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Abstract. We present the Potsdam Parallel Ice Sheet Model
(PISM-PIK), developed at the Potsdam Institute for Climate
Impact Research to be used for simulations of large-scale ice
sheet-shelf systems. It is derived from the Parallel Ice Sheet
Model (Bueler and Brown, 2009). Velocities are calculated
by superposition of two shallow stress balance approxima-
tions within the entire ice covered region: the shallow ice ap-
proximation (SIA) is dominant in grounded regions and ac-
counts for shear deformation parallel to the geoid. The plug-
flow type shallow shelf approximation (SSA) dominates the
velocity field in ice shelf regions and serves as a basal slid-
ing velocity in grounded regions. Ice streams can be identi-
fied diagnostically as regions with a significant contribution
of membrane stresses to the local momentum balance. All
lateral boundaries in PISM-PIK are free to evolve, includ-
ing the grounding line and ice fronts. Ice shelf margins in
particular are modeled using Neumann boundary conditions
for the SSA equations, reflecting a hydrostatic stress imbal-
ance along the vertical calving face. The ice front position is
modeled using a subgrid-scale representation of calving front
motion (Albrecht et al., 2011) and a physically-motivated
calving law based on horizontal spreading rates. The model
is tested in experiments from the Marine Ice Sheet Model
Intercomparison Project (MISMIP). A dynamic equilibrium
simulation of Antarctica under present-day conditions is pre-
sented inMartin et al.(2011).

Correspondence to:A. Levermann
(anders.levermann@pik-potsdam.de)

1 Introduction

In order to understand the evolution of ice sheets, especially
with respect to their contribution to sea-level rise, there is
a need for numerical models which are able to capture the
dynamics of sheet-shelf systems as a whole. To this end,
there are various types of approaches:

Flowline models are both computationally efficient and at
the same time very useful for understanding basic processes
(e.g., Dupont and Alley, 2005). However, one of the key
issues regarding global sea-level rise is the buttressing ef-
fect of ice shelves on the sheet which influences the ice flux
across the grounding line. In flowline models, this can only
be investigated by prescribing a parameterized buttressing
strength. Three-dimensional models, by contrast, compute
the effect of buttressing for any embayment.

Three-dimensional models which solve the complete
Stokes stress balance (e.g.,Mart́ın et al., 2004; Jarosch and
Gudmundsson, 2007; Pattyn, 2008) cannot be used for large-
scale, long-term, high resolution modeling because they are
computationally too demanding. The same constraint gen-
erally applies to intermediate, so-called higher order models
(e.g., Blatter, 1995; Pattyn, 2003).

Models based on the Shallow Ice Approximation (SIA,
Hutter, 1983) and the Shallow Shelf Approximation (SSA,
Morland, 1987; Weis et al., 1999), each recalled in Sect.2,
decrease these computational costs. They make use of a scal-
ing analysis of the full Stokes problem, using the fact that ice
thickness is small compared to relevant horizontal scales, to
enable simulations of whole ice sheets.

SIA-only models (e.g.,Greve, 1997; Payne, 1999; Mar-
shall et al., 2000) provide a good approximation for the
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flow of ice that is frozen to the bedrock. In order to sim-
ulate regions of higher velocity such as ice streams, sliding
of grounded ice is incorporated in various SIA models by
adding a sliding velocity at the base of the ice column which
depends directly on the gravitational driving stress.

The SSA has been used to simulate the flow in ice shelves
which have no basal friction and thus a different stress regime
(e.g., MacAyeal et al., 1996).

The two shallow approximations have been combined us-
ing different approaches: some hybrid models (e.g.,Huy-
brechts, 1990; Ritz et al., 2001) solve the SIA and
the SSA in distinct map-plane regions, which results in
an abrupt change in flow type across the grounding line.
Pollard and Deconto(2009) combine both shallow approxi-
mations via a heuristic shear stress correction and an addi-
tional grounding line velocity correction based on the one-
dimensional approach bySchoof(2007b).

Here, we present the Potsdam Parallel Ice Sheet Model
(PISM-PIK), developed at the Potsdam Institute for Climate
Impact Research (PIK), a new hybrid model for marine ice
sheets. It combines the two approximations by adding the
SIA and the SSA velocity on the whole sheet and shelf sys-
tem in order to incorporate the different flow regimes in
sheet, streams and shelves in a universal manner.

PISM-PIK is based on the Parallel Ice Sheet Model
(PISM; Bueler and Brown, 2009), which is a three-
dimensional thermodynamically-coupled shallow model us-
ing a finite-difference discretization. These models are in-
novative in using the SSA as a sliding law for grounded ice,
thereby avoiding discontinuities at the onset of sliding, and
provide a framework for consistently modeling sheet-shelf
systems. Stream-like flow is modeled by the SSA stress bal-
ance and a plastic till model for basal mechanics (Schoof,
2006a). In aiming at modeling the Antarctic ice sheet and
shelves (Martin et al., 2011), PIK modifications to PISM
have been made particularly with respect to the shelf dynam-
ics. Ice shelves are especially important for an assessment
of past and future sea level contributions of Antarctica be-
cause of their buttressing effect on the dynamics upstream of
the grounding line and its position (De Angelis and Skvarca,
2003; Bamber et al., 2007; Rott et al., 2007; Glasser and
Scambos, 2008; Rignot et al., 2008; Goldberg et al., 2009).

