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Abstract: The feasibility of recovering heat energy from mine water contained within an abandoned coal mine in South Wales
is assessed for a proposed district heating scheme. The study area is the village of Caerau, in the Upper Llynfi valley, Bridgend
County Borough, South Wales, UK, comprising around 750 residential houses, a primary school and 17 commercial properties.
This paper describes an archival geological and mining desk study focused on Caerau colliery, consideration of regional mine
linkages, geographical information system (GIS) techniques used to create a 3D initial conceptual geological mine model of
Caerau workings, permitting and licencing requirements, community engagement activities undertaken and the findings of a
single exploratory borehole. The borehole intersected a void space in flooded mine workings around the horizon of the Six Foot
seam at a depth of 224 m below ground level, as predicted by the conceptual mine model. The rest water level within the
borehole lies at 92 m below ground level and the measured in sifu temperature of the mine water at the base of the borehole was
20.3°C. An unexpectedly high and sustained geothermal gradient of ¢. 53°C km™! was calculated from repeated measured

temperature profiles.
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Supplying secure, affordable and sustainable future energy whilst
also reducing CO, emissions is one of the greatest challenges facing
the world today. Heating and hot water supplied to UK buildings
make up around 40% of our energy consumption and 20% of our
greenhouse gas emissions (Committee on Climate Change 2016). In
the future the demand for space cooling in buildings is expected to
increase significantly. The UK National Grid has previously
estimated the uptake of air conditioners in the domestic sector to
be 18 million units by 2050, compared with less than one million in
use today (National Grid 2018). It will be necessary to cut CO,
emissions to almost zero by 2050 to achieve UK Government
targets.

In 2016, Wales’ gas consumption for heating was 22 045 GWh
and it was estimated that around 23% (c. 291 000) of households in
Wales were living in fuel poverty (Davies 2017; DBEIS 2018). Fuel
poverty is defined as having to spend more than 10% of income
(including housing benefit) on all household fuel use to maintain a
satisfactory  heating regime (Welsh Government 2010).
Contributing factors for fuel poverty in Wales include 29% of
properties being solid-wall constructed homes and 21% of
properties being off the gas grid (National Assembly for Wales
2018).

Mine water could potentially provide a sustainable, low-enthalpy
heating source to supplement the renewable energy mix in the UK,
whilst also improving energy security (Bailey er al. 2016). It is a
well-recognized fact that coal mines, after abandonment, slowly
flood with groundwater. Exothermic geochemical reactions involv-
ing minerals and groundwater make the mine water warm in
addition to the local geothermal gradient (Banks er al. 2004;
Younger 2014; Farr et al. 2016). Thus, an abandoned mine

potentially represents a thermal energy source in the form of
accessible mine water.

Overview of heat recovery schemes from abandoned coal
mines

Heat recovery projects from flooded mines have been in operation in
both the USA and Europe since the 1980s (Jessop & Macdonald
1995; Banks et al. 2003; Watzlaf & Ackman 2006; Wieber & Pohl
2008; Hall ef al. 2011; Verhoeven et al. 2014; Ramos et al. 2015;
Farr et al. 2016). In Europe, operational systems exist in Germany,
Poland, Norway, the Netherlands, Spain and the UK (Banks et al.
2004; Raymond & Therrien 2008; Hall et al. 2011; REMINING-
Lowex 2012; Jardon ef al. 2013; Preene & Younger 2014). District
heating is supplied by a mine water scheme in the municipality of
Heerlen, Netherlands, where a low-temperature district heating
system has been in operation since October 2008 (Minewater
Project 2013; Verhoeven ef al. 2014). A similar scheme was
successfully implemented in the city of Asturias, Spain, where a
geothermal system used water stored in Barredo—Figaredo reservoir
to supply heating and cooling to two buildings on the campus of the
University of Oviedo and a hospital (Jardon ez al. 2013).

In the UK, heat recovery from abandoned coal mines was first
piloted at Mossend, Scotland in 1992, followed by two permanent
sites commissioned in 1999-2000 at Shettleston and Lumphinnans
(Banks et al. 2009). The Coal Authority operate a demonstration
system at Dawdon, County Durham (Bailey et al. 2013; Satterley
et al. 2017), which was built to stimulate confidence in mine water
heating schemes. Athresh ez al. (2015), Burnside et al. (2016) and
Banks et al. (2017) reported on a mine water pilot plant at the former
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Markham Colliery, which is still in the process of flooding. A
standing column heat pump arrangement has been used to heat
office buildings through a single 20 kW commercial Danfoss heat
pump. This scheme demonstrated another novel design and
implementation of an open-loop ground source heat pump in an
ochre-rich mine water environment (Athresh ef al. (2016). Loredo
et al. (2017) studied the importance of hydrochemical character-
ization of mine water for the optimal design of the geothermal
installation, to understand the hydraulic behaviour of the water in
the reservoir and prevent undesired effects such as clogging of pipe,
heat exchangers and reinjection wells as a result of mineral
precipitation. Banks ef al. (2019) have also carried out heat
extraction and recirculation tests within the shaft of abandoned
hematite mine at Egremont, Cumbria.

