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Abstract

We investigate testing of properties of 2-dimensional figures that consist of a black object on a

white background. Given a parameter ǫ ∈ (0, 1/2), a tester for a specified property has to accept

with probability at least 2/3 if the input figure satisfies the property and reject with probability

at least 2/3 if it does not. In general, property testers can query the color of any point in the

input figure.

We study the power of testers that get access only to uniform samples from the input figure.

We show that for the property of being a half-plane, the uniform testers are as powerful as general

testers: they require only O(1/ǫ) samples. In contrast, we prove that convexity can be tested

with O(1/ǫ) queries by testers that can make queries of their choice while uniform testers for this

property require Ω(1/ǫ5/4) samples. Previously, the fastest known tester for convexity needed

Θ(1/ǫ4/3) queries.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Property testing, randomized algorithms, being a half-plane, convexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.45

1 Introduction

We investigate testing of properties of 2-dimensional figures that consist of a black object

and a white background. Sometimes the correctness of an algorithm depends on whether

its input satisfies a certain property, e.g., it is a half-plane or a convex set. However, for

a very large set, it is infeasable to determine whether it is indeed a half-plane or convex.

How quickly is it possible to determine whether the input approximately satisfies the desired

property? What access to the input is sufficient for this task?

Property testing [24, 14] studies algorithms that quickly determine whether the input

has the desired property or it is far from having it. Many types of objects have been

investigated in the property testing framework, including graphs [14, 12, 1], functions [7, 13,

10], distributions [3, 28], and geometric objects [9, 8]. In this work, we study properties of

2-dimensional figures.

A figure (U, C) consists of a compact convex universe U ⊆ R
2 and a measurable subset

C ⊆ U . The set C can be thought of as a black object on a white background U \ C. A

figure (U, C) is a half-plane if there is a line separating C from U \ C. A figure (U, C) is
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convex iff C is convex. The relative distance between two figures (U, C) and (U, C ′) over

the same universe is the probability of the symmetric difference between them under the

uniform distribution on U . A figure (U, C) is ǫ-far from a property (e.g., being a half-plane)

if the relative distance from (U, C) to every figure (U, C ′) with the property over the same

universe is at least ǫ.

◮ Definition 1.1. Given a proximity parameter ǫ ∈ (0, 1/2) and error probability δ ∈ (0, 1),

an ǫ-tester for a given property accepts with probability at least 1− δ if the figure has the

desired property and rejects with probability at least 1 − δ if the figure is ǫ-far from the

desired property1. A tester has 1-sided error if it always accepts inputs with the property.

(Otherwise, it has 2-sided error). A tester is nonadaptive if it makes all of its queries in

advance, before seeing any of the input. A tester is uniform if it accesses its input only

via uniform and independent samples from U , each labeled with a bit indicating whether it

belongs to C.

In particular, a uniform tester is nonadaptive. In general, a tester can query the input at an

arbitrary location. Such a strong assumption about the access model is not always realistic.

Uniform testers, in contrast, rely only on uniform samples from the input. One advantage of

using uniform testers is that they are universal in the following sense: we can collect uniform

samples from the data in advance, before we know what property of the data needs to be

tested.

Uniform testers were first considered by Goldreich, Goldwasser, and Ron [14] and system-

atically studied by Goldreich and Ron [15]. In particular, [15] shows that certain types of

query-based testers yield uniform testers with sublinear (but dependent on size of the input)

sample complexity.

In the context of property testing and sublinear algorithms, visual properties of 2-

dimensional figures and discretized images have been studied in [21, 20, 23, 16, 17, 18, 6, 4, 5].

In [21], adaptive ǫ-testers for the half-plane property and convexity were obtained. For the

half-plane property, the query complexity2 is O(1/ǫ) and for convexity the query complexity

is O(1/ǫ2). Currently, the best ǫ-tester known for convexity takes O(ǫ−4/3) samples and is

uniform [4]. This tester has 1-sided error, and every uniform 1-sided error tester for convexity

needs Ω(ǫ−4/3) samples [4].

This motivates the following question: What is the power of uniform samples? Specifically,

can we test the half-plane property with O(1/ǫ) uniform samples? Can the best complexity

for testing convexity be achieved by a uniform tester?

