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The power law repealed:

The case for an exponential law of practice

ANDREW HEATHCOTE and SCOTT BROWN
University ofNewcastle, CaUaghan, Australia

and

D. J. K. MEWHORT
Queen's University, Kingston, Ontano, Canada

The power function is treated as the law relating response time to practice trials. However, the evi­
dence for a power law is flawed, because it is based on averaged data. We report a survey that assessed
the fonn ofthe practice function for individual learners and learning conditions in paradigms that have
shaped theories of skill acquisition. We fit power and exponential functions to 40 sets of data repre­
senting 7,910 learning series from 475 subjects in 24 experiments. The exponential function fit better
than the power function in all the unaveraged data sets. Averaging produced a bias in favor of the power
function. Anew practice function based on the exponential, the APEX function, fit better than a power
function with an extra, preexperimental practice parameter. Clearly, the best candidate for the law of
practice is the exponential or APEX function, not the generally accepted power function. The theoret­
ical implications are discussed.

Curve fitting without benefit of a model is notoriously

a black art.
-Newell and Rosenbloom (1981, p. 23)

The benefits from practice follow a nonlinear function:

Improvement is rapid at first but decreases as the practi­

tioner becomes more skilled (see, e.g., Thorndike, 1913).

The idea that a simple nonlinear function might describe

practice effects in a broad range of tasks was championed

by Newell and Rosenbloom's (1981) influential chapter

entitled "Mechanisms of Skill Acquisition and the Law

of Practice." The "law of practice" in the title concerns

the relationship between response time (RT) and number

ofpractice trials. Newell and Rosenbloom examined data

from a wide range of tasks. When they compared power

and exponential functions as possible forms for the law of

practice, power functions provided better fits than expo­

nential functions in every case.

The power function is now treated as the law of prac­

tice. In 1. R. Anderson's (1982) words, "one aspect of skill

acquisition ... distinguished ... by its ubiquity ... is the

log-linear or power law for practice" (p. 397). A decade

later, Logan (1992) echoed the same conviction: "The
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power law is ubiquitous. It occurs in virtually every

speeded task" (p. 883). In accord with its status as a law,

most research subsequent to the publication of Newell

and Rosenbloom's (1981) findings has assumed a power

function, rather than testing to determine whether it pro­

vides a better description than other functions (e.g., Cohen,

Dunbar, & McClelland, 1990; Kramer, Strayer, & Buck­

ley, 1990; Logan, 1988, 1992), or has assumed that a

power function holds for each component ofperformance

(e.g., Delaney, Reder, Staszewski, & Ritter, 1998; Rickard,

1997).

The power function's status as a law has also made it a

gold standard by which to judge the success of models of

skilled performance, including ACT and related modcls

(1. R. Anderson, 1982; 1. R. Anderson & Schooler, 1991),

the component power laws model (Rickard, 1997), net­

work models (MacKay, 1982; Cohen et aI., 1990), instance

theories (Logan, 1988, 1992; Nosofsky & Palmeri, 1997),

and Newell and Rosenbloom's (1981) chunking model (see

also Rosenbloom & Newell, 1987a, 1987b). Logan (1988)

leaves no doubt about the importance of the form of the

practice function for theories of skill acquisition: "The

power-function speedup [is} a benchmark prediction that

theories of skill acquisition must make to be serious con­

tenders" (p. 495; see also Cohen et aI., 1990, and Palmeri,

1997, for similar views).

However, we contend that the evidence supporting a

power law ofpractice is flawed. Although theories of skill

acquisition model learning in individuals, the bulk ofthe

evidence favoring the power law is based on fits to aver­

aged data. There is little empirical evidence from indi­

viduallearners for individual learning conditions that a

power function describes skill acquisition better than does
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an exponential function. Data from all but one of the

tasks examined by Newell and Rosenbloom (1981), for

example, were averaged over subjects, conditions, or

practice blocks. In the few published comparisons that

report analysis of data from individual subjects, the ex­

ponential function fit better than the power function

(Josephs, Silvera, & Giesler, 1996; Rosenbloom & New­

ell, 1987b).

The mismatch between theory and evidence is more

than a minor technicality: It has been known from the

psychological literature for almost 50 years that average

curves need not take the same form as the individual

curves making up the average (e.g., Estes, 1956; Kling,

1971; Sidman, 1952). Hence, the form of the average

practice function does not unambiguously indicate the

form ofthe components ofthe average. Moreover, recent

work shows that linear averaging yields a composite that

is systematically biased toward the power function, when

compared with the exponential function (e.g., R. B. An­

derson & Tweney, 1997; Myung, Kim, & Pitt, in press).

Hence, evidence once thought to favor the power law may

be artifactual.

The form ofthe practice law may also seem to be an un­

solvable technical issue, rather than an important psycho­

logical question. Estes (personal communication, May

1997) has indicated that the form ofthe practice law does

not constrain theory enough. In his words, a "generation

of budding learning theorists (Bower, Bush, Estes,

Greeno, Hunt, Restle) produced mountains of analyses

showing how easily the forms of particular performance

curves can be mimicked by many alternative models."

Nevertheless, the form ofthe practice law does carry an

important implication about the nature oflearning. As we

will note more fully later, an exponential function implies

a constant learning rate relative to the amount left to be

learned. By contrast, the power function implies "a learn­

ing process in which some mechanism is slowing down

the rate oflearning" (Newell & Rosenbloom, 1981, p. 18).

The question at issue, then, is whether the slowing implied

by the power function is part of skill acquisition. Repeal­

ing the power law of practice in favor of an exponential

(or other) law has serious implications for all theories of

skill a c q u i s i t i o n ~ s p e c i a l l y for those developed in order

to account for the power law.

In light of the ambiguity concerning empirical support

for the power law, we report the results ofa survey that sys­

tematically assessed the form of the practice function for

individual learners and learning conditions in paradigms

that have shaped theories of skill acquisition (see Table 1

for a summary ofthe paradigms and data sets). In the next

section, we review the properties of candidate practice

functions and propose a new practice function, the APEX

function, that expedites our analysis. Subsequent sections

describe our method and results. The results can be easily

apprehended from Table 2 (which tabulates the average fit

of the candidate practice functions in each data set) and

from Figures 1,2, and 3 (which present the percentage of

cases in each data set that are best fit by a candidate prac­

tice function). Finally, the Discussion section examines the

implications ofour results for the measurement ofpractice

functions and for theories of skill acquisition.

PRACTICE FUNCTIONS

Equations 1 and 2 are the power and exponential func­

tions used by Newell and Rosenbloom (1981) to fit prac­

tice data. E(RTN) is the expected value ofRT on practice

trial N. The boldface notation indicates that RT is a ran­

dom variable. When referring to observed response times

(i.e., to samples from RT), we will use the notation RT.

Ap and AE are the expected values of RT after learning

has been completed for the power and the exponential

functions, respectively. An asymptote parameter is nec­

essary when modeling response time, even in a highly

skilled subject, because performance is limited by phys­

ical constraints, such as neural integration time and

motor response time. Bp and BE are the change in the ex­

pected value ofRT from the beginning oflearning (N +
E = 1 for the power function, or N = 0 for the exponen­

tial function) to the end of learning (the asymptote).

Hence, Bp and BE indicate the range over which practice

speeds responding:

E(RTN)P =A p+ Bp(N + E)-/3, (1)

and

E(RTN)E =AE+ BEe-aN. (2)

The amount of nonlinearity displayed by the practice

function is controlled by its rate parameter: a for the ex­

ponential function and f3 for the power function. The

power function has one extra nonlinear parameter: E. It

represents the subject'S prior learning from practice be­

fore experimental measurement (the rationale for the E

parameter was first suggested by Seibel, 1963). Most sub­

sequent researchers, however, have fit the simpler three­

parameter version of the power function with E fixed at

zero (e.g., Logan, 1988, 1992).

An extension of the exponential function to include a

parameter corresponding to E is redundant, because the

exponential function is translation invariant-that is,

BF,e-a(N+ E) = BF,e-aEe-aN = BEe-aN,

where BE = BEe-aE. Hence, the effect of prior practice

is incorporated into the estimate of BE for the three­

parameter exponential function.

Newell and Rosenbloom's (1981) evidence for a power

law of practice was based on a comparison of the fit of

the three-parameter exponential function with the fit of

the four-parameter power function, which they call the

general power function. We will adopt the terms general

powerfunction and powerfunction when referring to the

four- and three-parameter (E fixed at zero) versions of

Equation 1, respectively.

Apart from the difficulties introduced by averaging,

Newell and Rosenbloom's (1981) analysis is open to crit­

icism on two technical grounds.

I. The first technical criticism concerns the number

ofparameters in the equations considered by Newell and
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Table I

Summary of Data Sets Fit in the Survey

Source Name N Length Ss Errors Censor (msec)

Strayer and Kramer (1994b, I994c) MSI 36 606-711 6 Increase' 150<RT<I,500

MS2 192 654-716 32 Increase 150<RT<I,500
Strayer and Kramer ( I994a) MS3 132 625-860 22 Decrease 150<RT<1,500
Palmeri (1997) Countl 120 175-208 4 Decrease' None

Count2 288 [25-160 4 Decrease' None

Count3 360 129-160 5 Decrease' None
Rickard and Bourne (1996) Math I 384 63-90 24 Decrease' 200<RT<5,000
Rickard ( 1997) Math2 228 62-90 24 Decrease' None

Math2a 125 >9 None

Math2m 228 >9 None
Reder and Ritter ( 1992) Math3 79 8-20 20 NA None

Math3a 44 >7 None

Math3m 38 >7 None

Math4 63 8-20 16 NA 200< RT< 18,000

Math4a 50 >7 200<RT< 18,000

Math4m 14 >7 200<RT< 18,000
Schunn, Reder, Nhouyvanisvong,

Richards, and Stroffolino (1997) Math5 65 8-28 22 NA None

Math5a 57 >7 None

Math5m 35 >7 None
Rickard (1997) AAI 504 25-84 21 Decrease 200<RT< 10,000

AAla 157 >9 200< RT< 10,000

AAlm 489 >9 200<RT< 10,000
Smith and Mewhort (1994) AA2 288 80 24 Decrease' None
Heathcote and Mewhort ( 1993) VSI [92 200 24 Decrease' None
Carrasco, Ponte, Rechea, and Samperdo (1998) VS2 120 63-88 10 Increase None
Heathcote and Mewhort (1993) VS3 128 160 8 Decrease None
Verwey (1996) Keylt 72 45-613 36 Increase' None

Keylc 180 45-613 None

Keylk 648 45-613 None

Key2t 72 67-1,353 36 Flat None

Key2c 180 67-1,353 None

Key2k 648 67-1,353 None
Brown and Heathcote (1997) Key3 56 228-300 4 NA 200<RT< 10,000

J. R. Anderson, Rincham, and Douglass ( 1997) Rule I 26 32 26 Decrease' None

Rule2 88 32 22 Decrease None

Rule3 180 32 45 Decrease' None

Kai I and Park (1990) MRlc 96 35 8 NA None

MRla 96 35 8 NA None

Ringland and Heathcote (1998) MR2c 576 18-32 12 Decrease None

MR2a 576 18-32 12 Decrease None

N o t e ~ N , the number of practice series in the data set; Length, the range oflengths for practice series in each data set; Ss, the num-

ber of subjects in each data set; Errors, the results of tests on the main effect of practice on accuracy, with a * indicating signifi-

cance at the 95% confidence level; where results were not significant trends are indicated; Censor, criteria used, if any, to censor

outl iers from the data set.

(3)

Rosenbloom (1981). They compared the three-parameter

exponential function against the four-parameter general

power function. One might think that the latter function

would be more flexible, since it has an extra parameter. In

particular, the extra flexibility may allow a general power

function to mimic an exponential function, making the

general power function almost impossible to falsify by a

comparison with the simpler exponential.

