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THE POWER APPROXIMATION FOR COMPUTING (s, S) 
INVENTORY POLICIES* 

RICHARD EHRHARDTt 

In this paper we present a new analytic approximation for computing (s, S) policies for 
single items under periodic review with a set-up cost, linear holding and shortage costs, fixed 
replenishment lead time, and backlogging of unfilled demand. The approximation formulae 
are derived by using existing results of asymptotic renewal theory to characterize the behavior 
of the optimal policy numbers as functions of the model parameters. These functions are then 
used to construct regressions with coefficients that are calibrated by using a grid of 288 
known optimal policies as data. The resulting Power Approximation policies (formulae) are 
easy to compute and require for demand information only the mean and variance of demand 
over lead time. Extensive computational results show that the approximations yield expected 
total costs that typically are well within one percent of optimal. The approximation's 
robustness is exemplified by analyzing its performance when statistical estimates are used in 
place of the actual mean and variance of demand. 
(INVENTORY/ PRODUCTION-APPROXIMATIONS) 

1. Introduction 

We consider a periodic review, single-item inventory system where unfilled demand 
is backlogged, there is a fixed lead time L between placement and delivery of an 
order, and demands during review periods are independent and identically distrib- 
uted, having mean ji and variance a2. Replenishment costs are comprised of a setup 
cost K and a unit cost c. At the end of each review period a cost h or p is incurred for 
each unit on hand or backlogged, respectively. The criterion of optimality is minimi- 
zation of the undiscounted expected cost per period over an infinite horizon. 

Under these assumptions an (s, S) policy is optimal (Iglehart [1]). That is, whenever 
inventory on hand plus on order y is less than or equal to s, an order of size S - y is 
placed. Iterative methods for computing optimal policies are available (Veinott and 
Wagner [7]), but unfortunately, the computational effort required is prohibitive for 
practical implementation. Furthermore, the computation of an optimal policy requires 
the complete specification of the demand distribution, and this level of demand 
information is particularly unrealistic in practical settings. Most managers would be 
very fortunate if they had accurate knowledge of only the first two moments of the 
demand distribution. 

A model of this system was analyzed by Roberts [5], who used a renewal-theoretic 
approach to derive approximations for the optimal values of s and S when the 
parameters K and p are large. The approximations are easy to compute, but they 
require specifying the form of the demand distribution. Wagner [9, p. 833] modified 
the Roberts' approximations by (i) substituting a normal distribution for the actual 
demand distribution, and (ii) incorporating an empirical modification for small values 
of setup cost. The resulting approximation, henceforth referred to as the Normal 
Approximation, requires specifying only the first two moments of the demand 
distribution. MacCormick [4] has shown that the Normal Approximation yields 
expected costs that are typically within a few percent of optimality. Costs in excess of 
10% above optimal, however, are quite common when the Normal Approximation is 
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used with certain parameter settings (large penalty cost p, large demand variance a 2, 

very large or small demand mean 4). 
In this paper we present an alternative to the Normal Approximation called the 

Power Approximation. The normality specification is dropped, and regression analysis 
is used to fit approximations of Roberts' form to a large grid of known optimal 
policies. The result is an easily-computed policy, requiring only the mean and 
variance of demamd, that is an excellent approximation to optimality for the range of 
parameter settings that we have examined. 

In ?2 we describe our methodology for improving upon Roberts' analytic results. In 
?3 we present the formulae used in executing the Power Approximation, and in ?4 we 
analyze its performance. In ?5 we consider aggregate costs in a hypothetical multi- 
item system. The Power Approximation is compared with the Normal Approximation 
when I and a2 must be estimated from a limited historical sample of demands. Finally 
we draw conclusions in ?6. 

2. Methodology 

In [5] Roberts used asymptotic renewal theory to characterize the limiting behavior 
of an optimal policy as K and p grow large. He obtained the following expressions for 
optimal policy parameters s* and D* - S*-s*, as D* grows large. 

