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Abstract— We point out a potential weakness in the application for the data converges in a finite number of steps to the best
of the celebrated Minimum Description Length (MDL) principle  model, it is not the case that this convergence is necegsaril
for model selection. Specifically, it is shown that (althouly the monotonic. In fact, in the sequence of candidate two-part

index of the model class which actually minimizes a two-partode - L -
has many desirable properties) a model which has a shorter tov codes converging to the shortest, it is possible that theetsod

part code-length than another is not necessarily better (uless of involved oscillate from being good to bad, only to converge
course it achieves the global minimum). This is illustratecby an ~ at the (unknown) very end to the best model. Convergence is

application to infer a grammar (DFA) from positive examples We  only monotone if the model-codes in the successive two-part
also analyze computability issues, and robustness underceding codes are always the shortest (most compressed) codefor th

of the data. Generally, the classical approach is inadequatto . . .
express the goodness-of-fit of individual models for indidual models involved. But this property cannot be guarantied by

data sets. In practice however, this is precisely what we are any effective method.
interested in: both to express the goodness of a procedure dn It is very difficult, if not impossible, to formalize the

where and how it can fail. To achieve this practical goal, we goodness-of-fit of an individual model for individual data i
paradoxically have to use the, supposedly impractical, vétle of 16 c|assic statistics setting, which is probabilisticefiéfore,
Kolmogorov complexity. o . . . .
it is impossible to express the practically important issheve
I. INTRODUCTION in those terms. Fortunately, new developments in the thebry

In learning algorithms using the two-part minimal descrip&0lmogorov complexity make it possible to rigorously arsaly
tion length principle (MDL), based on the original work ofthe questions involved, and exhibit the phenomena, in icerta
J. Rissanen, we observe that although it may be true tma@del classes, as in [3]. Here we elaborate on that treatment
the maximal compression yields the best solution, it ma{g)ake it more accessible and probe its implications for MDL.
still not be true that every incremental compression bringdis then'is illustrative for what happens in practical attans.
us closer to the solution. Moreover, in the case of most MDBEcause of space limitations we omit definitions and details
problems there is a complicating issue in the fact that t#§§ Kolmogorov complexity here; we refer to the textbook [2].
maximal compression cannot be computed. In many practigal \.as poes It Mean That A Model Fits Given Data
applications of MDL, it is too hard to find the global minimize
over all model classes, the problem being NP-hard or evenDenote thecomplexity of the finite setl by K(A)—the
non-computable. To obtain the shortest code, the naturalsva length (number of bits) of the shortest binary prograrfiom
to approximate it by a process of finding ever shorter cartdiddvhich the reference universal prefix machifiecomputes a
two-part codes. Since we start with a finite two-part code, afSting of the elements of and then halts. That is, il =
with every new candidate two-part code we decrease the cdde: - - - - Ta}, thenU(p) = (z1, (z2,. .., (z4-1,2q) - ..)). The
length, eventually we must achieve the shortest two-patéco shortest program, or, if there is more than one such shortest
Unfortunately, there are two problems: (i) the computation Program, then the first one that halts in a standard dovetaile
find the next shorter two-part code may be very long, and wenning of all programs, is denoted by*. Consider a data
may not know how long; and (ii) we may not know when wéampleD and a modelM/, such thatD € M C {0,1}=".
have reached the shortest two-part code: with each cardidagnote the cardinalities by lower case letters:

two-part code there is the possibility that further comgtiota d=|D|,m = M|
may yield a still shorter one. But because of item (i) we canno ’ '
a priori bound the length of that computation. The conditional complexityK (D | M,d)) of D given M

and d is the length (number of bits) in the shortest binary
) ) programp from which the reference universal prefix machine

Therefore, in practice, we look for ever shorter two-pat; from input M (given as a list of elements) and the number
codes, and if our available time runs out we make do with th§ elementsd, outputsD as a list of elements and halts. We

last candidate we found. The underlying assumption is thakgporate on the approach of [3]. 0 € M C {0,1}<" we
shorter two-part code for the data yields a better model thary e N -

longer two-part code. It is the purpose of this paper to d&bun
this myth: While a sequence of ever shorter two-part codes