Our results. We show that for the property of being a half-plane, the uniform testers are

as powerful as general testers: they require only O(1/ǫ) samples. This is not the case for

convexity. We prove that convexity can be tested with O(1/ǫ) queries by testers that can

make queries of their choice, improving the bound of O(ǫ−4/3) in [4]. We also show that

uniform testers for convexity, even with 2-sided error, require Ω(ǫ−5/4) samples.

Connection to learning. An upper bound O( 1
ǫ log 1

ǫ ) on the number of uniform samples

for testing the half-plane property can be obtained from a connection between (proper)

1 If δ is not specified, it is assumed to be 1/3. By standard arguments, the error probability can be
reduced from 1/3 to an arbitrarily small δ by running the tester O(log 1/δ) times.

2 For any nontrivial property, including being a half-plane, Ω(1/ǫ) is an easy lower bound on the complexity
of an ǫ-tester.
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PAC-learning and property testing, described in [14]. This bound follows from the fact that

the VC dimension of the half-plane property is constant. Even though our tester has only

slightly better sample complexity, its complexity is tight. Moreover, the running time of our

tester is also optimal. (The running time cannot be obtained from the VC-dimension bound.)

For convexity, PAC-learning under the uniform distribution requires Θ(ǫ−3/2) samples, as

shown by Schmeltz [25]. (VC dimension of convexity is unbounded, so this result is specific

to the uniform distribution.) For this property, however, as shown in [4], testing requires

significantly fewer samples than learning when the object is accessed via uniform samples.

Our tester for convexity can be viewed as an adaptive learner for the property, followed by a

check that the learned convex object corresponds to the input.

Our techniques. Our tester for the half-plane property is the natural one: it checks whether

the convex hull of sampled black points intersects the convex hull of sampled white points and

rejects if it is the case. In other words, it rejects only if it finds a violation of the half-plane

property. To analyze the tester, we use the notion of black-central and white-central points

defined in terms of the Ham Sandwich cut of black (respectively, white) points. (These central

points are related to the well studied centerpoints [11] and Tukey medians [27]. The guarantee

for a centerpoint is that every line that passes through it creates a relatively balanced cut.)

Such cuts have been studied extensively (see, e.g., [11, p. 356] and [19]), for example, in

the context of range queries. Specifically, a black-central (respectively, white-central) point

is the intersection of two lines that partition the figure into four regions, each with black

(respectively, white) area3 at least ǫ/4. Black-central points were defined in [4] in order to

analyze a tester of convexity of figures. A black-central (respectively, white-central) point is

overwhelmingly likely to end up in the convex hull of sampled black (respectively, white)

points. We show that if the figure is ǫ-far from being a half-plane, the convex hull of its

black-central points intersects the convex hull of its white-central points. A point in the

intersection, even though is not likely to be sampled, is likely to be in the intersection of the

convex hull of the black samples and the convex hull of the white samples. Thus, there is

likely to be the intersection, and the tester is likely to reject.

Our tester for convexity samples points uniformly at random and constructs a rectangle

R that with high probability contains nearly the entire black area and whose sides include

sampled black points. Then it adaptively queries points of R in order to partition it into the

candidate black and white regions, leaving only a small region unclassified. After completing

this learning stage, it samples points in the classified regions and rejects iff it finds a mistake.

To prove our lower bound, we construct hard instances, for which every uniform tester

needs to get a 2-point witness, with points coming from different specified regions, in order to

distinguish between our hard instances that are convex from hard instances that are far from

convex. The challenge here is to construct a figure with regions that can be manipulated

independently to either keep convexity or to violate it.

2 The Uniform Tester for the Half-Plane Property

In this section, we give a uniform tester for the half-plane property.

3 For the two properties we consider (being a half-plane and convexity), we assume w.l.o.g. that the input
figure U has unit area. If it is not the case, U can be rescaled. Thus, the area of a region corresponds
to the probability of sampling from it under the uniform distribution.

FSTTCS 2016
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Algorithm 1: Uniform tester for the half-plane property.

input : parameter ǫ ∈ (0, 1/2);

access to uniform and independent samples from (U, C).