In Sect.2 we describe PISM-PIK with special focus on the
modifications compared to PISM. Section3 shows its per-
formance in experiments from the Marine Ice Sheet Model
Intercomparison Project (MISMIP). A summary is given in
Sect.4. The performance of PISM-PIK under present-day
boundary conditions for Antarctica is discussed inMartin
et al.(2011).

2 Model description

Our description of the model proceeds from the underlying
continuum model to the numerical schemes. The major char-

acteristics of the continuum model are adopted from PISM
(Sect.2.1), but modifications include changes to the way slid-
ing occurs (Sect.2.2) and major changes in the treatment of
marginal boundaries of the ice sheet and shelves, in particu-
lar calving fronts (Sects.2.4–2.6).

Boundary data provided to PISM-PIK are bed elevationb,
surface mass balanceM, geothermal fluxG and ocean tem-
peratureTo. In simulations for Antarctica such as the dy-
namic equilibrium simulation inMartin et al.(2011), the sur-
face temperature distribution is a parameterized function of
latitude and elevation, and the model is initialized with ob-
served ice thickness data fromLythe et al.(2001) and Le
Brocq et al.(2010). In each time step, the model is solved for
velocity v, basal melt rateS and calving rateC. Each time
step updates the prognostic variables, which are ice tempera-
tureT and thicknessH . Because the bed elevationb is fixed
in time, each update to the ice thickness implies an update to
surface elevationh. (For the notation throughout this paper
see TableA1.)

Each of the model equations is numerically discretized, us-
ing a finite difference approach on a rectangular grid. Exactly
as described inBueler and Brown(2009), the new model
PISM-PIK runs in parallel using the Portable, Extensible
Toolkit for Scientific computation (PETSc) for solving every
discretized model equation, including the SSA. Time step-
ping is explicit and adaptive. Technically speaking, PISM-
PIK is implemented as derived classes of the C++ code of
the open-source Parallel Ice Sheet Model (PISM), version
stable0.2 (The PISM authors, 2011).

2.1 Field equations and shallow approximations

For completeness we give a short review of the field equa-
tions used both in PISM and PISM-PIK. For more details see
Bueler and Brown(2009) andBueler et al.(2007).

The equation ofmass continuitydescribing the evolution
of the ice thickness

∂tH = M −S −∇ ·Q (1)

can be derived from incompressibility∂µvµ = 0 and the kine-
matic equations at the surface and base of the ice. (Through-
out this paper, the Einstein summation convention is used.)
HereQ is the vertical integral of the horizontal velocity. The
mass continuity equation is solved numerically forH . The
vertical velocityvz within the ice

vz(z) = −S +vb ·∇b−

z∫
b

∇ ·vdζ (2)

is also given by incompressibility.
The following shallow equation ofconservation of en-

ergy includes advection and vertical conduction of heat and
a strain dissipation heating term (Greve and Blatter, 2009,
Eq. 5.105)

ρici
(
∂tT +vµ∂µT

)
= ki∂

2
zzT +6 . (3)
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The strain heating (6) is a function of the second invariant of
the strain rate tensor, which is – modifying the approach by
Bueler and Brown(2009) – approximated by an unweighted
sum of the strain rate tensors of SIA and SSA. Details about
the combination of SIA and SSA in PISM-PIK compared to
PISM are given in Sect.2.2.

Surface temperatureTs and the geothermal flux as well
as pressure melting temperature in the case of ice shelves
provide boundary conditions for this equation.

Equation (3) is solved for the temperature on a z-
coordinate system, where the z-coordinate measures the ver-
tical distance above the bedrock for grounded ice and above
the ice shelf base for floating ice, so the zero level for z is
always the base of the ice. This grid choice, and thermome-
chanical verification results from PISM using it, are docu-
mented in (Bueler et al., 2007).

Theflow law is given by

ε̇ij ≡
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)
= EA(T ∗)

(√
(1/2)τij τij

)n−1
τij (4)

with n=3. Here,ε̇ is the strain rate tensor andτ the devia-
toric stress tensor withτij=σij+pδij where the pressurep is
the isotropic part of the full stress tensorσ . Throughout this
paper, the tensor indicesi andj denote the two horizontal
components of vertically-integrated terms.

Following Paterson and Budd(1982), ice softnessA(T ∗)

is given by

A(T ∗)={
(3.61×10−13)e−6.0×104/(R̄T ∗), T ∗

≤263.15 K,

(1.73×10+3)e−13.9×104/(R̄T ∗), T ∗>263.15 K.
(5)

The flow law has an inverted form

τij = 2νε̇ij (6)

in which theeffective viscosityν depends on the effective
strain rate and the temperature.

The Stokes stress balance for a viscous fluid (Greve and
Blatter, 2009, Sect. 5.1) is approximated using two limiting
shallow approximations.