The relationship between the general power and the

exponential functions is illuminated by expressing them

as differential equations:

a[E(RTN)p] _ -{3 [ ]
~ __---CC E(RTN)-A

p
,

aN N+E

and

a[E(RTN)E] [ ]
~---=-a E(RTN)-A E . (4)

aN
Equations 3 and 4 can be compared by using their relative

learning rate (RLR), defined as minus the rate ofchange

of expected RT divided by the amount left to be learned
(i.e., RLR equals the multipliers ofthe bracketed terms on

the right side ofEquations 3 and 4). The defining charac­

teristic of an exponential function is a constant RLR (a)

at all levels ofpractice. For the general power function, by

contrast, RLR is a hyperbolically decreasing function of

practice trials [{3/(N + E)].
Strictly speaking, the general power function can ex­

actly mimic an exponential function only when a= 0 (i.e.,

a flat function). However, for practice series of finite
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Table 2

Results for Published and Unaveraged Data Sets

R2 %A<150msec % Significant

Data Set E P APEX GP E P APEX GP Overall a.' ~' APEX

MSI .051 .047 .054 .053 13.9 80.l 47.2 44.4 97.2 41.7 8.3 2.8

MS2 .124 .119 .130 .128 11.5 61.5 24.0 31.3 93.2 48.4 27.1 5.7

MS3 .055 .048 .056 .055 19.0 72.0 39.4 37.1 81.1 50.0 9.1 0.0

Count I .647 .507 .651 .637 18.3 91.7 23.3 30.0 100.0 95.0 20.8 16.7

Count2 .607 .472 .613 .601 11.1 88.9 18.1 30.2 100.0 91.3 13.5 8.0

Count3 .592 .489 .599 .590 5.0 88.3 14.7 25.8 100.0 86.4 18.6 11.7

Math I .166 .154 .173 .166 19.0 39.1 21.6 21.1 47.9 16.7 9.1 0.3

Math2 .658 .577 .679 .669 19.2 45.7 48.7 54.4 99.6 82.5 32.0 21.5

Math3 .394 .377 0419 All 36.6 51.2 41.7 38.0 40.5 6.3 2.5 0.0

Math4 .236 .219 .253 .251 23.4 45.3 28.6 38.1 25.4 6.3 3.2 0.0

Math5 .540 .485 .546 .530 33.7 51.1 49.2 49.2 69.2 30.8 0.0 0.0

AAI .619 .497 .628 .615 18.1 64.0 30.0 44.8 99.4 84.9 11.1 5.6

VS1 .277 .221 .282 .280 19.8 93.2 31.3 48.4 98.4 81.3 lOA 5.2

VS2 .261 .218 .265 .262 7.8 51.6 24.2 29.2 100.0 9604 17.9 14.3

VS3 .305 .265 .313 .312 7.0 86.7 14.1 28.9 97.7 68.8 13.3 3.9

Key It .624 .602 .633 .624 1.4 52.8 8.3 13.9 95.8 52.8 36.1 36.1

Key2t .185 .176 .187 .179 45.8 63.9 56.9 52.8 88.9 31.9 6.9 1.4

Note-E, P, APEX, and GP refer to the exponential, power, APEX, and general power functions, respectively. Sig-

nificance is assessed at the 95% confidence level.

length, large values ofE can make the RLR almost con­

stant, and any value ofa can be approximated, particularly

smaller values. In experimental measurement, practice tri­

als vary over a limited range. If the estimate ofE is much

larger than the range, the effective RLR for the general

power function is a constant, approximately equal to {3/E.
Consequently, the general power function can mimic ex­

ponential data, using large estimates ofE, although such

fits are invariably poorly behaved, because the parameter

estimates are highly correlated-that is, large estimates of

E are associated with large estimates of{3 and, particularly,

ofBp .

Newell and Rosenbloom (1981) noted the association

between large estimates of E and large estimates of Bp

when they fit the general power function to simulated ex­

ponential data. We reported the same behavior in fits to

several data sets from a visual search paradigm (Heath­

cote, 1990; Heathcote & Mewhort, 1995). When E is

large, large values of {3 will occur, to allow the general

power function to approximate a constant RLR greater

than zero. Very large values ofBp allow the general power

function to approximate the decrease in the expected value

ofRT from the beginning to the end ofmeasurement. This

counteracts the tendency of a general power function to

become flat when it mimics exponential data.

2. The second technical criticism concerns the way in
which Newell and Rosenbloom (1981) fit practice func­

tions. To save on computation, they fit by minimizing

squared deviations in 10g(RT - Ap ) and 10g(RT - AE).

Given that A p and A E estimate expected values, it would
not be unusual to observe samples from RT that are less

than these expected values; in such cases, the measures

10g(RT - Ap) and 10g(RT - AE) are undefined. It is dif­

ficult to know how to deal with undefined values without

biasing or distorting fits (Newell & Rosenbloom did not

describe their approach). Undefined values will not occur,

ofcourse, ifnear-asymptotic performance is not measured

or if the variability of RT shrinks to zero with practice.

The latter condition is unlikely, since, even in very fast and

simple tasks, RT remains variable (see Luce, 1986, for nu­

merous examples). Such problems are likely to be more

pronounced in individual-subject data, since they are nois­

ier than averaged data.

To check whether the fitting method biased their results,

we obtained a subset of the data in Newell and Rosen­

bloom's (1981) survey. We refit their data by minimizing

squared deviations in RT (i.e., the generally accepted

method ofordinary least squares) instead of10g(RT - Ap)

and 10g(RT - AE)' For the averaged data, the power func­
tion still fit better than the exponential function. However,

for the two data series that were not averaged (times to

win and to lose the Stair card game), the exponential

function provided a better fit than the power function.' In

other words, the only evidence favoring the power func­

tion for unaveraged data in Newell and Rosenbloom's sur­

vey turns on the adequacy of their fitting method.

The two technical criticisms not only call Newell and

Rosenbloom's (1981) findings into question2 but also

raise a dilemma. The general power function is clearly a

plausible extension of the power function, at least when

estimates ofE are reasonable, but it cannot be fairly com­

pared directly with the exponential function. To escape

the dilemma, we propose a new3 four-parameter practice

function, the APEX function, which nests (i.e., contains

as special cases) both the power and the exponential

functions:

E(RTN)=A+Be-a'NN-f3'. (5)

The APEX function has an RLR that is the sum of the

RLRs for the power and exponential functions: a' +{3' / N.
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Consequently, its RLR decreases like a power function

early in practice but approaches an asymptotic value po­

tentially greater than zero (a') later in practice.

We propose the APEX function for two reasons.

1. The APEX function nests both the power and the

exponential functions. Hence, fitting the APEX function

to exponential data will likely be better behaved than fit­

ting the general power function to exponential data. Be­

cause the APEX function can exactly fit both power and

exponential data, it can be used to adjudicate between the

two alternatives. If the APEX function provides a better

fit than the power function, an exponential component is

supported. If the APEX function provides a better fit than

the exponential function, a power component is sup­

ported. Ifboth conditions apply, the full APEX function

is supported.

Tests comparing the fit of APEX, power, and exponen­

tial functions can be applied to individual subjects and

conditions. This allows for the possibility that the form

ofthe practice function might differ between individuals

or conditions. The significance ofany improvement in fit

can be assessedfor each individual subject and condition

by a straightforward nested-model change-of-R2 test.

Nested-model tests have an important advantage when

dealing with nonlinear models: They need assume only

a linear approximation to the intrinsic curvature of the

function and are not affected by nonlinear effects of

changes in parameters (see Bates & Watts, 1988).

2. Comparison of the fit of APEX and general power

functions not only provides a fair test but also illuminates

a theoretically crucial point. Many models of skill acqui­

sition acknowledge that performance may be the result of

a sum ofcomponent processes (e.g., Kirsner & Speelman,

1996) or the result of a mixture of processes, such as al­

gorithmic and memory-based processing (e.g., Logan,

1988, 1992; Rickard, 1997).

In the case of a sum, processes with a relatively faster

learning rate will approach their asymptote quickly and

then will cease to affect the rate ofchange of RT; as a re­

sult, asymptotic learning will be dominated by the slower

learning processes. The transition should be evident as a

decrease in the RLR early in practice, even ifall compo­

nent processes are exponential (i.e., even if all have con­

stant RLRs). Asymptotic learning rates, however, will re­

veal the true RLR function of(at least) the slow component

processes. A superior fit for the APEX function supports

an asymptotic RLR greater than zero, a finding inconsis­

tent with component power functions. A superior fit for

the general power function supports an asymptotic RLR

that approaches zero, a finding inconsistent with compo­

nent exponential functions.

A similar argument can be made for a mixture ofmem­

ory and algorithmic processes. Even if each component

learns exponentially, RLR can decrease early in practice,

because of the transition from trials controlled by slow

algorithmic processing to trials controlled by fast memory­

based processing. After sufficient practice, however,

learning should be dominated by the memory-based pro-

cess. If memory-based processing follows a power func­

tion, the asymptotic RLR will approach zero, and the

general power function will provide a superior fit to the

APEX function. If memory-based processing follows an

exponential function, the APEX function will provide the

superior fit, with an estimate of a greater than zero.

Several experiments in the survey required subjects to

report their processing strategy as algorithmic or memory

based. Hence, we were also able to test the function de­

scribing each component explicitly in these experim;nts

(assuming, of course, that the subjects' s e l f - r e p o r t s ~ ac­

curately describe their processing strategies).

METHOD

Analysis Techniques
We fit power, exponential, general power, and APEX functions,

using ordinary least squares minimization on correct trial data. The

fits were obtained by using a Simplex search algorithm (Press,

Flannery, Teukolsky, & Vetterling, 1986), because it is robust when

fitting is ill conditioned. Fits were validated by comparison with the

outputs ofnonlinear regression programs provided in the SPSS and

S+ statistical packages.

When data are exponential, fits of the general power function

tend to be ill conditioned. In particular, fitting is problematic, be­

cause estimates of Bp diverge to very large values that cannot be

represented with accuracy, even in double precision. To avoid the

problem, estimates ofBp were constrained to be less than 1010 msec

(around 115 days). Estimates of the asymptote parameters were

constrained to be greater than zero for all fits, in order to ensure

that the estimates were plausible.

To ensure that the best fits of the general power function were

found, multiple fits were performed with starting estimates for E
equal to 1%, 10%,50%, and 100% of the length of the series. The

best fit was then selected and compared with the fit of the power

function for the same series. Where the general power function fit

was worse than the power function fit, as sometimes happened

owing to correlated parameters, the power fit was substituted for the

general power fit. Ill-conditioned power, exponential, and APEX

fits almost never occurred, and starting points for fitting were easy
to obtain by heuristics. Where the fit of an APEX function was

worse than the fit ofeither the power or the exponential function for

the same series, refits were performed by using starting values close
to both the exponential and the power solutions. The best fit among

the refits and the power and exponential fits was selected.

Experimenters often censor their data to delete outliers. When­

ever the experimenter cen'sored his or her data, we followed the

same procedure. Ifan experimenter did not report censoring, we re­

moved obvious outliers (see Table I for the criteria used). Across all

the data sets, however, very few observations were censored.

Because RT can vary as a function of accuracy, we also calcu­

lated the main effect of practice on errors for each block of trials.

Most frequently, errors decreased with practice, but they also in­

creased or remain unaffected by practice in some data sets. Hence,

the results for RT are not correlated in any simple pattern with

changes in accuracy, at least across different data sets.

All the fits used learning series broken down by subjects and by

within-subjects factors or learning examples. Where strategy re­

ports were available, the learning series were also broken down by
strategy for supplementary analyses. In some cases, data sets bro­

ken down by strategy produced series that were too short to obtain

reliable fits. Such data sets were excluded. The data for production

ofkey sequences were divided into trials on the Ist and subsequent

days, because new instructions that clearly influenced learning were
given on the 2nd day of practice (see Verwey, 1996, Figure 3,
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p. 548). Exponential, power, APEX, and general power functions

were then fit to each learning series.

Several approaches were used to compare the overall perfor­

mance of the different functions. The proportion oflearning series

for which an exponential function provided a better fit than a power

function (on the basis of R2) was tallied for each data set (see Fig­

ure I). A similar comparison was made between the four-parameter

functions (APEX and general power; see Figure 2). Binomial con­

fidence intervals were used to determine whether preference for ei­

ther member of each pair of functions was significant in each data

set. For all functions, the average value of R2 for each data set was

calculated and compared (see Table 2). In addition, the improve­

ment in fit of the APEX function, relative to both the exponential

and the power functions, was used to provide nested-model tests.

Table 2 reports the percentage of learning series for each data set

where significant results for the nested-model tests supported an

exponential and/or a power component.

Data Sets

We fit 40 sets ofdata; collectively, the data represent 7,910 learn­

ing series from 475 subjects in 24 experiments taken from 13 pub­

lished and 3 unpublished sources. The unpublished data (Brown &

Heathcote, 1997; Ringland & Heathcote, 1998; Smith & Mewhort,

1994) were collected in our laboratories and were analyzed to clar­

ify and expand on results from the published data sets.

