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Abstra
tExploring and mapping an unknown environment is a fundamental problem that is studiedin a variety of 
ontexts. Many results have fo
used on �nding eÆ
ient solutions to restri
tedversions of the problem. In this paper, we 
onsider a model that makes very limited assumptionsabout the environment and solve the mapping problem in this general setting.We model the environment by an unknown dire
ted graph G, and 
onsider the problem ofa robot exploring and mapping G. The edges emanating from ea
h vertex are numbered from`1' to `d', but we do not assume that the verti
es of G are labeled. Sin
e the robot has no wayof distinguishing between verti
es, it has no hope of su

eeding unless it is given some meansof distinguishing between verti
es. For this reason we provide the robot with a \pebble" | adevi
e that it 
an pla
e on a vertex and use to identify the vertex later.In this paper we show: (1) If the robot knows an upper bound on the number of verti
esthen it 
an learn the graph eÆ
iently with only one pebble. (2) If the robot does not knowan upper bound on the number of verti
es n, then �(log logn) pebbles are both ne
essary andsuÆ
ient. In both 
ases our algorithms are deterministi
.
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1 Introdu
tionThe problem of exploring and mapping an unknown environment is a fundamental problem withappli
ations ranging from robot navigation to sear
hing the World Wide Web. As su
h, a largebody of work has fo
used on �nding eÆ
ient solutions to variants of the problem, with restri
tiveassumptions on the form of the environment (
f. [16, 15, 22, 31, 17, 35, 10, 6, 2℄). In this paper, we
onsider a model that makes very limited assumptions about the environment, and give eÆ
ientalgorithms to solve the mapping problem in this general setting.A natural way to model the problem is by a robot exploring a graph G = (V;E). The 
asein whi
h the graph has both undire
ted edges and labeled verti
es 
an be solved in time linear inthe number of edges by depth �rst sear
h. Other sear
h te
hniques [30℄ improve on this boundby a 
onstant fa
tor. Unfortunately, many exploration and mapping problems do not satisfy these
onstraints. For instan
e, if the graph represents a 
ity (having one-way streets) or the Internet, it
ontains dire
ted edges. This alone does not make the problem substantially more diÆ
ult, sin
ethe problem with dire
ted edges and labeled verti
es 
an be solved by a greedy sear
h algorithmin time O(jVj � jEj). More sophisti
ated te
hniques [22, 2℄ yield improved running times.Regardless of whether there are dire
ted edges, a more daunting diÆ
ulty arises if verti
es arenot uniquely labeled. This situation 
ould arise in appli
ations from the limited sensory 
apabilitiesof a robot or from the 
hanging appearan
e of verti
es. If no assumptions are made on the labelingof the verti
es (so that all verti
es may appear the same), then we need a way to mark verti
esin order to have any hope of mapping the environment [23℄. In this paper, we model a markingdevi
e by a pebble, whi
h 
an be dropped at a vertex and later identi�ed and retrieved. Thisnotion of marking is basi
 and 
an be simulated in many situations. Dudek, Jenkin, Milios, andWilkes [23℄ show that a robot provided with a pebble 
an map an undire
ted graph with unlabeledverti
es in time O(jVj � jEj), by repeatedly marking nodes and ba
ktra
king.1 However, withoutthe assumption that either the edges are undire
ted or the verti
es are labeled, the existen
e of aneÆ
ient algorithm has remained open.The main 
ontribution of this paper is a general mapping algorithm whi
h eÆ
iently solves themapping problem without assuming unique labelings of the verti
es while allowing dire
ted edges.The problem. Let G be a strongly-
onne
ted dire
ted graph over n verti
es, where the verti
eshave no labels. The outdegree of ea
h vertex is d, where d is assumed to be known, and the outgoingedges at ea
h vertex are numbered from `1' to `d'. We �rst observe that identi
al outdegrees 
anbe assumed without loss of generality, be
ause verti
es v having outdegree smaller than d 
an betreated as if they have d� deg(v) additional self-loops. In fa
t, di�eren
es in degrees 
an a
tuallyhelp our mapping algorithms, as dis
ussed in Se
tion 3.5. It is a minimal assumption that the edgesemanating from ea
h vertex have labels. This is a lo
al (and weak) assumption, as opposed to aglobal assumption that the verti
es are labeled. Su
h a method for distinguishing edges is essentialbe
ause otherwise it is unde�ned how to 
hoose or spe
ify a path from one vertex to another, evenwhen provided with a map of the graph. The verti
es' indegrees are not assumed to be seen, sin
ethis too 
an only aid the robot in distinguishing between verti
es.The robot is pla
ed at an arbitrary starting vertex in G, and at ea
h step it traverses one of theedges emanating from its 
urrent vertex. The robot's task is to explore and map G eÆ
iently. Thatis, after walking a polynomial number of steps (in the size of the graph), it should output a graph1In addition to undire
ted edges and labeled verti
es, other simplifying assumptions that 
an be made about theenvironment in
lude geometri
 stru
ture, su
h as planarity, having a small diameter, and more.2



bG isomorphi
 to G. However, as noted in [23℄, unless the robot has a tool to help it distinguishverti
es, it is 
ondemned to failure as a 
artographer. For example, a robot traveling alone 
annotde
ide whether G 
onsists of a single vertex or many verti
es. A basi
 tool for the robot is a pebble.Now, as the robot explores G, it 
an mark a vertex by dropping the pebble, and it 
an identifythe vertex if it �nds the pebble later. Upon �nding the pebble, the robot 
an pi
k it up. However,be
ause the graph is dire
ted, the robot 
annot retra
e its steps to retrieve the pebble.Bender and Slonim [10℄ show that a robot given a pebble 
an explore and map any graph inexponential time. However, they prove that a robot 
annot map graphs in polynomial time usinga 
onstant number of pebbles, when it does not know a bound on n. This lower bound motivatestwo questions: (1) How many pebbles are needed to learn graphs eÆ
iently if n is known? (2) Howmany pebbles are in fa
t needed if n is unknown?In this paper we demonstrate that surprisingly few pebbles are needed in both 
ases. We show that� If the robot knows n (or an upper bound n̂ on n), it 
an learn the graph with only one pebblein time polynomial in n (respe
tively, n̂).� If the robot does not know n (or n̂), then �(log logn) pebbles are both ne
essary and suÆ
ient.Here we think of there being a sour
e of pebbles that the robot has a

ess to, and the boundis on the total number of pebbles it takes from this sour
e in the pro
ess of exploring andmapping the graph.In both 
ases our algorithms are deterministi
. The lower bound of 
(log log n) for the 
ase ofunknown n holds even for probabilisti
 algorithms.Intuition. To understand the diÆ
ulties fa
ing the exploring robot, 
onsider the problem oftraversing a graph (i.e., visiting all verti
es and edges). Certainly, in order to map a graph, therobot must traverse it. One standard te
hnique that 
omes to mind is random walks. Unfortunately,for dire
ted graphs, the expe
ted time until a random walk visits all verti
es may be exponential inn and random walks are therefore ine�e
tive for traversing. (For undire
ted graphs the expe
tedtime is polynomial in n.)
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vn�1 vnv3v2v1 Figure 1: A 
ombination lo
k graph.Consider, for example, the graph in Figure 1. This graph is 
alled a 
ombination lo
k graph,be
ause in order to rea
h the rightmost node vn starting from the leftmost node v1, the robot mustdis
over the unique sequen
e of edge labels (the 
ombination) extending from v1 to vn. Noti
ethat, with very high probability, a polynomial-time random walk only visits a logarithmi
 numberof verti
es in the 
ombination lo
k. More generally, for any polynomial-time (randomized) algorithmthat does not mark verti
es, there exists a 
ombination lo
k graph that (with high probability) thealgorithm will not fully explore. 3
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onsisting of two 
ombination lo
ks.We now return to the problem of learning with a pebble. Although one (pebbleless) robot
annot traverse 
ombination lo
ks eÆ
iently, a robot with a pebble 
an learn them using randomwalks [10℄.2 However, 
onsider the graph shown in Figure 2. This graph 
onsists of two 
ombinationlo
ks, where the end of one 
ombination lo
k leads into the beginning of the other. If the robotever drops its pebble in the top lo
k and travels into the bottom lo
k, then it is doomed. Therobot will be stu
k in the bottom 
ombination lo
k without its pebble, and 
annot even traversethis lo
k, mu
h less learn it.This example illustrates the dilemma fa
ing the robot as it explores the unknown graph G. Therobot must drop the pebble in order to learn new terrain, but when the robot drops the pebble, itruns the risk of losing it.Closed paths. To avoid losing its pebble, the robot must know how to return to it. Thus,before dropping the pebble at a vertex, the robot should know a 
losed path 
ontaining this vertex.However, su
h a path may be diÆ
ult to obtain. When n is unknown, the robot 
an only identifya 
losed path by dropping the pebble and �nding it again. Thus, we en
ounter a 
hi
ken-and-eggsituation. In order to safely drop the pebble, the robot must �nd a 
losed path. But in order to�nd a 
losed path, the robot must drop its pebble.Now we re
ognize the tangible bene�t of knowing n. By repeating the same pattern of edgesn times, the robot 
an enter a 
losed path without dropping its pebble. For example, if the robotrepeatedly follows edges labeled `1', it enters a 
y
le after at most n moves. We refer to this asthe 
y
ling te
hnique. On
e the robot knows a 
losed path, it 
an map the subgraph visited by thepath using the pebble. However, it is not 
lear how to harness this additional power. By repeatingone pattern of edges, the robot enters a 
losed path and 
an map one subgraph. Later, the robotmay repeat a di�erent pattern of edges, enter another 
losed path, and map a se
ond subgraph.Thus, the robot 
an map many subgraphs, but it is not obvious how to pie
e these maps together.This is be
ause the robot has little information about how the subgraphs overlap and inter
onne
t.As a result, �nding 
losed paths permits the robot to drop the pebble, map a (small) portion of2More generally, graphs having high 
ondu
tan
e 
an be learned eÆ
iently [10℄.4