TheShallow Ice Approximation(SIA, Morland and John-
son, 1980; Hutter, 1983) is valid for regions where bot-
tom friction is high enough for the vertical shear stresses to
dominate over the horizontal shear stresses and longitudinal
stresses. The corresponding velocities are given by

vSIA=−2(ρig)n |∇h|
n−1

 z∫
b

ESIAA(T ∗)(h−ζ )ndζ

∇h. (7)

The second shallow approximation is theShallow Shelf
Approximation(SSA, Morland, 1987; Weis et al., 1999) for
which the stress balance reads

∂

∂x

[
2ν̄H

(
2
∂vx

∂x
+

∂vy

∂y

)]
+

∂

∂y

[
ν̄H

(
∂vx

∂y
+

∂vy

∂x

)]
+

τbx = ρigH
∂h

∂x
(8)

∂

∂x

[
ν̄H

(
∂vx

∂y
+

∂vy

∂x

)]
+

∂

∂y

[
2ν̄H

(
∂vx

∂x
+2

∂vy

∂y

)]
+

τby = ρigH
∂h

∂y
. (9)

Here,τb = (τbx ,τby ) denotes the basal shear stress.
Thevertically-averaged effective viscosityis given by

ν̄ =
B̄

2
(ESSA)

−
1
n

[
1

2
ε̇ij ε̇ij +

1

2
ε̇2
ii

] 1−n
2n

(10)

whereB̄ is the vertically-averaged ice hardness,ε̇ is the strain
rate tensor andESSA is an enhancement factor.

The SSA stress balance is non-local, i.e., when solving for
the velocity at a certain grid point, the solution will depend
on the whole spatially-distributed stress field.

In an ice shelf where there is zero traction at the base of the
ice, the driving stress is exclusively balanced by membrane
stresses (those stresses held by viscous deformation), and the
basal shear stress is set to zero (τb=0). The resulting plug
flow is described by the SSA, see the upper panel in Fig.1
(ice shelf).

Following MacAyeal (1989), the Shallow Shelf Approx-
imation is also used for modeling the fast flow regime in
ice streams (see the upper panel in Fig.1; ice stream). Ice
streams have a flow-regime similar to the one in ice shelves
(a plug flow) but experience basal resistance. Thus, Eqs. (8)
and (9) are used with nonzero basal frictionτb, which is cal-
culated based on a model for plastic till (Schoof, 2006a)

τbi
= −τc

vi(
v2
x +v2

y

)1/2
. (11)

This basal model assumes that till supports applied stresses
without deformation until these equal a yield stressτc. Di-
vision by zero is avoided by the addition of a small constant
in the denominator (Bueler and Brown, 2009). Yield stress
is given by the Mohr-Coulomb model for saturated till, with
till cohesionc0 set to zero (Paterson, 1994)

τc = c0+(tanφ)(ρigH −pw) . (12)

The porewater pressure is parameterized by

pw = 0.96ρigHλ. (13)

whereλ ranges from 0 to 1 and can be interpreted as water
content in the till. A specific parameterization ofλ depend-
ing on bed elevation and sea level is given for Antarctica in
Martin et al.(2011).
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Fig. 1: Superposition of SIA and SSA velocities.

Upper panel: Schematic diagram of ice profile and different flow regimes. Throughout the grounded

ice region, the ice velocity is determined by linear superposition of the SIA (blue arrows) and the

SSA velocities (red arrows). Ice sheet with negligible basal sliding. The velocity is dominated by

the Shallow Ice Approximation. Friction at the bed leads to shearing in the ice column and a velocity

profile as depicted in blue. Ice stream. Both SIA and SSA velocities are relevant for the ice flow.

The SSA serves as a sliding law for the shear flow. Ice shelf. The plug flow regime is dominated by

the SSA leading to a uniform vertical velocity profile.

Lower panel: An example cut through the sheet-stream-shelf transition of the Lambert Glacier and

Amery Ice Shelf in the equilibrium simulation described in Martin et al. (2011). The model output

velocity v=vSIA+vSSA is shown in black. The onset of an ice stream is diagnosed to be where the

SSA velocity (red) exceeds the SIA velocity (blue).

21

Fig. 1. Superposition of SIA and SSA velocities. Upper panel: schematic diagram of ice profile and different flow regimes. Throughout the
grounded ice region, the ice velocity is determined by linear superposition of the SIA (blue arrows) and the SSA velocities (red arrows).Ice
sheetwith negligible basal sliding. The velocity is dominated by the Shallow Ice Approximation. Friction at the bed leads to shearing in the
ice column and a velocity profile as depicted in blue.Ice stream. Both SIA and SSA velocities are relevant for the ice flow. The SSA serves
as a sliding law for the shear flow.Ice shelf. The plug flow regime is dominated by the SSA leading to a uniform vertical velocity profile.
Lower panel: an example cut through the sheet-stream-shelf transition of Lambert Glacier and Amery Ice Shelf in the equilibrium simulation
described inMartin et al.(2011). The model output velocityv=vSIA+vSSA is shown in black. The onset of an ice stream is diagnosed to be
where the SSA velocity (red) exceeds the SIA velocity (blue).

2.2 Velocity combination, sliding and grounding
line motion

Following the basic idea of superposition of SIA and SSA
from Bueler and Brown(2009), both SIA and SSA velocities
are computed on the whole model domain in PISM-PIK, en-
abling a smooth transition both from non-sliding ice which is
frozen to the bedrock to faster-flowing ice in regions where
significant sliding occurs, and from rapidly-sliding ice across
the grounding line to floating ice (indicated in Fig.1).