Table I summarizes the characteristics of the data sets used in

the survey. Each data set was given a unique acronym used to index

the summaries of results. For data sets that were broken down by

strategy, the "Length" column indicates the criterion length used to

exclude short series. Table I also reports the results of tests on the

effect of practice on error rates. The following sections describe

both the paradigms from which the data were drawn and the exper­

imental factors used to produce separate series for each data set.

Memory search. In the memory search tasks, subjects studied a

list of words and then were asked to indicate whether or not a probe

word had appeared in the study list. The words used in the list were

selected to represent particular semantic categories, and semantic

category was mapped consistently to the word's use as a target or a

distractor item. Fits used series broken down by subjects and

within-subjects factors.

The data in the MS I set are the consistently mapped trials from

mixed consistent/varied mapping training blocks from Experi­

ment 2 of Strayer and Kramer (1994b). The data indexed by the

label MS2 refer to the consistently mapped training blocks from

Experiment 2 of Strayer and Kramer ( I994b), from Experiments 4,

6, and 7 of Strayer and Kramer (1994c), and from an unpublished

two-alternative forced-choice version of the task. The experiments

in the MS2 data set came from very similar paradigms and individ­

ually produced the same pattern of results as the overall data set, so

they were grouped together. For both MS I and MS2, two factors

were manipulated within subjects: target/distractor probe and

memory load (two, four, or six items).

The data in the MS3 set are consistently mapped trials from

young subjects (ages, 18-21) from Strayer and Kramer (1994a).

Two factors were manipulated within subjects: target/distractor

probe and memory load (two, four, or six items), and one factor was

manipulated between subjects: speed versus accuracy instructions.

Counting. In the counting tasks, subjects were shown different

patterns of 6--11 dots and a spelled-out number; they were asked

verify whether the number of dots in the pattern matched the

spelled-out number. All the data were taken from Palmeri ( 1997).

Each experiment used a number of unique patterns, and fits in­

cluded series from each pattern. Fits used data broken down by sub­

jects and dot pattern.

The data in the Count! set are the training series from Experi­

'ment I. The number ofdots was manipulated within subjects. There

were 30 patterns, with 5 patterns of array size.

The data in the Count2 set are the training series from Experi­

ment 2. The number ofdots and the similarity ofdot patterns (none,

low, and moderate) were manipulated within subjects. There were 72

patterns, with 4 patterns for each level of similarity per array size.

The data in the Count3 set are the training series from Experi­

ment 3. The number of the dots and similarity (similar to an identi­

calor a different number pattern) were manipulated within subjects.

There were 72 patterns, with 6 patterns for each level of similarity

at each array size.

Mental arithmetic. The mental arithmetic tasks included a di­

verse set of problem types. Fits used data broken down by subjects

and problem examples.

The data in the Math I set are from a single-digit multiplication

task taken from Experiment I of Rickard and Bourne ( 1996). Either

the subjects were shown two digits and asked to calculate the prod­

uct, or they were shown a digit and a product and asked to divide

the product to compute the dividend. RT was recorded as the time

between the presentation of the problem and the keystroke of the

first digit of the answer. There were 16 problem examples. Problem

type (compute product or compute dividend) and range of digits

were manipulated within subjects.

The data in the Math2 set are from a three-step arithmetic task

(Experiment I of Rickard, 1997). Subjects were shown two numbers

and asked to calculate their difference, to add I to the result, and,

then, replacing one of the numbers with the result so far, to compute

the sum of it with the remaining original number. RT was recorded

as the time between the presentation of the problem and the key­

stroke of the first digit of the answer. Subjects reported using one

of two strategies, recalling the answer from memory or computing

the answer (algorithm) on every third trial. We split the data into sets

defined by the subject's strategy, using the logistic method described

by Rickard (1997),4 and fit series with more than nine trials.

The data in the Math3 set are from two-digit multiplication and

addition tasks, reported as Experiment I by Reder and Ritter

(1992). Subjects were shown two 2-digit numbers and asked first to

indicate which of two strategies, recall (which we label memorv) or

calculate (which we label algorithm), they intended to use. They

then answered the problem. We fit only to data from the four prob­

lems (two addition and two multiplication) that were presented 20

times and excluded one series because it had less than eight correct

answers. Also. we fit data for each strategy separately, again ex-
cluding the short series. "

The data in the Math4 set are from a multistep multiplication task

with an initial rapid strategy report, as for the Math3 set (Experi­

ment 2 of Reder & Ritter, 1992). We fit only data from the four

problems that were presented 20 times and excluded one series that

had less than eight correct answers. The data were also classified by

strategy and fit separately, again excluding the short series.

The data in the Math5 set are from a two-digit task combining

multiplication and addition, preceded by a rapid strategy report, as

for the Math3 set (Experiment I ofSchunn, Reder, Nhouyvanisvong,

Richards, & Stroffolino, 1997). We fit only the three problems pre­

sented 28 times and, again, excluded one series with length less than

eight. The data were also classified by strategy and fit separately,

again excluding the short series.

Alphabetic arithmetic. Subjects were required to verify equa­

tions of the form A + 2 = C. or A + 3 = C. true and false equations,

respectively. We broke down the data by subjects and by problem

example.

The data in the AA I set are from Experiment 2 of Rickard (1997).

Two factors were manipulated within subjects: addend (3, 5, and 7)

and trial type (true/false), with four examples of each type. Data for

each of the 24 problems were fit separately. Subjects reported strat­

egy as for the Math2 data set. We also analyzed data for the two

strategies separately, excluding series with less than 10 responses.

The data in the AA2 set are from an unpublished experiment by

Smith and Mewhort ( 1994). Three factors were manipulated within
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subjects: addend (2, 3, and 4), arithmetic operator (+, -), and trial

type (true/false), with one example of each type. We fit the data

from each of the 12 examples separately.
Visual search. In the visual search tasks, subjects were required

to indicate whether or not a target appeared in a visual display. In
VS I and VS3, the target was defined by the relative position oftwo

features; in VS2, the target was defined by a conjunction ofcolors.

Stimuli used for targets and distractors were consistently mapped

over trials in VS1 and VS2. Targets and distractors were variably

mapped in VS3, and a target cue was given before each trial. Fits

used data broken down by subjects and by within-subjects factors.

Data in the VS I set are from Experiment I of Heathcote and Mew­

hort (1993). Two factors were manipulated between subjects: fea­

ture type (brightness or color) and display area (small or large). Two

factors were manipulated within subjects: display size (two, four,

six, or eight objects) and trial type (target/distractor).

The data in the VS2 set are from Experiment 3 of Carrasco,

Ponte, Rechea, and Sampedro (1998). Two factors were manipu­

lated within subjects: display size (2, 6, 10, 14, 18, or 22 objects)

and trial type (target/distractor).

The data in the VS3 set are from Experiment 3 of Heathcote and

Mewhort (1993). Three factors were manipulated within subjects:

display size (two, four, six, or eight objects), target type, and trial

type (target/distractor).

Motor learning. In the motor learning tasks, subjects were re­

quired to press combinations or sequences of keys in response to

compatible stimulus displays. All fits were broken down by sub­

jects. Fits for production ofcombinations ofkeypresses used series

broken down by combination. Fits to sequence production used data

broken down by within-subjects factors, but not sequence, since

each subject used the same sequence.
The data in the Key It, Key Ic, Key Ik, Key2t, Key2c, and Key2k

sets were taken fromVerwey (1996). Subjects executed the same

nine-key sequence in response to a compatible display. Only the

data where all nine key responses were correct were analyzed. On

most blocks of trials, the key sequences were divided into segments

(called chunks) by pauses between stimulus onset. The segment

structure was manipulated between subjects: The nine keystrokes

were divided into three equal segments (3:3:3) or into two unequal

segments (3:6). For the remaining blocks, there was no pause be­

tween segments. Otherwise, the next stimulus occurred immedi­

ately after the preceding keypress. Subjects were instructed at the

beginning ofthe 2nd day ofpractice to use the pauses to group their

responses temporally.
Trials from Day I and from later days and trials from blocks with

and without pauses were fit separately. Fits were performed for the

time to complete each keypress (Keylk and Key2k), to complete

each chunk (Key Ic and Key2c), and to complete the total sequence

(Key It and Key2t).

The data in the Key3 set were taken from an unpublished exper­

iment by Brown and Heathcote (1997). Subjects pressed combina­

tions of one to three keys from a set of four keys in response to a

compatible visual display (bright rectangle presented on a screen

above the response keys). All 14 possible combinations were prac­

ticed in random order.
Learning rules from examples. The data were taken from the

three experiments reported by 1. R. Anderson, Fincham, and Dou­

glass (1997). Subjects studied examples of the form "Skydiving

was practiced on Saturday at 5 p.m. and Monday at 4 p.m.," with the

underlying rule being that the second practice occurred 2 days later
and I h earlier. Subjects then indicated the missing parts of similar

examples by clicking on one ofa set ofchoices, using a mouse.

The data in the Rule I, Rule2, and Rule3 sets are from Experi­

ments 1,2, and 3, respectively. All the experiments started with

blocks using eight different rules and required the same part (first or
second) to be filled in for each rule. Over groups ofblocks, examples

were introduced that required the other part to be filled in. The ma­

nipulation defined the within-subjects factor practiced/unpracticed

rule direction. The data for the unpracticed rule direction came

from the rules in each group of blocks that had not previously been

seen in the unpracticed direction. Experiment 2 introduced a second

within-subjects factor: Rules could have either unique or repeated

examples. Experiment 3 made the example repetition a between­

subjects factor, with either zero, one, or two repeated examples per

block.

For fitting, the data were broken down by all within-subjects fac­

tors. However, data were averaged over rules, and over examples of

rules, for groups offour, eight, and eight blocks for Experilflents I,

2, and 3, respectively.

Mental rotation. Subjects were presented with one of four let­

ters (F, G, P, or R) in either their normal or their mirror-image form

and rotated by 0°, 30°, 60°, 90°, 120°, or 150°. The subjects' task

was to indicate whether the letter was a normal or a mirror-image

form. Letter type, letter orientation, and normal versus mirror

image were manipulated within-subjects. Subject age (child or

adult) was a between-subjects factor.

Data in the MRlc and MRla sets---child and adult subjects, re­

spectively-were taken from Kail and Park (1990). The data were

averaged over letter and block (two examples per block); otherwise,

we broke down the series by within-subjects factors. Data in the

MR2c and MR2a sets were from child and adult subjects, respec­

tively, and came from an unpublished replication of Kail and Park

(Ringland & Heathcote, 1998). The latter data were not averaged:

Letter type was used to break down the series, and we fit individual

trial data, rather than block averages.

RESULTS

Note that, where we report a statistic averaged over data

sets, the average was calculated weighted by the number

of series in each data set (see Table 1 for the number of

series in each data set). Table 2 and Figures 1,2, and 3

give statistics for individual data sets.

The Shape of the Practice Function

Comparing power and exponential functions. Fig­

ure I reports the percentage of series in each published5

and unaveraged data set that were better fit by the expo­

nential function than by the power function. Power and

exponential functions provided an equally good fit in

2.5% of the series, and these series were excluded from

the calculation of the percentages shown in Figure 1. Of

the remaining series, the exponential function provided

a better fit than the power function in 82.2% ofthe cases,

ranging from a minimum of64% for the MS2 data set to

a maximum of93% for the Count3 data set. In every case,

we could reject, at the 95% confidence level, the null hy­

pothesis that power and exponential functions were equally

likely to win.

Table 2 gives the average across all learning series of

the proportion ofvariance (R2) accounted for by the power

and exponential functions. In every data set, the expo­

nential function accounted for more variance than did the

power function. Overall, the average R2 was .498 for the

exponential function and .426 for the power function. The

exponential fits provided, on average, a 17% improve­

ment, relative to the power function, ranging from 3.7%
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Figure 1. Percentage of cases in which the exponential function provided a better fit than the
power function (solid circles), and exact binomial 95% confidence intervals for the published and
unaveraged data sets in the survey.

for the Key1t data set to 28.6% for the Count2 data set. In

many cases, the absolute increase in R2 was quite large;

that is, the improvement in fit provided by the exponential

function was not trivial. Figure 4 reports one such case.