A. A Common Misconception

K(D| M,d)) < log (VZ;) +0(1). (1)
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Indeed, consider the selfdelimiting code Bf given M and where A(M) = K (M|d) +log ("}) = K(D|d) — O(1) is the

the numberd of elements inD followed by the[log ("})] total length of two-part code ab with help of model)/ and

bit long index of D in the lexicographical ordering of thethe cardinalityd. This function\p(«) is the celebrated two-

number of ways to choosé elements fromA/. This code part Minimum Description Length code length as a function

is called thedata-to-model codelts length quantifies the of «, with the model class restricted to models of code length

maximal “typicality,” or “randomness,” any data sample o&t mosta. Indeed, consider the followinigvo-part codefor D

|D| elements can have with respect to modél when we know its cardinality: the first part is a shortest self-
DEFINITION 1: The lack of typicality of D with respect to delimiting programp for A/ and the second part idog (7;)]

M is measured by the amount by whiét(D | M,d) falls bit long index of D in the lexicographical ordering of all

short of the length of the data-to-model code. Taedomness choices ofd elements from\/. SinceM, d determinegog (’g)

deficiencyof a data samplé, of known cardinalityd = |D|, this code is self-delimiting and we obtain the two-part gode

in model M, is defined by where the constan©(1) is the length of the program to
m reconstructD from its two-part code and known cardinality
§(D | M,d) = log (d) — K(D | M,d), (2)  d. For thosea’s that haverp(a) = K(D|d) + O(1), the

associated modelM (witness for Ap(a)) for D, or the
description ofM |d of < « bits, is called asufficient statistic
{Fe omit the proof of the following lemma.

LeEmMA 2: If M is a sufficient statistic forD, then the
randomness deficiency dP in M is O(1), D is a typical
data sample fonl/, and M is a model of best fit foD.

for D C M, andoo otherwise.

If the randomness deficiency is close to 0, then the
are no simple special properties that singlkeout from the
majority of data samples to be drawn frofd. This is not
just terminology: If6(D | M,d) is small enough, therD
satisfiesall properties of low Kolmogorov complexity that hold

for the majority of sgbsets ol/. To be precise: Aproperty I1l. POWER AND PITFALLS
P represented by\ is a subset of\/, and we say thaD ) ) o
satisfies property if D C P. The previous analysis of MDL allows us to justify its

LEMMA 1: Let d,m,n be natural numbers, and @ C application and to identify problems in its applicationtthaay
M C {0,1}s", |D| = d,|M| = m, and lets be a simple Nhot be apparent at first glance.
function of the natural numbers to the reals, likg or . /. .
(i) If P is a property satisfied by alD C M with §(D | A. Computability
M,d) < 6(n), then P holds for a fraction of at least — How difficult is it to compute the functionsp, p, and
1/2%) of the subsets of cardinality of M. the minimal sufficient statistic? To express the properties
(i) Let » and M be fixed, and let” be any property that appropriately we require the notion of functions that aré no
holds for a fraction of at least — 1/2°(") of the subsets of computable, but can be approximated monotonically by a
cardinalityd of M. There is a constant such that every such computable function either from above, callegper semi-
P holds simultaneously for ever®p C M with |D| =d and computable or from below, calledlower semi-computable

o(D|M,d)<én)—K(P|M)-—-c When it is both, then it isomputable We omit the formal

We omit the proof. Theminimal randomness deficiencydefinitions.
function (with known cardinality of the data sample) is « The functionAp(«) is upper semi-computable but not

Bp(a) = min{d(D | M,d): M 2 D, K(M|d) < a}, (3) computable up to any reasonable precision.

M « Moreover, there is no algorithm that givérr anda finds

where we setmin ) = co. The smalleré(D | M,d) is, the Ap(@).
more D can be considered as tapipal dat.a samplg _from « The function 8p(a) is not upper- or lower semi-
M. This means that a se¥/ for which D incurs minimal computable, not even to any reasonable precision, but we

randomness deficiency, in the model class of contemplated se  can compute it given an oracle for the halting problem.

of given maximal Kolmogorov complexity, is a “best fitting” o There is no algorithm that give® and K'(D) finds a
model for D in that model class—a most likely explanation,  minimal sufficient statistic forD up to any reasonable
and 8p(«) can be viewed as eonstrained best fit estimator precision.

