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Abstract— We point out a potential weakness in the application
of the celebrated Minimum Description Length (MDL) princip le
for model selection. Specifically, it is shown that (although the
index of the model class which actually minimizes a two-partcode
has many desirable properties) a model which has a shorter two-
part code-length than another is not necessarily better (unless of
course it achieves the global minimum). This is illustratedby an
application to infer a grammar (DFA) from positive examples. We
also analyze computability issues, and robustness under recoding
of the data. Generally, the classical approach is inadequate to
express the goodness-of-fit of individual models for individual
data sets. In practice however, this is precisely what we are
interested in: both to express the goodness of a procedure and
where and how it can fail. To achieve this practical goal, we
paradoxically have to use the, supposedly impractical, vehicle of
Kolmogorov complexity.

I. I NTRODUCTION

In learning algorithms using the two-part minimal descrip-
tion length principle (MDL), based on the original work of
J. Rissanen, we observe that although it may be true that
the maximal compression yields the best solution, it may
still not be true that every incremental compression brings
us closer to the solution. Moreover, in the case of most MDL
problems there is a complicating issue in the fact that the
maximal compression cannot be computed. In many practical
applications of MDL, it is too hard to find the global minimizer
over all model classes, the problem being NP-hard or even
non-computable. To obtain the shortest code, the natural way is
to approximate it by a process of finding ever shorter candidate
two-part codes. Since we start with a finite two-part code, and
with every new candidate two-part code we decrease the code
length, eventually we must achieve the shortest two-part code.
Unfortunately, there are two problems: (i) the computationto
find the next shorter two-part code may be very long, and we
may not know how long; and (ii) we may not know when we
have reached the shortest two-part code: with each candidate
two-part code there is the possibility that further computation
may yield a still shorter one. But because of item (i) we cannot
a priori bound the length of that computation.

A. A Common Misconception

Therefore, in practice, we look for ever shorter two-part
codes, and if our available time runs out we make do with the
last candidate we found. The underlying assumption is that a
shorter two-part code for the data yields a better model thana
longer two-part code. It is the purpose of this paper to debunk
this myth: While a sequence of ever shorter two-part codes

for the data converges in a finite number of steps to the best
model, it is not the case that this convergence is necessarily
monotonic. In fact, in the sequence of candidate two-part
codes converging to the shortest, it is possible that the models
involved oscillate from being good to bad, only to converge
at the (unknown) very end to the best model. Convergence is
only monotone if the model-codes in the successive two-part
codes are always the shortest (most compressed) codes for the
models involved. But this property cannot be guarantied by
any effective method.

It is very difficult, if not impossible, to formalize the
goodness-of-fit of an individual model for individual data in
the classic statistics setting, which is probabilistic. Therefore,
it is impossible to express the practically important issueabove
in those terms. Fortunately, new developments in the theoryof
Kolmogorov complexity make it possible to rigorously analyse
the questions involved, and exhibit the phenomena, in certain
model classes, as in [3]. Here we elaborate on that treatment,
make it more accessible and probe its implications for MDL.
This then is illustrative for what happens in practical situations.
Because of space limitations we omit definitions and details
on Kolmogorov complexity here; we refer to the textbook [2].

B. What Does It Mean That A Model Fits Given Data

Denote thecomplexity of the finite setA by K(A)—the
length (number of bits) of the shortest binary programp from
which the reference universal prefix machineU computes a
listing of the elements ofS and then halts. That is, ifA =
{x1, . . . , xd}, thenU(p) = 〈x1, 〈x2, . . . , 〈xd−1, xd〉 . . .〉〉. The
shortest programp, or, if there is more than one such shortest
program, then the first one that halts in a standard dovetailed
running of all programs, is denoted byA∗. Consider a data
sampleD and a modelM , such thatD ⊆ M ⊆ {0, 1}≤n.
Denote the cardinalities by lower case letters:

d = |D|, m = |M |.