Note that the power function's decreasing RLR forces it

to approach asymptote very quickly at first and then very

slowly, so that it briefly overestimates, then underestimates

data in early practice trials. For later practice trials, it over­

estimates the data. Beyond the range of practice trials

measured, it makes a clearly implausible underestimation,

that RT reduces to zero.

Sometimes, however, the advantage for the exponential

function over the power function was small, and, in most

such cases, the R2 values themselves were also small. In­

terpretation ofsmall R2 values for nonlinear regression is

tricky, however. The expected value of the nonlinear R2

can depend on the length of the series. Specifically, the

nonlinear R2 should decrease as series length increases,

because extra trials at asymptote add noise but do not add

additional signal to the correlation (here, signal means a

change in the expected value owing to learning). In the

memory search experiments, for example, the practice

series were very long, and the absolute values ofR2 were

relatively small. Nevertheless, learning, especially early

in practice, was quite strong.

Over all the data sets, the difference between R2 for

the power and the exponential functions was highly cor­

related with their average value (r = .752), indicating that

the magnitude ofthe difference was an increasing function

of the variance accounted for by learning. Consequently,

it appears that smaller advantages for the exponential

function are associated with higher levels ofnoise, rather

than being due to a systematic difference between data

sets. Taken together with the cautionary note, the correla­

tion shows that the relative increase in R2 afforded by the

exponential function was important in all the data sets.

To assess the strength ofleaming, we tested each series,

using the null hypothesis that the series had a constant

mean across practice. Table 2 shows the percentage ofse­

ries in which learning was significant. For most data sets,

the majority of the series show significant learning. Im­

portantly, the two data sets that showed the least signifi­

cant preference for the exponential (Math 3 and Math4)

also showed the weakest learning. Across data sets, the

correlation between the percent of exponential winners

and the percentage ofsignificant practice effects was r =

.646. The strong positive correlation again indicates that

the weaker advantage for the exponential function shown

by some data sets in Figure 1reflects noise, rather than the

form of the underlying learning function. 6

Comparing APEX and general power functions.
Although our analyses, so far, strongly support the expo­

nential function over the power function, the comparison

may have been confounded by the effect of preexperi­

mental practice. The power function assumes that preex­

perimental practice has not occurred, whereas the expo­

nential function does not. When preexperimental practice

is important, the power function is forced to estimate too

large a decrease in RLR early in practice, and, as a result,

the exponential function might dominate. The general

power function takes preexperimental practice into ac­

count. Hence, to consider a role for preexperimental prac­

tice, we compared the fit of the general power function

against the fit of the APEX function.

The APEX function can estimate an asymptotic RLR

greater than zero, whereas the general power function re-
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Figure 2. Percentage of cases in which the APEX function provided a better fit than the general
power function (solid circles), and exact binomial 95% confidence intervals for the published and
unaveraged data sets in the survey.

quires the RLR to decrease to zero across practice. Con­

sequently, better fits for the APEX than for the general

power function indicate that the RLR does not decrease

to zero (i.e., the function is asymptotically exponential).

Conversely, better fits for the general power function in­

dicate that the RLR does decrease to zero (i.e., the func­

tion is asymptotically power).

Figure 2 shows the percentage of series that were bet­

ter fit by the APEX function than by the general power

function. In the few cases in which APEX and general

power functions provided equally good fits, the general

power function was classified as the winner, because these

cases corresponded to a power function solution (i.e., the

estimate of a' = 0 for the APEX function).

Overall, the APEX function won in 84.1% ofthe series,

ranging from a minimum of 70% for Math3 to a maxi­

mum of 94% for Key2t. Importantly, all of the cases in

which the exponential function was weakest in Figure 1

were more strongly won by the APEX function in Fig­

ure 2. Hence, many of the cases won by the power func­

tion in Figure 1 (reflecting a decrease in RLR early in

practice) do not support a further decrease to an asymp­

totic value ofzero later in practice. These results suggest

that the fundamental assumption ofthe power function­

asymptotically negligible RLRs-is not supported by

any of the data sets in this survey and that accounting for

prior practice is not sufficient to rescue the power law of

practice.

Table 2 gives the average R2 values for APEX and gen­

eral power functions for each data set. In every data set,

the APEX function accounted for more variance than the

general power function. Overall, the average R2 was .507

for the APEX function and .498 for the general power

function. The APEX fits provided, on average, only a 2%

improvement relative to the general power function. The

small difference is to be expected, since the APEX and

the general power functions are quite flexible and, hence,

able to imitate each other. However, the advantage for the

APEX function is very reliable, being evident in both the

mean R2 values and the number ofindividual learning se­

ries winners for every data set. Furthermore, on average,

the general power function provided no improvement in

fit over the exponential function, despite its extra param­

eter and ability to mimic exponential data. These results

suggest that the better fit of the general power function

over the power function is due to its ability to mimic the

exponential function, rather than to the effect of preex­

perimental practice.

Across data sets, the correlation between the percent­

age of APEX winners and the percentage of significant

practice effects was r = .405. The value was reduced

somewhat by ceiling effects reflecting a very strong pref­

erence for the APEX function in some data sets. The dif­

ference between R2 for the general power and the APEX

functions was also highly correlated with their average

value (r = .81). Taken together, the results support the ar­

gument that the weaker advantage for the APEX function

shown by some data sets in Figure 2 and Table 2 reflects

noise, not the form of the underlying learning function.

Assessing asymptotic performance. As is docu­

mented in Table 2, the power function tended to predict

implausibly fast asymptotic performance. By implausibly

fast, we mean an estimate of asymptotic expected RT

(Ap or AE) less than 150 msec. Luce (1986) notes that

"minimal [simple] visual reaction times are of the order

of 180 msec" (p. 63) and that "choice reaction times ...
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are slower than the comparable simple ones by 100 to
150 msec" (p. 208). Hence, a criterion of 150 msec is a
conservative estimate ofplausible expected RT after ex­

tensive practice. Nevertheless, 87.7% ofthe estimates of
asymptotic performance derived from the power function
were less than 150 msec, as compared with only 16.1%
from the exponential function.

Underprediction ofasymptotic perfonnance can be an­
ticipated in a few cases, either because ofnoise associated
with individual subject and condition series or because

the series were too short to measure asymptotic perfor­
mance adequately. The power function's systematic ten­
dency toward underprediction, however, is a symptom of
serious misfit. The reason is straightforward: The power
function requires a large decrease in RLR from the begin­
ning to the end of practice. Apparently, the power func­
tion cannot both match the RLR occurring early in practice
and maintain a large enough learning rate late in practice
to predict plausible asymptotic performance. Figure 4 il­
lustrates such a case. Note that the power function's slow
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approach to its (implausibly fast) asymptote means that

the underprediction is not evident in the range ofpractice

trials measured.

Allowing for preexperimental practice greatly improves

the frequency of plausible asymptotic performance esti­

mates. Overall, the general power function predicted an

asymptotic performance of less than 150 msec in only

35.3% of the series. Unlike the power function, the gen­

eral power function does not have to predict a large de­

crease in RLR from the beginning to the end ofpractice,

although is does still predict that the RLR eventually de­

creases to zero. The improvement, however, required

large estimates of the effect of preexperimental practice.

Overall, the estimates of preexperimental practice were

90.4% of the length of practice series, indicating that al­

most halfofthe learning relevant to the experimental tasks
occurred prior to the experiment.

Allowing for a constant RLR greater than zero later in

practice but a decreasing RLR early in practice increased

the frequency of implausible asymptotic performance es­

timates. Overall, the APEX function predicted an asymp­

totic performance ofless than 150 msec in 27.4% of se­

ries. The result raises the possibility that an exponential

function is biased to overpredict asymptotic performance,

at least when the RLR decreases early in practice. Be­

cause the exponential function must predict that the RLR

is constant throughout practice, a decrease in the RLR

early in practice causes overprediction of the RLR later

in practice and, hence, larger asymptote estimates. As was

noted earlier, underprediction ofthe asymptote may occur

because ofnoise and because practice was not carried on

sufficiently to obtain an accurate estimate ofasymptotic

performance. The results for the APEX function suggest

that this may have been the case in about a quarter of the

series contained in the published data sets.

Three parameters or four? Parsimony suggests that

we should prefer a simpler model to a more complex

model, ifthe complex model does not provide a better ex­

planation of the data. As was noted previously, the gen­

eral power function provides, on average, no improve­

ment in R2, as compared with the simpler exponential

function. Hence, parsimony suggests that we should pre­

fer the exponential function to the general power func­

tion as the law of practice.

The simple three-parameter exponential function also

fits almost as well as the more flexible four-parameter

APEX function. Indeed, in 49% ofthe data series, tIfp fits

of APEX and exponential functions were equal, because

the estimate of13' for the APEX function was zero. How­
ever, the APEX function did provide, on average, a 2.4%

improvement in R2, relative to the R2 for the exponential

function, with values ranging from 0.6% for the Count!

data set to 7.2% for the Math4 data set.

The latter results indicate that the RLR is either con­

stant throughout practice or decreases slightly early in

practice but then remains constant. Over data sets, the

difference between R2 for the exponential and the APEX

functions was positively correlated with their average

value (r = .334). The correlation suggests that weaker im­

provements of the APEX function are due to noise, rather

than to the underlying shape of the practice function.

However, the association is much less than that from com­

parison of the exponential function with the power func­

tion and that from comparison ofthe APEX function with

the general power function. Hence, other factors may be

at work. The data sets that show the largest improvements

in R2 for the APEX function (Math2, Math3, and Math4)

all come from experiments designed to examine a mix­

ture ofalgorithmic and memory-based processes. Conse­

quently, a decrease in the RLR early in practice-hence,

the need for an APEX law of practice rather than for an

exponential law ofpractice-may often reflect a mixture

of strategies.

Individual significance tests. For each series, we

compared the fit ofthe APEX function against that of the

power and exponential functions, using change-of-R2
tests (see Table 2). Overall, goodness offit decreased sig­

nificantly when the exponential parameter (a') was fixed

at zero in 65.7% ofthe series, ranging from 6.3% for the

Math3 and Math4 data sets to 96.4% for the VS2 data set.

By contrast, goodness of fit decreased significantly for

only 15% ofthe series when the power (13') parameter was

fixed at zero, ranging from no significant decreases for

the Math5 data set to 36.1% for the Key1t data set. The dif­

ference in rates supports the previous evidence favoring

an exponential function over a power function.

A very strong positive correlation was found between

the percentage ofsignificant practice effects and the per­

centage of significant a' parameters (r = .85). The corre­

lation suggests that cases in which a' was not significant

were due to higher noise levels. The correlation between

the percentage of significant practice effects and the per­

centage ofsignificant 13' parameters (r = .566) was weaker.

The weaker correlation suggests that some cases in which

13' was not significant were due to noise but that, in many
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other cases, /3' was not significant because the underlying
practice function did not have a power component.

Only 7.8% of the series had both a' and /3' estimates

significantly greater than zero (i.e., required the full APEX

function). The data set that provided the strongest evidence

for a power component (Keylt) also provided the

strongest evidence for the full APEX function. The per­

centage ofseries with significant /3' estimates was highly

correlated (r = .879) with the percentage ofseries in which

both a' and /3' estimates were significant; hence, even

when the RLR decreased early in practice, the asymptotic

RLR did not decrease to zero. The one exception was the

Math2 data set; here, 21.4% ofthe series with a significant

/3' estimate did not have a significant a' estimate. Even in

the Math2 data set, however, significant a' estimates pre­

dominated over significant /3' estimates.

The individual significance tests support results re­

ported earlier, in suggesting that the exponential function

provides a parsimonious model of the law of practice in

most cases. Strong evidence for the full APEX function

was obtained in only a minority of the series and para­

digms. Where evidence existed for a power component,

it was usually associated with simultaneous evidence for

an exponential component. Hence, a power function alone

does not provide a good model of the law ofpractice, be­

cause it wrongly predicts that the RLR decreases to zero

with practice.

The Effect of Aggregation

The analyses presented so far used data sets from in­

dividual learners and learning conditions to avoid con­

founding the shape of the function with the effects of

aggregation over series with different learning rates.

However, some level of aggregation could still have oc­

curred, owing either to a mixture of strategies or to a sum­

mation oftimes for a series ofresponses. In the following

sections, we examine the effects of such aggregation in

detail. We then examine the effects ofaggregation in data

sets that were only available as an average across within­

subjects conditions.