II. MINIMUM DESCRIPTIONLENGTH ESTIMATOR

The length of the minimal two-part code far, with known ] ) ) _
cardinality d = |D| consisting of the model cosk (M) In what sense are the functions invariant under recoding
(IM| = m) and the length of the index d? in the enumeration ©f the data? If the functiongp, Ap give us the stochastic
of choices ofl elements out ofn, in the model class of sefs  Properties of the data), then we would not expect those
of given maximal Kolmogorov complexity, the complexity properties tQ change under recoding of the data into another
of M upper bounded by, is given by theMDL function or format. Yet, if we recode the elementsBf= {zy,. .., za} by
constrained MDL estimator a mapping: of {0,1}=" to obtainc(D) = {c(z1),...,c(zq)}

) such thate(z;) = = with |2f| = K(x;) (1 < i < d), then
Ap(a) = min{A(M): M 2 D, K(M|d) < a}, (4 we are in trouble. We can choose thgs such thatk (c(D) |

B. Invariance under Recoding of Data
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{0,1}=+,d) ~ (2'&;*1), with g = max{K(c(z;)) : 1 <i < notation. If so, then check whether that subset contains all
d}. Then, elements in the data sample. At every computation step
5(c(D) | {0,1}=+,d) ~ 0. consider all pair§p, M) such that programp has printed the

set M containingD by timet. Let (p;, L;) stand for the pair

(p, M) such thatp|+log ("}) is minimal among all these pairs

. (p, M). The best hypothesis; changes from time to time due
fore A.(p)(a) drops to the Kolmogorov complexng((dp)) to the appearance of a better hypothesis. Since no hypstisesi
already for somea < K(u) + O(1) = O(logn), SiNCe gqjacted as the best one twice, from some moment onwards the

ut1_
Ac(p) (K (1) + O(1)) = K({(_)> 1} | d) + log (* d 1) ~  explanation(p;, L;) which is best does not change anymore.
K(c(D)), so almost immediately (and it stays within loga-

rithmic distance of that line henceforth). That )&, py(a) = IV. DOESSHORTERMDL CODE MEAN BETTERMODEL?
K(z3,...,z}) for every o, up to logarithmic additive terms

?ﬁargumenﬁ and \]filue’l irresplectivehof the (EQSSibhr/] Uity eventually reach the optimal code which is approxintate
ifferent) shape ofAp. It is clear that a coding: that the best explanation at the given model complexity. During

achieves this is not a recursive function, and neither is tl&(ﬁs process we have some guarantee of goodness (details

inverse. However, it is not the non-recursiveness alonég, %’mitted) That is the good news. The bad news is, that we
also the necessary partiality of the inverse function (Hatata do not know when we have reached this optimal solution, and

samples contain data of maximal Kolmogqrov complexity) thg noncomputability of computing, to a given precision
causes the collapse of the structure function. Nonethelless assures us that there simply does not exist a convergence cri

structure function is invariant under “proper” recodingthe terion we could use to terminate the approximation somegvher
data, as follows: ) . close to the optimum. Thus, in practice we must terminate the
T.H!EOR'.EM L Le_t f b_e a recrlljrswe permutation of the Selearch prematurely. A natural assumption is that the longer

of finite binary strings in{0, 1} (?Lne-one, total,.arJd Ont,?)’approximate the optimal MDL code the better the resulting

and e>§tendf to subsetsD € {0, 1} 'Then.’)‘f(.D) 'S cIo.se. model explains the data. Thus, many practitioners simply

to )"? n ‘h‘? sense that the graph Af(p) is situated within assume that if one approximates the MDL code, than every

a strip of width K(f) + O(1) arounq the graph ohp. next shorter MDL code also yields a better model. Alas, this
Proof: ‘Let M 2 D _be a witness ofAp(a). Then, is not true. To give an example that shows where things go

My = {f(y) :y € M} satisfiesk (M) < o + K(f) +O(1) wrong it is easiest to first give the conditions under which

and|My| = |M|. Hence Ay (p)(a + K(f) +O(1)) < Ap(a). premature search termination is all right, slightly cotieg

Let M’ O f(D) be a witness of\;p)(a). Then,M]’H = an idea first given in [3].