The conditional complexityK(D | M, d)) of D given M
and d is the length (number of bits) in the shortest binary
programp from which the reference universal prefix machine
U from input M (given as a list of elements) and the number
of elementsd, outputsD as a list of elements and halts. We
elaborate on the approach of [3]. IfD ⊆ M ⊆ {0, 1}≤n we
have

K(D | M, d)) ≤ log

(

m

d

)

+ O(1). (1)

ISIT2007, Nice, France, June 24 – June 29, 2007

1-4244-1429-6/07/$25.00 c©2007 IEEE 2216



Indeed, consider the selfdelimiting code ofD, given M and
the numberd of elements inD followed by the⌈log

(

m
d

)

⌉
bit long index of D in the lexicographical ordering of the
number of ways to choosed elements fromM . This code
is called thedata-to-model code. Its length quantifies the
maximal “typicality,” or “randomness,” any data sample of
|D| elements can have with respect to modelM .

DEFINITION 1: The lack of typicality ofD with respect to
M is measured by the amount by whichK(D | M, d) falls
short of the length of the data-to-model code. Therandomness
deficiencyof a data sampleD, of known cardinalityd = |D|,
in modelM , is defined by

δ(D | M, d) = log

(

m

d

)

− K(D | M, d), (2)

for D ⊆ M , and∞ otherwise.
If the randomness deficiency is close to 0, then there

are no simple special properties that singleD out from the
majority of data samples to be drawn fromM . This is not
just terminology: If δ(D | M, d) is small enough, thenD
satisfiesall properties of low Kolmogorov complexity that hold
for the majority of subsets ofM . To be precise: Aproperty
P represented byM is a subset ofM , and we say thatD
satisfies propertyP if D ⊆ P .

LEMMA 1: Let d, m, n be natural numbers, and letD ⊆
M ⊆ {0, 1}≤n, |D| = d, |M | = m, and let δ be a simple
function of the natural numbers to the reals, likelog or √.

(i) If P is a property satisfied by allD ⊆ M with δ(D |
M, d) ≤ δ(n), then P holds for a fraction of at least1 −
1/2δ(n) of the subsets of cardinalityd of M .

(ii) Let n andM be fixed, and letP be any property that
holds for a fraction of at least1 − 1/2δ(n) of the subsets of
cardinalityd of M . There is a constantc, such that every such
P holds simultaneously for everyD ⊆ M with |D| = d and
δ(D | M, d) ≤ δ(n) − K(P | M) − c.

We omit the proof. Theminimal randomness deficiency
function (with known cardinality of the data sample) is

βD(α) = min
M

{δ(D | M, d) : M ⊇ D, K(M |d) ≤ α}, (3)

where we setmin ∅ = ∞. The smallerδ(D | M, d) is, the
more D can be considered as atypical data sample from
M . This means that a setM for which D incurs minimal
randomness deficiency, in the model class of contemplated sets
of given maximal Kolmogorov complexity, is a “best fitting”
model forD in that model class—a most likely explanation,
andβD(α) can be viewed as aconstrained best fit estimator.

II. M INIMUM DESCRIPTIONLENGTH ESTIMATOR

The length of the minimal two-part code forD, with known
cardinality d = |D| consisting of the model costK(M)
(|M | = m) and the length of the index ofD in the enumeration
of choices ofd elements out ofm, in the model class of setsM
of given maximal Kolmogorov complexityα, the complexity
of M upper bounded byα, is given by theMDL function or
constrained MDL estimator:

λD(α) = min
M

{Λ(M) : M ⊇ D, K(M |d) ≤ α}, (4)

whereΛ(M) = K(M |d) + log
(

m
d

)

≥ K(D|d) − O(1) is the
total length of two-part code ofD with help of modelM and
the cardinalityd. This functionλD(α) is the celebrated two-
part Minimum Description Length code length as a function
of α, with the model class restricted to models of code length
at mostα. Indeed, consider the followingtwo-part codefor D
when we know its cardinalityd: the first part is a shortest self-
delimiting programp for M and the second part is⌈log