Bueler and Brown(2009, Eqs. 21 and 22) use a weighting
function in order to combine the SIA and SSA velocities in
the PISM base version

v=f (|vSSA|)vSIA +(1−f (|vSSA|))vSSA (14)

where |vSSA| = v2
SSAx

+ v2
SSAy

. The weighting function
f (|vSSA|) ensures a continuous solution of the velocity from

the interior of the ice sheet across the grounding line to the
ice shelves. It is approximately 1 for small|vSSA| and ap-
proximately 0 for large|vSSA| so that the SIA velocity fully
governs the overall velocity where the SSA velocity is small
(in the interior of the ice sheet). However, the choice of the
weighting function is an additional degree of freedom which
is not constrained by observations and is therefore not used
in PISM-PIK. Instead, the contributions resulting from the
two approximations are simply added, still ensuring a smooth
transition of the velocity across the grounding line. Thus in
PISM-PIK the basal velocities for grounded ice are the SSA
velocitiesvb=vSSA and

v=vSIA +vSSA. (15)

On ice shelves, experiments with simplified setups have
shown that the SIA contribution is negligible due to the low

The Cryosphere, 5, 715–726, 2011 www.the-cryosphere.net/5/715/2011/
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surface gradient so that the dynamics there are dominated by
the SSA. In the inner part of the sheet where bottom friction
is high enough for vertical shear to dominate over horizon-
tal shear, the SSA contribution is negligible so that the ice
velocity there is dominated by the SIA contribution.

This SIA/SSA hybrid scheme provides an alternative
to SIA-only thermomechanically-coupled sliding models,
which allow sliding using evolving basal resistance fields
and are generally subject to the failures described quali-
tatively and quantitatively in Appendix B ofBueler and
Brown (2009). In these cases, where sliding is incorporated
by adding a basal velocityvb to the SIA velocityvSIA in
Eq. (7), unbounded vertical velocities arise from (physically-
possible) abrupt changes in basal strength (Fowler, 2001;
Bueler and Brown, 2009). The ISMIP-HEINO experiments
(Calov et al., 2010), in particular, demonstrate the diffi-
culty such models generally experience with dynamically-
evolving basal resistance fields. Through the superposition
of the two velocity fields, each of which are differentiable,
unbounded vertical velocities cannot arise with the hybrid
scheme used in PISM-PIK.

The basic, mathematical task of model verification is car-
ried out inBueler and Brown(2009) andBueler et al.(2007)
and references therein. But especially the question whether
the dual approximation used here is indeed a valid approxi-
mation of the Stokes equations in the transition zone needs to
be deferred to other publications. A comparison of the super-
position approach to Blatter-Pattyn type models or other “hy-
brid solvers” like inPollard and Deconto(2009), Schoof and
Hindmarsh(2010), andGoldberg(2011) and performance in
ISMIP-HOM would be most interesting as well but is beyond
the scope of this paper.

The SIA/SSA hybrid scheme enables the model to simu-
late qualitatively different flow regimes – fast as well as slow
processes.Martin et al.(2011) show that the velocities in an
equilibrium simulation of Antarctica span several orders of
magnitude, from almost zero close to the ice divides over ve-
locities of a few meters per year in large areas of the interior
of the ice sheet to the highest velocities of sliding grounded
ice which are associated with stream-like features and reach
a few kilometers per year.

We diagnose an ice stream as a region where the SSA ve-
locities are larger than the contribution from the SIA veloci-
ties to the vertically averaged overall velocityv̄, i.e.,

vb > v̄−vb. (16)

This definition is purely diagnostic and no different physics
are prescribed. It serves as a simple way of identifying the
parts of the sheet with significant sliding.

The lower panel in Fig.1 from the dynamic equilibrium
simulation discussed inMartin et al.(2011) illustrates how
the modeled velocity undergoes a qualitative change from
non-sliding over sliding to floating ice. Here, the velocity
contributions from SIA (in blue) and SSA (in red) are shown

for an example cut through the modeled Lambert Glacier and
Amery Ice Shelf. An ice stream is identified as the grounded
region where the SSA velocity supersedes the SIA velocity
and is understood as the transition region between the sheet
without significant sliding where the velocity is almost en-
tirely given by the SIA velocity and the floating shelf where
the SSA velocity clearly dominates.

The second merit of the hybrid scheme is the stress trans-
mission across the grounding line. In PISM-PIK, the ground-
ing line is not subject to any boundary conditions. Its posi-
tion is determined in each time step via a mask which dis-
tinguishes grounded ice from floating ice using the flotation
criterion

b(x,y) = −
ρi

ρo
H(x,y). (17)

The grounding line motion is thus influenced indirectly by
the velocities through the ice thickness evolution. Since the
SSA velocities are computed non-locally and simultaneously
for the shelf and for the sheet, a continuous solution over the
grounding line without singularities is ensured and buttress-
ing effects are accounted for.

In Sect.3, the reversibility of the grounding line migra-
tion on a sloping bed with PISM-PIK is demonstrated in ex-
periments from the Marine Ice Sheet Model Intercompari-
son Project (MISMIP). The variability of the grounding line
under climate forcing is additionally demonstrated in an ex-
periment shown in the supplement ofMartin et al. (2011)
where a sinusoidal surface temperature forcing is applied to
an equilibrium state of Antarctica, resulting in forward and
backward motion of the grounding line.

2.3 Discretization scheme for mass transport

PISM uses a mass continuity scheme for SIA fluxes which
has perfect numerical mass conservation (Bueler et al.,
2005). The low-order mass continuity scheme used for SSA
fluxes, as described inBueler and Brown(2009), however,
can lead to local mass conservation errors. Keeping track of
all mass fluxes and comparing their sum to the change in total
ice volume has shown that especially at ice margins problems
arise.