the graph and retrieve the pebble, but does not solve the mapping problem.In order to solve the mapping problem, we use an algorithmi
 tool that we 
all an orientingpro
edure. An orienting pro
edure allows our algorithms to 
onstru
t a limited number of maps.Instead of trying to pie
e these maps together, the algorithm expands them separately until onemaps all of G. This expansion is possible be
ause by exe
uting the orienting pro
edure, the robot
an re
ognize parti
ular verti
es in the graph that are asso
iated with the maps.Orienting pro
edures. Intuitively, an orienting pro
edure for a graph G leads the robot aroundthe graph and ultimately leaves the robot at a vertex it \re
ognizes". The robot re
ognizes thisvertex by observing the output produ
ed by the pro
edure. More pre
isely, if the robot sees thesame output when exe
uting the pro
edure from two di�erent initial verti
es, then both times itends up at the same vertex.3 The notion of orienting pro
edures is analogous to the notion of(adaptive) homing sequen
es in automata theory [28℄, and it is 
losely related to the notion oftwo-robot homing sequen
es introdu
ed by Bender and Slonim [10℄. In the 
ontext of learning,homing sequen
es were �rst applied by Rivest and S
hapire [35, 34℄; they were used for learningenvironments modeled by �nite automata.We argue that every graph has a polynomial-time 1-pebble orienting pro
edure. (Later, wededu
e from our mapping algorithm that there is a
tually a polynomial-time universal 1-pebbleorienting pro
edure that works for all graphs of a given size.) We show that given an orientingpro
edure, the robot 
an build maps of subgraphs 
ontaining ea
h of the possible ending verti
esof the pro
edure. Sin
e the robot is not provided with an orienting pro
edure, it builds maps usinga partially-
onstru
ted orienting pro
edure, whi
h it gradually improves. Ea
h map is asso
iatedwith a di�erent output of the pro
edure. There is a diÆ
ulty, however, in using a partial orientingpro
edure. Namely, the underlying graph may look di�erent from what the map asso
iated withthe pro
edure's output suggests. As a result, the robot 
ould be
ome disoriented and lose thepebble.A 
entral idea in our algorithms is how to avoid losing the pebble while using misleadinginformation about the graph. The algorithms employ a two-tiered stru
ture of the 
y
ling te
hniquementioned above. At the lower level, the robot uses the 
y
ling te
hnique to verify safely whetherthe underlying graph is 
onsistent with its map. If veri�
ation fails the robot is able to improvethe partial orienting pro
edure. At the higher level, the robot uses a generalization of the 
y
lingte
hnique to arbitrary deterministi
 pro
edures (instead of edge-label patterns). This generalized
y
ling te
hnique allows the robot to �nd 
losed paths that visit in
reasingly large portions of G,until all of G is visited and mapped.Related work. The model we 
onsider is essentially the dire
ted-graph analogue of the oneintrodu
ed by Dudek, Jenkins, Milios and Wilkes [23℄. Their problem involves a robot with a singlepebble mapping an undire
ted graph with unlabeled verti
es. Their modeling of edge labels di�ersslightly from ours, in that the labeling of edges leaving a vertex 
an depend on the previous vertexvisited (whereas our edge labelings are absolute). However, they impose an additional 
ondition onthe edge labelings whi
h permits ba
ktra
king. Hen
e they are able to solve the mapping problemby repeatedly marking verti
es and ba
ktra
king. Furthermore, we present an extension of ouralgorithm (in Subse
tion 3.6) that works in dire
ted graphs when the labels of edges emanatingfrom a vertex may depend on the previous vertex visited. Thus, we solve a problem that is stri
tlymore general than the one treated by Dudek et al.3A
tually, the robot may be at verti
es equivalent under automorphism, but we avoid this issue in the introdu
tion.5



Subsequent work in the model of Dudek et al. in
ludes mapping algorithms that perform wellfrom the perspe
tive of 
ompetitive analysis [21℄, and eÆ
ient solutions to related problems su
has \self-lo
ation" [24℄ and \map veri�
ation" [20℄.Our work is very 
losely related to the work of Bender and Slonim [10℄. Bender and Slonimshow that two 
ooperating robots 
an explore and map unknown dire
ted graphs with unlabeledverti
es in polynomial time. The robots do not require any prior knowledge of the size of the graph.Bender and Slonim demonstrate that two robots are stri
tly more powerful than one robot withO(1) pebbles; they prove that one robot with a 
onstant number of pebbles 
annot (eÆ
iently)learn arbitrary dire
ted graphs without knowing an upper bound on the number n of verti
es.They 
onje
ture that the same holds when n is known; our results disprove this 
onje
ture. OurO(log logn)-pebble algorithm (for unknown n) 
an be simulated by two robots. This yields adeterministi
 alternative to Bender and Slonim's randomized two-robot algorithm.4Most early work on graph exploration assumed that the robot is a �nite automaton. Rabin [32℄�rst proposed the idea of providing the automaton with pebbles to help it explore. This led to a bodyof work examining the number of pebbles needed to explore various environments [38, 16, 15, 5, 33℄.For a survey on automata exploring labyrinths, see [29℄. Deng and Papadimitriou [22℄ propose andstudy the problem of exploring an unknown dire
ted graph having labeled verti
es. Albers andHenzinger [2℄ give improved algorithms for this problem. These works study exploration from theperspe
tive of 
ompetitive analysis. The results are stated in terms of the de�
ien
y of the graph(i.e., the minimum number of edges to be added to make the graph Eulerian). Betke, Rivest, andSingh [12℄ and together with Awerbu
h [6℄ study the problem of pie
emeal learning undire
tedlabeled graphs. In the pie
emeal learning problem the robot is required to return to its startingposition periodi
ally.Rivest and S
hapire [35, 34℄ study the problem of learning environments modeled by �niteautomata. Here, an environment is represented by a dire
ted graph, in whi
h ea
h vertex hasone of two (or any 
onstant number of) possible labelings. The robot has learned the environment(automaton) when it 
an predi
t the label of any vertex (state) rea
hed on an arbitrary walk. Hen
e,if the automaton is irredu
ible, then the robot a
tually learns the topology of the underlying graph.Their algorithms (with the ex
eption of one, for permutation automata) rely on a tea
her, andbuild on the work of Angluin [3℄. The tea
her supplies 
ounterexamples to the robot's hypotheses.Variants of this problem that do not rely on a tea
her are studied in [17, 26, 36, 25℄. We note thatDean et al. [17℄ apply a 
y
ling te
hnique related to ours, but for di�erent purposes. For a survey
overing some of the results mentioned above among others, see [18℄.Exploring and navigating in geometri
 environments is studied extensively. A sample of papersin
ludes [7, 31, 19, 14, 8, 13, 11, 27, 4℄.Appli
ations. As mentioned earlier, algorithms for exploring and mapping unknown environ-ments have a variety of appli
ations. Examples are obtaining maps of existing networks (e.g.,
omputer networks, sewage systems, unexplored 
aves) for whi
h there are no maps or the existingmaps are outdated (e.g., after some links have gone down on a 
omputer network). Another type ofappli
ation is obtaining maps of 
hanging environments, like the Internet or the World Wide Web.Due to the dynami
 and distributed nature of these systems, it is often infeasible to maintain a
ompletely updated map of them. However, obtaining a

urate maps of small parts of the networkis still useful. Another example of a 
hanging environment 
omes from ad ho
 mobile wireless net-works [37℄. These are networks in whi
h the routers are mobile devi
es, and the topology depends4In light of our results and those of Bender and Slonim, we see that a friend is only worth log log n pebbles.6



on whi
h devi
es are within range of ea
h other. If the network does not 
hange too rapidly, a fastexploring algorithm 
ould be used to obtain o

asional snapshots of the network. We emphasizethat no exa
t implementation of our algorithms will satisfy these appli
ations. Even for a modestnumber of nodes, our algorithms are too time 
onsuming to be immediately pra
ti
al. However,the underlying ideas of our algorithms 
ould prove useful in these appli
ations when the nodes arenot perfe
tly distinguishable and some of the links are unidire
tional.We also note that the problem solved in this paper is a generalization of the \twisty little pas-sageways, all alike" problem made famous in the 1970's 
omputer game \Colossal Cave Adventure"by Crowthers and Woods (
f., [1℄).2 PreliminariesLet G = (V;E) be the unknown dire
ted graph the robot has to explore and map. Suppose thatthe graph is strongly 
onne
ted and that all the verti
es of G are unlabeled and have (the same)outdegree d. Let the edges emanating from ea
h vertex be labeled by distin
t indi
es in f1; : : : ; dgand denote an edge from u to v with label � by hu; �; vi. (In Se
tion 3.6, we treat a more generalmodel in whi
h the edge labeling 
an depend on the previous vertex visited.) Let n = jVj and letn̂ be an upper bound on n.The exploring robot starts at an arbitrary vertex of G. The robot has a single pebble.5 Atea
h time step, the robot may traverse any outgoing edge from the vertex it is at. In addition, therobot may drop the pebble at the vertex or pi
k up the pebble that it has previously dropped at thevertex.We often use the term map to refer to a graph M = (VM;EM) in whi
h ea
h vertex has outdegreeat most d and the edges leaving ea
h vertex are labeled by distin
t indi
es i1; : : : ; ideg(v) 2 f1; : : : ; dg.We say a map M = (VM;EM) is isomorphi
 to G (denoted, M �= G) if there exists an isomorphismbetween the two graphs that preserves edge labels. Namely, there exists a one-to-one and ontomapping f : VM ! V, su
h that the following holds: For every two verti
es w and z in VM, thereis an edge labeled � from w to z in M, if and only if there is an edge labeled � from f(w) tof(z) in G. Let w0 and v0 be distinguished verti
es in M and G, respe
tively. We use the notation(M; w0) �= (G; v0) to say that there exists an isomorphism f between M and G su
h that f(w0) = v0.We say that map (M; w0) is 
onsistent with (G; v0) if there exists a subgraph G0 of G 
ontainingv0, su
h that (M; w0) �= (G0; v0).We say that the robot at vertex v in G has learned the graph G when it outputs a graph bGtogether with a vertex v̂ in bG su
h that (bG; v̂) �= (G; v). Sin
e in ea
h time step the robot traversesa single edge, the running time of the algorithm is the number of moves the robot makes. Though
omputation time is ignored in this de�nition, we note that the total 
omputation time of ouralgorithms is polynomial in the upper bound n̂ on the size of the graph.3 Learning with a Single PebbleIn this se
tion we present our algorithm for eÆ
iently learning any graph using a single pebble andknowledge of n̂. We start (in Se
tion 3.1) by des
ribing an important subroutine of our algorithm,whi
h we 
all path 
ompression. The robot exe
utes this subroutine (using the pebble) to mapsubgraphs of G that are visited by 
losed paths known to the robot. In Se
tion 3.2 we show that5In Se
tion 4 we 
onsider a robot having a sour
e of pebbles.7