Mixed strategies? Rickard (1997) recently suggested

that the power law of practice fails because subjects use

a mixture of algorithmic and memory-based processes,

especially early in practice. Although he maintained that

both algorithmic and memory-based processes individ­

ually follow a power function, he argued that the mixture

does not follow a power function. He also speculated that

an advantage for an exponential function over a power

function might reflect the mixing of algorithmic and

memory-based processing, both ofwhich separately fol­

Iowa power function (Rickard, May 1997, personal com­

munication).

We tested his suggestions, using data sets from Reder

and Ritter (1992), Rickard (1997), and Schunn et al.

(1997). In all three studies, subjects reported their pro­

cessing strategy. For our analysis, the data sets from the lat­

ter two papers (Math3, Math4, and Math5) were combined,

since each data set by itself had few series.

The results of fits, subdivided by processing strategy,

are presented in Figure 3 (in the sections labeled "Math"

and "AA"). Both algorithm (75.1 %) and memory (79.2%)

series were better fit by the exponential than by the

power function (77.8%, overall). An advantage for the

APEX function over the general power function was even

stronger: 86.1 % overall, with 86.4% of the algorithm se­

ries and 85.9% of the memory series won by the APEX

function. As is indicated by the 95% confidence intervals

in Figure 3, the preference for exponential and APEX func­

tions was highly significant. We conclude that the better

fit for the exponential function is not due to a mixture of

component power functions.

The results for the series separated by processing strat­

egy are almost identical to the data for the same data sets

in Figures I and 2, where no distinction was made between

processing strategy (83.4% exponential and 84.0% APEX,

overall). We take comfort from the similarity, because it

argues that mixtures ofprocessing that might have taken

place elsewhere in the survey did not distort the tests that

we have reported.

Figure 3 also shows the results for a data set from an

unpublished alphabet-arithmetic task (AA2) similar to

Rickard's (1997) task, except that the subjects were not

asked to report their strategy. The results for AA2 also

clearly favor the exponential and APEX functions, con­

firming their dominance in the alphabet-arithmetic par­

adigm when strategy reports are not required.

Sequential responses. Figure 3 summarizes the effect

of a second type of aggregation: summing times from a

sequence ofresponses. In the analyses ofVerwey 's (1996)

data shown earlier, we examined the total time to perform

nine sequential keypresses. Because summing across in­

dividual keypresses may have distorted the form of the

practice function, we looked at the separate responses.

As Figure 3 shows, the time to produce individual

chunks and the time to produce individual keypresses

were both fit better by the exponential and the APEX

functions than by the power and the general power func­

tions, respectively. Combining over data sets from Day 1

and later days, there was a slight reduction in the prefer­

ence for the exponential for individual keypresses (80.7%)

and chunks (79.1 %), as compared with the total series

(84.7%). There was also a slight reduction in the prefer­

ence for APEX for individual keypresses (88.6%) and

chunks (88.6%), as compared with the total series (89.6%).

It is likely that the small reductions reflect greater noise

in the keypress and chunks, as compared with the total se­

ries. In any case, the results indicate that summing times

to perform individual responses did little to distort the

form of the practice function in these data.

Averaging across conditions. Seibel (1963) studied

subjects who practiced production of all 1,023 possible

combinations of 10 keypresses in response to a compati­

ble visual display. Newell and Rosenbloom (1981) rean­

alyzed the data from one ofSeibe1's subjects, J.K., from

the first 75 blocks of practice. The data were averaged

over the 1,023 different combinations of keypresses and



THE POWER LAW OF PRACTICE: REPEALED 197

blocks. When we reanalyzed the data, using ordinary least

squares fitting, the power function (R2 = .9858) provided

a better fit than the exponential function (R2 = .9584), but

the APEX function (R2 = .9902) provided a better fit than

the general power function (R2 = .9895).

Some combinations of keystrokes are harder than oth­

ers and, as a result, may have been learned at different

rates. If so, the shape of the practice function may have

been distorted by averaging over conditions with differ­

ent learning rates. The effect ofaveraging over conditions

with different learning rates is the same as the effect of

summing over components of performance with differ­

ent learning rates; conditions with fast learning rates will

dominate the RLR early in practice but will soon approach

their asymptote. Hence, late in practice, conditions with

slow learning rates will control the RLR. The transition

will decrease the RLR of the average function and could

yield a better fit for the power function than for the ex­

ponential function. However, if learning is exponential

for the combinations with slower learning rates, the RLR

later in practice will be a constant greater than zero, and,

as we found, the APEX function will fit better than the

general power function. Further evidence against the

general power function in this paradigm is reported by

Rosenbloom and Newell (1 987b). They found that the ex­

ponential function fit better than both the power and the

general power functions for a single subject performing
Seibel's (1963) task.

Because evidence on the form ofthe practice function

for learning key combinations is both scant and based on

relatively short series for each combination, Brown and

Heathcote (1997) examined learning ofkey combinations

in a larger sample ofsubjects with a larger number oftri­

als per combination. Simplifying Seibel's (1963) para­

digm, they used only four response keys and the 14 pos­

sible keystroke combinations that involved one to three

keypresses. By reducing the number of combinations

(relative to Seibel's 1,023), they were able to increase the

length of the series for each combination.

As is shown in Figure 3, 76.4% of the series were bet­

ter fit by the exponential than by the power function. The

result suggests that the power function fit better than the

exponential function for Seibel's (1963) subject 1.K. be­

cause ofaveraging. In Brown and Heathcote's (1997) data,

78.6% ofthe series were better fit by the APEX function

than by the general power function. The pattern suggests

that the asymptotic RLR did not decrease to zero and is

consistent with the results for Seibel's subject 1.K. and for

Rosenbloom and Newell's (1 987b) subject. Hence, the re­

sults for key combinations are consistent with the results

for other tasks in suggesting that RLR is constant within

experimental conditions.

The final analyses presented in Figure 3 concern data

sets that were available only as averages across conditions.

The first three data sets were from 1. R. Anderson et al.

(1997); subjects practiced the application ofa number of

different rules learned from examples. The data were av­

eraged over the different rules and over groups of prac-

tice blocks. As is shown in Figure 3A, only one data set

produced significantly more exponential than power fits,

and one data set displayed a (nonsignificant) preference

for the power function.

As is shown in Figure 3B, however, all the data sets

were fit significantly better by the APEX function than

by the general power function. Overall, the APEX func­

tion won in 76.4% ofthe series from these data sets. The

advantage for the APEX function indicates that power

components to learning were largely restricted to t~ early

part of practice and that asymptotic learning was.. expo­

nential. We suspect that the rules differed in difficulty and,

hence, in learning rate. Certainly, the pattern reported in

Figures 3A and 3B is consistent with the effects ofaver­

aging across conditions with different learning rates.

The final averaged data set is from a developmental

study ofmental rotation of letters performed by Kail and

Park (1990). The data were averaged over the four types

of letter stimuli and the two presentations of the letters

in each practice block. Figure 3 presents the results of

analyses separately for children and adults. They show a

strong preference for the power function over the expo­

nential function. However, like the other data that included

averaging, the APEX function provided a better fit than

the general power function, with preference for both chil­

dren and adults being significant and, on average, 73.4%.

As before, the advantage for the APEX function indicates

that power components to learning were largely restricted

to the early part ofpractice and that asymptotic learning

was exponential.

Because the mental rotation data provide the strongest

evidence for the power law of practice of any data set in

the survey, Ringland and Heathcote (1998) replicated

Kail and Park's (1990) study. As is shown in Figure 3,

when analyzed without averaging (MR2c and MR2a),

mental rotation, too, significantly favored the exponen­

tial function over the power function for both ages. Fig­

ure 3 also shows Ringland and Heathcote's data averaged

in the same way that Kail and Park's data had been aver­

aged (MR2ca and MR2aa). Although a strong preference

for power was not obtained, averaging reduced the num­

ber of exponential wins. Moreover, as before, the APEX

function provided a better fit significantly more often than

the general power function, for both averaged and unaver­

aged series. In other words, averaging pushes the results

toward the power function. We suspect that the remaining

differences between Kail and Park's data and Ringland

and Heathcote's data reflect differences in learning rates

induced by differences in the fonts in which the stimuli

were displayed.

Individual Differences

Over almost all of the data sets analyzed, both expo­

nential and APEX functions dominate power and general

power functions, but the dominance is not complete. Be­

tween 15% and 20% of the learning series were better

described by power and general power functions. One

explanation is noise. We have provided evidence for this
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Table 3

ell Coefficients Greater Than .2 for All Data Sets in the Survey

Exponential Versus Power APEX Versus General Power

Data Set Factor <I> p Data Set Factor <I> p

Rule I Subjects .664 .638 Rulel Subjects .470 .994

MRI Subjects .489 .000 Keylt 3:3:3/3:6 .281 1.000

Rule3 Subjects .440 .861 MRI Subjects .280 .449

Math4 Subjects .434 .674 Rule3 Subjects .274 1.000

Math I Subjects .329 .011 Math3 Subjects .263 .999

Key It 3:3:3/3:6' .307 1.000 Math4 Subjects .255 .997

MS3 Subjects .279 .975 MS2 Subjects .254 .999
VS2 Subjects .261 .275 VS2 Subjects .252 .802

Keylc Subjects .244 1.000 MS3 Subjects .235 .997

AA2 Subjects .231 .881 Key Ic Subjects .230 1.000

Math5 Subjects .224 1.000

Key2t Subjects .220 1.000

Math4 Problemt .220 .263

Note-Probability (p) refers to a test of the X2 value corresponding to

each <1>. *Between-subjects factor for chunk size. tWithin-subjects

factor for problems.

possibility by showing that preference for the exponential

and APEX functions increases as noise decreases. Never­

theless, the possibility remains that the power or the gen­

eral power functions might provide a better description of

practice effects in at least some data sets for a minority

of conditions or subjects.

We calculated «I> coefficients to quantify the relation­

ship between a preference for exponential and APEX

functions and (1) all of the between- and within-subjects

factors used in the various tasks in the survey and (2) in­

dividual subjects. The <I> coefficient is a nonparametric

correlation that ranges between zero and one. It is a linear

transformation of the X2 statistic used to test the contin­

gency between frequencies in a two-way classification.

Larger values of<I> indicate a stronger contingency or as­

sociation.1fthe power or the general power function pro­

vides a better description of learning for a subset of sub­

jects or a subset of conditions, preference should be

systematically related to those subjects and conditions,

the corresponding <I> coefficients should be large, and their

corresponding p values should be small. By contrast, if

preference for the power or the general power functions

reflects noise, it should not be systematically related to

any experimental factor or to particular subjects, and all

<I> coefficients should be small. Small values of«l> and cor­

respondingly large p values indicate that the null model

(i.e., no systematic relationship between factors and pref­

erence for a function) provides a good description ofthe

data.

Table 3 presents both estimated «I> coefficients and the

significance levels ofthe associated X2 tests. 7 The values

ofthe «I> coefficients were very small in most cases, with

a mean value of .11 and a median ofonly.07. Table 3 re­

ports just the cases, out of more than 200, with <I> esti­

mates greater than .2. All but three of these estimates

were associated with subjects (i.e., individual differ­

ences), despite the larger number ofother types offactors.

Two of the three experimental factors with «I> coefficients

greater than .2 are between subjects and, so, may be due to

individual differences. The only within-subjects factor

in Table 3 has a <I> coefficient only slightly greater than .2.

Only 2 of over 200 tests indicated significant systematic

contingency between function preference and an experi­

mental factor, and in both cases, the experimental factor

was a between-subjects factor.

The largest estimates of«l> occurred in the averaged data

sets, suggesting that they may reflect individual differ­

ences in exponential learning rates across averaged con­

ditions, rather than true power practice effects. The only

significant associations were obtained for exponential fits

compared with power fits. In the MRI data set, a single

child had exponential wins in all 12 conditions, and two

adults had 8/12 exponential wins, whereas the majority of

the series were power wins. For the Math 1 data set, sub­

jects ranged from all exponential to all power across the

16 within-subjects conditions.

The results suggest that deviation from the general

finding ofexponential practice is more likely to be asso­

ciated with individual subjects than with particular within­

subjects conditions. The finding reinforces our earlier

caution that practice functions from different subjects

should not be averaged, not only because variation of

learning rates can distort the shape ofthe average function,

but also because an individual subject's learning may oc­

casionally follow a function other than the usual expo­

nential form.