Mine water heat recovery can be achieved using either open-loop
or closed-loop systems (Ghomshei 2007; Banks ez al. 2009; Hall
et al. 2011; Preene & Younger 2014). Open-loop systems require
water to be pumped from a borehole (or mine shaft) and circulated
directly through the heat pump with the discharge water being
returned via another borehole or shaft to the mine workings (open-
loop system with reinjection of thermally spent water). In some
examples, the thermally spent water is sent to a treatment system
(open-loop system with disposal of thermally spent water; Banks
et al. 2017). In open-loop systems with disposal of thermally spent
water, the treated mine water is then sent to surface water courses.
This type of scheme is suitable in locations where existing mine
water treatment schemes are already operating. Open-loop systems
with reinjection of thermally spent water return mine water via
boreholes further down the hydrogeological gradient or to a
disconnected part of the mine workings. The advantage of this
approach is that it is a non-consumptive process and mine water
does not require treatment and disposal. Open-loop systems with
reinjection do require drilling and maintenance of abstraction and
reinjection boreholes and careful design to avoid negative thermal
‘feedback’ if the connection between the abstraction and injection
points is a direct shortcut. Closed-loop systems do not require the
abstraction of mine water, as a liquid coolant is pumped to depth via
a pipe network within a borehole to capture heat energy. The coolant
is never in contact with the mine water and thus the closed-loop
configuration is suitable where chemical contamination is an issue,
or where flooded workings cannot be intercepted.

To support the uptake of local renewable heat sources in Wales,
the SEREN project at Cardiff University, funded by the European
Regional Development Fund, installed a local heat scheme by
coupling ground source heat pump (GSHP) technology and flooded
mine workings in 2013. The site is located at Crynant village in the
Dulais valley, South Wales (grid reference [279340, 204290]; IEA
Geothermal 2013). An open-loop heat pump scheme utilizes the
mine water energy source to provide 40 kW of heating and hot water
to a large farmhouse and adjoining office buildings. The scheme
comprises two 64 m deep boreholes, one an abstraction borehole
equipped with a borehole pump to abstract water at a constant
11.5°C and the second a discharge borehole, located 60 m south of
the abstraction borehole, to return the thermally spent water to avoid
a thermal short circuit.

South Wales’ coalfield mine water temperatures are known to be
variable, and it is estimated that 42 MW of heat could potentially be
recovered from mine water based on the combined discharge rate of
2025 157! (Coal Authority data 1998-2014) from the 62 post-
closure mining sites currently monitored by the Coal Authority
within the coalfield (Farr e al. 2016). The nearest Coal Authority
monitoring point is ¢. 5 miles away from the Caerau study area.

Bridgend County Borough Council (BCBC) has been at the
forefront of the development of decentralized energy in Wales,
having been successfully selected as one of three demonstrator local
authorities for the smart system heating (SSH) programme. The

northern part of BCBC is a region of extensive historical coal
mining within the central coalfield (Cooke 2018; Coal Authority
2019). To assess the suitability of the abandoned coal mines to
support a district mine water heat recovery network a detailed
geotechnical, site-specific, feasibility investigation was undertaken.
This paper presents a geological and mining desk study, initial 3D
conceptual ground mine model (ICM), including an accurate
geospatial distribution of mapped historical mine workings. Surface
geographical information system (GIS) mapping is combined with
the ICM to identify the precise location to drill an exploration
borehole which targets an underground roadway.

Geographical and geological setting

Caerau is situated in the Upper Llynfi valley, which lies at the centre
of the South Wales coalfield (Brabham 2009; Fig. 1). The coalfield
extends 87 km east-west and 30 km north—south and comprises
Westphalian strata of the Carboniferous, historically known as the
Coal Measures group. The rocks comprise alternating sequences of
sandstones, mudstones and siltstones, with numerous individual
coal seams underlain by a seatearth (clay), which are typically
folded and faulted by the Variscan orogeny (Howells 2007). The
central coalfield topography consists of an upland plateau, deeply
incised during the Quaternary period by valley glaciers (Howells
2007). The last of the valley glaciers melted around 20 000 years
ago and the valleys are now occupied by Holocene rivers eroding
through the strata (Brabham 2009).

The South Wales coalfield was a world-famous, highly
productive mining region with a complex 250 year history. The
coalfield is renowned for its enigmatic 3D spatial distribution of
coal grades (rank) from bituminous to steam and to high-grade
anthracite coals (Gayer ef al. 1991; White 1991). Over 3 billion tons
of coal have been mined in South Wales since colliery output
statistics began in 1850 (Brabham 2005). No definitive historical
and geospatial database of coal mines exists for the South Wales
coalfield, but independent studies indicate that there were between
2000 and 4000 historical mining operations over a large range of
scales (Preston 2010; Cooke 2018). In 2019, only one underground
coal mine still operates in South Wales at Aberpergwm in the Neath
valley (grid reference [286500, 205950]). When deep coal mines
were operational, they were protected from flooding by continual
groundwater pumping. After abandonment, the pumps were turned
off and the mines gradually flooded.