D* = l2Kpjh + o(D*), (1) 

(x - s*) dO(x; L + 1) = D*/(1 + p/h) + o(D*) (2) 

where I(.; n) is the cumulative distribution function of the n-fold convolution of 
demand, and o(D*)/D* converges to zero as D* becomes infinite. Furthermore, 
when the demand distribution can be standardized, we can define 4() as the 
standardized distribution function, that is 

O?(x; L + 1) = *t [x -(L + 01)'][4;L + T ]I} 

and then equation (2) becomes 

F(u) EE(x - u)dI(x) = D*/[(l +p/h)a L + ] + o(D*), (3) 

where u _ [s* - (L + l)y]/[a L + 1]. 
Equations (1) and (3) motivate considering the following formulae for computing 

an approximately optimal policy 

D = a2Kplh, (4) 

S= (L + 1),u + aCL +1 G {D/[(1 + p/h)aL+T1}, (5) 

where G(x) F - 1(x). The difficulty with this approach lies in the computation of the 
function G(*). One method [9, p. 833] is to assume a normal distribution for demand. 
The function G(*) can then be computed using an iterative procedure or a rational 
function approximation. Our approach is to use numerical analysis to fit a power 
series to G(.) using known optimal policies as data. In fact, we go one step further 
and use regression to adjust several parameters in functions having the general form 
of (4) and (5). 
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Optimal Policy Data 

Before discussing the specific regression models, we present the data used in this 
study. A grid of 288 inventory items has been specified to generate data for the 
analysis; Table 1 lists the parameter settings. Three types of demand distributions are 
used: Poisson, and negative binomial with variance-to-mean ratios of 3 and 9. Each 
demand distribution is given four mean values, 2, 4, 8, and 16. Three values, 0, 2, and 
4, are assigned to lead time. Since the cost function is linear in the parameters K, p, 
and h, the value of the unit holding cost is a redundant parameter which is set at 
unity. The unit penalty costs are 4,9,24, and 99, and the setup cost values are 32 and 
64. The unit replenishment cost c is unspecified because it does not affect the 
computation of an optimal policy for an undiscounted, infinite horizon. All combina- 
tions of these parameter settings are included in the grid, yielding 288 items. 

TABLE 1 

System Parameters 

Number 
Factor Levels of Levels 

Demand distribution Poisson (a2/, = 1) 3 

Negative Binomial (a2/ 3) 
Negative Binomial (a2// = 9) 

Mean demand (,u) 2,a4, 8, 16 4 
Replenishment lead time (L) 0, 2, 4 3 
Replenishment setup cost (K) 32, 64 2 
Unit penalty cost (p) 4, 9, 24, 99 4 
Unit holding cost (h) 1 1 

We have calculated an optimal policy for each of the 288 items using the algorithm 
of Veinott and Wagner [7]. The resulting sets of 288 values for s and S are the data 
utilized for regression fits. The optimal policies have expected values of period-end 
inventory ranging from 4 to 82, period-end backlogs from 0.006 to 0.9, backlog 
frequencies between 0.009 and 0.19, and ordering frequencies ranging from 0.08 to 
0.39. 

An Approximation for D* 

We first construct a regression model for D*, the optimal value of D = S - s. We 
generalize expression (4) to the multiplicative form 

D= C,ua(K/h)P(L + l )Y(a)(p/h)E, (6) 

where C, a, /3, y, 6, and e are constants to be fitted. The variables y and K/h appear 
in (6) with the same form as in (4). The remaining variables of our inventory model do 
not appear in (4), so we arbitrarily include them in (6) as simple multiplicative factors. 
We use (L + 1) instead of just L in (6) because this is the way that leadtime appears in 
analytic expressions for expected cost [5]. 

We form a linear model by taking the logarithm of (6) and use least-squares 
regression to fit the model to our 288 values for D*. Then we examine the results and 
refit a refined model as follows. The variablep/h is removed because the fitted value 
of e is so close to zero that variations in p/h do not affect the value of D when 
rounded to the nearest integer. Also, we discard five outliers which are identified by a 
visual examination of plotted data. Finally, after refitting and consolidating similar 
terms, we obtain the approximation for D* 

Dp= 1.463 ? 364(K/ h)?9 [ (L + l )a2J2.09 (7) 
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Note that K/h has nearly the same exponent as in the Wilson lot-size, namely 0.5. 
The constant 1.463 is also close to its Wilson lot-size counterpart, 1.414. The exponent 
of mean demand ju, however, is significantly lower than the Wilson value of 0.5, and 
we have new variables L and a2 in our expression. The regression fit (7) has a 
coefficient of determination R2 equal to 0.98. We note, however, that in this study R 2 

is merely a measure of how close our regression curve is fitted to the set of 288 
deterministic data points. Its sole use is to screen fits to these points, and any 
conclusions about the robustness of the approximation must be based on the cost data 
in ??4 and 5. 