(

m
d

)

⌉
bit long index of D in the lexicographical ordering of all
choices ofd elements fromM . SinceM, d determineslog

(

m
d

)

this code is self-delimiting and we obtain the two-part code,
where the constantO(1) is the length of the program to
reconstructD from its two-part code and known cardinality
d. For thoseα’s that haveλD(α) = K(D|d) + O(1), the
associated modelM (witness for λD(α)) for D, or the
description ofM |d of ≤ α bits, is called asufficient statistic.
We omit the proof of the following lemma.

LEMMA 2: If M is a sufficient statistic forD, then the
randomness deficiency ofD in M is O(1), D is a typical
data sample forM , andM is a model of best fit forD.

III. POWER AND PITFALLS

The previous analysis of MDL allows us to justify its
application and to identify problems in its application that may
not be apparent at first glance.

A. Computability

How difficult is it to compute the functionsλD, βD, and
the minimal sufficient statistic? To express the properties
appropriately we require the notion of functions that are not
computable, but can be approximated monotonically by a
computable function either from above, calledupper semi-
computable, or from below, calledlower semi-computable.
When it is both, then it iscomputable. We omit the formal
definitions.

• The functionλD(α) is upper semi-computable but not
computable up to any reasonable precision.

• Moreover, there is no algorithm that givenD∗ andα finds
λD(α).

• The function βD(α) is not upper- or lower semi-
computable, not even to any reasonable precision, but we
can compute it given an oracle for the halting problem.

• There is no algorithm that givenD and K(D) finds a
minimal sufficient statistic forD up to any reasonable
precision.

B. Invariance under Recoding of Data

In what sense are the functions invariant under recoding
of the data? If the functionsβD, λD give us the stochastic
properties of the dataD, then we would not expect those
properties to change under recoding of the data into another
format. Yet, if we recode the elements ofD = {x1, . . . , xd} by
a mappingc of {0, 1}≤n to obtainc(D) = {c(x1), . . . , c(xd)}
such thatc(xi) = x∗

i with |x∗
i | = K(xi) (1 ≤ i ≤ d), then

we are in trouble. We can choose thexi’s such thatK(c(D) |
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{0, 1}≤µ, d) ≈
(

2µ+1−1
d

)

, with µ = max{K(c(xi)) : 1 ≤ i ≤
d}. Then,

δ(c(D) | {0, 1}≤µ, d) ≈ 0.

That is, c(D) is a typicald-element subset of{0, 1}≤µ, and
the latter in turn is the best fitting model forc(D). There-
fore λc(D)(α) drops to the Kolmogorov complexityK(c(D))
already for someα ≤ K(µ) + O(1) = O(log n), since
λc(D)(K(µ) + O(1)) = K({0, 1}≤µ | d) + log

(

2µ+1−1
d

)

≈
K(c(D)), so almost immediately (and it stays within loga-
rithmic distance of that line henceforth). That is,λc(D)(α) =
K(x∗

1, . . . , x
∗
d) for every α, up to logarithmic additive terms

in argument and value, irrespective of the (possibly quite
different) shape ofλD. It is clear that a codingc that
achieves this is not a recursive function, and neither is the
inverse. However, it is not the non-recursiveness alone, but
also the necessary partiality of the inverse function (not all data
samples contain data of maximal Kolmogorov complexity) that
causes the collapse of the structure function. Nonetheless, the
structure function is invariant under “proper” recoding ofthe
data, as follows:

THEOREM 1: Let f be a recursive permutation of the set
of finite binary strings in{0, 1}n (one-one, total, and onto),
and extendf to subsetsD ⊆ {0, 1}n. Then,λf(D) is “close”
to λD in the sense that the graph ofλf(D) is situated within
a strip of widthK(f) + O(1) around the graph ofλD.