the robot 
an learn G if we assume the robot has a

ess to a return-path ora
le for G. The robot 
anquery this ora
le from any vertex in the graph and re
eive a sequen
e of edges that leads it ba
k toits start vertex. In the following se
tions we progressively weaken this assumption. In Se
tion 3.3we formally de�ne an orienting pro
edure and des
ribe how to devise su
h a pro
edure based onpro
edures for distinguishing between verti
es. In Se
tion 3.4 we repla
e the assumption that therobot has a

ess to a return-path ora
le with the assumption that it knows an orienting pro
edurefor G. Finally, in Se
tion 3.5 we show how the robot 
an use knowledge of n̂ to explore and learnthe graph while building an orienting pro
edure on its own. Our algorithm and the subroutines ituses are des
ribed in pseudo
ode in Figures 4, 5, 6 and 7 at the end of this se
tion.3.1 Compressing Closed PathsHere we present an essential building blo
k of our algorithms. Let the robot be at vertex v in G,and assume the robot knows a 
losed path in G that starts (and ends) at v. The path visits asubgraph Gpath of G. Namely, Gpath 
onsists of all verti
es and edges traversed along the path.Sin
e the path may visit the same verti
es several times, Gpath is not ne
essarily a simple 
y
le.In the path 
ompression pro
edure the robot uses the pebble to identify repeated verti
es on thepath and 
onstru
t a graph M isomorphi
 to Gpath.More pre
isely, let path = �1; : : : ; �k be a sequen
e of edge labels 
orresponding to a 
losedpath starting (and ending) at v. Let u0; u1; : : : ; uk be the verti
es in G visited along the path,where u0 = uk = v. The robot maintains a list of length k + 1 where ultimately the i-th entryin the list will identify the i-th vertex o

urring on the path in G (where i ranges from 0 to k).Initially, the list is (w0;�; : : : ;�; w0), where � means \unidenti�ed." The goal of the robot is torepla
e all \unidenti�ed" entries with vertex names.The algorithm pro
eeds in at most n stages, ea
h starting and ending with the robot and thepebble at v. In the 0-th stage, the robot drops the pebble at vertex v and follows the entire 
losedpath; for ea
h i su
h that the robot observes the pebble after i steps (i.e., at the vertex rea
hed bytraversing �1; : : : ; �i), the robot repla
es the i-th entry in the list with w0. In the j-th stage (forj = 0; 1; : : :), let t be the smallest index su
h that the t-th entry in the list is �. The robot traverses�1; : : : ; �t, and after the t-th step drops the pebble at the vertex rea
hed. Then it repla
es the t-thentry with wj (i.e., a new vertex name). As in the �rst stage, it traverses the rest of the 
losedpath (and returns to v). For ea
h i su
h that the robot observes the pebble after i steps (
ountingsteps from when it left v), the robot repla
es the i-th entry in the list (whi
h must be a �) withwj . After returning to v, the robot follows path on
e more to pi
k up the pebble.The algorithm maintains the property that the same label wj appears in pla
es k and k0 in thelist if and only if the k-th and k0-th verti
es on the 
losed path in G are the same. When the list is
ompleted, the robot 
onstru
ts a map M in a

ordan
e with the list and the edge labels in path.Namely, the verti
es of M are the verti
es fwjg in the list, and if wj and wj0 appear in pla
es i andi + 1 in the list, then there is an edge hwj ; �i+1; wj0i in M. Pseudo
ode for this path 
ompressionpro
edure is given in Figure 4.Lemma 1 Let v be a vertex in G and path be a sequen
e of edge labels that 
orresponds to a
losed path in G starting and ending at v. Let Gpath be the subgraph of G visited by path. Thepath 
ompression pro
edure runs in time O(n � jpathj) and outputs a graph M su
h that (M; w0) �=(Gpath; v). 8



3.2 Learning with a Return-Path Ora
leIn this se
tion, we assume that the robot is given a

ess to a return-path ora
le. Namely, at anytime step it 
an query the ora
le and re
eive a sequen
e of edge labels that returns the robot to aparti
ular vertex v0.We show how the robot 
an learn G by querying the ora
le and using repeated appli
ations ofthe path 
ompression pro
edure. The return-path algorithm pro
eeds in at most n�d = jEj stages.In ea
h stage the robot learns at least one new edge in G. In the i-th stage, the robot 
onstru
tsa strongly 
onne
ted map Mi having a designated vertex w0. The initial map, M0, 
onsists onlyof the vertex w0 (and no edges). The �nal map is the output, bG, of the algorithm. The algorithmmaintains the invariant that (Mi; w0) is 
onsistent with (G; v0) (where 
onsisten
y is de�ned inSe
tion 2). The algorithm asso
iates a 
losed path path(Mi) with ea
h map Mi. This path startsand ends at w0 and passes through all verti
es and edges in Mi. Sin
e Mi is strongly 
onne
ted,the robot 
an easily 
ompute su
h a path of length O(n2d).We say that a vertex w in a map Mi is �nished if it has d outgoing edges in Mi. Otherwise it isun�nished . In the (i+1)-th stage the algorithm augments the map Mi with a new edge emanatingfrom an un�nished vertex in Mi and perhaps other verti
es and edges. This is done as follows. Letw be an un�nished vertex in Mi and let � be the label of a missing edge from w. Let explore(Mi)be a sequen
e of edge labels 
onne
ting w0 to w, 
on
atenated with �. The robot performs thewalk 
orresponding to explore(Mi) in G starting from v0. It then queries the return-path ora
le.Let the return path that the ora
le provides be 
alled reti. The robot returns to v0 using the pathreti. Then it 
ompresses the 
losed path pathi+1 = path(Mi)Æexplore(Mi)Æreti. The algorithmlets Mi+1 be the resulting map. By Lemma 1, we know that (Mi+1; w0) �= (Gpathi+1 ; v0). Sin
epathi+1 
ontains path(Mi), Mi+1 
ontains Mi as a subgraph; by the 
hoi
e of w and �, Mi+1 also
ontains at least one new edge (the edge labeled � going out of w).Note that the time 
omplexity of this algorithm 
an be improved. However, the above formu-lation serves as a basis for subsequent algorithms (that do not rely on a return-path ora
le). Fromall the above, we obtain the following lemma.Lemma 2 Let ` be the length of the longest return path provided by the ora
le. The return-pathalgorithm runs in time O(n2d � (n2d+ `)) and outputs a map bG isomorphi
 to G.3.3 Orienting Pro
eduresIntuitively, an orienting pro
edure for a graph G guides the robot around the graph and ultimatelyleaves the robot at a vertex it \re
ognizes." An orienting pro
edure need not lead the robot ba
k to aparti
ular vertex, so assuming an orienting pro
edure is weaker than assuming a return-path ora
le.Before we de�ne an orienting pro
edure formally, we explain the notion of equivalen
e betweenverti
es. We say that two verti
es u and v in G are equivalent, denoted u � v, if (G; u) �= (G; v),i.e., there exists an automorphism of G mapping u to v.De�nition 1 An orienting pro
edure op for a graph G has the following properties.1. It determines the robot's a
tions (i.e., what edge labels it traverses and when it drops and pi
ksup the pebble).2. The robot starts and ends with the pebble, regardless of the starting vertex.3. The pro
edure is deterministi
. 9



4. The pro
edure returns an output. The output is determined by the steps at whi
h the robot seesthe pebble.(Noti
e that be
ause the pro
edure is deterministi
, every time the robot exe
utes the orientingpro
edure starting from any �xed vertex v in G, it returns the same output and �nishes at thesame �nal vertex. Thus, an orienting pro
edure has at most n outputs.)5. Let output(op; v) be the output of the pro
edure op when started at vertex v, and letfinal(op; v) be the �nal vertex rea
hed. An orienting pro
edure guarantees that for every uand v in G output(op; u) = output(op; v) =) final(op; u) � final(op; v).(Note that the 
onverse is not guaranteed. Namely, the pro
edure may end at the same vertexwith two di�erent outputs.)We show how to build an orienting pro
edure using distinguishing pro
edures for inequivalent ver-ti
es in G.De�nition 2 Let u and v be two inequivalent verti
es in G. A distinguishing pro
edure dpu;v foru and v has the following properties.1{4. As in De�nition 1.5. output(dpu;v; u) 6= output(dpu;v; v).Noti
e that a distinguishing pro
edure di�erentiates between starting verti
es whereas an orientingpro
edure di�erentiates between ending verti
es. In addition, a distinguishing pro
edure di�eren-tiates between a single pair of starting verti
es whereas an orienting pro
edure di�erentiates amongall possible ending verti
es.Every orienting pro
edure op that we 
onsider 
an be viewed as a tree Top in the followingsense: Ea
h leaf in Top 
orresponds to a di�erent output of op. The internal nodes of Top aredistinguishing pro
edures. The bran
hes emitting from a node are labeled by the possible outputsof the distinguishing pro
edure. Leaves are labeled by the sequen
e of outputs on the bran
hesleading from the root to the leaf. For an illustration, see Figure 3. Consider all verti
es in G thatthe robot may end at when op terminates with output A at a leaf �A; denote this set of verti
esby rea
h(A). Property 5 di
tates that all verti
es in rea
h(A) are equivalent.We 
an build an orienting pro
edure of the above type in stages, extending the tree in ea
h stage.Initially we let our 
andidate orienting pro
edure 
op be the empty pro
edure, i.e. the robot makesno a
tions, and the tree T
op has a single leaf. Assume indu
tively that 
op preserves properties1{4 and has k possible outputs (so that T
op has k leaves). If 
op is not yet a 
omplete orientingpro
edure, then for some output A 
orresponding to leaf �A there exist inequivalent verti
es u andv in rea
h(A). Let dpu;v be a distinguishing pro
edure for u and v. We repla
e the leaf �A withdpu;v. Sin
e output(dpu;v; u) 6= output(dpu;v; v), the new tree has at least k+1 leaves. Therefore,the modi�ed 
op has at least k + 1 outputs. Sin
e an orienting pro
edure has at most n di�erentoutputs, we obtain an orienting pro
edure after at most n � 1 stages.6 It 
an be shown that forevery pair of inequivalent verti
es there exists a distinguishing pro
edure with running time O(n3d).Hen
e, every graph has an orienting pro
edure with running time O(n4d). In Se
tion 3.5, we exhibitan algorithm in whi
h the robot devises distinguishing pro
edures and builds an orienting pro
edurewhile exploring the graph.76For the purposes of this 
onstru
tion, it a
tually suÆ
es to relax the de�nition of a distinguishing pro
edure toallow either output(dpu;v; u) 6= output(dpu;v; v) or �nal(dpu;v; u) � �nal(dpu;v; v).7However, our algorithm may terminate (
orre
tly) before the orienting pro
edure is 
omplete.10
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Figure 3: An illustration of Top assuming distinguishing pro
edures have two possible outputs (whi
h isnot ne
essarily true but is the 
ase in our usage). Ea
h dp denotes a distinguishing pro
edure, and out1 andout2 are the two possible outputs. The orienting pro
edure begins with an exe
ution of dp1. Dependingon the output (out1 or out2) either dp2 or dp3 is next exe
uted. Ea
h leaf 
orresponds to the sequen
eof outputs labeling the edges on the path from the root to the leaf. The leaf l1 for example 
orresponds tothe output out1 : : : out1. Sin
e op is an orienting pro
edure, no matter where it is started, if the sequen
eof distinguishing pro
edures on the path from the root to l1 is exe
uted and the outputs out1 : : : out1 areobserved, then the verti
es rea
hed are equivalent.3.4 Learning with an Orienting Pro
edureIn this se
tion we assume that the robot is provided with an orienting pro
edure op for the graphG. For ease of presentation, we assume throughout this se
tion that the graph has no nontrivialautomorphisms (and hen
e no verti
es are equivalent). This assumption 
an easily be removed hereand is not used in later se
tions.By the above assumption, for ea
h possible output A, the set rea
h(A) (de�ned in Se
tion 3.3)
ontains a single vertex, whi
h we denote vA. With ea
h output A, the algorithm asso
iates a mapM(A), whi
h is 
onstru
ted as the algorithm pro
eeds. The map M(A) 
ontains a designated vertexw0(A). The algorithm ensures that ea
h M(A) is strongly 
onne
ted and maintains the followinginvariant:Invariant 1 (orienting pro
edure): For every output A of op, (M(A); w0(A)) is 
onsistent with(G; vA).Learning pro
eeds in at most n2d phases. In ea
h phase, some map M(A) is augmented withat least one new edge. We say that a map is �nished if all its verti
es are �nished (as de�ned inSe
tion 3.2). The algorithm terminates when some map M(A) is �nished, in whi
h 
ase it outputs11