1 Set s← 18
ǫ . Sample s points from U uniformly and independently at random.

2 Set U is contained in a rectangle R whose area is at most twice the area of U . Orient

U , so that R is axis-aligned.

3 Bucket sort sampled black pixels by the x-coordinate into s bins to obtain list SB .

Similarly, compute SW for the sampled white pixels.

// Check if the convex hull of SB contains a pixel from SW .

4 Use Andrew’s monotone chain convex hull algorithm [2] to compute UH(SB) and

LH(SB), the upper and the lower hulls of SB , respectively, sorted by the x-coordinate.

5 Merge sorted lists SW , UH(SB) and LH(SB) to determine for each point w in SW its

left and right neighbors in UH(SB) and LH(SB). If w lies between the corresponding

line segments of the upper and lower hulls, reject.

// Check if the convex hull of SW contains a point from SB.

6 Repeat Steps 4–5 with the roles of SB and SW reversed.

7 Accept.

◮ Theorem 2.1. There is a uniform (1-sided error) ǫ-tester for the half-plane property of

figures with sample and time complexity O(1/ǫ).

Proof. Our uniform tester for the half-plane property is Algorithm 1. It takes O(1/ǫ) uniform

samples and checks if the sampled black and white points are linearly separable. We will

show that the expected running time of Algorithm 1 is O(1/ǫ) and its error probability is

0.3. A tester with worst case running time O(1/ǫ) and error probability 1/3 can be obtained

from Algorithm 1 by standard arguments.

Consider a half-plane figure (U, C). Let SB and SW be the two lists obtained by

Algorithm 1 in Step 3. It is easy to see that Hull(SB) and Hull(SW ) do not intersect, i.e,

they are linearly separable. Thus, the algorithm accepts the figure.

Now assume that (U, C) is ǫ-far from being a half-plane. We prove that the algorithm

rejects the figure with probability at least 2/3. We consider two sets of points in U : black-

central and white-central. We show that if the figure is ǫ-far from being a half-plane, then

the convex hulls of the two sets intersect. In this case, the tester will detect this intersection,

with probability at least 2/3, by only looking at the convex hull of sampled black points and

the convex hull of sampled white points.

Next, we define white-central and black-central points. Black-central points were used

in [4] to analyze a tester for convexity. In that work, they were called central points.

◮ Definition 2.2 (White-central and black-central points). A point in the figure is white-central

(respectively, black-central) if it is the intersection of two lines such that each of the quadrants

formed by these lines has white (respectively, black) area at least ǫ/4.

◮ Lemma 2.3. There is no line that separates white-central points from black-central points

in a figure that is ǫ-far from being a half-plane.

Proof. Let (U, C) be a figure that is ǫ-far from being a half-plane. For the sake of contra-

diction, suppose there is a line ℓ that separates white-central and black-central points in

(U, C), i.e., it partitions the figure into two regions, Wℓ and Bℓ , such that Wℓ contains only
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white-central points

𝑊ℓblack-central points

𝐵ℓ
Figure 1 An illustration of black-central and

white-central points separated by a line.

𝑊ℓ

𝐵ℓ

ℓℓ′

Figure 2 An illustration of the line ℓ′ and a

white-central point on it.

white-central points and Bℓ contains only black-central points (see Figure 1). The sum of

the black area in Wℓ and the white area in Bℓ is at least ǫ since the figure is ǫ-far from being

a half-plane. W.l.o.g. assume that the black area in Wℓ is at least ǫ/2. Consider the line

ℓ′ that is parallel to ℓ and such that the black area in one of the two half-planes defined

by ℓ′ is equal to ǫ/2. (See Figure 2. Note that the black area in the other half-plane is at

least ǫ/2.) Clearly, ℓ′ lies in Wℓ. Next, we show that there is a black-central point on ℓ′,

i.e., in Wℓ, thus arriving at a contradiction. Consider the two sets of black points, on either

side of ℓ′. We have argued that each of them has area at least ǫ/2. By the Ham Sandwich

Theorem, applied to the two sets, there is a line ℓ′′ that bisects the two sets simultaneously,

forming four sets black points of area at least ǫ/4 each. The intersection point of ℓ′ and