An ApprQximation for s* 

We now address the problem of using (5) to construct a regression model for an 
approximation to the optimal reorder point s*. Actually, at this point in the analysis 
we are no longer interested in an approximation for s*, but rather, an expression for 
the best s to use in conjunction with Dp above. We generated a new set of data for this 
analysis by calculating for each of the 288 items a value of s that minimizes expected 
total cost per period when (7) is used to set (S - s). We call this value s. This 
approach is consistent with expression (5), which was derived by computing the 
partial derivative of expected total cost with respect to s and setting it equal to zero. 
Hence, expression (5) is an approximation for the best value of s when using a 
particular value of D. (The best values of s to use in conjunction with given values of 
D are generated as intermediate results when using the Veinott-Wagner algorithm [7]. 
Values of sp are therefore obtained with the same software package used to compute 
optimal policies;) 

The first step in fitting (5) to our data is to choose a functional form for G(-). Let 

y = Dp/ I( + p/h)alL + T 

where Dp is given in (7). For each of the 288 items we compute a value for y and for 

u=[sp-(L + 1)p]/[aJL+ 1]. 

We seek to fit expression (5) to these data by using the model 

up = G(y) + c, 

where e is an error term. We considered the following set of functions as a representa- 
tion of G(-) 

m 
G nm(y) = Ai(n m)yi/2 

i=n 

where the Ai(n, m) are coefficients to be determined by regression for each specifica- 
tion of n and m; we examined 24 models defined by the range n = 0, - 1, -2 and 
m = 1, 2, . . ., 8. The best fit resulted from setting n =-1 and m = 1; that is, 

up = Al// 7 +A2+ A3F +e 

was the simplest model among those yielding the highest correlation with the data. 
We now substitute G ' '(.) for G(.) in (5) to obtain a function for an approxi- 

mately optimal s. 

-(L + 1)ju + a;L+ 1 (Al/4I +A2 + A3). (8) 

At this point we use (8) to specify a sequence of regression analyses. First we regress 
for the constants A1, A2, and A3; then we adjust the multiplier aVET+T, and finally 
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we readjust the constants A, A2, and A3. A detailed discussion of the procedure 
follows. 

Expression (8) motivates the regression model 

s*-C + Cl [ (L + 1\1] + C2 [ rL + l/z] p 0J L I . ~ I 

+C3[a;L+] + C4[aL+ z] + , (9) 

where z =V7j and e is an error term. Let ao,aa, . ... , a4 be the values of C0, 
Cl, ..., C4 resulting from the least-squares regression of (9), yielding an approxi- 
mately optimal s of the form 

sl = ao + al(L + 1) j + ajL + 1 (a2/z + a3 + a4Z). (10) 

A detailed examination of the data reveals that the fit can be improved by adjusting 

the factor ajL + 1 . The adjustment is performed by replacing the factor with a 
variable f and solving (10) for the value of f that would yield s = s, namely 

f= [sp* - ao- a,(L + I)p]/(a2/z + a3 + a4z). 

We then seek an approximate expression for f of the form 

f= WC(L + I)a'P(a2/1)Y(p/h)6(K/h)E, 

where w is an error term, and C, a, /3, -y, 3, and e are constants. The expression is 
converted to a linear model by taking its logarithm, and least-squares regression is 
used to set the constants. After discarding insignificant variables and grouping similar 
terms we obtain our best fit 

fcc [(L + 1)JU]0416(a2/p0.63_ q. 

Expression (9) is then modified to the model 

sp*=CO + Cl[(L + 1)U] + C2[q/z] + C3[q] + C4[qz]+E. (11) 

We use least-squares regression to fit (11) to our data, and, after discarding outliers 
and neglecting insignificant terms [as was done to obtain (7)], we refit to obtain the 
Power Approximation expression for s 

= (L + 1) ji + [(L + 1)]0416(a2/p)0603[0.220/z + 1.142 - 2.866z]. (12) 

The final regression fit has a coefficient of determination R2 equal to 0.999. Recall, 
however, that in this study R 2 is merely a measure of how close our regression curve is 
fitted to the set of 288 deterministic data points. Its sole use is to screen fits to these 
points, and any conclusions about the robustness of the approximation must be based 
on the cost data in ??4 and 5. 

