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AbstratExploring and mapping an unknown environment is a fundamental problem that is studiedin a variety of ontexts. Many results have foused on �nding eÆient solutions to restritedversions of the problem. In this paper, we onsider a model that makes very limited assumptionsabout the environment and solve the mapping problem in this general setting.We model the environment by an unknown direted graph G, and onsider the problem ofa robot exploring and mapping G. The edges emanating from eah vertex are numbered from`1' to `d', but we do not assume that the verties of G are labeled. Sine the robot has no wayof distinguishing between verties, it has no hope of sueeding unless it is given some meansof distinguishing between verties. For this reason we provide the robot with a \pebble" | adevie that it an plae on a vertex and use to identify the vertex later.In this paper we show: (1) If the robot knows an upper bound on the number of vertiesthen it an learn the graph eÆiently with only one pebble. (2) If the robot does not knowan upper bound on the number of verties n, then �(log logn) pebbles are both neessary andsuÆient. In both ases our algorithms are deterministi.
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1 IntrodutionThe problem of exploring and mapping an unknown environment is a fundamental problem withappliations ranging from robot navigation to searhing the World Wide Web. As suh, a largebody of work has foused on �nding eÆient solutions to variants of the problem, with restritiveassumptions on the form of the environment (f. [16, 15, 22, 31, 17, 35, 10, 6, 2℄). In this paper, weonsider a model that makes very limited assumptions about the environment, and give eÆientalgorithms to solve the mapping problem in this general setting.A natural way to model the problem is by a robot exploring a graph G = (V;E). The asein whih the graph has both undireted edges and labeled verties an be solved in time linear inthe number of edges by depth �rst searh. Other searh tehniques [30℄ improve on this boundby a onstant fator. Unfortunately, many exploration and mapping problems do not satisfy theseonstraints. For instane, if the graph represents a ity (having one-way streets) or the Internet, itontains direted edges. This alone does not make the problem substantially more diÆult, sinethe problem with direted edges and labeled verties an be solved by a greedy searh algorithmin time O(jVj � jEj). More sophistiated tehniques [22, 2℄ yield improved running times.Regardless of whether there are direted edges, a more daunting diÆulty arises if verties arenot uniquely labeled. This situation ould arise in appliations from the limited sensory apabilitiesof a robot or from the hanging appearane of verties. If no assumptions are made on the labelingof the verties (so that all verties may appear the same), then we need a way to mark vertiesin order to have any hope of mapping the environment [23℄. In this paper, we model a markingdevie by a pebble, whih an be dropped at a vertex and later identi�ed and retrieved. Thisnotion of marking is basi and an be simulated in many situations. Dudek, Jenkin, Milios, andWilkes [23℄ show that a robot provided with a pebble an map an undireted graph with unlabeledverties in time O(jVj � jEj), by repeatedly marking nodes and baktraking.1 However, withoutthe assumption that either the edges are undireted or the verties are labeled, the existene of aneÆient algorithm has remained open.The main ontribution of this paper is a general mapping algorithm whih eÆiently solves themapping problem without assuming unique labelings of the verties while allowing direted edges.The problem. Let G be a strongly-onneted direted graph over n verties, where the vertieshave no labels. The outdegree of eah vertex is d, where d is assumed to be known, and the outgoingedges at eah vertex are numbered from `1' to `d'. We �rst observe that idential outdegrees anbe assumed without loss of generality, beause verties v having outdegree smaller than d an betreated as if they have d� deg(v) additional self-loops. In fat, di�erenes in degrees an atuallyhelp our mapping algorithms, as disussed in Setion 3.5. It is a minimal assumption that the edgesemanating from eah vertex have labels. This is a loal (and weak) assumption, as opposed to aglobal assumption that the verties are labeled. Suh a method for distinguishing edges is essentialbeause otherwise it is unde�ned how to hoose or speify a path from one vertex to another, evenwhen provided with a map of the graph. The verties' indegrees are not assumed to be seen, sinethis too an only aid the robot in distinguishing between verties.The robot is plaed at an arbitrary starting vertex in G, and at eah step it traverses one of theedges emanating from its urrent vertex. The robot's task is to explore and map G eÆiently. Thatis, after walking a polynomial number of steps (in the size of the graph), it should output a graph1In addition to undireted edges and labeled verties, other simplifying assumptions that an be made about theenvironment inlude geometri struture, suh as planarity, having a small diameter, and more.2