M(A). We use the shorthand path(A) to represent path(M(A)) and explore(A) to representexplore(M(A)), where path(�) and explore(�) were de�ned in Se
tion 3.2. Let Gpath(A) be thesubgraph of G visited by path(A) when starting from vA. In ea
h phase the algorithm uses theorienting pro
edure to �nd a 
losed path satisfying the following:1. For some output A, the path starts and ends at vA.2. The path visits all of Gpath(A) and at least one additional edge.The robot 
ompresses this 
losed path and repla
es M(A) with the resulting map.To �nd a 
losed path satisfying the above properties the robot does the following. Startingfrom its 
urrent vertex, it exe
utes the orienting pro
edure, observes its output A1, and followspath(A1) Æ explore(A1). It then exe
utes the orienting pro
edure again, observes its output A2,and follows path(A2) Æ explore(A2). The robot repeats the above until it observes an output Ajthat it has previously seen (i.e., Aj = Ai for some i < j). Note that some output must reappearafter at most n + 1 repetitions (though the robot need not know n). At this point the robothas dis
overed a 
losed path that starts and ends at vAj . Furthermore, this 
losed path startswith path(Ai) Æ explore(Ai), and hen
e visits all of Gpath(Ai) and at least one additional edge.Informally, sin
e the robot does not know to whi
h vertex it will return, it \prepares" all verti
esvAi for the possibility. It does so by following path(Ai) Æ explore(Ai) from ea
h vAi .Let T(op) be the running time of op. Sin
e for every map M(A), jpath(A)j =O(n2d), and jexplore(A)j � n, the length of the 
losed path found is O(n � (T(op) + n2d)). ByLemma 1, the 
losed path 
an be 
ompressed in time O(n2 �(T(op)+n2d)). We obtain the followinglemma.Lemma 3 A robot with a single pebble 
an learn any strongly 
onne
ted graph G using an orientingpro
edure op for G in time O(n4d � (T(op) + n2d)).3.5 Learning the Graph while Building an Orienting Pro
edureIn this se
tion we show that a robot having a single pebble 
an eÆ
iently explore and map anystrongly-
onne
ted dire
ted graph if it knows an upper bound n̂ on the size of the graph. Re
allthat if the robot does not know n̂ then this task is impossible. The stru
ture of the algorithmpresented here is similar to the stru
ture of the algorithm des
ribed in Se
tion 3.4. Sin
e the robotdoes not have a real orienting pro
edure it uses a 
andidate orienting pro
edure 
op. In ea
h phase,for some output A of 
op the algorithm either (1) repla
es M(A) with a new, larger M(A) or (2)dis
overs a distinguishing pro
edure dpu;v for some inequivalent verti
es u and v in rea
h(A).In the latter 
ase it improves 
op using dpu;v (as des
ribed in Se
tion 3.3). Sin
e the improved
op will never again output A, the algorithm dis
ards M(A). The algorithm terminates whensome M(A) is �nished, in whi
h 
ase it outputs M(A). We show that the algorithm maintains thefollowing invariant, whi
h is a relaxation of Invariant 1.Invariant 2 (
andidate orienting pro
edure): For every output A of 
op there exists a vertexu 2 rea
h(A) su
h that (M(A); w0(A)) is 
onsistent with (G; u).In parti
ular this invariant ensures that the �nished map is isomorphi
 to G.In Se
tion 3.4 we had the property that rea
h(A) 
onsisted of a single vertex vA. This provideda method for the robot to identify 
losed paths that start and end at some vA. Here, this methoddoes not work sin
e rea
h(A) may 
ontain several verti
es (equivalent or inequivalent). Therefore,12



the robot 
ould observe output A twi
e without being on a 
losed path. The robot's knowledge ofn̂ 
ombined with the following observation suggests a remedy for this problem | that is, how to�nd a 
losed path that starts and ends at a vertex u in some rea
h(A).Observation 1 Let f : V ! V be any deterministi
 fun
tion. Then for every vertex v 2 V, thesequen
e v; f(v); f(f(v)); : : : be
omes 
y
li
 within the �rst n appli
ations of f .Suppose the robot repeats the following: it exe
utes 
op, observes its output A, and followspath(A) Æ explore(A). Then after at most n̂ repetitions it has entered a 
y
le. We later showhow after another 2n̂ repetitions it 
an �nd a 
losed path that starts and ends at a vertex u inrea
h(A), for some output A.Suppose the robot runs the algorithm from the previous se
tion with the enhan
ement above.The robot 
an now �nd 
losed paths, but the algorithm still has a serious 
aw. Consider a mapM(A) that results from 
ompressing a 
losed path that starts and ends at u 2 rea
h(A). Assumethat in a subsequent stage in the algorithm, the robot obtains a new M(A) by 
ompressing a 
losedpath that starts and ends at u0 2 rea
h(A). If u0 � u then the argument that the new M(A) islarger than the old M(A) holds as before. However, if u0 6� u then we 
an 
laim nothing about thesize or stru
ture of the new M(A). This is be
ause (old M(A); w0(A)) may not be 
onsistent with(G; u0). Hen
e, the argument that the new M(A) is bigger than the old M(A) is no longer valid.This motivates the need for a map veri�
ation pro
edure.Map Veri�
ation. Suppose the robot is at a vertex v in some rea
h(A). We would like apro
edure to verify that (M(A); w0(A)) is 
onsistent with (G; v). This is not diÆ
ult if we allowthe robot to lose its pebble. In parti
ular the robot hypothesizes that path(A) 
orresponds to a
losed path in G starting at v. Then the robot attempts to 
ompress path(A). If path(A) is nota 
losed path starting from v and the robot loses the pebble, then 
learly (M(A); w0(A)) is not
onsistent with (G; v). Otherwise, the robot 
ompares M(A) to the map resulting from 
ompressingthe 
losed path.Sin
e we 
annot allow the robot to lose the pebble (or else it will not be able to learn thegraph), we must modify the above pro
edure. The new pro
edure, des
ribed below, performs aweaker form of veri�
ation. We later show that it nonetheless meets the needs of the algorithm.1. The robot starts from v and follows path(A) n̂ times.Clearly, if (M(A); w0(A)) is 
onsistent with (G; v), then the robot ends at v. However, even if(M(A); w0(A)) is not 
onsistent with (G; v) then by Observation 1 we know that the robot hasentered a 
y
le.2. Next the robot drops the pebble at its 
urrent vertex v0 and follows path(A) on
e.� If the pebble is not at the vertex rea
hed, then veri�
ation fails. To retrieve the pebble, therobot 
ontinues repeating path(A) until it �nds the pebble.� Otherwise, the robot 
ompresses path(A), whi
h it has now identi�ed as a 
losed path,starting from v0. If the resulting map di�ers from M(A) then veri�
ation fails. Otherwiseveri�
ation passes.We refer to this pro
edure as ver(A). Pseudo
ode for ver(�) 
an be found in Figure 6.Note 2 There are two situations in whi
h ver(A) passes:13