ℓ′′ is black-central and lies in Wℓ. This is a contradiction, since ℓ is a line that separates

white-central and black-central points. ◭

Consider a white-central point w which is the intersection of two lines ℓ1 and ℓ2, as

shown in Figure 3. If four white pixels from four different quadrants determined by ℓ1 and

ℓ2 are sampled by Algorithm 1, we say that the tester captures w. (The tester captures

a black-central point analogously.) By Lemma 2.3, the convex hull of all white-central

points and the convex hull of all black-central points intersect. Thus, there is a point v that

lies in both convex hulls (see Figure 4). Moreover, there exists a set PW of at most three

white-central points such that point v lies in the convex hull of the points in PW . Analogously,

there exists a set PB of at most three black-central points such that point v lies in the convex

hull of the points in PB . If all points in PW ∪ PB are captured then v simultaneously lies in

the convex hull of black samples and in the convex hull of white samples, i.e., the convex hull

of black samples and the convex hull of white samples intersect, and the tester will reject the

figure. The probability that the tester fails to capture a specific point in PW ∪ PB is, by the

union bound, at most 4 · (1− ǫ/4)18/ǫ ≤ 4 · e−18/4. The probability that the tester fails to

capture at least one point in PW ∪ PB is at most 6 · 4 · e−18/4 < 0.3. Therefore, the failure

probability of the tester is at most 0.3.

Sample and time complexity. Algorithm 1 samples s = O(ǫ−1) points.

FSTTCS 2016
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𝑤ℓ1
ℓ2

Figure 3 An illustration of a captured white

central point.

𝒗

Figure 4 An illustration of the point v in

the intersection of two convex hulls.

Next, we analyze its running time. Conduct the following mental experiment: Suppose

we sample points from the rectangle R (defined in Algorithm 1) uniformly and independently

at random until we collect s points from U ; then we bucket sort sampled points by their

x-coordinate into s bins. Let q be the number of points we sample. Then E[q] ≤ 2s. Since the

x-coordinates of the sampled q points are distributed uniformly in the interval corresponding

to the length of the rectangle R, they can be sorted in expected time O(q) by subdividing

this interval into s subintervals of equal length, and using them as buckets in the bucket sort.

Thus, the expected running time of this algorithm is O(s).

Observe that Algorithm 1 has the same distribution on the s points sampled from U as

the algorithm in the mental experiment. It sorts two (disjoint) subsets of the points sampled

in the mental experiment. Thus, the expected running time of Step 3 of Algorithm 1 is

O(s). Andrew’s monotone chain algorithm finds the convex hull of a set of s sorted points

in time O(s). Merging also takes O(s) time. Overall, Algorithm 1 runs in expected time

O(s) = O(ǫ−1). By standard arguments, we get a uniform algorithm with the worst case

running time O(ǫ−1) and with a slightly larger error probability δ than in Algorithm 1,

specifically, with δ = 1/3. ◭

3 The Adaptive Tester for Convexity

◮ Theorem 3.1. Given ǫ ∈ (0, 1/2), convexity of figure (U, C) can be ǫ-tested (adaptively)

with 1-sided error in time O(ǫ−1).

Proof. In [4], it was shown that testing convexity of figures (U, C) can be reduced to the

special case when the universe U is an axis-aligned rectangle of unit area. Therefore, we can

assume w.l.o.g. that U is an axis-aligned rectangle of unit area.

Our ǫ-tester for convexity (Algorithm 2) samples points uniformly at random and con-

structs a rectangle R that with high probability contains nearly the entire black area and

whose sides include sampled black points. (See Figure 5.) Then it adaptively queries points

of R in order to partition it into regions B, W and F . (See Figure 6.) The “fence” region

F has a small area. If the image is convex, B is entirely black and W is entirely white.
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Algorithm 2: ǫ-tester for convexity.

input : parameter ǫ ∈ (0, 1/2); access to a figure (U, C).

1 Query 64
ǫ points uniformly at random. If all sampled points are white, accept.

2 Let R be the minimum axis-parallel rectangle that contains all sampled black points.

Let p0 (respectively, p1, p2, p3) be a sampled black point on the top (respectively, left,

bottom, right) side of R.