{/7H(y) : y € M'} satisfiesk (M}_,) < o+ K(f) + O(1) Assume that in the indirect MDL algorithm, as described

That is,c¢(D) is a typicald-element subset of0, 1}=#, and
the latter in turn is the best fitting model fefD). There-

Thus, if we continue to approximate the MDL code then we

and |M}—1|, - |M’L1Hence, Ap(a + K(f) + O(1)) < in section IlI-C, we change the currently best explanation
Appy(a) (since K (f %) = K(f) + O(1)). B (p, M) for dataD (|D| = d) to the explanation(p,, M>)
C. Finding the MDL Code only if [p2] + log (") is much less tharp:| + log g“‘ﬁl'),

. N . ay [pa| + log (121 < |p1| + log (M0l — ¢ loglog (%)) for
cIang/ecré)r?sti% {gf’ 1a}|| ’n;tggefsat(as;toﬂ;)?l?g ’ 1";‘th;th hr;\?geg constantc’. We show: if ¢’ is large enough ang is a
9 = shortest program of\f;,d, then§(D | Ms,d) is less than

i < i i X ) .
combloxity of an explanation we sllow: As usual, me denofl 2 | M1-d): That is. every time we change the explanation
) ’ e improve its goodness unless the change is just caused

m = |M| andd = |D|. We search for programsof length at e improve 1s g u ge 1s ju .

mosta that print a finite sef\ > D. Such pairs(p, M) are by the fact that we have not yet found the minimum length

: ) . X rogram for th rrent model.
possible explanations. Theest explanatiois defined to be the program for the current mode

(p, M) for which 6(D | M, d) is minimal. Since the function tiI:izﬁsmit:e Lsééf)lé%gngggn(fgihﬂfiza bsee;\:gl Corgffaz-s for
o0(D | M,d) is not computable, there is no algorithm tha P P

: ) he best model for data sampl (|D| = d, 0 < d < 2")
halts with the best explanation. The programs use unknow : . |Ma|
L . apove. There is a constaatsuch that if|ps| + log (") <
computation time and thus we can never be certain that we log (1M1 KM log] and h
have found all possible explanations. Following [3], we cafl * 0g (g") — (Ipal - K(M)) — 35 oglog (;) then
overcome this problem: Initially, we are given data sample (D | Ms,d) < 6(D | My, d) — cloglog (%, ) + O(1).

We minimize the randomness deficiency by minimizing the ~ Proof: For every pair of setd/, M, 2 D we have
MDL code length, justified by §(D | Ma,d) — 8(D | My,d) = A(Ms) — A(My) + A,
Bp(@) = Ap(a) - K(Dld) ©) i
as in [3], and thus maximizing the fitness of the model for thig
data sample. To this end, run all programs dovetailed fairshio3 = KM | d)+ K(D| My, d) - K(My | d) + K(D | M, d)

If a program, say, halts, then check its output to see whether < K (M1, D | d) — K(M, D | d) + O(1)
it is a subset, sayM, of {0,1}" in agreed-upon standard < K(M; | Ma, D)+ O(1).
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Since a proposal for a grammar can be constructed from the current
| M| state of the compressed graph. Examples of such algorithms
A(Mz) — A(M) < |p2 +log( i ) — A(My) are SP [8], [7], EMILE [4], ADIOS [6], and a number of