Proof: Let M ⊇ D be a witness ofλD(α). Then,
Mf = {f(y) : y ∈ M} satisfiesK(Mf) ≤ α + K(f) + O(1)
and |Mf | = |M |. Hence,λf(D)(α + K(f)+O(1)) ≤ λD(α).
Let M ′ ⊇ f(D) be a witness ofλf(D)(α). Then,M ′

f−1 =

{f−1(y) : y ∈ M ′} satisfiesK(M ′
f−1) ≤ α + K(f) + O(1)

and |M ′
f−1 | = |M ′|. Hence, λD(α + K(f) + O(1)) ≤

λf(D)(α) (sinceK(f−1) = K(f) + O(1)).

C. Finding the MDL Code

Given D ⊆ {0, 1}n, the data to explain, and the model
class consting of all models (sets)M ⊆ {0, 1}n that have
complexity at mostK(M) ≤ α. Here, α is the maximum
complexity of an explanation we allow. As usual, we denote
m = |M | andd = |D|. We search for programsp of length at
mostα that print a finite setM ⊇ D. Such pairs(p, M) are
possible explanations. Thebest explanationis defined to be the
(p, M) for which δ(D | M, d) is minimal. Since the function
δ(D | M, d) is not computable, there is no algorithm that
halts with the best explanation. The programs use unknown
computation time and thus we can never be certain that we
have found all possible explanations. Following [3], we can
overcome this problem: Initially, we are given data sampleD.

We minimize the randomness deficiency by minimizing the
MDL code length, justified by

βD(α) = λD(α) − K(D|d) (5)

as in [3], and thus maximizing the fitness of the model for this
data sample. To this end, run all programs dovetailed fashion.
If a program, sayp, halts, then check its output to see whether
it is a subset, sayM , of {0, 1}n in agreed-upon standard

notation. If so, then check whether that subset contains all
elements in the data sampleD. At every computation stept
consider all pairs(p, M) such that programp has printed the
setM containingD by time t. Let (pt, Lt) stand for the pair
(p, M) such that|p|+log

(

m
d

)

is minimal among all these pairs
(p, M). The best hypothesisLt changes from time to time due
to the appearance of a better hypothesis. Since no hypothesis is
selected as the best one twice, from some moment onwards the
explanation(pt, Lt) which is best does not change anymore.

IV. D OESSHORTERMDL CODE MEAN BETTER MODEL?

Thus, if we continue to approximate the MDL code then we
will eventually reach the optimal code which is approximately
the best explanation at the given model complexity. During
this process we have some guarantee of goodness (details
omitted). That is the good news. The bad news is, that we
do not know when we have reached this optimal solution, and
the noncomputability of computingλD to a given precision
assures us that there simply does not exist a convergence cri-
terion we could use to terminate the approximation somewhere
close to the optimum. Thus, in practice we must terminate the
search prematurely. A natural assumption is that the longerwe
approximate the optimal MDL code the better the resulting
model explains the data. Thus, many practitioners simply
assume that if one approximates the MDL code, than every
next shorter MDL code also yields a better model. Alas, this
is not true. To give an example that shows where things go
wrong it is easiest to first give the conditions under which
premature search termination is all right, slightly correcting
an idea first given in [3].

Assume that in the indirect MDL algorithm, as described
in Section III-C, we change the currently best explanation
(p1, M1) for data D (|D| = d) to the explanation(p2, M2)
only if |p2| + log

(

|M2|
d

)

is much less than|p1| + log
(

|M1|
d

)

,
say |p2| + log

(

|M2|
d

)

≤ |p1| + log
(

|M1|
d

)

− c′ log log
(

2n

d

)

for
a constantc′. We show: if c′ is large enough andp1 is a
shortest program ofM1, d, then δ(D | M2, d) is less than
δ(D | M1, d). That is, every time we change the explanation
we improve its goodness unless the change is just caused
by the fact that we have not yet found the minimum length
program for the current model.