Historical Llynfi valley regional mining

Commercial mining in the Llynfi valley is first recorded in 1771
(Lewis 2006). A preliminary regional mining desk study focused at
Caerau colliery has been undertaken by Sahid (2016). Statutory
mining abandonment plans exist in Coal Authority archives dated
from 1872 onwards and more inconsistently back to around 1840, so
early shallow mining in the Llynfi valley predates these records.
Coal mine abandonment plans in South Wales are a mosaic of
individual coal seam maps, which may or may not be accurately
geo-referenced in two or three dimensions depending on their age.
A complication in South Wales is that originally local names were
given to individual coal seams. Coal seam names were therefore not
consistent between collieries until a standardized National Coal
Board (NCB) nomenclature was finally employed and correlations
were made (Adams 1967). A detailed study of a large colliery is
commonly geologically complex in three dimensions. Underground
mining expanded over decades radially away from the main shafts,
extracting coal from multiple seams, constrained by private
company mineral licence areas and geological faults. Over an
operational period of 50-100 years, deeper seam horizons were
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Fig. 1. Topographic map of the South Wales coalfield (outlined in red) showing the major rivers (blue), significant coal mines and their relative workforce
in 1893. Cacrau colliery is highlighted as a yellow cylinder (adapted from Preston 2010). Copyright LIDAR data topography Welsh Assembly Government

LLE geo-data portal.

exploited as groundwater and ventilation pumping technology
improved.

The Llynfi valley contained up to 60 coal mines over its history,
plus numerous uncharted small mining operations (Lewis 2001;
Brabham 2009; Lawrence 2017; Cooke 2018). Figure 2 shows that
the Upper Llynfi and adjacent areas contain extensive areas of coal
workings. The main town and regional centre of the Llynfi valley is
Maesteg, which is historically associated with late 18th century
ironstone outcrop and adit mining for the local ironworks (Richards
1962; Ince 1993).

Although a colliery was originally an autonomous mining
operation, many of the individual private company coal mines in
South Wales became (owing to amalgamations and subsequent
NCB nationalization) interlinked underground and between topo-
graphical valleys. Adjacent collieries mined the same local
sequence of coal seams, broken up into mining blocks by fault
structures (Woodland & Evans 1963). By 1935, four large
interconnected mines, Caerau, Coegnant, Maesteg Deep and St
John’s, shared the mining take of the Upper Llynfi, which continued
into the NCB period. The southern extent of mining in the Llynfi
valley is bounded by the Moel Gilau fault and a complex geological
structure known as the Jubilee Slide (Woodland & Evans 1963;
Brabham 2009). The last operational NCB coal mine in the Llynfi
valley was St John’s, Maesteg, which closed in November 1985.

Coal Authority mine plans show that Caerau colliery was
connected by direct roadways and/or interconnected seam horizons
to Dyffryn Rhondda (Afan valley) to the NW and Coegnant (Llynfi
valley) to the south. Coegnant colliery was connected southwards to
two other Llynfi valley mines, Maesteg Deep and St John’s. To the
east, Caerau was connected to International (Garw valley), which
was connected to Garw/Ffalddau (Garw valley). Connections
continue to Wyndam and Western (Ogmore Vale) and finally to
Eastern colliery, located on the mountainside above Gelli in the
Rhondda Fawr valley. This potential subsurface interconnected
zone of mine workings in the central coalfield is 7.5 miles (13 km)

west to east and covers an area of ¢. 26 miles® (68 km?) in extent
(Fig. 3).

The local geological stratigraphy at Caerau

Caerau colliery operated over 78 years, opening in 1899 and closing
in 1977. Caerau was a medium-sized colliery employing 1800
workers at its peak of production around 1914 (Cooke 2018).
Caerau colliery initially accessed the subsurface by three vertical
shafts: South, North and No. 3 at depths of 320, 324 and
157 m below ground level (bgl). Mining plans indicate that only
the North shaft was later extended to a depth of 397 m to access
deeper seam horizons. Historical mining records, BGS maps and
reports indicate that there are 20 potential and 13 known worked
coal seam horizons at Caerau. The standard NCB name, original
historical name and typical Upper Llynfi valley thickness of these
seams is listed in Table 1. Figure 4 shows a geological log section
for the Caerau colliery area in relation to valley topography
compiled from BGS maps and reports (Woodland & Evans 1963).
At Caerau, the geology dips 10—13° to the north and is cut by NW—
SE-trending normal faulting, typical of the central coalfield
(Brabham 2009).

