphylococcus			Only patients that were suspected of VAP	Only patients that were suspected of VAP				Invasively ventilated patients at risk for VAP	Quantitative		Accuracy estimated from figure	Quantitative; lower NO concentration		Comments		Q	

26 27

55 56

Table 2. QUADAS-2 (adapted version)

Study		Risk of Bi	as			
	Year	Patient selection	Index test	Referenc standard	e Flow and timing	K
Adrie ³¹	2001	No	No	No	No	
Ali-Ali ³²	2001	Yes	Yes	Yes	No	
Bean ⁴⁴	2014	N/A	Yes	No	No 🔹	
Bean ⁴⁵	2015	N/A	Yes	No	No	
Biernacki ³³	2001	Yes	Yes	Yes	No	
Chiu ⁸³	2014	Yes	Yes	Yes	Unclear	<i>,</i>
Filipiak ⁴⁶	2015	Yes	Yes	No	No	
Fowler ³⁵	2015	Unclear	Yes	No	No	
Gao ⁴⁷	2016	Yes	Yes	No	No	
Hockstein ³⁷	2004	Yes	Yes	Yes	No	
Hockstein ³⁸	2005	Yes	Yes	Yes	No	
Schnabel ³⁴	2015	Unclear	Yes	No	No	
Schnabel ⁴⁰	2015	No	Yes	No	No	
Van Geffen ³⁹	2016	Yes	Yes	No	No	
Van Oort ³⁶	2017	No	Yes	No	No	
Zhu ⁴²	2013	N/A	Yes	No	No	
Zhu ⁴¹	2013	N/A	Yes	No	No	
Zhu ⁴³	2013	N/A	Yes	No	No	

Table 3. VOCs identified by GC-MS: increased (\uparrow) or decreased (\downarrow) in breath of

pneumonia vs. no pneumonia patients

C

Classification	Volatile Organic Compound	Reporting article						
		Schnabel ³⁴	Fowler ³⁵	Van Oort ³⁶				
Ketone	Acetone	\downarrow						
	2-methyl cyclopentanone							
	Methylisobutylketone			\downarrow				
Aldehyde	Acrolein	\downarrow		7				
	Nonanal		\uparrow	,				
	Tetradecanal	1						
Ether	Sevoflurane			\downarrow				
	Tetrahydrofuran	\downarrow						
Alkane	2-methyl butane	\uparrow						
	2-ethoxy-2-methyl propane			\downarrow				
	Carane	\uparrow						
	Dodecane							
	Heptane	\uparrow	\downarrow					
	Tetradecane	T						
	2,6,11,15-tetramethyl-hexadecane		1					
Alkene	Cyclohexene			\downarrow				
Terpene	3-carene		1					
Alcohol	Ethanol	↑	\downarrow					
	Isopropyl Alcohol	\downarrow						
	Hexafluoroisopropanol			\downarrow				
	1-propanol			\downarrow				
Arene	Ethylbenzene	\uparrow						
Ester	N-butyric acid 2-ethylhexyl ester		1					
Sulfide	Carbon disulfide			\downarrow				
Amide	N-cyclohexyl-N'(2-hydroxyethyl)thio	o-urea	\downarrow					

Figure Legends

Figure 1. The aspired contribution of breath analysis regarding antibiotic stewardship for pneumonia (*†*: increase)

Figure 2.

Exhaled breath analysis for the prediction of pneumonia: several available techniques and accompanying analytical principles.

eNose: Conventional electronic noses consist of an array of gas sensors using transducer principles (e.g. through metal oxide sensors, conducting polymer sensors or surface or bulk acoustic wave sensors)⁸⁴, whereas new approaches involve optical sensor systems and colorimetric sensors¹⁷; GC-MS: Gas chromatography – mass spectrometry is currently seen as the preferred method for separation, detection and identification of individual VOCs; SESI-MS: Secondary electrospray ionization – mass spectrometry enables rapid detection of VOCs without the need for sample pretreatment⁸⁵. After introduction into the SESI reaction chamber the sample passes through an electrospray cloud that ionizes the volatiles, after which the ionized VOCs are detected in the mass spectrometer. The method cannot be used to quantify individual VOCs, as many volatiles have similar molecular weights and the methodology relies on pattern recognition. GC-MS and SESI-MS can both be used for targeted and untargeted analysis.

Figure 3. Flow diagram of article selection.

VOC: Volatile Organic Compound; GC-MS: Gas chromatography – mass spectrometry; SESI-MS: Secondary electrospray ionization – mass spectrometry.

Figure 3.