DISCUSSION

Our results can be summarized as follows. The three­

parameter exponential function provided a better descrip­

tion oflearning than did the three-parameter power func­

tion in more than 80% of the cases. The four-parameter

APEX function provided a better description than did the

four-parameter general power function in about 85% of

the cases. Hence, a mixture or a sum of power function

processes early in practice cannot explain the power func­

tion's loss, since learning was exponential later in prac­

tice, when a single process should predominate. In ex­

periments that identified algorithmic and memory-based

components, learning in both components was better de­

scribed by the exponential and the APEX functions than

by the power and the general power functions, respec­

tively. The four-parameter general power function provided

no improvement over the simpler three-parameter expo­

nential function. Hence, the power function did not lose

to the exponential function because of the effects of pre­

experimental practice.

In about halfofthe cases considered, the four-parameter

APEX function provided no measurable improvement

over the three-parameter exponential function, indicating

that the extra flexibility implied by a fourth parameter was

not needed. Where the fit was improved, the improvement

largely reflected a decrease in RLR early in practice. Later

in practice, learning was exponential, as is indicated by

the dominance of the APEX function over the general
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power function. Hence, the most parsimonious assump­

tion appears to be that practice produces a simple expo­

nential improvement and a constant RLR, with the caveat

that some change in the RLR may occur early in practice.

Despite the ability of nonlinear practice functions to

imitate each other, determining the form of the practice

function, at least to a first approximation, has not proved

to be an insoluble technical issue. For the theoretically im­

portant comparison of exponential and power functions,

preference for the exponential function was clear and

significant in all paradigms. The improvement in fit pro­

vided by the exponential function, relative to the power

function was, in many cases, quite large, with an average

value of 17%. Consequently, the description of practice

effects by a power function is often substantially in error

(see, e.g., Figure 4).

The estimated parameters of the power function are

also misleading because of the problem of imitation. We

have shown that at least one parameter of fitted power

functions, the asymptote, is usually an underestimation.

It is likely that underestimation of the asymptote reflects

imitation ofa constant RLR, especially later in practice.

Because parameter estimates tend to be correlated, it is

likely that underestimation of the asymptote distorts es­

timates of the other parameters of the power function. In

short, it is likely that parameter estimates from the power

function are unrelated to the psychological processes un­

derlying learning or, at best, related in a complex way de­

termined by the best imitation that a fitting algorithm can

find.

The minority of cases in which the exponential func­

tion was not the best description appear largely to be due

to random variation. Preference for the exponential func­

tion was larger in paradigms with higher signal-to-noise

ratios, and the frequency of exceptions to the exponen­

tial rule was not systematically related to within-subjects

conditions. However, a small minority of individual sub­

jects did show systematic deviation from the exponential

rule.

Overturning an empirical law requires a high standard

ofevidence. Our results are clear that the most parsimo­

nious law of practice is the exponential function. Never­

theless, it would be unwise to accept the exponential func­

tion without question. Rather, it should form a baseline

for comparison with other possible forms, and compari­

son should be carried out by using individual subjects'

data via nested-model tests. Testing should not be carried

out on averaged data, since averaging distorts the form of

the practice function (R. B. Anderson & Tweney, 1997;

Brown & Heathcote, 2000; Myung et aI., in press). In the

following sections, these techniques will be examined in

more detail. We will then consider the implications of an

exponential law ofpractice for theories ofskill acquisition.

Measuring Practice Functions

Averaging and practice functions. Averaging usually

distorts the form of the practice function. Our analyses

for individual subjects and conditions stand in marked

contrast to Newell and Rosenbloom's (1981) results for

averages over subjects and conditions. Empirically, we

found that averaging over within-subjects conditions can

produce a bias in favor of the power function. We also

found that practice curves for a small minority ofsubjects

may differ from the usual exponential form. Consequently,

as Newell (1973) remarked, averaging "conceals, rather

than reveals. You get garbage or, even worse, spurious reg-

ularity" (p. 295). s

Our findings reinforce long-standing analyticlesults

showing that the learning curve for an arithmetic average

need not have the same form as the functions contributing

to the average (e.g., Estes, 1956; Sidman, 1952). They

also confirm that these results are not a mathematical

nicety: Arithmetic averages can be biased in favor of a

power function and against an exponential function in

real data. Myung et ai. (in press) have explored the ques­

tion of why arithmetic averaging of nonlinear functions

distorts the average curve and have shown that other av­

eraging techniques are required when dealing with non­

linear models; the appropriate average depends on the

nature of the functions to be averaged. Our empirical re­

sults and the analytic results converge on the same con­

clusion: Averaging cannot succeed without first taking

into account the form ofthe functions to be averaged. Re­

searchers can no longer afford to ignore or, worse, to dis­

miss the effect of averaging as being irrelevant to real

data from the paradigms used in the study of learning.

Some variability among component learning rates is

necessary for distortion ofpower and exponential function

averages. When component learning rates are exactly

equal, the average has the same functional form, and its

parameters equal the average ofthe component's param­

eters, at least for purely deterministic functions. When the

component learning rates vary, neither condition need

apply (see Myung et aI., in press). The degree of distor­

tion is proportional to the degree of learning rate vari­

ability. In particular, for averages over exponential func­

tions, a power-like decrease in the RLR will occur if the

sample contains fast and slow learners.

Rickard (1997) suggested that averages do not distort

practice functions, because the parameters of learning

functions "do nothave extremely large variance (a condi­

tion that probably holds in most real data sets)" (p. 295).

Our experience, both with real data sets and with numer­

ical simulations, differs. Most data sets in the survey con­

tained both fast and slow learners and, sometimes, fast and

slow learning conditions, with learning rates often varying

over several orders of magnitude. Subjects or conditions

that showed a substantial improvement with practice, but

at a slow learning rate, were particularly likely to bias the

fit toward the power function in the average. Not only

were large variations in learning rates regularly observed

in the survey data, but also simulations (Brown & Heath­

cote, 2000) show that the amount ofvariation in learning

rates required to produce significant bias is often as little

as one order ofmagnitude. Hence, we think it is dangerous

to assume that the parameters oflearning functions are suf-
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ficiently homogenous to avoid substantial averaging dis­

tortion.
Geometric averaging (averaging on a logarithmic scale)

has been widely suggested as a solution to the problem of

distortion (e.g., R. B. Anderson & Tweney, 1997; Rickard,

1997). However, geometric averaging preserves the form

of averages of power functions and averages of expo­

nential functions only if the asymptote is negligible. It is

unreasonable to assume a negligible (near zero) asymp­

tote for practice functions, because performance is limited

by physical constraints, such as neural integration time and

motor response time. Geometric averaging, therefore,

will still distort the form ofthe average practice function.

Although the distortion may be less than that for arithmetic

averages (although Brown & Heathcote, 2000, found

that the benefits were negligible for the data typically col­

lected in practice paradigms), its effect may differ across

experimental conditions or groups ofsubjects, potentially

confounding comparisons.

In general, the scale on which averaging should take

place is data dependent. With geometric averaging, the

scale depends on the (usually unknown) asymptote pa­

rameter, which must be subtracted from the data before

logarithmic transformation. Consequently, practice func­

tions must be fit to individual data to estimate the as­

ymptote before averaging can be safely performed. Even

then, averaging is problematic, because the asymptote is

an expected value and, hence, will be greater than some

data points, at least when a sufficiently long practice se­

ries is measured to produce a reliable estimate of the as­

ymptote (cf. our critique ofNewell & Rosenbloom's, 1981,

fitting methods). Subtracting the asymptote estimate from

such data points produces a negative number for which

the logarithmic transformation is undefined. Hence, even

when the appropriate transformation is known or can be

estimated, averaging raw data, which is always contami­

nated by noise, will not be useful when fitting power and

exponential functions.

The only case in which averaging is safe is when learn­

ing rates vary little between the components of the aver­

age. Given that individual analysis is needed to determine

when averaging is safe (i.e., to determine the individual

learning rates), analysis of the averaged data adds little of

value. The survey, however, is encouraging for the study

of individual learning. Individual learning effects were

often very large, so that averaging was not needed to min­

imize the effects oftrial-to-trial variability. In paradigms

with large learning effects, nested-model tests on indi­

vidual curves were usually decisive. Typically, they indi­

cated the need for an exponential component only, but in

a small number of cases, they implicated a power com­

ponent or both components simultaneously. Such nested­

model tests not only provide an inferential basis for con­

clusions about the form of individual learning curves but

also provide a method of identifying unusual cases.

Despite these problems, most researchers would agree

that "average data are useful because they often reveal

general trends" (1. R. Anderson, personal communica-

tion, June 1999). Given its utility, averaging is not likely

to surrender its place in data analysis; nor should it. Av­

eraging itself is not intrinsically problematic; biases are

only introduced when the scale on which data are averaged

does not match either the data or the analyses. Because of

noise, averaging ofraw practice data is unlikely ever to be

useful. However, analysis of average parameter esti­

mates-such as performing an analysis of variance on the

parameters of the best-fitting practice functions, as de­

termined by individual analysis-remains viable (e.g.,

Heathcote & Mewhort, 1995). Such analyses maintain

the beneficial effects of averaging, such as reducing

noise and revealing general trends, without introducing

the systematic distortions produced by averaging raw

data. Representations ofaverage performance can be ob­

tained by plotting the practice function with parameters

equal to the average of the parameters for individual

practice functions.

Nested models and relative learning rates. Detailed

consideration ofnested-model testing is beyond the scope

ofthe present work (we recommend Bates & Watts, 1988,

for further reading). However, a few points of clarifica­

tion are in order. The benefits of nested-model tests are

not limited to practice functions, and useful higher order

nesting functions are not limited to the APEX function.

Commenting on the form of the forgetting function, for

example, Wickens (1998) suggested the use of higher

order functions that isolate theoretically important char­

acteristics in separate parameters. The idea is that theories

can then be tested by measuring the effect of experimen­

tal manipulations on parameter estimates. We chose the

APEX function because tests of the a' and f3' parameters

determined the contributions of theoretically important

power and exponential components. Other functions, such

as the Weibull, favored by Wickens, 8 or perhaps a sum or

mixture ofexponential functions may prove useful in other

applications. Again, nested-model tests provide an infer­

ential basis for determining a parsimonious form for the

function and for testing theories.

An important feature ofour work is the use of relative

learning to compare practice functions that have different

mathematical forms. Wickens (1998) used the hazard rate

for forgetting functions in much the same way that we use

RLR. RLRs and hazard rates are defined on different

measures-expected RT and probability of forgetting,

respectively-but are otherwise identical.

The importance of the RLR and the hazard rate sug­

gests the desirability ofa direct estimate that does not as­

sume a parametric function. However, as Wickens (1998)

notes, "Although the use ofempirical estimates ofthe haz­

ard function to select among candidate functions or ex­

planations is attractive, adequate precision is hard to ob­

tain" (p. 382). Nonparametric RLRs can be obtained by

dividing estimates ofthe derivative, such as the difference

between RT for adjacent practice trials, by an estimate of

the expected value of RT. Like other researchers (e.g.,

Luce, 1986, pp. 60-63), we have found such methods to

be inefficient for RT measures. The problem is that such
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estimates of the derivative tend to be unacceptably noisy,

especially with data that are not averaged. Because of

these problems, the approach we have taken is fitting sim­

ple parametric models with different RLR functions.

Recent advances in nonparametric regression may pro­

vide an alternative approach. These techniques reduce the

effects ofnoise by local smoothing with kernels or splines.

By estimating the regression function, using local poly­

nomial regression, for example, direct estimates ofthe de­

rivative are obtainable at every point. These methods have

been shown to often provide reliable estimates ofdiffer­

ential metrics (Wand & Jones, 1995), such as the RLR.

However, simple parametric functions, particularly the

exponential function, provide an important advantage

for empirical investigations: They allow the estimation of

a single learning rate parameter that applies for all levels

ofpractice. Because the practice function's slope changes

with practice, slope cannot provide a single-parameter

summary of learning rate. The exponential function's a

parameter does provide such a summary by assuming that

slope is proportional to the amount left to be learned. The

f3 parameter of the power function also provides a single­

parameter summary by assuming that slope is hyperbol­

ically related to the amount left to be learned. However,

the results of our survey suggest that the power function

does not provide an accurate model ofpractice effects, and

so inferences based on estimates of f3 may be misleading.