1. (M(A); w0(A)) is 
onsistent with (G; v), or2. (M(A); w0(A)) is not 
onsistent with (G; v), but (M(A); w0(A)) is 
onsistent with (G; v0).If veri�
ation fails, then be
ause of Invariant 2 ver(A) is a distinguishing pro
edure. This pro-
edure distinguishes between v and the vertex u in rea
h(A) su
h that (M(A); w0(A)) is 
onsistentwith (G; u). Sin
e for every map M(A), the length of path(M(A)) is O(n2d), the running time ofver(A) is O(n̂ � n2d).We note that the map veri�
ation problem is also 
onsidered in [24, 20℄. However, those worksinvolve undire
ted graphs, so the problem of losing the pebble does not arise. We are now ready todes
ribe the �nal mapping algorithm.The Algorithm. The algorithm pro
eeds in at most 2n2d phases. Initially, its 
andidate orientingpro
edure 
op is the empty pro
edure (as des
ribed in Se
tion 3.3). Ea
h phase 
onsists of at most4 stages:1. To enter a 
losed path, the robot repeats the following n̂ times.(�) The robot exe
utes 
op and obtains an output A. If this is the �rst appearan
e of output Athen the algorithm 
reates a new map M(A) 
onsisting of a single vertex w0(A). Next therobot exe
utes ver(A) to verify the map M(A).� If ver(A) fails, then ver(A) is a distinguishing pro
edure between a pair of verti
es inrea
h(A). The robot uses this distinguishing pro
edure, whi
h outputs pass or fail, toimprove 
op (as des
ribed in Se
tion 3.3). Thus, the output of 
op is in fpass; failg�.Be
ause of the extension to 
op, 
op will never again output A, so the robot dis
ardsM(A). The robot stops repeating (�), skips Stages 2{4 (des
ribed below), and goes tothe next phase with the improved 
op.� Otherwise (i.e., if ver(A) passes), the robot follows explore(A). Note that by de�nitionof ver(A), the robot follows explore(A) starting from a vertex u su
h that (M(A); w0(A))is 
onsistent with (G; u).The subroutine (�) 
an be viewed as a fun
tion taking the vertex at whi
h the robot starts tothe vertex at whi
h it �nishes. By Observation 1, we know that after n̂ repetitions of (�), therobot enters a 
losed path 
onsisting of some number of exe
utions of (�).2. The aim of this stage is to determine the 
losed path the robot has entered.8 To determinethis 
losed path, the robot repeats (�) another 2n̂ times. For i = 1; : : : ; 2n̂, let Ai be theoutput observed in the i'th repetition of (�) and let Li be the sequen
e of edge labels traversed.The robot �nds the smallest p su
h that the sequen
e of pairs (A1;L1); : : : ; (A2n̂;L2n̂) 
onsistsentirely of periodi
 repetitions of its last p entries. More pre
isely, for all i, (A2n̂�i;L2n̂�i) =(A2n̂�(i mod p);L2n̂�(i mod p)). Let seq = (L2n̂�p+1; : : : ;L2n̂) be the sequen
e of edge labels inthese last p entries. By the minimality of p, the 
losed path 
onsists of one or more repetitionsof seq. To determine the 
losed path, the robot drops the pebble and repeatedly traverses sequntil it �nds the pebble at the end of one of its traversals of seq. It then retrieves the pebblefor future use.8Note that the robot 
annot simply drop the pebble and repeat (�) until it sees the pebble again be
ause therobot needs the pebble to exe
ute (�). 14



3. The robot pro
eeds along the 
losed path found above until it rea
hes the end of any exe
utionof 
op, say with output A. The robot then 
ompresses the 
losed path and repla
es M(A) withthe resulting map.4. If the new M(A) is �nished then the algorithm outputs (the new) M(A) and terminates.Pseudo
ode for this algorithm and subroutines used by the robot are provided in Figures 4, 5, 6and 7. We now pro
eed to analyze the algorithm. As noted above, if ver ever fails in Stage 1,the robot 
an improve 
op. If all veri�
ations pass, by Lemma 1 we know that in ea
h phase(new M(A); w0(A)) is 
onsistent with (G; u) for some u 2 rea
h(A), and thus Invariant 2 ispreserved. Be
ause ver(A) is part of the 
losed path and by Note 2, the new M(A) 
ontains theold M(A) as a subgraph. Be
ause explore(A) is part of the 
losed path (and is followed from u)the new M(A) also 
ontains at least one new edge.The algorithm terminates after at most 2n2d phases be
ause in ea
h phase the algorithm 
aneither improve the 
andidate orienting pro
edure or enlarge a map. More pre
isely, sin
e the
andidate orienting pro
edure 
an be improved at most n � 1 times, at most n � 1 maps aredis
arded. At any time the algorithm maintains at most n maps, and so the algorithm builds atmost 2n� 1 maps. Sin
e ea
h map 
ontains at most n�d edges, the bound on the number of phasesfollows. Note that the algorithm may terminate before 
ompleting the orienting pro
edure.The running time of ea
h phase is the sum of (1) the time to �nd a 
losed path, and (2) therunning time of the 
ompression pro
edure. Item (1) is O(n̂) times the sum of (a) the runningtime of the 
andidate orienting pro
edure, (b) the running time of the veri�
ation pro
edure, and(
) the length of the exploration sequen
e (whi
h is at most n). Re
all that the running timeof the veri�
ation pro
edure is O(n̂n2d). Also re
all that veri�
ation pro
edures (that fail) aredistinguishing pro
edures for improving the 
andidate orienting pro
edure. Therefore, we 
anbound the running time of any 
andidate orienting pro
edure by n � O(n̂n2d) = O(n̂n3d). Thus,Item (1) amounts to n̂ �O(n̂n3d) = O(n̂2n3d). By Lemma 1, Item (2) is bounded by n �O(n̂2n3d) =O(n̂2n4d). Sin
e there are at most 2n2d phases, we obtain the following Theorem.Theorem 1 A robot having a single pebble 
an learn any strongly 
onne
ted graph given an upperbound n̂ on the size of the graph in time O(n̂2n6d2).Note that the fa
t that the running time is stated as a fun
tion of n (and not only n̂) does not
ontradi
t the fa
t that the algorithm does not know n. The algorithm terminates when it has a
omplete map, and only the analysis ensures the time bound as a fun
tion of n (as well as n̂ andd). We observe that although our mapping algorithm may terminate before the orienting pro
edureit devises is 
ompleted, the algorithm as a whole 
an be viewed as an orienting pro
edure thatoutputs a 
ompleted map and a designated vertex. Thus, we have:Corollary 4 There is a universal one-pebble orienting pro
edure that works for all graphs of out-degree d with at most n̂ verti
es and runs in time poly(n̂; d).Using additional knowledge. As noted in the introdu
tion, we have tried to make as fewassumptions on the graph as possible. In parti
ular, we have not assumed that the verti
es arelabeled in any way, while we have assumed the outdegrees of all verti
es are the same, and thatthe indegrees are not observed. In 
ase any additional distinguishing information is provided, the15



robot 
an use it to its bene�t. For example, suppose the outdegrees of the verti
es vary, where theoutdegree of ea
h vertex 
an be obtained at the vertex. Then this information 
an be in
orporatedinto the orienting pro
edure. In parti
ular, when there is no distinguishing information, then theoutput of the pro
edure is determined only by the step(s) in the pro
edure in whi
h the pebble(whi
h was previously dropped) is observed. If some verti
es have di�erent outdegrees than others,then the output of the orienting pro
edure 
an be determined also by the degrees of the verti
esobserved during its exe
ution.
ompress(�1; : : : ; �k)/* �1; : : : ; �k 
orresponds to a 
losed path from the 
urrent vertex. This pro
edure outputs amap of the subgraph 
orresponding to the edges traversed by this path. */1. for i = 0; : : : ; k do: List [i℄ �.2. j  0.3. while 9i s.t. List [i℄ = � do(a) t minf0 � i � k : List [i℄ = �g.(b) traverse �1; : : : ; �t.(
) drop pebble.(d) List [t℄ wj .(e) for i = t+ 1; : : : ; k doi. traverse �i;ii. if pebble found then List [i℄ wj.(f) follow �1; : : : ; �k and pi
k up the pebble on the way.(g) j  j + 1.4. return map de�ned by List and �1; : : : ; �k (where w0 is distinguished).Figure 4: Subroutine 
ompress.explore(M,w0)/* M is a (strongly 
onne
ted) map, w0 a distinguished vertex in M. This pro
edure (determin-isti
ally) traverses an edge that is unmapped in M. */1. traverse a sequen
e of edge labels that indu
es a path in M from w0 to some un�nishedvertex w (i.e., w has outdegree smaller than d in M). (It is easy to deterministi
ally �ndsu
h a path of length � n.)2. traverse an edge label 
orresponding to an unmapped edge from w in M.Figure 5: Subroutine explore.3.6 An Extension to Relative Edge LabelsThe graph model treated in the previous se
tions 
aptures a mapping problem for a very general
lass of environments. However, it does assume that the labels on the edges in
ident to a vertex are�xed. Although mapping would be impossible without some level of 
onsisten
y in the labeling of16



ver(M,w0)/* M is a (strongly 
onne
ted) map, w0 a distinguished vertex in M. This pro
edure veri�es ifthe robot eventually rea
hes (or is 
urrently at) a subgraph isomorphi
 to (M; w0). */1. let path be a sequen
e of edge labels that indu
es a 
losed path starting and ending atw0 traversing all edges in M. (This 
an be found using the straightforward deterministi
O(n2d) algorithm that simply 
on
atenates paths to and from all edges in M.)2. follow path n̂ times.3. drop pebble.4. follow path on
e.5. if pebble found at vertex rea
hed then(a) pi
k up pebble.(b) (M0; w00) 
ompress(path).(
) if (M0; w00) is isomorphi
 to (M; w0) then return pass.(d) else return fail.6. else(a) repeatedly follow path until pebble is found, and pi
k up pebble.(b) return fail. Figure 6: Subroutine ver.edges, we 
an 
onsider a relaxed model in whi
h the lo
al labeling of edges leading out of a vertex
an be a fun
tion of the previous vertex in the robot's path. In this se
tion, we sket
h how ouralgorithm 
an be adapted to this setting as well.The new model. A map M 
onsists of a set of verti
es V, and for ea
h vertex v, a set of atmost dn triples (u; �;w). Su
h a triple indi
ates the existen
e of an edge leading from v to w,whose label is � when v is entered using an edge from u. (So w is determined by v, u, and �.)For ease of presentation, we assume that for every v, there are either 0 or d triples of the form(u; �; �) for ea
h possible u, but, as in the original model, allowing the outdegree to be a fun
tion ofu and v only makes the problem easier. This model is now a stri
t generalization of the model ofDudek et al. [23℄, who impose an additional 
ondition on the graph and edge labelings that enablesba
ktra
king.9For example, in an environment modeling a 
ity, the verti
es might 
orrespond to interse
tionsand the edge labels might be \turn left", \turn right", and \
ontinue straight." Clearly, the vertexto whi
h one of these labels leads depends on the dire
tion from whi
h the 
urrent vertex wasentered.9Dudek et al. des
ribe their model as allowing the labeling of edges leaving a vertex to depend on the edgefrom whi
h the vertex is entered. However, they allow at most one edge between every two verti
es, and hen
e thedependen
e on the edge entered translates to a dependen
e on the previous vertex visited. We allow multiple edgesand hen
e make the dependen
e on the previous vertex.
17