3 for i← 0 to 3 do

4 Let (x, y)← pi and Pi ← ∅.// Investigate the upper right corner of R.

5 while (x, y) is in R do

6 if (x, y) is black or below the line through pi and p(i+3) mod 4 then

x← x + ǫ/12. // Move right.

7 else

Pi ← Pi ∪ {(x, y)}; y ← y − ǫ/12. // Move down.

8 Let Wi ← {(u, v) inside R | ∃(x, y) ∈ Pi such that u ≥ x, v ≥ y with respect to

the rotated coordinates}. Rotate R clockwise by 90 degrees.

// We rotate R to reuse lines 4-8 of the pseudocode for investigating

all four corners.

9 Let B be the convex hull of all black points discovered after Step 3, and W ← ∪3
i=0Wi.

10 Query 8
ǫ points in B ∪W uniformly and independently. If a white point in B or a

black point in W is detected, reject; otherwise, accept.

The algorithm queries a small number of random points in B ∪W and rejects if it finds a

misclassified point (i.e., a white point in B or a black point in W ); otherwise, it accepts.

Since the black area outside R and the area of F are small, if the figure is ǫ-far from

convexity then there will be enough misclassified points in B ∪W , and the algorithm will

detect at least one of them with high probability.

We prove that Algorithm 2 satisfies Theorem 3.1. First, we argue that Algorithm 2 always

accepts if its input is a convex figure. If (U, C) has no black points (i.e., C = ∅), Step 1

always accepts. Otherwise, all points in B are black, by convexity of (U, C). We will show

that all points in W are white. For the sake of contradiction, suppose there is a black point

b = (u, v) in W0. By definition of W0, there is a white point w = (x, y) in P0 such that u ≥ x

and v ≥ y. Thus, white point w is inside the triangle p0bp3, formed by three black points,

contradicting convexity of (U, C). Thus, there are no black points in W0. Analogously, there

are no black points in W1, W2 and W3. Since there are no white points in B and no black

points in W = ∪3
i=0Wi, Step 10 of Algorithm 2 always accepts (U, C).

Now assume that (U, C) is ǫ-far from convexity.

◮ Lemma 3.2. The probability that the black area outside R is greater than ǫ
4 after Step 2

of Algorithm 2 is at most 1/9.

Proof. Let L be a horizontal line with the largest y-coordinate such that the black area of

the figure above L is at least ǫ
16 . The probability that no black points above L are sampled in

Step 1 of Algorithm 2 (and, consequently R lies below L) is at most (1− ǫ
16 )64/ǫ ≤ e−4 < 1/36.

Thus, with probability at most 1/36, the black area in the half-plane above R is greater

than ǫ
16 . The same bound holds for the half-planes to the left, to the right and below R. By

a union bound, the probability that the black area outside R is greater than ǫ
4 is at most

(1/36) · 4 = 1/9. ◭

FSTTCS 2016
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𝑝0
𝑝1

𝑝2
𝑝3𝑅

Figure 5 An illustration to Step 2 of Al-

gorithm 2.

fence squares𝑝0
𝑝1

𝑝2
𝐵

W

𝐹
𝐹 𝐹

𝜀/12 𝑊0𝑊1

𝑊3𝑊2
` 𝑝3

Figure 6 An illustration to Steps 3–9 of

Algorithm 2.

◮ Lemma 3.3. Let F = R− (B ∪W ). Then the area of F is at most ǫ
2 .

Proof. Let m = ǫ/12 and (xi, yi) be pi (as defined in Step 2 of Algorithm 2) for i ∈ {0, 1, 2, 3}.

Call every region that consists of points (x, y) + [0, m]2 a square, where x−xi

m , y−yi

m ∈ N. Call

squares that contain points from F fence squares. Let r = (x3, y0) and let T = △p0p3r.