Fitting methods and response time distribution.
Least squares fitting, as used in the survey, assumes nor­

mally and independently distributed residuals around the

expected value function (i.e., the practice function). This

assumption is violated by RT data. RT distributions are

usually positively skewed, and their means and variances

are often positively correlated across conditions (Luce,

1986). Changes in the residual distribution with practice

have been analyzed previously (e.g., Logan, 1988; Rick­

ard, 1997), and large decreases in standard deviation with

practice have been observed.

These violations ofthe assumptions ofleast squares fit­

ting may have biased our results. To check for such bias,

we developed a more sophisticated regression technique

(APEXL) and applied it to the survey data. Space restric­

tions do not allow a full explication of the APEXL tech­

nique or of the results of its application. Briefly, APEXL

fitting uses a special case of Box and Cox's (1964) two­

parameter transformation family and implements Carroll

and Ruppert's (1988) "transform both sides" approach to

regression. It simultaneously estimates both the expected

value function's parameters and a data-dependent trans­

formation parameter. The transformation is a shifted log­

arithm, In(RT - 1\.), where the transformation parameter,

1\., is an estimate of the lower bound of RT distribution.

APEXL fitting iteratively reweights residuals during fit­

ting, to maximize normal distribution and homogeneity

of variance on the transformed scale.

The model underlying APEXL fitting is that RT follows

a lognormal distribution. The lognormal distribution is pos­

itively skewed and has been found to provide a good ac-

count ofRT data (Ratcliff& Murdock, 1976). The APEXL

model assumes that lognormal distribution is combined

multiplicatively with the expected value function, so that

RT mean and variance are positively correlated. A detailed

analysis by Heathcote and Mewhort (1995) found that the

model provided a good description of RT distribution for

Heathcote and Mewhort's (1993) visual search practice

data. When we applied APEXL fitting to the unaveraged

data sets9 in the survey, 79.0% of the practice series were

better fit by exponential than by power functiqps. Hence,

the APEXL analysis supports the conclusion frOtll the least

squares analyses that the exponential function is the best

simple candidate for the law ofpractice. We are confident,

therefore, that our results were not biased by violations of

the assumptions underlying least squares fitting.

Although the results of APEXL and least squares fit­

ting are consistent in their selection of the best practice

function, APEXL fitting has a number ofadvantages over

the ordinary least squares approach. APEXL fitting si­

multaneously estimates the median function along with

the expected value function (the two are identical on the

transformed scale, since residuals are normally distrib­

uted). It provides not only estimates ofthe expected value

function's parameters, but also characteristics ofvariabil­

ity around the expected value function, such as the vari­

ance and lower bound ofthe lognormal distribution. When

its assumptions hold, APEXL fitting is more efficient than

ordinary least squares fitting, a critical advantage when

fitting noisy individual data. The assumptions ofnested­

model tests are better fulfilled on the transformed scale,

and so, Type 1error probability is better estimated. Finally,

the form of the expected value function is the same on

the transformed and the natural scale, a property that is not

true of the more commonly used power transformations

(Miller, 1984). Heathcote, Brown, and Mewhort (2000)

examine the performance ofthe APEXL technique in de­

tail, both for data from the survey and for simulated data.

Approaches such as APEXL fitting help to illuminate

interesting properties ofpractice data sets beyond the ex­

pected value function, such as the change in RT variance

as a function of p ~ a c t i c e . Such properties can provide

useful constraint for theories of skill acquisition (Logan,

1992; Rickard, '1997). Proper measurement of variance,

however, relies on prior estimation of the expected value

function. Previous attempts to measure variance as a

function ofpractice, for example, used variance estimates

calculated from successive blocks of raw data (Kramer

et aI., 1990; Logan, 1988). Block variance has two com­

ponents: variance around the expectation function and

variance caused by a decrease in expected values across

the block. The contribution to block variance from the

change in expected value function is unequal in different

practice blocks. Early in practice, the expected value func­

tion changes rapidly, and, as a result, block variance is

greatly inflated by it. After extensive practice, however,

the function is relatively flat, so block variance is an al­

most pure measure of variance around the expected

value function.
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Predictions from skill acquisition theories have been

derived for pure variance around the expected value func­

tion (e.g., Logan, 1988, 1992). Consequently, these the­

oretical predictions cannot be tested by measurement of

block variance, which does not purely measure variance

around the expected value function. The problem can be

remedied by analyzing residuals obtained by subtracting

the expected value function from the raw data, but the cor­

rect expected value function must be determined first. A

similar procedure is required for measurement of other

interesting properties ofpractice data sets, such as auto­

correlation between responses. Hence, the results of our

survey, which bear on the form ofthe expectation function,

provide the first step in the proper assessment of these

other interesting measures.

Before closing this section, we wish to caution against

a widely used technique for fitting practice functions:

log-log and log-linear plots. In detail, the goodness of

fit ofpower and exponential functions are determined by

comparing the linearity of data in 10g(RT)-log(N) and

10g(RT)-N plots, respectively. Such fits implicitly as­

sume that the asymptote of the practice function is zero.

The assumption is not only wrong but also produces a

bias in favor of the power function. The power function

approaches its asymptotic value more slowly than the ex­

ponential function, and so, its fit is less affected by an un­

derestimated asymptote. In the survey data, small esti­

mates of the asymptote were more commonly associated

with the best fits for the power function than with the best

fits for the exponential function. Hence, our results show

that it is likely that assuming a zero asymptote will hurt

the fit ofthe exponential function more than the fit ofthe

power function. It is also likely that misspecification of

the asymptote will make estimates ofother practice func­

tion parameters, such as learning rates, difficult to inter­

pret, at best, and misleading, at worst, because parameter

estimates are usually correlated.

Theoretical Implications
Our results repeal the power law in favor of an expo­

nentiallaw ofpractice. Many ofthe data sets included in

the survey were collected in order to test specific theories
of skill acquisition. We will now consider the implica­

tions ofan exponential law ofpractice for these theories.

Some of the theories are tied to the power function more

tightly than are other theories. Although it is possible for

some theories to retain their fundamental assumptions,

all require at least some modification in the way these

assumptions are applied. The mathematical details ofthe

required modifications are beyond the scope of the pre­

sent work. In the following, we provide only heuristic de­

tails, in order to illuminate the theoretical implications of

an exponential law of practice.

Chunking theory. The first response to Newell and

Rosenbloom's (1981) power law of practice was their

chunking theory, which was later elaborated on by Rosen­

bloom and Newell (1987a, 1987b). The theory does not

exactly predict a power law ofpractice, but it does predict

that RLR decreases to zero with practice. To obtain a de­

creasing RLR, Newell and Rosenbloom assume (1) that

chunks are learned hierarchically, (2) that larger chunks

necessarily practice their smaller components every time

the larger chunk is practiced, and (3) that no larger span

chunk is acquired until all chunks ofsmaller span are ac­

quired, at least in combinatorial learning environments.

A combinatorial learning environment is one in which

larger chunks are encountered less often than smaller

chunks. The prototypical example is Seibel's (1963) key­

press combination task.
Newell and Rosenbloom's (1981) assumptions can be

replaced by a single simple assumption to achieve an ex­

ponential practice function: Chunks are executed as a

single unit and, so, practice only themselves, not their

constituents. Newell and Rosenbloom implicitly make a

similar assumption by claiming that the execution time for

a chunk is independent of its size. Neves and Anderson

(1981) also note that such a chunking mechanism, which

they call composition, produces an exponential practice

function.

Even ifNewell and Rosenbloom's (1981) theory is not

modified, it predicts a decreasing RLR only with practice

in a combinatorial learning environment. Arguably, in

most of the paradigms examined in the survey, the learn­

ing environment was not combinatorial. Hence, chunking

theory predicts the observed exponential practice func­

tions. The only data from clearly combinatorial environ­

ments come from Siebel's (1963) subject J.K., Rosen­

bloom and Newell's (1987b) single subject, and Brown

and Heathcote's (1997) subjects. Brown and Heathcote's

data strongly favored an exponential function, but their

paradigm used a smaller set ofcombinations than did the

other experiments; hence, it is likely that the effect of the

combinatorial environment was attenuated. It is also likely

that Verwey's (1996) paradigm is only weakly combina­

torial, since subjects practiced exactly the same sequence

on all trials and chunk structure was consistently defined

by cues. For simple environments, our results are unam­

biguous that the RLR does not change much with practice,

a pattern predicted by a simple chunking mechanism.

Clearly, more work is required to determine whether

complex combinatorial environments yield a decreasing

RLR. At present, however, the weight ofevidence favors

a constant RLR and, hence, the assumption that chunks

are seamless units that do not practice their constituents.

More work is also required on Newell and Rosenbloom's

(1981) derivation ofa decreasing RLR (it is not exact). In

contradiction ofthe derivation, several ofthe simulations

of their model presented in Rosenbloom and Newell

(1987b) were better fit by an exponential function than by

a power function.

Aggregated component theories. Neves and Ander­
son (1981) suggested a second mechanism based on

chunking that produces a decreasing RLR with practice:

the summation of many components that learn exponen­

tially. The mechanism is a generic one. For example,

Rickard (1997) suggested that response strength for
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memory-based processing is the sum ofstrengths ofa col­

lection ofneural connections that individually learn expo­

nentially, so that the sum is a power function. At a coarser

scale, Kirsner and Speelman (1996) argued that many

tasks rely on several components, and so, a sum of com­

ponent learning functions provides a superior model of

practice effects.

The critical factor for producing a decreasing RLR in

the sum ofexponential components is that some compo­

nents learn more quickly than others. A decreasing RLR

occurs for the same reason that averaging across subjects

with different learning rates produces a decreasing RLR.

Fast learning components produce a large overall RLR

early in practice but soon reach asymptote; hence, learning

later in practice is controlled by slow learning processes

with smaller RLRs.

A modified assumption-that the variation among

learning rates is small-is required if theories based on

summed exponential components are to predict the expo­

nential practice functions found in the survey. Where all

components of the sum have exactly the same learning

rate, the sum is exactly exponential. Where learning

rates vary, the sum will not be exactly exponential, but if

the variation is small, it will approximate an exponential

function. Such a model can also accommodate APEX

practice functions, iflearning rates vary but the smallest

learning rates are appreciably greater than zero. Later in

practice, the smallest learning rate component or com­

ponents control learning, so that RLR is asymptotically

greater than zero, as in the APEX function. This may ac­

count for the evidence for an APEX function that was

found in the survey.

It is also possible that a sum of components that learn

according to power functions can approximate an expo­

nential or APEX practice function. It is well known that

the sum of an infinite number of power functions (i.e., a

Taylor series) can approximate nearly any function. How­

ever, an infinite number ofcomponents is not plausible for

psychological processes. For finite sums, approximating

an exponential function by the sum of power components

also requires assumptions about the weight for each com­

ponent in the sum. In particular, the weights must vary over

at least as many orders of magnitude as there are com­

ponents. Consequently, power components require justi­

fication for the change in weights across many orders of

magnitude.

The assumption ofpower components itselfalso needs

justification. Exponential components can be naturally

derived from simple mechanisms. For continuous mech­

anisms, one need only assume that learning is propor­

tional to the time taken to execute the component. That is,

a component that takes longer to execute presents more

opportunity for learning. As learning proceeds, the time

to execute the component decreases; hence, the learning

rate decreases, resulting in exponential learning. For dis­

crete mechanisms, such as chunking, exponential learn­

ing occurs for similar reasons. Since responses are pro­

duced by larger and larger chunks, fewer opportunities

for further composition are available. Similar justifica­

tions are needed, ifpower components are to be plausible.

Rickard's (1997) theory of component power laws also

claims that the practice function is the result of an aggre­

gate ofcomponent functions. Aggregation occurs through

a mixture, rather than by summation, and only two com­

ponent processes, algorithmic and memory-based pro­

cessing, are assumed. Our analysis of Rickard's data,

combined with analyses of other data sets in w h i ~ h sub­

jects were required to identify responses contro)1ed by

algorithmic and memory-based processes, suggests that

each component learns exponentially. As has already been

discussed, the exponential nature oflearning for memory­

based processing could result from homogenous learning

rates among its component processes.

The mixture assumption in Rickard's (1997) theory

can result in a complex change in the RLR with practice,

depending on the form of the mixture function. In par­

ticular, Rickard's assumption of a logistic mixture usu­

ally results in a nonmonotonic change in the RLR of the

aggregate, first increasing and then decreasing. This oc­

curs because the change in mixture proportions first ac­

celerates, then decelerates, with practice. Rickard's Math2

data set did provide reasonably strong evidence for an

APEX function and, hence, a decrease in RLR early in

practice. Explicit fits ofthe mixture model on the basis of

exponential components and consideration ofa range of

possible mixture functions are required to clarify this issue.