Algorithm Explore-and-Map/* Map graph given one pebble and an upper bound n̂ on number of nodes. */1. 
op empty pro
edure.2. set of maps  empty.3. while no map is 
ompleted do(a) update-
op false.(b) repeat n̂ times or until update-
op = true:i. exe
ute 
op and let A be the output observed.ii. if no map 
orresponds to output A then 
reate new map M(A) with single vertexw0(A).iii. if ver(M(A); w0(A)) = pass then explore(M(A); w0(A)).iv. elseA. use ver(M(A); w0(A)) to improve 
op by repla
ing leaf of T
op that 
orre-sponds to A with internal node 
orresponding to ver(M(A); w0(A)).B. remove M(A) from set of maps.C. update-
op  true.(
) if update-
op = falsei. for j = 1; : : : ; 2n̂ do /* sin
e entered 
y
le in Step 3b, will not need to 
reate newmaps and the veri�
ations below always pass */A. exe
ute 
op and let Aj be the output observed.B. ver(M(Aj); w0(Aj)).C. explore(M(Aj); w0(Aj)).D. Let Lj be the sequen
e of edge labels traversed in the above steps A{C.ii. �nd smallest p su
h that for all i, (A2n̂�i;L2n̂�i) = (A2n̂�(i mod p);L2n̂�(i mod p)).iii. let seq = (L2n̂�p+1; : : : ;L2n̂).iv. drop pebble and repeat traversing (all of) seq until pebble found and retrieved.let path = �1; : : : ; �k be the 
losed path found.v. pro
eed along path until rea
h end of subsequen
e of edges 
orresponding to anexe
ution of 
op. let the output 
orresponding to this exe
ution be A, and letthe last edge taken be �i.vi. repla
e (M(A); w0(A)) with 
ompress(�i+1 : : : �k; �1 : : : �i).4. output 
ompleted map. Figure 7: The algorithm
18



The new algorithm. We de�ne a fun
tion f taking maps M in our new model to maps f(M)in our previous model, where edge labels are unique. There is a vertex in f(M) 
orresponding toea
h pair of verti
es (u; v) 
onne
ted by some edge in M. Then, for ea
h triple of the form (u; �;w)asso
iated with vertex v in M, there is an edge labeled � from (u; v) to (v; w) in f(M). Clearly,f is eÆ
iently 
omputable and inje
tive. Let G denote the 
omplete map of the unknown graph;then f(G) has exa
tly dn nodes. Our obje
tive now will be to use the algorithm presented in theprevious se
tion to learn f(G), sin
e f(G) is in our previous model. However, a dire
t appli
ationour mapping algorithm would require dropping the pebble on verti
es of f(G), whereas the robot isonly allowed to drop the pebble on verti
es of G. Below, we sket
h how, with slight modi�
ations,our mapping algorithm 
an be implemented even with this restri
tion.We �rst observe that the 
ompress pro
edure, if given a sequen
e of edge labels that indu
esa 
losed path in f(G), 
an be implemented pre
isely as before. Referring to Figure 4, we see thatList and the sequen
e of edge labels �1; : : : ; �k 
ompletely determine a map M su
h that f(M) isstrongly 
onne
ted. We modify the pro
edure only slightly, so that instead of returning a singlevertex w0, it returns the pair (List [k � 1℄; w0) as the distinguished vertex of f(M).Now, every path the robot takes in G indu
es a path in f(G). Sin
e f(G) has at most dn nodes,we obtain the following adaptation of Observation 1 to this setting:Observation 3 Let p be any deterministi
 pro
edure for the robot. Let p(u; v) be the pair ofverti
es (u0; v0) su
h that if the robot begins at node v having entered from node u, then apply-ing p leads it to vertex v0, entering from u0. Then for every vertex (u; v) 2 f(G), the sequen
e(u; v); p(u; v); p(p(u; v)); : : : be
omes 
y
li
 within the �rst dn appli
ations of p.Thus, we rede�ne n̂ to be d multiplied by our upper bound on the number of verti
es. Now, byObservation 3, we 
an be sure that after n̂ appli
ations of any deterministi
 pro
edure, the robotwill enter a 
y
le not only in G, but in f(G), as well.The only diÆ
ulty that remains in using our original algorithm to map f(G) is that if the robotdrops its pebble, follows some path, and �nds the pebble, we 
annot 
on
lude the robot has found a
y
le in f(G) (even though it has found a 
y
le in G). In order to do this, it must 
he
k that somepair (u; v) o

urs again after following the path. There are two pla
es in the original algorithmwhere this might be a problem: on
e in the ver pro
edure, and on
e in the main algorithm. Wedis
uss the remedy for ea
h 
ase now.In the ver pro
edure, given in Figure 6, on input a map M and distinguished vertex (a; b) inf(M), the robot follows a parti
ular sequen
e of edge labels 
alled path n̂ times. (With our newde�nition of n̂, we know the robot is in a 
y
le in f(G) after this.) Now, the robot must �rst 
he
kto see if (a single exe
ution of) path indeed spe
i�es a 
y
le in f(G) from its 
urrent lo
ation. Wenow des
ribe a pro
edure to do this. The pro
edure assumes that there exists some m � n̂ su
hthat pathm is a 
y
le in f(G) from the 
urrent lo
ation of the robot (where pathm denotes path
on
atenated with itself m times); this is indeed the be
ause the robot has just exe
uted path n̂times.
he
k(path): The robot drops its pebble, and does the following: For i = 1 to n̂, the robot traversespath on
e, and 
he
ks to see if the pebble is found. If so, it 
ontinues the for-loop. If not, thenpath 
ertainly does not de�ne a 
y
le in f(G), and so the robot traverses path repeatedly untilthe pebble is found (whi
h is guaranteed sin
e pathm was a 
y
le from the robot's starting pointin f(G)). It pi
ks up the pebble, and returns fail. If this for-loop ends with the robot always�nding the pebble after ea
h traversal of path, then by Observation 3, we know that repeated19



traversals of path indu
e a 
y
le (u1; v1); (u2; v2); : : : ; (uk; vk) in f(G). However, sin
e the robotalways sees the pebble after ea
h traversal of path, this implies v1 = v2 = � � � = vk = v for somevertex v. To 
on�rm that path itself indu
es a 
y
le in f(G), we need only test that ui = ui+1 forsome i. Note that if path takes (ui; v) ba
k to (ui; v) = (ui+1; v) for some i, by our de�nition of(u1; v1); : : : ; (uk; vk), this implies that ui = ui+1 = � � � = uk = u1 = u2 = � � � = ui, and hen
e pathby itself indu
es a 
y
le in f(G). In order to test that ui = ui+1, the robot pi
ks up the pebble,and takes all but one step of path, and drops the pebble. The robot must now be at vertex ui forsome i. It then takes the last step of path, and again traverses all but the last step of path. Therobot must now be at vertex ui+1. If the pebble is not there, then path does not de�ne a 
y
le inf(G), so the robot takes the last step of path, and repeatedly traverses path until the pebble isfound along the way. It pi
ks up the pebble and 
ompletes the traversal of path, and then returnsfail. If the pebble is found, then the robot has 
on�rmed that following path takes it from somevertex (u; v) ba
k to (u; v) in f(G), and hen
e de�nes a 
losed path in f(G). The robot retrievesthe pebble, takes the last step of path, and returns pass. Note that during this 
he
k pro
edure,the robot's path is always pathj for some integer j.We repla
e Steps 3{6 of ver with the following: The robot exe
utes 
he
k(path). If the 
he
kfails, the veri�
ation fails. If the 
he
k passes, then the robot 
alls 
ompress using path, whi
hreturns M0 and (a0; b0). It then 
he
ks to see if (f(M); (a; b)) is isomorphi
 to (f(M0); (a0; b0)). If so,the veri�
ation pro
edure returns pass, otherwise fail. With these 
hanges, the new veri�
ationpro
edure satis�es the 
onditions of Note 2 (with M(A) repla
ed by f(M(A)) and G repla
edby f(G)); these are pre
isely the properties the mapping algorithm requires from the veri�
ationpro
edure.In the main pro
edure, given in Figure 7, the situation is a little more 
ompli
ated. Here, ifupdate-
op is false, we �nd a sequen
e seq of edge labels su
h that we know some number ofrepetitions of seq indu
es a 
y
le in f(G), but we must �gure out how many in order to have avalid input to supply to 
ompress later. Similar to above, we must modify Step 3.
.iv in order todetermine a 
losed path. Now, we know that at this point, the robot is in a 
y
le in f(G) de�nedby some number of repetitions of seq between 1 and n̂. We simply 
he
k ea
h of these possibilitiesone by one. For i = 1 to n̂, the robot exe
utes 
he
k(seqi). Whenever the 
he
k �rst su

eeds,the robot knows that seqi is a 
losed path in f(G) starting at its 
urrent vertex. Thus, we letpath = seqi, exit the for-loop, and 
ontinue with the rest of the algorithm as before.We 
an see by inspe
tion that these are the only times in the algorithm where the pebbleis employed, and that the above 
hanges satisfy the requirements of the algorithm. Hen
e, thisalgorithm allows the robot to learn a map of f(G) in polynomial time. This map of f(G) 
an beeasily transformed into a map of G (in the new model).4 Learning without an Upper Bound on nIn this se
tion we prove our results 
on
erning the number of pebbles needed to learn graphseÆ
iently if the graph size is unknown. We use the algorithm of Se
tion 3.5 as a subroutine toshow that for any 
 > 0, d
 log log ne pebbles are suÆ
ient. The resulting algorithm is deterministi
.In addition, we prove a mat
hing lower bound demonstrating that 
(log log n) pebbles are ne
essary.The lower bound applies to any randomized algorithm that uses an expe
ted polynomial numberof moves. We note that in our upper bound the total 
omputation time to de
ide on moves ispolynomial, whereas the lower bound applies even when the robot is 
omputationally unbounded.20