We will find an upper bound on the number of fence squares inside T . Each point that

Algorithm 2 queries in Step 5 results in at most one (new) fence square in T . The algorithm

queries at most x3−x0+y0−y3

ǫ/12 + 2 points in the triangle (thus, it discovers at most that many

fence squares), since, in every iteration, it either increases the x-coordinate or decreases

the y-coordinate of the queried point. Therefore, there are at most x3−x0+y0−y3

ǫ/12 + 2 fence

squares in this triangle. Similarly, we can find an upper bound on the number of discovered

fence squares in the remaining triangles. Since the perimeter of R is at most 4, the sum of

the upper bounds is at most 4
ǫ/12 + 8 = 48

ǫ + 8 ≤ 56
ǫ . The area of a single fence square is

( ǫ
12 )2 = ǫ2

144 and thus the total area of F is at most ǫ2

144 ·
56
ǫ ≤

ǫ
2 . ◭

We call a point misclassified if it is black and is in W or if it is white and in B. (The area

that the set of misclassified points cover is called a misclassified area.) If we make all area in

B black and all area outside of B white, we obtain a convex figure. Thus, by Lemma 3.3,

the misclassified area in B ∪W is at least ǫ
4 if the black area outside of R is at most ǫ

4 . If

the latter is the case, the probability that the algorithm will not detect a misclassified point

is at most (1− ǫ
4 )

8

ǫ < e−2 < 2/9. By Lemma 3.2, the probability that the misclassified area

in B ∪W is less than ǫ
4 is at most 1/9. Therefore, the probability that Algorithm 2 accepts

is at most 2/9 + 1/9 = 1/3, as desired.

Query complexity. The algorithm queries points in Steps 1, 6 and 10. In Steps 1 and 10,

the algorithm makes O( 1
ǫ ) queries. In Step 6, over all iterations, the algorithm also queries

O( 1
ǫ ) points. Thus, the overall query complexity of the algorithm is O( 1

ǫ ).

Running time. The running time of the algorithm in Steps 1 through 9 is O( 1
ǫ ). Starting

from the uppermost horizontal side of R consider a partition of R into horizontal strips with
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width ǫ/12. Note that there are O( 1
ǫ ) such strips. Moreover, for each strip, there are at

most 2 vertical lines that define the boundary of W (not the lines that define the sides of R)

and at most 2 lines that define the boundary of B (see Figure 6). Thus, for each horizontal

strip in the partition of R, we can store at most 4 lines that define the boundary of B or

the boundary of W . Given a sampled point p from Step 10, in O(1) time we identify the

horizontal strip that point p belongs to. For each line ℓ stored for this strip, in time O(1) we

identify the half-plane (defined by ℓ) that contains point p. Thus, in time O(1) we determine

whether p is in B ∪W . Since we sample O( 1
ǫ ) points in Step 10 its running time is O( 1

ǫ ).

Therefore, the running time of the algorithm is O( 1
ǫ ), as claimed. ◭

4 The Lower Bound for Nonadaptive Convexity Testers

4.1 Preliminaries on Poissonization

The proof of our lower bound uses a technique called Poissonization [26], in which one

modifies a probabilistic experiment to replace a fixed quantity (e.g., the number of samples)

with a variable one that follows a Poisson distribution. This breaks up dependencies between

different events and makes the analysis tractable. The Poisson distribution with parameter

λ ≥ 0, denoted Po(λ), takes each value x ∈ N with probability e−λλx

x! . The expectation and

variance of a random variable distributed according to Po(λ) are both λ.

◮ Definition 4.1. A Poisson-s tester is a uniform tester that takes a random number of

samples distributed as Po(s).

◮ Lemma 4.2 (Poissonization Lemma [22, Lemma 5.3] and [4]).

(a) Poisson algorithms can simulate uniform algorithms. Specifically, for every uniform

tester A for property P that uses at most s samples and has error probability δ, there is

a Poisson-2s tester A′ for P with error probability at most δ + 4/s. Moreover,

(b) Let Ω be a sample space from which a Poisson-s algorithm makes uniform draws. Suppose

we partition Ω into sets Ω1, . . . , Ωk (e.g., these sets can correspond to disjoint areas

of the figure from which points are sampled), where each outcome is in set Ωi with

probability pi for i ∈ [k]. Let Xi be the total number of samples in Ωi seen by the

algorithm. Then Xi is distributed as Po(pi · s). Moreover, random variables Xi are

mutually independent for all i ∈ [k].