Caerau colliery 3D conceptual geological and coal mining
model

To understand the post mine closure changes in land surface
topography, modern and historical (1947) landscape models were
created by geo-referencing air photography (Fig. 5). To create a
subsurface mine model, digital scans of 36 Coal Authority mine
abandonment plans of Caerau and the adjacent Coegnant colliery
were obtained for this study. A western mined area was confirmed
beneath Caerau village, making the mine water energy project
feasible (Fig. 6). Mine plans were geo-referenced in 3D space,
combined as seam mosaics and then digitized in relation to surface
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Fig. 2. Total aerial extent of known coal mined areas (red) in the Upper Llynfi valley and adjacent areas. Caerau colliery location is shown as a yellow
circle. Reproduced with the permission of © The Coal Authority. All rights reserved.

topography to create a mine model illustrating the shafts, roadways
(Fig. 7) and extent of individual coal seam exploitation beneath
Caerau (Fig. 8). Caerau colliery accessed shallow seams (Victoria to
Caedavid; Fig. 4) viathe No. 3 shaft. The Six Foot and deeper seams
were accessed via the South and North shafts, with horizontal
roadways extending west and east out from pit bottom and
underground inclined roadway linkages between mining horizons.

From close inspection of the historical mine plans, it is interpreted
that the manual longwall mining method was mainly employed in
the deeper seams (Statham 2004). By employing longwall mining
methods coal is totally removed in the form of panels. Dates of
mining operations and pumping rates are also annotated on the mine
plans. The boundary of mining in the Six Foot seam appears to have
been reached in the western area between 1915 and 1921 and the
final extent of mining of this seam horizon occurred between 1944
and 1946. After mining ceased, it is expected that only major
roadways and shafts were left as void spaces, and the rest of the
longwall mined area becomes collapsed ground (goaf) after the
removal of'the roof supports. The roadway tunnels and the collapsed
goaf areas will increase strata permeability compared with unmined
ground. The Six Foot workings are divided into two distinct mining
areas (west and east) by a NW—SE-trending fault with a downthrow
to the east. The Caerau colliery shafts lie in the eastern mined area
and hard heading tunnels were driven westwards from the pit bottom
across the fault to access the western mining area.

Groundwater rebound and historical mine pumping data

Robins et al. (2008) carried out a regional study of groundwater
flow for the South Wales coalfield, which predicts that groundwater
rebound is largely complete for the abandoned coalfield. Harris
(2017) carried out a review of historical NCB groundwater pumping
data collected at collieries in the coalfield. Historical pumping
information indicates that groundwater was pumped from Caerau
colliery at the North shaft at 5.2 157! in the Six Foot seam and at
415! from the Nine Foot horizon. The interconnected Duffryn
Rhondda colliery pumped at a rate of over 1.7 million litres a day
(19.71s7Y). Despite the absence of any nearby monitoring bore-
holes from which to measure mine water rebound, we consider that
these historical pumping rates indicate that it is highly likely that the
mine workings at Caerau colliery are now significantly flooded over
42 years since mine abandonment.

Identifying drilling location for test borehole

The mining model was used to identify potential locations for an
exploratory borehole, targeting two extensively worked coal seams
beneath Caerau village: the Six Foot and Nine Foot horizons
(Fig. 6). The first option was to directly access the Caerau colliery
shafts; however, the shafts had been backfilled and capped and the
area landscaped over by the Coal Authority in 2001. The land
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Fig. 3. Interlinking of mines in the central coalfield: Dyffryn Rhondda—Caerau (green)-Coegnant—Maesteg Deep—St John’s—Ffaldau—Garw—Wyndam—
Western—Eastern collieries and bounding geological structures. Copyright LIDAR data topography Welsh Assembly Government LLE geo-data portal.

restoration scheme has resulted in an unknown thickness of
landscaped colliery spoil at proposed locations. Drilling through
tip material would be expensive and high risk, and this option was
ruled out as permission was not granted for drilling on the reprofiled
tip areas (Fig. 5).

The second option was to drill a borehole directly targeted at the
main access roadways, running horizontally from pit bottom within
the cylinder of unmined geology left around the shafts to avoid
destabilization (Fig. 6). Potential surface drilling locations were
again located on reprofiled tip material, so this option was also
discounted.