Furthermore, our upper bound holds even when the pebbles used by the robot are indistinguishablefrom ea
h other, while the lower bound holds for distinguishable pebbles.We want to study how the number of pebbles needed grows with the size of the unknown graph.We denote the expe
ted number of pebbles a (probabilisti
) robot A uses on graphs of size n, bypA(n). Namely, pA(n) def= maxG2Gn E[# of pebbles that A uses on G℄;where Gn is the set of all graphs on n verti
es. The expe
ted running time of A is de�ned analogously.(Re
all that in ea
h time step the robot makes a single move, and hen
e the running time of thealgorithm is the number of moves the robot makes.)Theorem 2 For every 
onstant 
 > 0, there exists a (deterministi
) algorithm that learns graphsof size n in polynomial-time using at most d
 log log ne pebbles, without knowledge of n.Theorem 3 Consider any algorithm A that, with probability greater than 1=2, learns any graph inexpe
ted polynomial time without knowing the size of the graph. Then pA(n) = 
(log log n).10Throughout the following proofs, all logarithms are have a base 2.Proof (of Theorem 2): We use the algorithm of Se
tion 3.5 
ombined with a variant of thestandard guess-and-double te
hnique; instead of doubling, the algorithm takes the k'th power fora suitably 
hosen k. To be pre
ise, let k = d21=
e, let onepeb(n̂) be the one-pebble learningalgorithm of Se
tion 3.5 whi
h takes a bound n̂ on the number of verti
es as input, and supposeq(n̂) is a polynomial bound on its running time. Assume �rst that the pebbles used by the robotare distinguishable. The new algorithm works as follows on a graph of outdegree d: Guess thatthe number of verti
es in the graph is n1 = 2k, and run onepeb(n1) for q(n1) steps using the �rstpebble. If the algorithm outputs a �nished map, i.e., every vertex has d edges 
oming out of it,then output this graph and halt. On the other hand, if the algorithm fails to produ
e a �nishedmap or the robot loses the pebble during the exe
ution of the algorithm, then the entire pro
essis repeated using n2 = nk1 = 2k2 instead of n1 and using pebble 2. (If pebble 1 is seen during thisexe
ution, it is ignored.) If the exe
ution with n2 fails, we 
ontinue with n3 = nk2 = 2k3 . We repeatlike this, using n` = nk̀�1 = 2k` at the `'th stage until some exe
ution is su

essful.It is easy to see that if the algorithm onepeb ever outputs a �nished graph, the output is 
orre
t,even if the number of verti
es given to onepeb is in
orre
t. Alternatively, we 
an simply add anextra map veri�
ation pro
edure as in Se
tion 3.5 to the end of onepeb to guarantee that the outputis always either 
orre
t or fail. Moreover, by Theorem 1, the algorithm onepeb is guaranteed togive a 
orre
t output within time q(n̂) as long as it is given a bound n̂ larger than the number ofverti
es in the graph. Thus, given a graph of n verti
es, the algorithm above will always su

eed bystage `, where ` is the �rst integer su
h that 2k` � n, i.e. ` = d(log logn)=(log k)e � d
 log log ne.Sin
e n` = nk̀�1 � nk, the running time of this algorithm is at most `q(nk) � nq(nk), whi
h ispolynomial in n. Lastly, the algorithm uses at most ` � d
 log log ne pebbles.To deal with indistinguishable pebbles, we add the following modi�
ation. Whenever the algo-rithm onepeb assumes the robot is in a 
y
le and is about to drop its pebble, we have the robotwalk on
e around the 
y
le, pi
king up all pebbles that are there before pro
eeding. Consider stage` of the (parent) algorithm, where ` is the �rst integer su
h that 2k` � n. Then we are guaranteed10It is easy to see from the proof that the su

ess probability of 1=2 is arbitrary and 
an be repla
ed by any
onstant. 21



(by the properties of algorithm onepeb), that the robot is in fa
t in a 
y
le whenever it is aboutto drop its pebble. Therefore, if it always pi
ks up all pebbles left on the 
y
le before droppingits 
urrent pebble, then it will not mistake its pebble with previously dropped pebbles, and will
onsequently su

eed in learning the graph. To ensure that the parent algorithm does not haltprematurely and output an in
orre
t graph (in a stage ` su
h that 2k` < n), we do the following.Before halting and outputting a graph, we have the robot walk around its entire supposed view ofthe graph 
olle
ting all pebbles it sees. If the number of pebbles it �nds is the same as the numberof pebbles it has ever dropped (and not pi
ked up), then it runs the map veri�
ation pro
edureand halts if it passes. Otherwise, it 
ontinues to the next stage.We note that the algorithm given in the above proof 
an be deterministi
ally simulated bytwo (syn
hronized or 
ommuni
ating) robots. The se
ond robot 
an play the role of the pebble;whenever the �rst robot does not �nd the se
ond robot within the appropriate number of steps(due to an underestimate for n), the se
ond robot 
an \
at
h up" to the �rst robot by following the�rst robot's (deterministi
) steps and then they 
an pro
eed with a larger guess for n. This givesa deterministi
 alternative to Bender and Slonim's randomized two-robot mapping algorithm [10℄.Proof (of Theorem 3): In order to prove the theorem, we analyze the behavior of any algorithmon two types of graphs of outdegree 2: 
y
les and 
ombination lo
ks with tails. Formally, the 
y
leof n nodes is the labeled, dire
ted graph Cn on vertex set fw0; � � � ; wn�1g, where there are twodire
ted edges labeled 0 and 1 going from wi to w(i+1) mod n. A 
ombination lo
k with tail hasthe following stru
ture (see Figure 8). Let � = �1�2 � � ��` 2 f0; 1g` be any string and let m � 0be an integer. The 
ombination lo
k with 
ombination � and tail m is the graph L�;m on vertexset fu1; u2; : : : ; um,v1; : : : ; v`+1g with the following edges: For ea
h 1 � i � m � 1, there are twoedges labeled 0 and 1 from ui to ui+1; there are two edges labeled 0 and 1 from um to v1; for ea
h1 � i � `, there is an edge labeled �i from vi to vi+1 and an edge labeled ��i from vi to v1; thereare two edges labeled 0 and 1 from v`+1 to u1. It is important to note that a robot starting atvertex v1 (i.e., the start of the 
ombination lo
k) does not rea
h vertex vk+1 unless it exe
utes the
onse
utive sequen
e of moves �1 � � ��k at some point. We start by giving the intuition behind theproof.
0/10/1 0/1

. . . . . .
0/1

0/1

u1 u2 um v1 v2�1 �2 v` �`�`�1��1 ��2 ��` v`+1
Figure 8: A 
ombination lo
k with a tail.We analyze any algorithm based on the times it drops pebbles in the 
ase that it does notsee previously-dropped pebbles. We show that there must be huge gaps in these pebble-droppingtimes or else the algorithm uses 
(log log n) pebbles on suÆ
iently large 
y
les of length n. Thequantity 
(log log n) is exa
tly the threshold below whi
h the gaps between pebble drops be
omesuperpolynomial. That is, for any polynomial f there are in�nitely many time steps t su
h thatno pebble is dropped between time t and time f(t) with high probability. Then, for one of thesebig gaps, we 
an 
onstru
t a 
ombination lo
k with tail for whi
h the following holds. With highprobability, the algorithm drops no pebble within the 
ombination lo
k and fails to rea
h the lastfew verti
es of the lo
k in its allotted running time. Thus the robot fails to learn the graph. The22



idea of using 
ombination lo
ks with tails to foil a robot 
omes from Bender and Slonim's argumentthat a 
onstant number of pebbles is insuÆ
ient [10℄. The novel aspe
t of our proof is the analysisof pebble-dropping times to determine on whi
h sizes of 
ombination lo
ks the algorithm fails.We now turn to the details of the proof. Suppose, in 
ontradi
tion to the 
laim in the the-orem, that we have an expe
ted polynomial-time algorithm A whi
h su

eeds in learning graphswith probability greater than 1=2, but does not use 
(log log n) pebbles. Let q(n) = O(nk) bea polynomial upper bound on the expe
ted running time of the algorithm. In this proof, we usethe standard te
hnique of treating the randomized algorithm A as a distribution on deterministi
algorithms Ar, i.e. for every in�nite string r 2 f0; 1gN , Ar is the deterministi
 algorithm given byA using random 
oins r. All probabilities and expe
tations in this proof are taken over the 
hoi
eof r.We wish to study how the robot behaves when it doesn't see the pebbles it has dropped pre-viously. To formalize this, we look at the in�nite graph I on vertex set fw1; w2; : : :g where thereare two edges labeled 0 and 1 from wi to wi+1 for every i � 1. Now 
onsider the behavior of therobot when it is pla
ed at vertex w1. Noti
e that when the robot drops a pebble at vertex wi andmoves, it never sees the pebble again. For t � s � 1, let P(s; t) be the probability that the robotdrops at least one pebble between verti
es ws and wt�1, in
lusive, and let E(s; t) be the expe
tednumber of pebbles dropped by the robot between verti
es ws and wt�1, so E(s; t) � P(s; t). Noti
ethat E(1; t) is a lower bound on the expe
ted number of pebbles the robot uses on a 
y
le Ct of tverti
es, be
ause for every r, Ar's behavior in its �rst t � 1 moves is the same in Ct as in I. Wenow use this to show that that there are superpolynomial gaps in the pebble-dropping times.Claim: For every �xed 
 > 0, there are in�nitely many t su
h that P(t; t
) < 1=8.Proof of 
laim: Suppose not, i.e. there is some t0 su
h that for all t � t0, P(t; t
) �1=8. Then for every ` � 0, E(t0; t
`0 ) = X̀j=1 E(t
j�10 ; t
j0 )� X̀j=1 P(t
j�10 ; t
j0 )� `=8:For n � t0, let `n def= minf` : n < t
`0 g. Then log log n < log log t0 + `n log 
, so`n = 
(log logn). We also haveE(1; n) � E(t0; n) � E(t0; t
`n�10 ) � `n � 18 = 
(log log n):But E(1; n) is a lower bound on the expe
ted number of pebbles the robot uses ona 
y
le of length n, so we have a 
ontradi
tion. )(Re
all that the expe
ted running time of A is q(n) = O(nk). Using the above 
laim with
 = k + 1, we 
an �nd a t with the following properties:� P(t; tk+1) < 18 . 23