THEOREM 2: Let (p1, M1) and (p2, M2) be two consec-
utive candidate best explanations in the search process for
the best model for data sampleD (|D| = d, 0 < d < 2n)
above. There is a constantc such that if|p2| + log

(

|M2|
d

)

≤
|p1| + log

(

|M1|
d

)

− (|p1| − K(M1)) − 2c log log
(

2n

d

)

then
δ(D | M2, d) ≤ δ(D | M1, d) − c log log

(

2n

d

)

+ O(1).
Proof: For every pair of setsM1, M2 ⊇ D we have

δ(D | M2, d) − δ(D | M1, d) = Λ(M2) − Λ(M1) + ∆,

with

∆ = K(M2 | d) + K(D | M2, d) − K(M1 | d) + K(D | M1, d)

≤ K(M1, D | d) − K(M2, D | d) + O(1)

≤ K(M1 | M2, D) + O(1).
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Since

Λ(M2) − Λ(M1) ≤ |p2| + log

(|M2|
d

)

− Λ(M1)

= |p2| + log

(|M2|
d

)

− (|p1| + log

(|M1|
d

)

)

+ (|p1| − K(M1))

≤ −2c log log

(

2n

d

)

,

we need to prove thatK(M2 | M1, D) ≤ c log log
(

2n

d

)

+O(1).
Note that(p1, M1), (p2, M2) are consecutive explanations in
the algorithm and every explanation may appear only once.
Hence to identifyM1 we only need to knowp2, M2, α and
D. Since p2 may be found fromM2 and length |p2| as
the first program computingM2 of length |p2|, obtained by
running all programs of length at mostα dovetailed style,
we haveK(M2 | M1, D) ≤ 2 log |p2| + 2 log |α| + O(1) ≤
4 log log

(

2n

d

)

+ O(1). Hence we can choosec = 4.
Thus, to be sure that in the sequence(p1, M1), (p2, M2), . . .

of candidate explanations of ever shorter MDL codes the
explanation (pi+1, Mi+1) is actually a better explanation
for the data than the preceding(pi, Mi), it suffices that
|pi+1| + log

(

|Mi+1|
d

)

≤ |pi| + log
(

|Mi|
d

)

− (|pi| − K(Mi)) −
2c log log

(

2n

d

)

. The unknown, and in general noncomputable,
quantification of the required improvement in MDL code
length is|pi|−K(Mi). If we have an hypothesisMi encoded
by a programpi that is far from optimal, then the slack in
model code length given by|pi| − K(Mi) is large, and it is
possible that we improve the MDL code length by giving a
worse hypothesisMi+1 using, however, an encodingpi+1 that
is shorter than the encodingpi of the previous candidateMi.
Thus,

COROLLARY 1: (i) On the one hand, if |pi+1| +
log

(

|Mi+1|
d

)

≤ |pi| + log
(

|Mi|
d

)

− 2c log log
(

2n

d

)

and |pi| =
K(Mi) + O(1), then Mi+1 is a better explanation for data
D than is Mi, in the sense thatδ(D | Mi+1, d) ≤ δ(D |
Mi, d) − 4 log log

(

2n

d

)

+ O(1).
(ii) On the other hand, if|pi| −K(Mi) is large, thenMi+1

may be a much worse explanation thanMi as we show with
some examples below.

V. I NFERRING A GRAMMAR (DFA) FROM POSITIVE

EXAMPLES

The field of grammar induction studies a whole class of
algorithms that aims at constructing a grammar by means
of incremental compression of the data set represented as
a digraph representation of a DFA accepting the data set.
This digraph can be seen as a model for the data set. Every
word in the data set is represented as a path in the digraph
with the symbols either on the edges or on the nodes. The
learning process takes the form of a guided incremental
compression of the data set by means of merging or clustering
of the nodes in the graph. None of these algorithms explicitly
makes an estimate of the data-to-model code. Instead they use
heuristics to guide the model reduction. After a certain time