3. The Power Approxitmation 

Expressions (7) and (12) yield an approximation (sp, Sp) for the optimal (s,S) 
policy. Recall that the approximation is based on theory which assumes large values 
for the parameters K and p. Wagner, O'Hagan and Lundh [8] observe that the Wilson 
lot size is a reasonably good approximation for D* when K/h is large relative to ju, 
but that it does not approach zero as rapidly as D* when K/h is allowed to become 
relatively small. Therefore, they devise an empirical modification to Roberts' policy 
which we adopt here for the Power Approximation as well. 
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When Dp/y is sufficiently small, say less than 1.5, Sp is compared with a single 
critical number which would be approximately optimal if K were equal to zero. The 
smaller of these two numbers is then used as S in the policy, thereby reducing the 
separation between S and s. The single critical number we use is one which would be 
optimal if demand followed a normal distribution and K were equal to zero. Define S0 
as 

S0= (L + 1) u + vaL+1 , (13) 

where v is the solution to 

fVexp(-x2/2)/vw2;g dx=p/(lp + h). 
oo 

The Power Approximation is defined as follows. Let 11L = (L + 1)ji and aL 
- aVL + 1 . Compute 

Dp = 1.4630.364(K/ h)0498ao.138 (14) 

z = {D /[(1 + p/h)aL }05 (15) 

and 

tiL + 83 ( (F,2 0 187 s = L + a232 (a2/pu) (0.220/z + 1.142 - 2.866z). (16) 

If Dp/y is greater than 1.5, let s = sp and S = s + Dp. Otherwise, let s minimum{sp, 
S0} and S = minimum{sp + Dp, So}. If demands are integer-valued, sp , Dp, and S0 are 
rounded to the nearest integer. 

4. Policy Performance: Known Mean and Variance of Demand 

We proceed with a thorough analysis of the performance of the Power Approxima- 
tion. In this section we assume that we have accurate values for the mean and 
variance of demand. In the next section we assess the approximations when the mean 
and variance are estimated from a limited history of demand values. We show here 
that the policy as given by (13)-(16) performs very well when several parameter values 
are simultaneously interpolated or extrapolated from settings used to derive the 
policy. We also show that the Power Approximation [(13)-(16)] performs well when 
demands are derived from different probability distributions than are given in Table 
1. 

We first examine the set of 288 items that are used to derive the Power Approxima- 
tion (see Table 1). Let Cp and C* be the expected total cost per period for an item 
when controlled using the Power Approximation and the optimal policy, respectively. 
Our performance measure for a single item is 

AP = 1A%(Cp - C*)/C*, 

namely, the percentage by which the Power Approximation cost exceeds the optimal 
cost. Our results for the 288-item system of Table 1 are summarized in Table 2, which 
lists the number of items in the system having values of AP in various ranges. Note 
that the Power Approximation yields expected total costs within 0.1% of optimality 
for 52% of the items and within 0.5% for 84% of the items. The average value of A. in 
the system is 0.3%, with the largest values found for items having the largest unit 
penalty costs. 

We next examine a 288-item system with parameter settings other than those used in 
deriving the Power Approximation. The system is based on the parameter settings of 
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TABLE 2 

Frequencies of AP for a 288-Item System 

Cumulative 
Number Percentage of 

Range for A,P of Items Items 

[0%o, 0.I1%) 151 52% 
[0.1%, 0.5%o) 102 84% 
[0.5%, 1.0%o) 21 95% 
[1.09o, 2.0%o) 11 99% 
[2.0%o, 3.0%O) 3 10O0o 

Table 1 with values of mean demand ji changed to 3, 7, 11, and 15, and values of unit 
penalty cost p changed to 3, 9, 27, and 81. In this system, the Power Approximation 
yields an average of 0.6% above optimal total cost per period, with individual items 
ranging up to 4.7% above optimality. The magnitude and distribution of values for A 
in this system are quite similar to those found in the original 288-item system. We 
conclude that the Power Approximation is very accurate over the range of parameter 
values spanned by Table 1. 

We also consider extreme extrapolations of parameter values beyond the ranges 
used in deriving the Power Approximation. A single item with interpolated parameter 
settings is used as a base case (negative binomial demand, a2/1, = 5, It = 9, L = 2, 
h = 1, p = 49, and K = 48). Table 3 lists the parameter settings and the resulting 
values of A for each extrapolation. We see that in all cases the Power Approximation 
yields total costs within 0.63% of optimal. The results are particularly impressive when 
one considers that the extreme parameter values of Table 3 differ from those of Table 
1 by more than a factor of two. 