The third option was to identify an accessible drill site located
vertically above an underground roadway at the Six Foot horizon. A

Table 1. Stratigraphical sequence of coal and ironstone horizons in Caerau
area, with standardized NCB names, historical local names and
approximate seam thicknesses

NCB standard seam name  Historical seam name and indicative thickness

Pentre Rider
Lower blackband ironstone

Victoria (0.9 m thick)
Potential ironstone mining horizon

Upper Yard Seam No. 8 (1.9 m thick)

Lower Pentre Two and a Half seam (0.7 m thick)
Caedefaid seam (0.9 m thick)

Two foot nine seam

Upper four foot seam

Lower four foot scam (up to 2.4 m thick)

Upper Six foot seam
Lower Six foot seam
Caerau seam

Red vein

Upper Nine foot seam
Lower Nine foot seam

(1.0 m thick)

Seven foot seam (0.7 m thick)
(1.2 m thick)

Harvey (1.5 m thick)

Upper New (1.3 m thick)

Bute seam Lower New (1.2 thick)
Yard No. 8 (0.7-1.0 m thick)
Seven Foot (2.1 m—4.5 m thick)
Five foot

Gellideg

Garw

planning constraint was that a drill location had to be greater than
50 m away from housing and not close to the riverbank, so buffer
zones were incorporated into the GIS model. Two potential drilling
locations on BCBC land were identified 50 m apart, which met all
the above criteria. If drilling encountered an unworked coal pillar in
the Six Foot seam, there was also the option to drill on to a deeper
target in the Nine Foot horizon vertically below.

Environmental permits, exemptions and licences

It was predicted that drilling would encounter water-filled mine
workings at depth. All potential risks must be considered; there are
two scenarios: (1) the workings are not flooded but may contain
methane gas, which could potentially find a pathway up the
borehole and may result in an explosion at the drilling rig; (2) mine
water within the workings is under artesian pressure, and could
migrate up the borehole to create an artesian well at surface and
cause local flooding.

Prior to drilling, multiple licences and permits were required from
various Government Agencies and landowners. A ‘mine water heat
recovery access agreement’ was required from the Coal Authority
for the purpose of drilling and extracting heat from mine water.
Information is required on the vicinity of housing, drilling depth of
proposed boreholes into target horizons, potential for spontaneous
combustion, gas, water or other hazards, and all engineering
specifications including sealing off boreholes with grouted-in
casing.

Natural Resources Wales (NRW), the environmental regulator
for Wales, required consents and exemptions. First, a ‘consent to
investigate a groundwater source’ is required under Section 32 of
the Water Resources Act 1991. This involves undertaking a
water features survey in a 1km radius around the drilling
location to identify water monitoring points or abstractions that
could be negatively affected. Second, a ‘permit to discharge’ was
required to return any extracted mine water back into the same mine
workings.

Although the potential drilling sites were identified on BCBC-
owned land, planning consent had to be obtained from the local
authority. A 1 month on-site temporary drilling licence for
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710 exploration was obtained, but only under condition of an operational Community engagement activities 776
711 window of 9 am. to 5 p.m. during weekdays only. 777
712 Through liaison between the project and the Health and The future success of any community heat from a mine water project 778
713 Safety Executive (HSE) it was agreed that drilling would deploy relies on a strong and non-confrontational relationship with the local 779
714 sacrificial steel casing, solidly grouted into rockhead to block off community throughout the project’s lifespan. Given the current 780
715 any potential gas or artesian water migration pathways to surface. high-profile environmental resistance by local communities in the 781
716  Dirilling would incorporate a Washington control valve blow-out UK to fracking, it is essential that the community was aware that a 782
717 preventer that could be activated in the event of encountering mine water heat exploration project is not a fracking project. Planned 783
718 artesian water or methane gas, triggered by on-site monitoring and drilling would take place within a compound in the heart of Caerau 784
719 alarm systems. village over 1 month, so would be highly visible (Fig. 9). ABCBC— 785
720 Caerau is located within an exploration block that is licenced for Cardiff University community engagement team commenced with a 786
721 oil and gas exploration by the Welsh Government by a Petroleum pre-engagement phase where key stakeholders, local enablers, 787
722 Exploration and Development Licence (PEDL). At present there is a landowners and community groups were identified and a public 788
723 moratorium on any onshore methane exploration in Wales. engagement programme was designed. In the pre-drilling phase, 789
724  Meetings took place with the PEDL licence holder in advance of activities included attendance at advertised public events. Targeted 790
725 drilling, over the legal ownership of any methane gas reserves that leaflet or letter drops, feedback forms and social media outreach 791
726  may be encountered. were all developed throughout the project timescale. Fact sheets 792
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gave Caerau residents information regarding the project’s aims and
objectives and alerting residents to the planned drilling activities.
Individual householders’ concerns about drilling-induced mining
subsidence, earthquakes or disturbance to wildlife were also
addressed and science, technology, engineering and mathematics
(STEM) geo-energy educational sessions were developed with local
schools. During the drilling, on-site personnel were present to
engage with residents. Post drilling phase, residents were updated
on the findings of the project, in anticipation of any subsequent
project phases. To maintain trust, it is critical that all external
communication is clear, accurate and factual and that, where
possible, the project is delivered precisely within the boundaries of
what has been communicated. Any unplanned deviations from the
programme were also communicated rapidly and transparently via
social media updates. Generally, survey feedback showed that the
residents of Caerau were positive to the idea of utilizing the
historical flooded mine workings beneath their village as a future
energy resource.