We employ a modified scheme in PISM-PIK that is lo-
cally mass conserving and that applies to both SIA and SSA
velocities in the same way. As in PISM, in general the SSA
velocities are computed on the regular grid whereas the SIA
velocities are computed on a staggered grid, i.e., on a grid
which is shifted by half a grid length compared to the regu-
lar grid. For the discretization of the mass transport, the SSA
velocities are transferred onto that same staggered grid by av-
eraging over the SSA velocities from the adjacent grid cells.
The sum of the SIA and SSA velocities on the staggered grid
is the total velocity which is used in a mass-conserving up-
wind finite difference scheme for the mass continuity Eq. (1):

www.the-cryosphere.net/5/715/2011/ The Cryosphere, 5, 715–726, 2011
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1H i

1t
= (18)

−
1

1x

v
i+ 1

2
x H i , v

i+ 1
2

x > 0

v
i+ 1

2
x H i+1 , v

i+ 1
2

x ≤ 0
−

v
i− 1

2
x H i−1 , v

i− 1
2

x > 0

v
i− 1

2
x H i , v

i− 1
2

x ≤ 0
.


An analogous equation holds for the y-component. This
scheme ensures mass conservation since every contribution
of mass inflow in one box is necessarily a contribution to
mass outflow in an adjacent box.

At the ice front the scheme needs to be slightly modified,
since we do not compute velocities in ocean-boxes without
ice. To avoid the zero velocity contribution of the ocean box
adjacent to the last shelf box, when computing the staggered
velocity at the calving front, we use the unstaggered SSA
velocity from this last shelf box and the front stress boundary
condition.

The properties of this alternative scheme for the pure-SIA
mass continuity problem have been tested by comparison to
the similarity solution described byHalfar (1983), and the
deviations of this solution when using the PISM-PIK scheme
are of the same order of magnitude as the ones when using
the PISM base version (Bueler et al., 2005). For the SSA,
Albrecht et al.(2011) have shown that the analytical solution
for the flow line case fromVan der Veen(1983) for an ice
shelf in equilibrium is better approximated with this alterna-
tive mass transport scheme than with the scheme described in
Bueler and Brown(2009). It is not necessary to modify the
adaptive time-stepping from PISM base version to ensure the
numerical stability of this scheme.

2.4 Calving front stress boundary condition

At the calving front, the imbalance between vertically-
integrated stresses in the ice and the hydrostatic pressure ex-
erted by the ocean contributes to the ice flow upstream of
the calving front. A calving front stress boundary condi-
tion is necessary for solving the non-local SSA momentum
balance Eqs. (8) and (9). PISM-PIK therefore incorporates
a physical stress boundary condition (Weertman, 1957; Mor-
land and Zainuddin, 1987) describing the stress imbalance
at the calving front. By contrast, in PISM there is no such
condition, and instead a notional ice shelf extends across the
ice-free ocean to the edge of the computational domain. The
choice of the ice thickness and viscosity used for such an
extension and the effect on the rest of the modeled ice are
inadequately understood (MacAyeal et al., 1996; Bueler and
Brown, 2009). The stress boundary condition implemented
in PISM-PIK reads

zsl+

(
1−

ρi
ρo

)
Hc∫

zsl−
ρi
ρo

Hc

σµν ·nν dz =
1

2
ρog

(
ρi

ρo
Hc

)2

ni , (19)

wherezsl denotes the sea-level,Hc is the ice thickness at
the calving front andn=(nx,ny) the horizontal, seaward-
pointing vector normal to the calving front.

The SSA stress balance Eqs. (8) and (9) can be expressed
in terms of a vertically-integrated stress tensor (Schoof,
2006b)

Tij ≡ 2ν̄H
(
ε̇ij + ε̇kkδij

)
. (20)

This gives the SSA stress balance a very compact form which
is equivalent to Eqs. (8) and (9) combined:

∂Tij

∂xj

+τbi
= ρigH

∂h

∂xi

. (21)

The deviatoric part of the left hand side of the stress
boundary condition can then be expressed in terms of the
vertically integrated deviatoric stress tensor

Tij ≈

∫
dzτij =

∫
dz
(
2νε̇ij

)
. (22)

Neglecting air pressure and assuming cryostatic pressure in
the ice we get

Tijnj =
1

2

(
1−

ρi

ρo

)
ρigH 2

c ni . (23)

In terms of SSA velocities
(
vx,vy

)
,

ν̄Hc

{(
2
∂vx

∂x
+

∂vy

∂y

)
nx+

1

2

(
∂vx

∂y
+

∂vy

∂x

)
ny

}
=τstatnx, (24)

ν̄Hc

{(
∂vx

∂x
+2

∂vy

∂y

)
ny+

1

2

(
∂vx

∂y
+

∂vy

∂x

)
nx

}
= τstatny . (25)

The right-hand side of these equations, representing the static
part of the stress balanceτstat, is computed according to the
type of ice front concerned. In PISM-PIK, we distinguish be-
tween three types of ice-ocean interfaces, namely shelf calv-
ing fronts where

τstat= τ sf
stat≡

ρigH 2
c

4

(
1−

ρi

ρo

)
, (26)

marine ice fronts (ice at the coast resting on bedrock below
sea level) where

τstat= τmf
stat≡

ρig

4

(
H 2

c −
ρo

ρi
(zsl−b(x,y))2

)
(27)

and cliffs (ice at the coast resting on bedrock above sea level)
where

τstat= τ cl
stat≡

ρigH 2
c

4
. (28)

These stress boundary conditions are applied directly at the
calving front by replacing certain terms in the discretiza-
tion of the SSA equations with the respective terms from the
boundary condition, making the use of an artificial shelf ex-
tension obsolete. The implementation holds for any shape of
calving front and is described in detail in AppendixA.
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Fig. 2: Schematic diagram of forces at the calving front. Hydrostatic pressure (gray arrows) and

cryostatic pressure (black arrows) result in net force in direction of the ocean (blue arrow). The net

force is significantly reduced compared to a situation where the hydrostatic pressure is neglected.
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Fig. 2. Schematic diagram of forces at the calving front. Hydro-
static pressure (gray arrows) and cryostatic pressure (black arrows)
result in a net force in direction of the ocean (blue arrow). The
net force is significantly reduced compared to a situation where the
hydrostatic pressure is neglected.