TABLE 3 

Single Parameter Extrapolations 
Base Case: Negative Binomial demand (a2/jL = 5), 

= 9,L=2,p=49, K=48 

Extrapolated Value 

a 2/L = 20 0.10% 

IL = 20 0. IOIYo 
30 0.21% 
40 0.18% 

K= 20 0.11% 
15 0.28% 
9 0.63% 

p = 132 0.15% 
199 0.50%o 

L= 10 0.02% 

We have seen that the Power Approximation is accurate for parameter values that 
are different from those used to derive the policy rule. We also consider the 
performance of the Power Approximation when it is used to control items having 
demand distributions different from those used to derive the policy, especially ones 
with considerable skew. (Of course, the Poisson and negative binomial distributions 
are themselves skewed to the right.) Consider two new systems, one having exponen- 
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tial demand distributions, and one with bimodal (compound negative binomial) 
demand distributions. In each case we compute optimal and Power Approximation 
policies [expressions (13) through (16)], and compare expected total costs per period. 

We examine a 75-item system with exponentially-distributed demands. Replenish- 
ment lead time is zero for all 75 items since this is required by the analytic expression 
we use to evaluate costs for exponential demand distributions. The other parameters 
have a wide range of values, in most cases extending beyond those used in the 
288-item system of Table 1. The values of mean demand are 1,2,4,8 and 16; setup 
cost values are 16,32 and 64; unit penalty costs are 9,49,99,132 and 199. Unit 
holding cost is normalized at 1. Power Approximation costs are found to be very close 
to optimal. Values of A are less than 0.2% for 23 items, between 0.2% and 0.6% for 27 
items, between 0.6% and 1.0% for 20 items, and between 1.0% and 1.5% for the 
remaining 5 items. 

We examine a 72-item system with bimodal (compound negative binomial) demand 
distributions. Demand is taken to be zero with probability 0.25, and it is sampled 
from a negative binomial distribution with probability 0.75. Mean demand is set at 
2,4,8 and 16, with a variance-to-mean ratio of 9. The other parameter settings are 0,2 
and 4 for lead time, 32 and 64 for setup cost, and 4,9 and 99 for unit penalty cost. 
Unit holding cost is normalized at 1. In this system the Power Approximation has an 
average expected total cost per period of only 1.2% above optimal, a surprisingly 
robust result. 

Thus, the Power Approximation [(13)-(16)] performs well for a broader family of 
demand distributions than those used in setting the coefficients. 

5. Policy Performance: Estimated Mean and Variance of Demand 

We have presented a policy which provides an excellent approximation to optimal- 
ity when the mean and variance of demand are accurately specified. In a typical 
applied setting, however, demand parameters are estimated from a limited history of 
observed past demands. In this situation the concept of an optimal policy is not well 
defined. We suggest using an (s, S) policy that is computed by substituting estimates 
of the demand mean and variance in place of the actual mean and variance in 
expressions (13)-(16). We next analyze the performance of the Power Approximation, 
and also compare it with the Normal Approximation, when demand estimates are 
used in place of actual values. Each policy is also compared with the optimal policy 
which could be computed if the demand distribution were completely specified. 

Specifically, we assume that a history of n demands is used in setting the policy to 
be employed over the subsequent n periods, and that during this interval of 2n periods 
the demand distribution parameters remain unchanged. (In other words, we assume it 
is warranted to use the past n observed demands to estimate the mean and variance of 
demand for the next n periods.) The demand history is used to calculate a sample 
mean and sample variance which are substituted in place of jL and a2 in expressions 
(13)-(16) to compute a Power Approximation policy (or in the Normal Approxima- 
tion formulae to compute a Normal Approximation policy). 

The mathematical complexity underlying this procedure of policy determination 
necessitates our using a simulation program to evaluate policy performance. Specifi- 
cally, we make 200 replications of this policy computation for each group of 
parameter settings: we examine a 72-item system with negative binomial demand 
distributions having a large variance-to-mean ratio of 9. Values of mean demand are 
2,4,8 and 16, setup costs are 32 and 64, unit penalty costs values are 4,9 and 99, and 
lead time is set at 0,2 and 4. Demand history length values n are 13,26 and 52 
(corresponding to a quarter, half, and full year of weekly data). The simulation 
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program computes estimates of expected cost components for each item in the system, 
and aggregates the costs to produce estimates of system-wide performance. 