Results of exploration drilling

On-site preparation began on 27 September 2017; steel casing was
installed to a depth of 13 m bgl into rockhead and grouted up with
cement. Exploration drilling then commenced at a 4 inch
(10.16 cm) diameter specification using an air flush hammer bit
technique. A sandstone aquifer horizon was encountered at 106 m
and the drilling technique was then changed to water circulation

288600

286700

Shaft Locations

+

Pianned Bh Logation Fig. 5. Comparison of historical

operational mining landscape (1947)
with a modern air photograph (2016)
showing the major landscaping of the
Caerau colliery site, which was
completed in 2001. The borehole
location is also indicated. Copyright
., Welsh Assembly Government, Edina
Digimap, Crown Copyright.

using a rotary coring bit. No shallow unmapped mine workings
were encountered.

Drilling encountered a void space at a depth of 224225 m bgl.
This depth was within the survey margin error for the predicted
depth of the workings at the Six Foot coal seam horizon. Drilling
was terminated at 234 m bgl in solid geology and the borehole
headworks were completed using a solid plastic borehole liner with
a slotted section at the base (Fig. 10). Because of planning
permission time constraints and working with fixed financial
drilling and site restoration budget costs, a second exploration
borehole has not been drilled to date. The borehole and Caerau
colliery shaft logs correlated well, taking into consideration surface
topography and a mapped fault offset between the locations
(Fig. 10).

Mine water temperature and the local geothermal
gradient

Recent monitoring of geothermal gradients in the South Wales
Coalfield displays an inconsistent pattern (Farr er al. 2016).
Following completion of the exploratory borehole, downhole
temperature measurements were made using a portable Solint™
temperature, level and conductivity dipper. Four temperature
profiles were measured over 3 months between 26 October 2017
and 19 January 2018. Temperature measurements were made at | m
intervals throughout the water column to the base of the borehole.
All temperature profiles produce consistent readings and
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Fig. 6. Initial conceptual model of the location of the Caerau colliery North and South shafts and main roadway orientations in context of the valley
geomorphology and housing. The photograph (P. Brabham) is taken looking SE down the Upper Llynfi valley. Data copyright: LIDAR data, Welsh

Assembly government/NRW, LLE data web portal.

geothermal gradients (Fig. 11). The measured in situ temperature of
the mine water within the slotted section of the borehole into the
workings in the Six Foot horizon (between 212 and 229 m bgl)
averages at 20.3°C at 230 m depth. Using an average annual air

temperature of 8°C, an approximate geothermal gradient of
53°C km~! can be estimated, which is significantly higher than
the average UK geothermal gradient of 28°C km™! (Busby et al.
2011).

286500

194000

195000

Fig. 7. Three-dimensional model of major underground roadways mapped at Caerau colliery. Reproduced with the permission of © The Coal Authority. All

rights reserved.
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[E==

Fig. 8. Three-dimensional modelling of
geospatial extent of known mineworking
areas of five coal seams mined at Caerau
colliery. The plug of unworked coal
around the mine shafts is also illustrated.
Reproduced with the permission of © The
Coal Authority. All rights reserved.

Fig. 9. Drilling rig compound located in Caerau village, October 2018, with the landscaped Caerau colliery site observed behind the compound

(photograph P. Brabham).
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Mine water chemistry

Water samples were collected from the completed borehole and the
River Llynfi on 8 November 2017. The river is in the proximity of
the drilling site; following regulations, the nearest water body must
be monitored to ensure that no drilling fluid mix or any chemicals or
materials related to the drilling leach into the river. This provided
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Fig. 11. Borehole temperature logs.

baseline river data for reference by a future mine water energy
operation. The water samples were bailed from the boreholes using
Insitu-Europe Hydrosleeves bags. Field parameters of temperature,
pH, electric conductivity (EC), oxidation—reduction potential
(ORP) and alkalinity were measured using an InSitu Europe
SmarTroll multiparameter probe and a Hanna Instruments alkalinity
measurement kit. The samples were filtered in the field using
Fisherbrand Non-sterile Nylon Syringe Filter (hydrophilic 25 mm
diameter nylon membrane, 0.45 um) fitted on Fisherbrand Plastic
PP Syringes, Luer Lock. The filtered samples were divided into
inorganic and organic analysis. After filtering, a portion of the
samples was acidified in the field with concentrated nitric acid and
the samples were transported in an ice-cooled system to the
laboratory. Aliquots of acidified water samples were analysed for
cationic inorganic elemental analysis using a PerkinElmer induct-
ively coupled plasma optical emission spectrometer and the un-
acidified aliquots were used for anionic inorganic constitutions
using a Dionex 1C2000 ion-chromatography system.