4.2 The Lower Bound

◮ Theorem 4.3. Every 2-sided error uniform ǫ-tester for convexity needs Ω(ǫ−5/4) samples.

Proof. By the Poissonization Lemma (Lemma 4.2), it is enough to prove the lower bound

for Poisson algorithms. For sufficiently small ǫ, we define distributions P and N on figures,

where P is supported only on convex figures whereas N is supported only on figures which

are ǫ-far from convexity. We show that every uniform Poisson-s tester, where s = o(ǫ−5/4),

fails to distinguish P from N with sufficient probability.

Let k = ⌈ 1
2 · ǫ

−1/2⌉ and the universe U = [0, 1]2. Consider two regular convex k-gons G1

and G2, centered at (1/2, 1/2), such that G1 has side length sin(π
k ) and the vertices of G2

are the midpoints of the sides of G1 (see Figure 7). Call triangular regions inside G1 but

outside G2 teeth (one such triangular region is a tooth). Let T be a tooth and b be its vertex

which is also a vertex of G1. Let the other two vertices of T be d and d′ and let b0 be a

point on dd′ such that bb0 is the height of T from b to its base dd′. Call △bb0d and △bb0d′

half-teeth (see Figure 8). Distributions P and N are defined next.
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Tooth

𝑈

𝐺1 𝑏 𝑑𝑑′
𝐺2

Figure 7 A figure from P for k = 6.

𝑈

Half-

Tooth

𝑏 𝑑𝑏0𝑏′
𝑑′

Figure 8 A figure from N for k = 6.𝑏

𝑏′
𝑑′𝑑 𝑏0

𝑏2
𝑑2

𝑏1𝑑1
Figure 9 An illustration of a block.

1. For all figures from both distributions, points outside G1 are white and points in G2 are

black.

2. For a figure in P , every tooth is independently colored white or black, each with probability

1/2, as shown in Figure 7.

3. For a figure in N , every tooth is independently colored as follows: one half-tooth is colored

black or white, each with probability 1/2, and the other half-tooth gets the opposite

color, as shown in Figure 8.

Note that every figure in the support of P is convex.

◮ Lemma 4.4. For all ǫ ≤ 3 · 10−3, every figure in the support of N is ǫ-far from convexity.

Proof. Let A△ denote the area of a tooth. Consider a figure (U, C) in the support of N .

Let △bdd′ be a tooth of (U, C). Consider point b′ that is symmetric to b with respect to the

line dd′, as shown in Figure 8. Call the quadrilateral bb′dd′ a block. Observe that there are k

disjoint blocks. Let (U, C ′) be a convex figure that is closest to (U, C).

◮ Claim 4.5. In every block of C, area at least
A△

16 must be modified to obtain C ′ from C.

Proof. For a region R, let A(R) denote the area of R.

Consider the block bdb′d′ illustrated in Figure 9. Let b1 and d1 be the midpoints of bb0

and db0, respectively. Let the line b1d1 intersect bb′ and dd′ at b2 and d2, respectively.
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Consider the white triangle △b1b0d1 and the three black triangles △dd1d2,△bb1b2, and

△b0b′d′. If there is a point in each of these four triangles that has not changed color, then

we have a white point in the convex hull of three black points, i.e., the figure is not convex.

Therefore, in at least one of these four triangles, all points must change color in order to

make the figure convex. Since the areas of the triangles are

A(△b0b′d′) =
A△

2
, A(△b1b0d1) =

A△

8
, A(△dd1d2) = A(△bb1b2) =

A△

16
,

the claim holds. ◭

◮ Claim 4.6. 5.6 · 1
k3 < A△ ≤ 8 · 1

k3 .

Proof. By simple geometric reasoning,

A△ =
1

2
·

1

4
· sin2

(π

k

)

· sin

(

2π

k

)

.