Sums of decaying traces and the forgetting func­
tion. 1. R. Anderson's (1982) ACT model added a second

mechanism, based on strength of learning, to the com­

position or chunking mechanism already discussed. This

mechanism assumes that RT is a linear function ofthe re­

ciprocal of learning strength. Learning strength equals

the sum traces from each practice trial, and the strength of

each trace is assumed to decay as a power function oftime.

The sum of the decaying traces increases approximately

as a power function ofpractice trials, and hence, the model

predicts an approximate power decrease in RT with prac­

tice. 1. R. Anderson, Fincham, and Douglass (1999) de­

velop these ideas more fully and use them to explain

slowed performance after a break in practice.

There has been much recent debate on the form oftrace

decay functions, as measured by forgetting ofmemorized

items at a range of study-test delays. Many of the quan­

titative issues in this debate reflect the issues we have

discussed for practice functions. As we previously noted,

Wickens (1998) promoted the use of hazard rates, which

are similar to RLRs, to compare and interpret different

forms for the forgetting function. His analyses of short­

term memory data supported a relatively constant hazard

rate and, hence, an exponential function. Most analyses of

long-term memory data favor a power function (Wixted

& Ebbesen, 1991) or a Weibull function (Rubin & Wenzel,

1996), both of which have decreasing hazard rates. R. B.

Anderson and Tweney (1997) suggested that previous

analyses of forgetting functions might have been con­

founded by averaging over subjects. However, Wixted and
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Ebbesen (1997) presented a reanalysis of their 1991 data
that showed that the power function also applied for in­

dividuals.
Recently, Rubin, Hinton, and Wenzel (in press) reported

recall and recognition experiments that were specifically
designed to determine the form of the forgetting func­
tion, using more trials and delays than had been used in
previous data sets. Their analysis supported an exponen­

tial function for both long- and short-term forgetting,
with the rate of short-term forgetting being more than an
order of magnitude greater than the rate for long-term
forgetting. It is possible, therefore, that decreasing hazard

functions for forgetting data are due to a transition between
a large hazard rate that is due to a short-term exponential

component and a smaller hazard rate that is due to long­
term exponential forgetting. Clearly, however, further work
is needed to check this speculation.

Given the present uncertainties, the mechanism sug­
gested by ACT to explain the form ofthe practice function,

a sum of decaying memory traces, cannot be ruled out.
Indeed, it is an attractive mechanism, because it can po­
tentially unify the results for forgetting and practice func­

tions. However, ifACT is to explain the exponential prac­
tice functions found in our survey, and in particular, the
constant RtR found later in practice, it must modify its

assumptions about the trace decay function.
Instance theories. The theory most closely tied to a

power practice function is Logan's (1988, 1992) theory

based on the minimum time for race among instance re­
trievals. As Logan (1995) has acknowledged, "A major
goal in developing the theory was to account for the

power function speedup" (p. 751). Logan's theory uses a
weak learning mechanism, in comparison with other the­
ories ofskill acquisition. Each new learning trial speeds
performance only because ofrandom variation among re­

trieval time for traces. Hence, it is suited to predicting the
power function's decreasing RLR. Our survey included
two ofthe tasks that Logan's theory was directly developed

to account for, alphabet arithmetic and counting patterns
of dots. These tasks provided some of the strongest evi­
dence for an exponential function in the survey, with an
average improvement in fit ofalmost 25%, relative to the
power function.

Logan (1988) originally claimed that a power practice
function could be derived by asymptotic arguments for
racing instances with any retrieval time distribution. How­
ever, Colonius (1995) showed that the asymptotic argu­
ment is flawed, because the asymptotic distribution of
minimum times is degenerate, except under linear rescal­
ing that is not justified by Logan's theory. Although

Colonius's point reduces the generality of the theory,
Logan (1995) countered that a power function is still pre­
dicted, using nonasymptotic arguments combined with
the extra assumption that instance retrieval times have a
Weibull distribution.

To accommodate our results, Logan's (1988, 1992)
theory must either assume a different instance retrieval
time distribution or add auxiliary mechanisms. One such

mechanism could be a race between algorithmic and re­

trieval processes. However, Logan's (1988) simulations
of such a race mechanism did not deviate much from a
power function. Second, a race between algorithm and
retrieval cannot predict exponential learning later in prac­

tice, a clear finding ofour survey, unless a substantial pro­
portion ofresponses continue to be algorithmic throughout
practice. Furthermore, we found that both algorithmic
and retrieval processes were exponential, in paradigms in
which subjects indicated the type of processing that they

used. It remains an open question as to whether an alter­
native retrieval time distribution or other auxiliary mech­
anisms can allow Logan's theory to predict an exponen­

tial practice function.
Logan's (1988, 1992) theory suggests that learning is

quite specific and, so, should benefit from preexperimen­
tal practice only if that practice is on a very similar task.

It is unlikely that preexperimental practice was a strong in­
fluence on performance in most of the tasks examined in
the survey, because the tasks were probably quite unique

in the subject's experience. Logan implicitly assumes a
negligible preexperimental practice effect, because he fits

the power function, rather than the general power func­
tion. Hence, his instance theory cannot take advantage

of the improved fit of the general power function. In any
case, the general power function achieved no better fit than
the simpler exponential function and required average

estimates ofpreexperimental practice almost equal to the
amount of experimental practice.

The Evidence Based Rundown Walk (EBRW; Nosof­
sky & Palmeri, 1997) model is also based on an instance
race, but it includes extra mechanisms-specifically,

mechanisms reflecting similarity between instances and
the accumulation of information via a random walk. The
similarity mechanisms make larger estimates of preex­

perimental practice and, hence, the general power func­
tion more plausible than for Logan's (1988, 1992) theory.

The extra mechanisms may also be able to accommo­

date an exponential practice function. For example, when
similarity is negligible, EBRW's predictions follow Lo­
gan's (1988, 1992) theory, but the predictions may diverge
as similarity increases. Detailed investigation of this

issue is beyond the scope of the present work. However,
we note that, in Palmeri's (1997) Experiment 2, which used
three levels of similarity between stimuli, overall prefer­
ence for the exponential and APEX functions was high
(91.3% and 89.6%) and decreased slightly with increas­
ing similarity (96%, 90%, and 88% for exponential pref­
erence and 93%,92%, and 84% for APEX preference). If
similarity effects explain exponential practice functions,
the power function should be preferred more often with
low-similarity stimuli, not with high-similarity stimuli.

Final Word

We do not claim that the practice function is exactly
exponential or that theories of skill acquisition must ex­
actly predict an exponential function to be taken seri­
ously. The flexible nature of nonlinear functions means
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that it is difficult to determine the exact form ofthe prac­

tice function. However, our results indicate that the abil­

ity of nonlinear functions to imitate each other does not

make the form ofthe practice function an insoluble tech­

nical issue. Furthermore, our results indicate that the form

ofthe practice function can provide a useful constraint for

theories of skill acquisition.

The most important characteristic of the exponential

function is that it has a constant RLR. Any theory that pre­

dicts an approximately constant RLR is supported by the

results of our survey. The exponential function defines a

baseline against which more subtle theoretical predictions

can be tested. It provides a single parameter for the rate of

learning that can be used to test hypotheses about factors

affecting the efficiency of learning. It also provides plausi­

ble estimates ofasymptotic performance that can indicate

the extent to which learning can improve performance.

If a more flexible practice function is required, our re­

sults support the APEX function. The APEX function has

the added advantage that it contains the power and expo­

nential functions as special cases, so examination of its

parameter estimates and nested-model testing can indicate

if either simpler function provides a more parsimonious

model. The consistently superior fit provided by the

APEX function also suggests that it is likely that nonex­

ponential theories will provide the best fit to data if they

predict an RLR that decreases only early in practice, then

remains constant at a value greater than zero later in

practice.

The difficult nature ofdiscriminating the correct form

may have discouraged others from attempting work in this

field: Many researchers seem to agree with 1. R. Ander­

son (personal communication, 1999) that "the exact na­

ture ofthe practice function will never be resolved." How­

ever, the results of the present survey are encouraging:

They allow a clear discrimination between exponential

and power functions as candidates for the law of prac­

tice. Clear results were made possible by the willingness

of researchers to share their data and by recent advances

in the theory of nonlinear regression (Bates & Watts,

1988; Carroll & Ruppert, 1988). Future research using

new techniques such as APEXL fitting (Heathcote et aI.,

2000) and nonparametric regression (Wand & Jones,

1995), coupled with resampling analyses (e.g., Azzalini,

Bowman, & Hardie, 1989), promise to take these results

further and may allow the form of practice functions to

be identified with even greater precision. In order to fa­

cilitate this enterprise, we will make practice data used
in this survey available on the World-Wide Web. 10 At the

time of publication, most survey contributors have

agreed to make their data available.

Despite its difficulties, we believe that determination of

the mathematical form ofempirical laws in psychology is

a worthwhile enterprise. Mathematically specified empir­

ical laws both expedite scientific inquiry and guide the de­

velopment of theory. When we embarked on our survey of

the practice function for individual subjects and condi-

tions, we anticipated that the most likely outcome, if the

least desirable, would be a variety of function forms for

different paradigms and subjects. We were agreeably sur­

prised, therefore, with the consistency ofresults across the

experimental paradigms. The consistency supports Newell

and Rosenbloom's (198 I) contention that a simple non­

linear function can describe practice effects in a broad

range of tasks. However, our survey clearly indicates that

best candidate for a parsimonious law ofpractice is the ex­

ponential function, rather than the power function,
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NOTES

I. For games won, R2 was .339 for the exponential function and only

.253 for the power function. For games lost, R2 was .183 and .173 for

the exponential and power functions, respectively. The fit ofthe general

power function was somewhat better (RZ of .334 and .185), but it was

still less than the exponential function for games won and less than the

APEX function (with R2 of .339 and .186, respectively) in both cases.

We especially thank Paul Rosenbloom for sending us these data sets.

2. Analysis ofRLRs also shows that Mazur and Hastie's (1978) re­

sults, which Newell and Rosenbloom (1981) claim agree with their re­

sults in "rejecting exponentials" (p. 34), are not relevant for RT. Mazur

and Hastie fit power and exponential functions to rate of response data.

A nonlinear transfonn, the inverse, is required to convert rate to RT. The

transform changes the RLR of the exponential rate function to an RLR

on the RT scale [K/(e kN - I), where K and k are parameters greater

than zero] that decreases more quickly than the power function's RLR

on the RT scale. Hence, Mazur and Hastie's comparison does not test a

true exponential function on the RT scale.

3. A related function was proposed by Wickelgren (1975, p. 326) to

model retention ofmemories. Note that a prior-practice parameter anal­

ogous to that in the general power function could also be added to the

APEX function (i.e., substitute [N + E] for N). This five-parameter

function nests both the APEX and the general power functions. It was
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not used because the general power function was over-parameterized

for the practice data sets examined and often provided ill-conditioned

objective functions that made minimization difficult. Hence, the five­

parameter version ofthe APEX function could only be more problematic.

4. We also used a number of simpler schemes for partitioning trials

with the similar results.

5. The single exception is the unpublished two-alternative forced­

choice experiment included in the MS2 data set. These data were in­

cluded, since they are very similar to all others in MS2.

6. In the limit of no learning, power and exponential functions will

both win about 50% of the series each. Hence, a 50% result means ei­

ther that the true shape of the practice function falls between the shapes

of the power and exponential functions or that learning is very weak.

7. The significance of each <I> coefficient was tested with the corre­

sponding X2 test. The significance levels for these tests must be treated

with some caution, especially for the subjects factor, since they assume

independence.

8. The Weibull function is a power transformation of the exponen­

tial function. With an exponent ofone, it equals an exponential function

and, so, has a constant RLR. Exponents greater than or less than one

produce increasing and decreasing RLRs, respectively. Wickens (1998)

also used the Parto II function. The Parto II function is a special case of

the general power function. Our evidence suggests that the general

power function is inferior to the APEX function and is plagued by ill­

conditioned fitting for practice curves.

9. The averaged data sets were not analyzed with the APEXL tech­

nique, because the central limit theorem implies that averages tend to be

distributed normally. !

10. From http://psychology.newcastle.edu.aulfollow the lilJl.cs to the

first author's home page.
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