2.5 Continuous ice shelf advance and retreat through
subgrid parameterization

In order to capture subgrid-scale advance and retreat of the
calving front as depicted in Fig.3 the mechanism introduced
by Albrecht et al.(2011) is implemented in PISM-PIK.

The subgrid parameterization is a precondition for the ap-
plication of a continuous calving law like the one described
in Sect.2.6 because it models the observed almost vertical
cliff-like shape of the calving fronts and preserves realistic
driving stresses and hence spreading rates near the ice edge.

Without this mechanism the ice flux into a newly occupied
grid cell would be spread out over the entire horizontal do-
main of that cell, possibly resulting in ice shelf grid cells of
only a few meters ice thickness or less. The front of these
cells would propagate one grid cell ahead in each time step,
leading to an unphysical extension of the ice shelf onto the
ocean.

In particular, for an advancing ice front, the discretized
version of the mass continuity equation yields a volume in-
crementV for each cell at the ice front that needs to be added
to the adjacent ocean grid cell. Without the subgrid parame-
terization, the volume increment would cover the whole area
of this adjacent ocean grid cell and the newly formed shelf
would be unrealistically thin. In order to avoid this purely
numerical effect, in PISM-PIK a fieldR is introduced which
gives the ratio of ice-covered horizontal area in each grid-
cell depending on a reference ice thicknessHr, equal to the
mean ice thickness of the adjacent full shelf grid cells of the
previous time step:

R =
V

aHr
(29)

wherea is the area of the grid-cell andR takes values be-
tween 0 and 1,R = 1 corresponding to full ice-shelf cells and

R = 0 to ice-free ocean cells. Thus, for a cell with 0< R < 1,
the areaRa is covered with ice of the same thickness as the
mean of the adjacent full shelf grid cells as illustrated in
Fig. 3.

Concerning the mass budget for the partially-filled cells,
the outflow is determined by the calving rate while the in-
flow is computed from the ice thickness at the front and the
velocities on the staggered grid described in Sect.2.3.

A retreat of the calving front can be modeled in the same
manner: first, the calving rate is determined through the calv-
ing law described in Sect.2.6. The amount of mass lost
through transport by this calving rate is removed by changing
the ice volume in the partially-filled cells at the ice front, and,
as needed, by transforming adjacent filled cells into partially-
filled cells.

2.6 Calving law

Based on the observation byDoake et al.(1998) andAlley
et al. (2008) that the calving rate is linearly-related to the
product of near-front thickness, half-width and strain rate,
a local first-order law for large-scale ice shelf calving was
introduced byLevermann et al.(2011) as a boundary con-
dition to the mass continuity equation. This so-called Eigen
Calving law has been implemented in PISM-PIK.

The applied calving rate is based on the eigenvaluesε̇± of
the horizontal strain rate tensor (see Eq.4). Along most areas
of the calving front the corresponding eigen-directions will
coincide with the directions parallel to and transverse to the
flow (Fig. 4). In regions of divergent flow, where spreading
occurs in both principle directions (ε̇±>0), we define the rate
of large-scale calving as

C = Kdet(ε̇) = Kε̇+ε̇− for ε̇± > 0 (30)

with K>0 being a proportionality constant. Else, the calving
rate is zero.

Typically, the maximum spreading rate in an ice shelf can
be found along the ice-flow direction downstream of, but
close to, the grounding line. If the calving rate were to de-
pend only onε̇+, it would therefore increase towards the
grounding line so that no stable ice-shelf front would de-
velop. Stability arises through the dependence on the product
of ε̇+ andε̇− since calving is prohibited wherėε+ε̇− is neg-
ative.

Spreading rate fields and therefore areas of potential calv-
ing according to Eq. (30) are strongly influenced by the ge-
ometry of an shelf ice. In areas where it comes to conver-
gence of ice flow the calving rate is zero whereas it strongly
increases where ice flow expands, e.g., at the mouth of an
embayment, hindering the shelf to grow outside the embay-
ment.

Martin et al.(2011) show that this new dynamically mo-
tivated calving law enables PISM-PIK to reproduce realistic
calving front positions for many of the ice shelves attached to
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Fig. 3: (From Albrecht et al., 2011) Schematic diagram illustrating subgrid-scale advance of the

calving front. As a new grid cell i+1 is partially filled with ice its ice thickness is kept constant at

the same value as grid cell i.
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Fig. 3. (From Albrecht et al., 2011) Schematic diagram illustrating subgrid-scale advance of the calving front. As a new grid celli+1 is
partially filled with ice its ice thickness is kept constant at the same value as grid celli.