Table 2 shows the results of the water quality analysis of 8
November 2017. The River Llynfi river water displays similar
chemical characteristics to the surface runoff waters in other areas of
the South Wales Coalfield and the analysis confirms that no river
contamination occurred as a result of the drilling process. The initial
water samples collected from the borehole were muddy and grey in
colour and it is assumed that the borehole water had not settled, but
was disturbed by the drilling at the time of initial collection. Another
set of water samples were collected over 2 months later on 24
January 2018. From the results, it was anticipated that the water
sample collected at the end of the pumping period best represents
the mine water. Although the pH of the borehole water sample
remained around nine, the alkalinity increased from 268 to
720 mg 1~! within the short time period (8 November 2017 to 24
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Table 2. Chemical characteristics of the waters from the borehole and River Llynfi

Borehole, 8 River Llynfi, 8 Borehole, 24 January 2018 (beginning Borchole, 24 January 2018

Parameter November 2017 November 2017 of the pump test) (after pumping)
Temperature (°C) 13 10.8 9.8 17
pH 9 8 9.28 9
Eh (mV) 226 249 284 326
EC (uS cm™) 698 83 635 1400
Total dissolved solids (mg I™") 456 54 423 910
Dissolved oxygen (mg I™") 3 10 3.66 1.84
Total alkalinity as CaCO5 (mg1™") 268 nd nd 720
Phenolphthalein alkalinity as 198 nd nd 390

CaCO; (mg1™")
CO; alkalinity as CaCO; (mg 17')* 140 nd nd 660
Sodium (mg I™") 51 55 227 625
Calcium (mg 17") 15 7.4 3.73 12.56
Magnesium (mg 1) 35 5.1 1.14 6.65
Potassium (mg 17") 8 2 7.81 21.27
Tron (total) (mg I™1) 0.12 0.6 nd 0.027
Manganese (total) (mg 17") 0.19 0.17 0.01 0.055
Fluoride (mg 17") 0.88 nd 2.38 1.56
Chloride (mg 17") 10.21 nd 12.36 213
Sulphate (mg I™") 26.98 nd 36.8 144
Nitrate (mg I™") nd nd 0.5 0.97
Charge balance 0.027
Charge balance error (%) -3.8 - — 34
Saturation index with respect to 0.79 nd nd 1.2

calcite (CaCO3)

nd, not determined.

*Calculated value using phenolphthalein and total alkalinity values from Eaton ez al. (1999).

January 2018). The alkalinity increase could be explained by the
increase in alkali metals such as sodium (51-625 mgI~!) and
potassium (7.81-21.27 mg 1™'). The sample acquired from the
borehole showed iron concentrations of 0.12 and 0.027 mg 17!,
which are lower than the measured values typically found in the
coalfield (1.1-81 mg 17! from Farr e al. 2016). This initial water
sample analysis indicates that the water may not be a faithful
representative of in situ mine water and may still be influenced by
the drilling operation.

Most of the mine water drains in the South Wales Coalfield
display pH value in the range of 6.83-7.83 despite the high
concentrations of alkalinity (Farr er al. 2016). Low pH values in
mine waters is caused by pyrite dissolution, which increases iron
concentrations. In the long term, calcium minerals such as calcium
carbonate dissolved by the low pH mine water would increase the
alkalinity, which buffers the pH. Therefore, there could be two

100

10

meqg/L

0.1

0.01

SO4

Na Ca Mg K Cl

Constituents

HCO3

possible reasons for the considerable increase in pH, alkalinity and
ion concentrations of the borehole water: (1) the low pH of mine
water increases the dissolution of carbonate minerals, which buffers
the acidity and controls the ion concentrations; (2) the low pH of the
mine water dissolved the borehole grouting materials rapidly, which
increases the pH and alkalinity values along with the alkali metal
concentrations. The NaOH and KOH in the pore fluid of the
grouting materials could be the main contributors to the high Na and
K concentrations in the inflow water (Gascoyne 2002). Thus, the
concentrations of Na and K increased over the 4.5 h period of
pumping.

A Schoeller diagram was plotted for the water samples collected
from the borehole to show the changes in the water type (Fig. 12).
Further to chemical analysis, saturation index (SI) has been
calculated for the sample taken on 24 January 2018 to indicate
whether water is oversaturated, saturated or undersaturated with

—8 Nov 2017

——24 January 2018

(Beginning of the
pump test)

—24 January 2018

-

(After pumping 3
well volume of
water)

Fig. 12. Borehole water chemistry
Schoeller diagram.
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respect to calcite (CaCOj3). The SI indications are as follows: where
the SIis >0, water is oversaturated with respect to calcite and scaling
may occur; where the SI is <0, the water is undersaturated and
corrosion may occur; where the saturation index is zero, the water is
considered to be neutral. The SI value of the water sample from the
borehole was found to be +1.2, which shows that the calcite is
oversaturated and the water may have a tendency to form scaling but
is non-corrosive (Langelier 1936). It is recommended that long-term
pumping over a period of months should be carried out to obtain a
better understanding of the mine water chemistry. However, a
second borehole is required for reinjection, otherwise large costs
would be incurred disposing of the mine water off-site by road
tanker, as large volumes of un-remediated mine water would be
unlikely to be allowed by NRW to discharge direct to the river
Llynfi.