Table 4 shows estimates of percentage increases in expected total cost per period 
when statistical control is compared with optimal control given full information. The 
Power Approximation yields lower total costs than the Normal Approximation for all 
the systems in Table 4, with the most noticeable differences occuring for small 
demand history length, high unit penalty cost, and low mean demand. Notice that the 
Power Approximation yields total costs within 1% of the Normal Approximation for 
unit penalty costs of 4 and 9. The Power Approximation yields significantly lower 
costs, however, for the subsystems with a unit penalty cost of 99. The difference 
reaches a maximum of 14% for the system with a 13-period demand history. Percent- 
age differences are even larger for subsystems of items having two or more trouble- 
some parameter settings. For example, the subsystem of six items having a revision 
history length of 13 periods, p = 99 and It = 2 yields for the Normal Approximation 
costs 54% above optimal with full information as compared to 35% for the Power 
Approximation, that is, a 1.14-fold increase. 

TABLE 4 

Percentages above Optimal Full Information Total Costs for a 72-Item System Under Statistical 
Control 

Decision Rule and Total Costs Aggregated by Parameter Value 
Decision Rule and Total 
Demand History Aggregate Penalty Cost Setup Cost Lead Time Mean Demand 

Length Cost 4 9 99 32 64 0 2 4 2 4 8 16 

Power Approximation 
13 Periods 20 9 12 30 21 19 9 19 28 24 23 18 18 
26 Periods 12 5 7 18 12 11 6 11 16 18 14 10 9 
52 Periods 6 3 4 10 7 6 3 6 9 10 7 6 5 

Normal Approximation 
13 Periods 27 10 12 44 28 25 11 26 38 34 31 26 22 
26 Periods 17 6 7 28 19 15 8 15 24 27 20 15 12 
52 Periods 10 4 4 17 11 9 6 9 13 18 13 9 6 

Several conclusions emerge from the data in Table 4. The Power Approximation is 
clearly preferable to the Normal Approximation, especially when unit penalty costs 
are high. Good performance is evidenced when a moderately large demand history is 
used to estimate demand parameters, but significant degradation over optimal costs is 
to be expected for small demand histories. Thus, in the context of Table 4, with a 
year's worth of weekly demand history and a penalty cost not exceeding 9, the 
combined impact of using statistical information and an approximation for the policy 
computations may yield less than 5% degradation in total costs over having complete 
information. These conclusions are supported by similar data for systems with 
Poisson demand distributions and negative binomial distributions with a 2/1 = 3. The 
data are presented in [2], along with detailed information about the components of 
total cost and other operating characteristics such as backlog frequency. 

6. Concluding Remarks 

We have presented an approximately-optimal policy which (1) is easily computed, 
(2) limits the required demand information to only the mean and variance, and (3) 
provides an excellent approximation to optimality for a wide range of parameter 
settings. The approximation is robust when model assumptions are relaxed, including 
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the assumption of accurately specified mean and variance of demand. Additional 
results, reported by Kaufman [3] and Schultz [6], indicate that the approximation can 
be generalized for systems with demand distributions that exhibit nonstationarity or 
correlation from period to period. 

Although the Power Approximation provides excellent performance for a great 
diversity of inventory items, we expect that performance may degenerate if several 
model assumptions are allowed to vary extensively. In these instances we suggest that 
a new numerical analysis similar to that presented above would be successful. In 
particular, we caution against use of the Power Approximation when the variance of 
demand is very small. Notice in expression (14) that D vanishes when a goes to zero, 
an effect which is particularly undesirable when K is large. For this situation we 
suggest a revised analysis for Dp, utilizing a functional form which has a finite limit as 
a goes to zero. 

Finally we observe that this study has shown that numerical analysis can be 
successfully employed to calibrate an analytically-derived approximation. It is a 
methodology that can provide the insights and simplicity of analytic approximations 
while still coming very close to the performance of exactly optimal results. We suggest 
that this technique can be used in other areas of applied optimization. For example, 
the inventory problem with discounted costs has been largely ignored in the applied 
literature. Analytic approximations for this problem appear in [5], and could be used 
as a starting point for numerical analysis.' 

'This paper is based on a Ph.D. dissertation written at Yale University. The author is pleased to 
acknowledge the invaluable guidance and encouragement of his advisor, Professor Harvey M. Wagner. He 
also acknowledges George Kastner and John Klincewicz who aided in the computer calculations, and the 
helpful comments of the referees and the Departmental Editor. The research was supported in part by 
Office of Naval Research grants N00014-75-C-2041 and N00014-78-C0467, and by U. S. Army Research 
Office grant DAHC04-75-G-0079. 
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