Fig. 4: Schematic diagram of calving law (see Eq. 30). Green arrows denote the eigen-direction

along the flow direction, red arrows the eigen-direction perpendicular to the flow direction. Con-

vergence of ice flow perpendicular to the main flow direction is associated with closure of crevasses

whereas spreading in both directions (corresponding to positive eigen-values ε̇±) is associated with

intersecting crevasses and enhanced calving.
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Fig. 4. Schematic diagram of calving law (see Eq.30). Green ar-
rows denote the eigen-direction along the flow direction, red arrows
the eigen-direction perpendicular to the flow direction. Conver-
gence of ice flow perpendicular to the main flow direction is as-
sociated with closure of crevasses whereas spreading in both direc-
tions (corresponding to positive eigen-valuesε̇±) is associated with
intersecting crevasses and enhanced calving.

the Antarctic ice sheet, across a broad range of ice thickness
values.

Due to the calving law, an ice bridge connecting the main
part of an ice shelf and a wider tongue can be calved off
and the thereby separated tongue forms an iceberg of the size
of a few grid cells. For these floating pieces with zero to-
tal basal resistance the SSA does not have a unique velocity
solution (Schoof, 2006b). Therefore they are identified and
eliminated, and their volume is reported as lost through calv-
ing.

Since no subgrid interpolation is implemented for marine
fronts and ice cliffs, mass loss occurs as follows in these
cases: in each timestep, a small amount of ice is transported
from a grid cell at the marine front or ice cliff into the adja-
cent ocean grid cell. The hereby emerging shelf cells contain
typically very thin ice and therefore calve off immediately.

3 Experiments from the Marine Ice Sheet Model
Intercomparison Project

The numerical performance of PISM-PIK was tested in the
context of the Marine Ice Sheet Model Intercomparison
Project (MISMIP, Schoof et al., 2009). The results of these
simulations allow a comparison with the semi-analytical so-
lution by Schoof(2007a), and give insight into the quality
of the numerical treatment of grounding line motion. Note
that grounding line migration results directly from the flota-
tion criterion and is thus fully determined by the dynamics
described in Sect.2.

We consider only the MISMIP flow-line experiments on
a constant slope bed (experiments 1 and 2) in this paper.
As PISM-PIK is a three-dimensional model, a flow-line was
simulated using periodic boundary conditions in the cross-
flow direction. Calving occurs at a fixed position in MISMIP
so the calving law in Sect.2.6was not used. The model was
run at resolutions of 12 km, 6 km and 3 km. Upon changes in
flow parameterA (Eq.5), the position of steady-state ground-
ing line should closely follow the semi-analytical solution,
depicted as a solid black line in Fig.5a. In order to diagnose
the position of the grounding line at subgrid scale, a refine-
ment based onPattyn et al.(2006) was introduced for the
analysis of the MISMIP experiments.

During experiment 1 the softness parameterA is lowered
stepwise. During experiment 2 these changes are reversed.
Figure5a shows the modeled grounding line position. It can
be seen that (i) the movement of the grounding line is mod-
eled qualitatively correctly at all resolutions, (ii) an offset
from the semi-analytical solution is observed in experiment
1, and (iii) the offset is smaller in experiment 2. The offset
in experiment 1 decreases with increasing resolution, while
in experiment 2 it is independent of the resolution. The de-
pendence on the resolution becomes evident in Fig.6 which
shows the steady-state grounding-line position of experiment
1 for various resolutions. The simulated grounding line po-
sitions converge to the semi-analytical solution upon grid-
refinement.
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Fig. 5. MISMIP experiments on a constant slope bed.(a) Depen-
dence of grounding-line position on rate factorA. Solid black line:
semi-analytical prediction. Colored lines: simulation results with
PISM-PIK, at1x=12, 6, 3 km resolution.(b) Example ice sheet
profile.

For a flow-line setup governed by the SSA as consid-
ered here, the existence of a shelf should not influence the
grounding-line movement in the continuum model (Schoof,
2007a). In the implementation of the problem in PISM-
PIK, however, we observe some (numerical) influence of the
calving-front treatment on the steady-state results at low res-
olutions. This is due to the fact that the SSA stress balance
equations are solved simultaneously for the entire computa-
tional domain encompassing sheet and shelf.

The implementation of the calving front stress boundary
condition (see Sect.2.4) in PISM-PIK distinctly improves the
performance compared to PISM which uses a notional shelf
extension in ice-free ocean. This shelf extension method
generates a less-accurate backstress on the whole ice body
influencing the grounding line position. The subgrid inter-
polation of the calving front as described in Sect.2.5ensures
a controlled shelf growth, while without this treatment a very
thin shelf develops immediately. Figure6 shows that ground-
ing line position performance with a subgrid treatment of the
calving front is generally better than without, especially at
low resolutions.

4 Conclusions

The large-scale marine ice sheet model PISM-PIK presented
in this paper is based on the Parallel Ice Sheet Model (PISM),
with major modifications for ice shelf dynamics. A boundary
condition for the SSA equations capturing the stress imbal-
ance at the ice front was incorporated and a novel subgrid
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Fig. 6: Grounding-line position vs. resolution for experiment 1, step 1 of MISMIP. Green: with sub-

grid treatment of the calving front motion, blue: without. Black line: semi-analytical prediction.
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Fig. 6. Grounding-line position vs. resolution for experiment 1, step
1 of MISMIP. Green: with sub-grid treatment of the calving front
motion, blue: without. Black line: semi-analytical prediction.

scheme for the advance and retreat of the calving front was
introduced. This was combined with a physical calving law
which is universal in the sense that it governs the calving
process for different shelf geometries.