a proposal for a grammar can be constructed from the current
state of the compressed graph. Examples of such algorithms
are SP [8], [7], EMILE [4], ADIOS [6], and a number of
DFA induction algorithms, specifically evidence driven state
merging (EDSM), [5]. To analyse the MDL estimation for
DFAs, given a data sample, we first fix details of the code.
For the model code, the coding of the DFA, we encode as
follows. Let A = (Q, S, t, q0, F ) with q = |Q|, s = |S|.
Then thereq possibilities forF , by renaming of the states we
can always take care thatF ⊆ Q are the lastf states ofQ.
There areqsq different possibilities fort, and q possibilities
for q0. Altogether, for every choice ofq, s there are≤ qqs+2

distinct DFAs, some of which may accept the same languages.
We encode a DFAA with q states ands symbols in self-
delimiting format in(qs+3)⌈log q⌉+2⌈log log q⌉+ ⌈log s⌉+
2⌈log log s⌉ ≈ (qs+4) log q+2 log s bits. Thus, we reckon the
model cost of a(q, s)-DFA asm(q, s) = (qs+4) log q+2 log s
bits. LetLn(A) = L(A)

⋂{0, 1}n. Given a DFA modelA, the
word lengthn, in log n + 2 log log n bits which we simplify
to 2 log n bits, and the sized of the data sampleD ⊆ {0, 1}n,
we can describeD by its indexj in the set ofd choices out
of l = Ln(A) items, that is, up to rounding upwards,log

(

l
d

)

bits. For d = 1 or d = l we set the data-to-model cost to
1 + 2 logn, for 1 < d ≤ l/2 we set it to2 log n + lH(d/l)
with H the Shannon entropy function (ignoring the possible
savings oflog l/2 term), and forl/2 < d < l we set it to
the cost ofl − d. This reasoning brings us to the following
MDL cost of a data sampleD for DFA modelA: The MDL
code lengthof a data sampleD of d strings of lengthn, for a
DFA modelA such thatD ⊆ Ln(A), denotingl = |Ln(A)|,
is given by

MDL(D, A) = (qs + 4) log q + 2 log s + 2 logn + lH(d/l).

Given data sampleD and DFA A with D ⊆ Ln(A) ⊆
{0, 1}n, we can estimate the randomness deficiency. By (2),
the randomness deficiency is

δ(D | A, d, n) = log

(

l

d

)

− K(D | A, d, n).

Then, substituting the estimate oflH(d/l) for log
(

l
d

)

, up to
logarithmic additive terms,

δ(D | A, d, n) = lH(d/l)− K(D | A, d, n).

Thus, by finding a computable upper bound forK(D |
A, d, n), we can obtain a computable lower bound on the
randomness deficiencyδ(D | A, d, n) that expresses the
fittness of DFA modelA with respect to data sampleD.

A. Less MDL Code Length Doesn’t Mean Better Model

We show by example that the randomness deficiency be-
haves independently of the MDL code: the randomness defi-
ciency can either grow or shrink with a reduction of the length
of the MDL code. Let the setD be a sample set consisting
of 50% of all binary strings of lengthn with an even number
of 1’s. Note, that the number of strings with an even number
of 1’s equals the number of strings with an odd number of
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ones, sod = |D| = 2n/4. Initialize with a DFA A such
that Ln(A) = D. We can obtainD directly from A, n, so
we haveK(D | A, n) = O(1), and sinced = l we have
log

(

l
d

)

= 0, so that altogetherδ(D | A, d, n) = −O(1), while
MDL(D, A) = (qs + 4) log q + 2 log s + 2 logn + O(1) =
(2q + 4) log q + 2 log n + O(1), sinces = 2. Without loss of
generality we can assume that the MDL algorithm involved
works by splitting or merging nodes of the digraphs of the
produced sequence of candidate DFA’s. But the argument
works for every MDL algorithm, whatever technique it uses.