Mo 1My DFA induction algorithms, specifically evidence driventsta
= |po| +1og( 2) — (Ip1] +10g< ! >) merging (EDSM), [5]. To analyse the MDL estimation for
d d DFAs, given a data sample, we first fix details of the code.
(Ip1] = K (M) For the model code, the coding of the DFA, we encode as
< —9¢loel 2n follows. Let A = (@, S,t,q0, F) with ¢ = |Q|, s = |5|.
= T4cl0glog Then there; possibilities forF, by renaming of the states we
can always take care thdt C () are the lastf states ofQ.
we need to prove tha (M, | Mi, D) < cloglog (% )+O(1).  There areq® different possibilities fort, andq possibilities
Note that(p, M1), (p2, M2) are consecutive explanat|ons iMfor ¢. Altogether, for every choice of, s there are< ¢45+2
the algorithm and every explanation may appear only onGgistinct DFAs, some of which may accept the same languages.
Hence to identify)/; we only need to know, M2, and we encode a DFAA with ¢ states ands symbols in self-
D. Since p; may be found fromM; and length|p:| as delimiting format in(gs+ 3)[log ¢] + 2[loglog ¢] + [log s] +
the first program computing/, of length |p.|, obtained by 2[loglog s| =~ (¢s+4) log g+21log s bits. Thus, we reckon the
running all programs of length at most dovetailed style, model cost of dq, s)-DFA asm(q, s) = (gs+4)log g+2log s
we haveK(Mg | My, D) < 2log|ps| + 2logla] + O(1) < pits. LetL™(A) = L(A)(N{0,1}". Given a DFA modeH, the
4loglog (%) + O(1). Hence we can choose= 4. B word lengthn, in logn + 2loglogn bits which we simplify
Thus, to be sure that in the sequeripe M), (p2, M), ... to 2logn bits, and the size of the data sampl® C {0,1}",
of candidate explanations of ever shorter MDL codes thge can describé by its index; in the set ofd choices out
explanation (pi+1, Miy1) is actually a better explanationof ; = ,°(A) items, that is, up to rounding upwardsg ()
for the data than the preceding;, M;), it suffices that pits. Ford = 1 or d = | we set the data-to-model cost to
Ipiva] + 10gn(‘M”1) < Ipil +log ("J1) = (Ipil = K(My)) = 14 2logn, for 1 < d < 1/2 we set it to2logn + LH(d/1)
2cloglog (*,). The unknown, and in general noncomputablevith H the Shannon entropy function (ignoring the possible
quantification of the required improvement in MDL codesavings oflogi/2 term), and forl/2 < d < | we set it to
length is|p;| — K (M;). If we have an hypothesis/; encoded the cost ofl — d. This reasoning brings us to the following
by a programp; that is far from optimal, then the slack inMDL cost of a data sampl® for DFA model A: The MDL
model code length given blp;| — K (1;) is large, and it is code lengthof a data sampl® of d strings of length, for a
possible that we improve the MDL code length by giving ®FA model A such thatD C L™(A), denotingl = |L™(A)|,
worse hypothesis/; ; using, however, an encoding;, that is given by
is shorter than the encoding of the previous candidat&/;.

Thus MDL(D,A) = (¢gs+4)logq+ 2log s + 2logn + [H(d/1).
CoroLLARY 1: () On the one hand, ifpir1| + Given data sampleD and DFA A with D C L"(4) C
log (M) < |ps| +log ("71) — 2cloglog (%) and |p;] = {0,1}", we can estimate the randomness deficiency. By (2),

K(M;) + O(1), then M;,, is a better explanation for datathe randomness deficiency is
D than is M;, in the sense thaf(D | M;i1,d) < 6(D | !
M;,d) — 410g10g( ) +O0(1). §(D | A,d,n)=1log ( ) —K(D | A,d,n).
(ii) On the other hand, ifp;| — K (M;) is large, thenM,; 1 d
may be a much worse explanation thaf) as we show with Then, substituting the estimate & (d/1) for log (}), up to
some examples below. logarithmic additive terms,

V. INFERRING AGRAMMAR (DFA) FROM POSITIVE 0(D]A,dn)=1H(d/l)— K(D| A,d,n).

EXAMPLES Thus, by finding a computable upper bound far(D |

The field of grammar induction studies a whole class in’d’ n), we can obtain a Computab|e lower bound on the
algorithms that aims at constructing a grammar by meapgndomness deficiency(D | A,d,n) that expresses the

of incremental compression of the data set representedfi@ess of DFA modeld with respect to data sample.
a digraph representation of a DFA accepting the data set.

This digraph can be seen as a model for the data set. EvAryL€Ss MDL Code Length Doesn’t Mean Better Model

word in the data set is represented as a path in the digrapiWe show by example that the randomness deficiency be-
with the symbols either on the edges or on the nodes. Thaves independently of the MDL code: the randomness defi-
learning process takes the form of a guided incrementiEncy can either grow or shrink with a reduction of the léngt
compression of the data set by means of merging or clusterioigthe MDL code. Let the seD be a sample set consisting
of the nodes in the graph. None of these algorithms explicitbf 50% of all binary strings of length with an even number
makes an estimate of the data-to-model code. Instead tleey ak1's. Note, that the number of strings with an even number
heuristics to guide the model reduction. After a certainetimof 1's equals the number of strings with an odd number of
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ones, sod = |D| = 2"/4. Initialize with a DFA A such REMARK 1: We conclude that improved MDL estimation
that L™(A) = D. We can obtainD directly from A,n, so of DFAs for multiple data samples doesn’t necessarily lesu
we haveK (D | A,n) = O(1), and sinced = [ we have in better models, but can do so nonetheless.
log (fl) =0, so that altogethe?(D | 4,d,n) = —O(1), while REMARK 2 (SHORTESTMODEL CosT): By Theorem 2
MDL(D,A) = (¢gs + 4)logq + 2logs + 2logn + O(1) = we know that if, in the process of MDL estimation by a
(2¢+ 4)log g + 2logn + O(1), sinces = 2. Without loss of sequence of decreasing MDL codes, a candidate DFA is rep-
generality we can assume that the MDL algorithm involveésented by its shortest program, then the following caatdid
works by splitting or merging nodes of the digraphs of thBFA which improves the MDL estimation is actually a model
produced sequence of candidate DFAs. But the argumaerftat least as good fit as the preceding one. Let us look at
works for every MDL algorithm, whatever technique it usesan Example: Suppose we start with DE, that accepts all