Assessment of the potential mine water reservoir at
Caerau

From desk study research, the actual interconnected mining extent
of the central coalfield of which Caerau colliery is just a small part
could be as great as 68 km? in area. However, it is pure conjecture
how much of the conduit roadways is still extant and offers
interconnected hydrological pathways over this large area.

The borehole is predicted to have intersected one of the main
roadways in the western area at the Six Foot seam horizon (Fig. 13).
There are 13 mined coal seams at Caerau, all interconnected by a
labyrinth of shafts and underground roadways. Using the 3D Caerau
mine model, estimates can be made for the areal extent of mining
void spacing for the known mined coal seams under the village.
Workings in the Six Foot seam cover an area of 4.48 km?, and

workings in the deeper Caerau and Nine Foot seams cover areas of
2.8 km? and 3.2 km? respectively.

Discussion and conclusions

Geoscientists have traditionally seen mine workings as hazards and
mine water as a pollutant, but do flooded mine workings now also
represent a viable future geothermal resource in the UK? No
researcher of the South Wales coalfield should ever underestimate
the extent of abandoned mine workings extending over many square
miles; often mining took place over 10 or more vertically stacked
seam horizons. Individual collieries were often interconnected
between adjacent topographic valleys by underground roadways
and inter-seam workings. Every colliery mining layout is unique in
three dimensions owing to the local stratigraphic sequence,
bounding faults and mineral rights areas. All mines require an
extensive desk study using primary abandoned mine plans to
produce an accurate 3D initial conceptual mine model on which to
plan any future exploration drilling programme.

Caerau mine is a typical medium-sized South Wales deep shaft
colliery with an operational life lasting around 80 years. The mine
had interconnected workings extending radially a few kilometres
away from the shafts and stacked three dimensionally over 13
vertical seam horizons. Many kilometres of substantial, well-
engineered access roadways are postulated still to exist under-
ground. Hundreds of similar abandoned collieries exist throughout
the South Wales coalfield (Cooke 2018); many collieries are less
extensive than Caerau and some are significantly larger in extent
(Fig. 1). A regional study has shown that interlinked mine workings
around Caerau are extensive and thus could produce a large mine
water catchment.
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Fig. 13. Map of geospatial extent of mine workings in Six Foot seam at Caerau colliery showing context of borehole location (yellow circle). Interpreted
and redrawn with simplification from Caerau colliery mine abandonment plans. Reproduced with the permission of © The Coal Authority. All rights

reserved.
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An evaluation of Caerau colliery was carried out by an extensive
desk study incorporating 3D geo-referencing and mosaicking of 36
historical mine abandonment plans, and from this an initial
conceptual geological and mining model was created. An
exploratory borehole was located on accessible land to target
mine workings at the Six Foot horizon and drilling successfully
encountered a flooded void space at a depth of 224.30 m bgl. The
water sampling and testing stage proved technically challenging
over a tightly constrained drilling period with a small diameter
borehole. In retrospect, more time and equipment should have been
allocated in planning for a hydraulic flushing programme to better
test the water recovery rate achievable within the mine void.

Mine water temperatures measured at the basal slotted section of
the borehole average at 20.3°C and the water level was at 92 m bgl.
The measured geothermal gradient of 53°C km™ is significantly
higher than those observed in other UK coalfields and this should
contribute significantly to the improved efficiency of the proposed
community heat network project. This higher than expected water
temperature is a trade-off against the depth to the water being deeper
than anticipated and thus the energy required to pump water to
surface being greater.

These conclusions are based on only one exploratory borehole,
and additional mine water chemical analyses and pump test flow rate
measurements require the drilling of a second exploration borehole
ideally at a larger production diameter. An array of extraction and
reinjection boreholes drilled into mine workings beneath Caerau
could provide warm (>20°C) mine water as the thermal energy
source for a mine water district heating network. For the community
heating energy demand at Caerau an abstraction—reinjection open-
loop system with several abstraction and reinjection boreholes
spatially distributed within the mine working conduits would
probably be the most viable option. Other options include the
incorporation of energy storage capacity within the system.

The discovery of flooded mine workings containing mine water at
higher than expected temperatures makes this district heating project
a positive proposition. There are still unknowns about the
volumetric extent of the mine water reservoir and the heat capacity
of the mine water flow regime within the 3D labyrinth of mine
workings. A second, larger diameter, commercial diameter borehole
is recommended to be drilled to allow high flow rate pump testing
and more chemical analyses over a longer time period. If these
second stage results prove favourable, then this could lead on to a
production heat from mine water district heating system being
designed and constructed in the Upper Llynfi valley.
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