Initialize: Assume that we start our MDL estimation with
the trivial DFA A0 that literally encodes alld elements ofD
as a binary directed tree withq nodes. Then,2n/2− 1 ≤ q ≤
2n+1 − 1, which yields

MDL(D, A0) ≥ 2nn/2

δ(D | A0, d, n) ≈ 0,

the latter equation sinced = l, so log
(

l
d

)

= 0, and K(D |
A0, d, n) = O(1). Since the randomness deficiencyδ(D |
A0, d, n) ≈ 0, we have thatA0 is a best fitting model for
D. Indeed, it represents all conceivable properties ofD since
it literally modelsD. However,A0 doesn’t achieve the optimal
MDL code.

Better MDL estimation:In a later MDL estimation we
improve the MDL code by inferring the parity DFAA1 with
two states (q = 2) that checks the parity of 1’s in a sequence.
Then,

MDL(D, A1) ≤ 8 + 2 logn + log

(

2n/2

2n/4

)

≈ 2n−1 − n/4

δ(D | A1, d, n) = log

(

2n/2

2n/4

)

− K(D | A1, d, n)

≈ 2n−1 − n/4 − K(D | A1, d, n)

We now consider two different instantiations ofD, denoted as
D0 andD1. The first one is regular data, and the second one
is random data.

Case 1, regular data: SupposeD = D0 consisting of
the lexicographical first 50% of alln-bit strings with an even
number of occurrences of 1’s. ThenK(D0 | A1, d, n) = O(1)
and

δ(D0 | A1, d, n) = 2n−1 − O(n).

In this case, even though DFAA1 has a much better MDL
code than DFAA0, it has nonetheless a much worse fit since
its randomness deficiency is far greater.

Case 2, random data:Suppose,D = D1 where D1 is
a random subset consisting of 50% of then-bit strings with
even number of occurrences of 1’s. Then,K(D1 | A1, d, n) =
log

(2n/2
2n/4

)

+ O(1) ≈ 2n−1 − n/4, and

δ(D1 | A1, d, n) ≈ 0.

In this case, DFAA1 has a much better MDL code than
DFA A0, and it has equally good fit since both randomness
deficiencies are about 0.

REMARK 1: We conclude that improved MDL estimation
of DFA’s for multiple data samples doesn’t necessarily result
in better models, but can do so nonetheless.

REMARK 2 (SHORTESTMODEL COST): By Theorem 2
we know that if, in the process of MDL estimation by a
sequence of decreasing MDL codes, a candidate DFA is rep-
resented by its shortest program, then the following candidate
DFA which improves the MDL estimation is actually a model
of at least as good fit as the preceding one. Let us look at
an Example: Suppose we start with DFAA2 that accepts all
strings in{0, 1}∗. In this case we haveq = 1 and

MDL(D0, A2) = log

(

2n

2n/4

)

+ O(1)

δ(D0 | A2, d, n) = log

(

2n

2n/4

)

− O(1).

Here log
(

2n

2n/4

)

= 2nH(1
4 ) − O(n) ≈ 3 · 2n−2 − O(n).

(H(1
4 ) ≈ 2

3 ) Suppose the subsequent candidate DFA is the
parity machineA1. Then,

MDL(D0, A1) = log

(

2n/2

2n/4

)

+ O(1)

δ(D0 | A1, d, n) ≈ log

(

2n/2

2n/4

)

− O(1),

sinceK(D0 | A1, d, n) = O(1). Sincelog
(2n/2
2n/4

)

= 2n−1 −
O(n), we have MDL(D0, A2) ≈ 2

3MDL(D0, A2), and
δ(D0 | A2, d, n) ≈ 2

3δ(D0 | A1, d, n). So the improved
MDL cost is accompanied by improved fitness by decreasing
randomness deficiency. This indeed is forced by Theorem 2,
since both DFAA1 and DFA A2 have K(A1), K(A2) =
O(1). That is, the DFA’s are represented and costed according
to their shortest programs (a forteriori of lengthO(1)) and
therefore improved MDL estimation increases the fitness of
the successive DFA models significantly.
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