Initialize: Assume that we start our MDL estimation withstrings in{0,1}*. In this case we have =1 and
the trivial DFA Ag that literally encodes alll elements ofD on
as a binary directed tree withnodes. Then2"/2 -1 < ¢ < MDL(Dgy, As) = log < ) +0(1)
9+ _ 1, which yield 2"/4

, yields

n

2
MDL(D, Ag) > 2"n/2 §(Do | A2,d,n) = log (2n/4> -0(1).

0(D | Ag,d,n) =~ 0, 2

Here log (,7,,) = 2"H(}) — O(n) ~ 322 — O(n).
the latter equation sincé = I, so log (,li) =0, and K (D | (H(&) R~ %)i Suppose the subsequent candidate DFA is the
Ag,d,n) = O(1). Since the randomness deficienéyp | Parity machine,. Then,
Ap,d,n) ~ 0, we have that4, is a best fitting model for
D. Indeed, it represents all conceivable propertiedagince
it literally modelsD. However,Ag doesn't achieve the optimal 2n /2
MDL code. §(Dg | A1,d,n) =~ log (Qn/4> - 0(1),

Better MDL estimation:In a later MDL estimation we
improve the MDL code by inferring the parity DFA; with  since K(Dy | A1,d,n) = O(1). Sincelog (2”’/2) — gn-1 _

2n/2

MDL(Do,Al) = log (2n/4

) +0(1)

two states 4 = 2) that checks the parity of 1's in a sequencey(y,), we have M DL(Dy, ;) =~ %MD2L(/.4D(), A,), and
Then, §(Dg | Az,d,n) =~ 25(Dy | Ai,d,n). So the improved

2n /2 . MDL cost is accompanied by improved fitness by decreasing

MDL(D, A1) <8+ 2logn + log (Qn/4) ~2"" —n/4  randomness deficiency. This indeed is forced by Theorem 2,
2 /2 since both DFAA; and DFA A, have K(A;), K(As) =

0(D | Ay,d,n) = log < ) —K(D| Ay,d,n) O(1). That is, the DFA's are represented and costed according
2" /4 to their shortest programs (a forteriori of lengt(1)) and

~ 2" —n/4— K(D| Ay, d,n) therefore improved MDL estimation increases the fitness of

We now consider two different instantiations Bf denoted as the successive DFA models significantly.

Dy and D,. The first one is regular data, and the second one REFERENCES

is random data. [1] Mitchell T. M., , Machine Learning, McGraw-Hill, New Yér, (1997)
Case 1, regular data: SupposeD = D, consisting of [2] Li M., Vitanyi P.M.B. An Introduction to Kolmogorov Cojplexity and
the lexicographical first 50% of alb-bit strings with an even _ Its Applications, 2nd ed., Springer-Verlag, New York, (139
, [3] Vereshchagin N.K., Vitanyi P.M.B., Kolmogorov’s stture functions and
number of occurrences of 1's. Thdﬁ(DO | Ar,d, ”) = 0(1) model selection, IEEE Trans. Information Theory, vol. 50,12, 3265—
and 3290, (2004)
__on—1 [4] Adriaans P., Vervoort M., The EMILE 4.1 grammar inductitbolbox, In:
5(D0 | Ar,d, n) =2 o O(n) Grammatical Inference: Algorithms and Applications; 6titdrnational
. Collogquium, ICGI 2002 P. Adriaans and H. Fernau and M. van Zaanen
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