Since 0.9x ≤ sin x ≤ x for x ∈ [0, 0.78], we obtain that, for sufficiently large k (i.e., for

ǫ ≤ 3 · 10−3),

A△ ≥
1

8
·
(

0.9 ·
π

k

)2

·

(

0.9 ·
2π

k

)

> 5.6 ·
1

k3
;

A△ ≤

(

1

8

)

·
(π

k

)2

·

(

2π

k

)

≤
8

k3
. ◭

There are k blocks and by Claim 4.5 at least

k ·
A△

16
> k ·

5.6

16
·

1

k3
=

7

20
·

1

k2
≥ ǫ

area needs to be modified to make C convex. (Recall that k = ⌈ 1
2 · ǫ

−1/2⌉.) ◭

Consider a Poisson-s algorithm A with s = c0 · ǫ
−5/4. We will show that when c0 is

sufficiently small then A fails on P or N with probability greater than 1/3.

◮ Definition 4.7. A pair of points (p1, p2) is called a red-flag pair if p1 and p2 belong to

different half-teeth of the same tooth.

Let BAD denote the event that no red-flag pair is sampled by the algorithm A.

◮ Claim 4.8. If c0 is sufficiently small, Pr[BAD] < 1/10.

Proof. Let LT and RT be the random variables that count the number of points sampled by

the tester in the left half-tooth and in the right half-tooth of a tooth T , respectively. Let XT

and X be the random variables that count the number of sampled red-flag pairs in a tooth

T and in all teeth, respectively. By the Poissonization Lemma (Lemma 4.2), LT and RT are

independent Poisson random variables with expectation (A△/2) · s. Note that XT = LT ·RT

and, therefore,

E[XT ] = E[LT ] · E[RT ] = (A△/2)2 · s2 ≤
16s2

k6
,

by Claim 4.6. Since all teeth are disjoint, then for sufficiently small c0,

E[X] = k · E[XT ] ≤ k ·
16s2

k6
≤ 512 · c2

0 < 1/10.

By Markov’s inequality, Pr[BAD] = Pr[X ≥ 1] ≤ E[X] < 1/10. ◭
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Conditioned on BAD, the distribution on the answers to the queries made by A is the

same whether the input is sampled from P or N . Therefore,

Pr
x∼P

[A accepts x | BAD] = Pr
x∼N

[A accepts x | BAD] = 1− Pr
x∼N

[A rejects x | BAD].

Consequently,

min( Pr
x∼P

[A accepts x | BAD], Pr
x∼N

[A rejects x | BAD]) ≤ 1/2.

Assume w.l.o.g. that Prx∼P [A accepts x | BAD] ≤ 1/2. Then,

Pr
x∼P

[A accepts x]

= Pr
x∼P

[A accepts x | BAD] · Pr[BAD] + Pr
x∼P

[A accepts x | BAD] · Pr[BAD]

< 1 ·
1

10
+ Pr

x∼P
[A accepts x | BAD] · 1

≤
1

10
+

1

2
<

2

3
.

Thus, a uniform algorithm needs Ω(ǫ−5/4) samples to test convexity with error probability

at most 1/3. ◭

5 Conclusion and Open Problems

We showed that uniform testers are as powerful as adaptive testers in the case of the half-plane

property. Specifically, our uniform half-plane tester has 1-sided error and optimal running

time. For convexity, the best previously known tester was uniform. However, we designed an

adaptive tester with better (optimal) query complexity and showed that every uniform tester

must have a significantly larger query complexity than our adaptive tester.

One remaining open problem is to resolve the sample complexity of an optimal (2-sided

error) uniform tester for convexity. Our lower bound on this quantity is Ω(ǫ−5/4), while the

best upper bound is O(ǫ−4/3) [4]. Another direction for research is to investigate the power of

uniform samples in the context of tolerant property testing. Tolerant testing of 2-dimensional

figures was investigated in [5]. The tolerant testers for half-plane and convexity in that work

are uniform and have nearly optimal query complexity (as compared to any, even adaptive

testers). However, it is open whether uniform samples are sufficient for achieving the optimal

running time for tolerantly testing these properties. It is interesting to investigate the power

of other restricted classes of testers, such as nonadaptive testers, in the context of testing

of properties of geometric figures. Finally, this work only looks at 2-dimensional figures.

Generalizing this study to higher dimensions is an intriguing open question.
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