� 8q(2t+4)2t < 18 .� tk+1 � 8q(2t+ 4).Consider the random variable W whi
h is a string 
onsisting of the robot's �rst 8q(2t+4) movesin I. There are less than jWj = 8q(2t + 4) 
ontiguous subsequen
es of length t in W, so there issome string � 2 f0; 1gt whi
h o

urs as a 
ontinguous subsequen
e of W with probability less than8q(2t + 4)=2t < 1=8. In other words there is a sequen
e of moves � of length t whi
h the robotperforms with probability less than 1=8 during its �rst 8q(2t+ 4) steps in I.Let � by any binary string of length 4, and 
onsider the behavior of the robot when pla
ed atvertex u1 in the 
ombination lo
k G� def= L��;t�1 with tail t � 1 and 
ombination �� (and vertexset fu1; : : : ; ut�1; v1; : : : ; vt+5g as above). Sin
e A runs in expe
ted time q(n) and G� has 2t + 4verti
es, the probability that A makes more than 8q(2t+ 4) moves in G� is at most 1=8.Let R1 be the set of random 
oins r for whi
h Ar would drop a pebble between vertex wt andwtk+1�1 in I. Let R2 be the set of random 
oins r for whi
h Ar exe
utes the sequen
e of moves� at some point during its �rst 8q(2t + 4) moves in I. Let R3 be the set of random 
oins r forwhi
h Ar makes more than 8q(2t + 4) moves in G�. Let R = R1 [ R2 [ R3. We have shown thatPr [r 2 R℄ < 3=8. Noti
e that for any r =2 R, the output of Ar on G� is the same as its outputon G
 for any string 
 of length 4 be
ause the robot never sees a pebble that it has dropped andnever rea
hes vertex vt+1. Let S
 be the set of r =2 R on whi
h Ar outputs G
 when pla
ed in G
(equivalently, G�). Then sin
e A has overall su

ess probability at least 1=2, A must su

eed on atleast 1/8 of the r =2 R. So Pr [r 2 S
℄ > 1=8. But there are 16 sets S
 and they are disjoint. )(5 Con
lusions and Future WorkIn this paper we studied the exploring 
apabilities of a robot that 
an drop and pi
k up pebbles inan unknown environment, modelled as an unknown dire
ted graph with unlabeled and undistin-guishable verti
es. We showed that, if the robot knows an upper bound n̂ on the number of verti
es,n, it 
an deterministi
ally learn the environment in polynomial time, while it needs �(log logn)pebbles to do the same if if does not know su
h a bound. The �rst result disproves a 
onje
ture ofBender and Slonim [10℄ while the se
ond presents a deterministi
 alternative to their randomizedtwo-robot-based algorithm.Future Resear
h. The running time of our algorithms, though polynomial in the given param-eters, leaves mu
h to be desired. In parti
ular, the algorithm for mapping an unknown graph givenan upper bound n̂ on the number of verti
es and a single pebble, runs in time O(n̂2n6d2). Thus onenatural question is whether this running time 
an be signi�
antly improved, either for the general
ase studied here or for spe
ial 
ases of interest.Another question is how to adapt the algorithm to deal with un
ertainty. For instan
e, whatif the transitions taken by the robot are in
orre
t with some probability? (For example, upontaking an edge labeled i the robot ends at the vertex to whi
h the edge labeled j goes.) 11 The
orre
tness of our algorithm 
learly relies on 
orre
t transitions. The question is whether any of11Another standard form of un
ertainty is with respe
t to possible observations the robot makes at verti
es. Ouralgorithm 
an be viewed as dealing with this type of un
ertainty by ignoring any su
h (possibly unreliable) information.24



our te
hniques 
an be adapted to su
h a s
enario, perhaps while making some assumptions aboutthe graph. See [18℄ for further dis
ussion on un
ertainty in map learning. Even more generally,perhaps some of our ideas 
an be used for learning Partially Observable Markov De
ision Pro
esses(using some form of a pebble), in whi
h for ea
h a
tion (edge label) there is a distribution on thenext vertex.

25



Referen
es[1℄ Ri
k Adams. Colossal 
ave adventure page.http://people.delphi.
om/ri
kadams/adventure/index.html, April 2000.[2℄ S. Albers and M. R. Henzinger. Exploring unknown environments. In Pro
eedings of theTwenty Ninth Annual ACM Symposium on the Theory of Computing, 1997.[3℄ D. Angluin. Learning regular sets from queries and 
ounterexamples. Information and Com-putation, 75:87{106, November 1987.[4℄ D. Angluin, J. Westbrook, and W. Zhu. Robot navigation with range queries. In Pro
eedingsof the Twenty Eighth Annual ACM Symposium on the Theory of Computing, pages 469{478,1996.[5℄ V. Anjan. Do
toral Thesis. PhD thesis, Mathemati
al Institute of the A
ademy of S
ien
es,Minsk, 1987.[6℄ B. Awerbu
h, M. Betke, R. L. Rivest, and M. Singh. Pie
emeal graph exploration by a mobilerobot. In Pro
eedings of the Eighth Annual ACM Conferen
e on Computational LearningTheory, pages 321{328, 1995.[7℄ R. Baeza-Yates, J. Culberson, and G. Rawlins. Sear
hing in the plane. Information andComputation, pages 234{252, 1993.[8℄ E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. Online navigation in a room. Journal of Algorithms,17(3):319{341, November 1994.[9℄ M. Bender, A. Fern�andez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble: Exploringand mapping dire
ted graphs. In Pro
eedings of the 30th Annual ACM Symposium on Theoryof Computing, pages 269{278, Dallas, TX, May 1998. ACM.[10℄ M. A. Bender and D. Slonim. The power of team exploration: Two robots 
an learn unlabeleddire
ted graphs. In Pro
eedings of the Thirty Fifth Annual Symposium on Foundations ofComputer S
ien
e, pages 75{85, 1994.[11℄ P. Berman, A. Blum, A. Fiat, H. Karlo�, A. Rosen, and M. Saks. Randomized robot navi-gation algorithms. In Pro
eedings of the Seventh Annual ACM-SIAM Symposium on Dis
reteAlgorithms, pages 74{84, 1996.[12℄ M. Betke, R. L. Rivest, and M. Singh. Pie
emeal learning of an unknown environment. Ma
hineLearning, 18(2/3):231{254, 1995.[13℄ A. Blum and P. Chalasani. An on-line algorithm for improving performan
e in navigation.In Pro
eedings of the Thirty Fourth Annual Symposium on Foundations of Computer S
ien
e,pages 2{11, 1993.[14℄ A. Blum, P. Raghavan, and B. S
hieber. Navigating in unfamiliar geometri
 terrain. SIAMJournal on Computing, 26(1):110{137, January 1997.[15℄ M. Blum and D. Kozen. On the power of the 
ompass (or, why mazes are easier to sear
h thangraphs). In Pro
eedings of the Nineteenth Annual Symposium on Foundations of ComputerS
ien
e, pages 132{142, O
tober 1978. 26



[16℄ M. Blum and W. J. Sakoda. On the 
apability of �nite automata in 2 and 3 dimensional spa
e.In Pro
eedings of the Eighteenth Annual Symposium on Foundations of Computer S
ien
e,pages 147{161, 1977.[17℄ T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis, and O. Maron. In-ferring �nite automata with sto
hasti
 output fun
tions and an appli
ation to map learning.Ma
hine Learning, 18(1):81{108, January 1995.[18℄ T. Dean, K. Basye, and L. Kaelbling. Un
ertainty in graph-based map learning. Robot Learn-ing, 1992.[19℄ X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment I: There
tilinear 
ase. Journal of the ACM, 45(2):215{245, Mar
h 1998.[20℄ X. Deng, E. Milios, and A. Mirzaian. Robot map veri�
ation of a graph world. In Algo-rithms and Data Stru
tures (WADS `99), Le
ture Notes in Computer S
ien
e, Van
ouver, BC,Canada, August 1999. Springer-Verlag.[21℄ X. Deng and A. Mirzaian. Competitive robot mapping with homogeneous markers. IEEETransa
tions on Roboti
s and Automation, 12(4):532{542, August 1996.[22℄ X. Deng and C. H. Papadimitriou. Exploring an unknown graph. In Pro
eedings of the ThirtyFirst Annual Symposium on Foundations of Computer S
ien
e, pages 356{361, 1990.[23℄ G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Roboti
 exploration as graph 
onstru
tion.IEEE Transa
tions on Roboti
s and Automation, 7(6):859{865, De
ember 1991.[24℄ G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Map validation and robot self-lo
ation in agraph-like world. Roboti
s and Autonomous Systems, 22(2):159{178, November 1997.[25℄ Y. Freund, M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, and R. E. S
hapire. EÆ
ientalgorithms for learning to play repeated games against 
omputationally bounded adversaries.In Pro
eedings of the Thirty Sixth Annual Symposium on Foundations of Computer S
ien
e,pages 332{341, 1995.[26℄ Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. E. S
hapire, and L. Sellie. EÆ
ient learningof typi
al �nite automata from random walks. Information and Computation, 138(1):23{48,10 O
tober 1997.[27℄ F. Ho�man, C. I
king, R. Klein, and K. Kriegel. A 
ompetitive strategy for learning a polygon.In Pro
eedings of the Eighth Annual ACM-SIAM Symposium on Dis
rete Algorithms, pages166{174, 1997.[28℄ Z. Kohavi. Swit
hing and Finite Automata Theory. M
Graw-Hill, se
ond edition, 1978.[29℄ V. B. Kudryavtsev, Sh. Ush
humli
h, and G. Kilibarda. On the behavior of automata inlabyrinths. Dis
rete Math. and Appli
ations, 3:1{28, 1993.[30℄ P. Panaite and A. Pel
. Exploring unknown undire
ted graphs. In Pro
eedings of the NinthAnnual ACM-SIAM Symposium on Dis
rete Algorithms, 1998.[31℄ C.H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoreti
al ComputerS
ien
e, 84:127{150, 1991. 27



[32℄ M. O. Rabin. Maze threading automata. Seminar Talk presented at the University of Californiaat Berkeley, O
tober 1967.[33℄ L. Reyzin. Traversal problems for 
ertain types of deterministi
 and non-deterministi
 au-tomata. Unpublished manus
ript, 1992.[34℄ R. Rivest and R. S
hapire. Inferen
e of �nite automata using homing sequen
es. Informationand Computation, 103(2):299{347, 1993.[35℄ R. Rivest and R. S
hapire. Diversity-based inferen
e of �nite automata. Journal of the Asso-
iation for Computing Ma
hinery, 43(3):555{589, 1994.[36℄ D. Ron and R. Rubinfeld. Exa
tly learning automata of small 
over time. Ma
hine Learning,27(1):69{96, 1997.[37℄ E. M. Royer and C.-K. Toh. A review of 
urrent routing proto
ols for ad ho
 mobile wirelessnetworks. IEEE Personal Communi
ations, 6(2):46{55, April 1999.[38℄ A.N. Shah. Pebble automata on arrays. Computer Graphi
s and Image Pro
essing, pages236{246, 1974.[39℄ L. Zhang. A survey of the problem of learning an unknown environment. Unpublishedmanus
ript, 1994.

28