Grounded ice flow is captured as a direct superposition of
velocities from two shallow approximations, SIA and SSA,
a modification of theBueler and Brown(2009) scheme.
Both shallow approximations are solved simultaneously in
the whole ice area. The new hybrid scheme allows for the
treatment of all flow regimes in a consistent manner and per-
mits a diagnostic definition of ice streams. PISM-PIK thus
includes a treatment of the transition from vertical-shearing
dominated flow, in areas where the ice is frozen to the bed,
to plug flow in ice shelves. All this governs the ice flux
across the grounding line whose position is determined di-
rectly from the flotation criterion, so no boundary conditions
are imposed to model its motion. Since the SSA velocities
are computed non-locally and simultaneously for shelf and
sheet, stress transmission across the grounding line is guar-
anteed.

The performance of PISM-PIK was tested in context of the
Marine Ice Sheet Model Intercomparison Project. In these
experiments, the model reproduced the semi-analytically
predicted grounding line position dependence on ice softness
for the flow-line case, with convergence towards the semi-
analytical solution with grid refinement.

As a first application,Martin et al. (2011) present a dy-
namic equilibrium simulation for Antarctica, demonstrating
the ability of PISM-PIK to simulate whole sheet-shelf sys-
tems.
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Fig. 7. Stencil for the SSA boundary condition in the case of an ice-
filled (white) cell with ice-filled and ice-free (shaded) neighbors.
For this specific shape of the calving front the boundary indicators
a−,b+ anda−N ,a+N ,b+W have the value 1, whereasa+,b− and
a−S , a+S ,b−W ,b−E,b+E have value 0.

Appendix A

On the discretization of the calving front stress boundary
condition

In the following we detail the implementation of the calv-
ing front boundary condition into the SSA-scheme. We only
describe the scheme for SSA Eq. (8). The second equation
based on Eq. (9) is similar. Discretizing the outer derivatives
of Eq. (8) yields
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The next step is to replace the four expressions of the form(
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with the respective terms from the boundary

condition (24). Using the boundary-indicatorsa±,b± (see
Fig. 7) leads to
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wherea±,b±=0 if one or both of the adjacent cells are ice-
free, anda±,b±=1 otherwise, and where the value ofτstat

Table A1. Table of symbols.

Symbol Description SI units

A(T ∗) ice softness Pa−3 s−1

a area of a grid cell m2

B(T ∗) ice hardness;B(T ∗)=A(T ∗)−
1
n Pa s1/3

B̄ vertically averaged ice hardness
B̄=H−1∫ h

b B(T ∗)dz

Pa s1/3

b bedrock elevation m
C calving rate m s−1

ci specific heat capacity for ice J (kg K)−1

ESIA enhancement factor for the SIA
ESSA enhancement factor for the SSA
g acceleration due to gravity m s−2

h upper surface elevation of ice m
H ice thickness m
Hc ice thickness at calving front m
Hr reference ice thickness m
{i,j} 2-D horizontal tensor indices
K proportionality constant for Eigen Calving m s
ki thermal conductivity of ice W (K m)−1

M ice equivalent surface mass balance m s−1

n Glen flow law exponent
ni componenti of the seaward pointing normal vector

at calving front
p pressure=isotropic part of full stress tensor:

p=1/3σkk

Pa=N m−2

pw pore water pressure N m−2

Q horizontal ice flux m2 s−1

R ratio of ice-covered horizontal area in
a grid cell

R̄ gas constant J (mol K)−1

S ice equivalent basal mass balance
(S>0 is melting)

m s−1

T ice temperature K
T ∗ pressure-adjusted temperature K
Tij component of the vertically integrated

deviatoric stress tensor
Pa m=N m−1

v overall horizontal ice velocity m s−1

vb basal ice velocity;vb=vSSA=(vx ,vy) m s−1

vSIA SIA velocity of ice m s−1

vSSA SSA velocity of ice;vSSA=(vx ,vy) m s−1

(x,y) horizontal dimensions m
z vertical dimension (positive upwards) m
zsl sea level m
∂ partial derivative
δij Kronecker delta
1x,1y horizontal grid size m
∇ 2-D gradient operator∇=(∂x ,∂y) m−1

ε̇ij component of the strain rate tensor s−1

ε̇± eigenvalues of strain rate tensor s−1

{µ,ν} 3-D tensor indices
ν viscosityν=1/2B(T ∗)(1−n)/n Pa s
ν̄ effective viscosity Pa s
ρi density of ice kg m−3

ρo density of ocean water kg m−3

σij full Cauchy stress tensor;σij=τij−pδij Pa=N m−2

τb basal shear stress on ice Pa=N m−2

τc yield stress Pa=N m−2

τij component of the deviatoric stress tensor;
τij=2νε̇ij

Pa=N m−2

τstat vertically integrated static stress at
calving front

Pa m=N m−1

φ till friction angle ◦
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is determined by one of Eqs. (26), (27) or (28). The calv-
ing front is situated at the border between ocean cells and the
last completely-filled shelf cells; the stress boundary condi-
tion is not applied to partially-filled cells that arise due to the
subgrid parameterization described in Sect.2.5.

Further discretization yields:
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For each specific shape of calving front, the respective
boundary indicators are set to zero, so that the derivatives
of vy in Eq. (8) (and ofvx in Eq.9) are partially neglected.
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