bG isomorphi to G. However, as noted in [23℄, unless the robot has a tool to help it distinguishverties, it is ondemned to failure as a artographer. For example, a robot traveling alone annotdeide whether G onsists of a single vertex or many verties. A basi tool for the robot is a pebble.Now, as the robot explores G, it an mark a vertex by dropping the pebble, and it an identifythe vertex if it �nds the pebble later. Upon �nding the pebble, the robot an pik it up. However,beause the graph is direted, the robot annot retrae its steps to retrieve the pebble.Bender and Slonim [10℄ show that a robot given a pebble an explore and map any graph inexponential time. However, they prove that a robot annot map graphs in polynomial time usinga onstant number of pebbles, when it does not know a bound on n. This lower bound motivatestwo questions: (1) How many pebbles are needed to learn graphs eÆiently if n is known? (2) Howmany pebbles are in fat needed if n is unknown?In this paper we demonstrate that surprisingly few pebbles are needed in both ases. We show that� If the robot knows n (or an upper bound n̂ on n), it an learn the graph with only one pebblein time polynomial in n (respetively, n̂).� If the robot does not know n (or n̂), then �(log logn) pebbles are both neessary and suÆient.Here we think of there being a soure of pebbles that the robot has aess to, and the boundis on the total number of pebbles it takes from this soure in the proess of exploring andmapping the graph.In both ases our algorithms are deterministi. The lower bound of 
(log log n) for the ase ofunknown n holds even for probabilisti algorithms.Intuition. To understand the diÆulties faing the exploring robot, onsider the problem oftraversing a graph (i.e., visiting all verties and edges). Certainly, in order to map a graph, therobot must traverse it. One standard tehnique that omes to mind is random walks. Unfortunately,for direted graphs, the expeted time until a random walk visits all verties may be exponential inn and random walks are therefore ine�etive for traversing. (For undireted graphs the expetedtime is polynomial in n.)
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vn�1 vnv3v2v1 Figure 1: A ombination lok graph.Consider, for example, the graph in Figure 1. This graph is alled a ombination lok graph,beause in order to reah the rightmost node vn starting from the leftmost node v1, the robot mustdisover the unique sequene of edge labels (the ombination) extending from v1 to vn. Notiethat, with very high probability, a polynomial-time random walk only visits a logarithmi numberof verties in the ombination lok. More generally, for any polynomial-time (randomized) algorithmthat does not mark verties, there exists a ombination lok graph that (with high probability) thealgorithm will not fully explore. 3
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vm+3 vn�1 vnvm+1 vm+2Figure 2: A graph onsisting of two ombination loks.We now return to the problem of learning with a pebble. Although one (pebbleless) robotannot traverse ombination loks eÆiently, a robot with a pebble an learn them using randomwalks [10℄.2 However, onsider the graph shown in Figure 2. This graph onsists of two ombinationloks, where the end of one ombination lok leads into the beginning of the other. If the robotever drops its pebble in the top lok and travels into the bottom lok, then it is doomed. Therobot will be stuk in the bottom ombination lok without its pebble, and annot even traversethis lok, muh less learn it.This example illustrates the dilemma faing the robot as it explores the unknown graph G. Therobot must drop the pebble in order to learn new terrain, but when the robot drops the pebble, itruns the risk of losing it.Closed paths. To avoid losing its pebble, the robot must know how to return to it. Thus,before dropping the pebble at a vertex, the robot should know a losed path ontaining this vertex.However, suh a path may be diÆult to obtain. When n is unknown, the robot an only identifya losed path by dropping the pebble and �nding it again. Thus, we enounter a hiken-and-eggsituation. In order to safely drop the pebble, the robot must �nd a losed path. But in order to�nd a losed path, the robot must drop its pebble.Now we reognize the tangible bene�t of knowing n. By repeating the same pattern of edgesn times, the robot an enter a losed path without dropping its pebble. For example, if the robotrepeatedly follows edges labeled `1', it enters a yle after at most n moves. We refer to this asthe yling tehnique. One the robot knows a losed path, it an map the subgraph visited by thepath using the pebble. However, it is not lear how to harness this additional power. By repeatingone pattern of edges, the robot enters a losed path and an map one subgraph. Later, the robotmay repeat a di�erent pattern of edges, enter another losed path, and map a seond subgraph.Thus, the robot an map many subgraphs, but it is not obvious how to piee these maps together.This is beause the robot has little information about how the subgraphs overlap and interonnet.As a result, �nding losed paths permits the robot to drop the pebble, map a (small) portion of2More generally, graphs having high ondutane an be learned eÆiently [10℄.4



the graph and retrieve the pebble, but does not solve the mapping problem.In order to solve the mapping problem, we use an algorithmi tool that we all an orientingproedure. An orienting proedure allows our algorithms to onstrut a limited number of maps.Instead of trying to piee these maps together, the algorithm expands them separately until onemaps all of G. This expansion is possible beause by exeuting the orienting proedure, the robotan reognize partiular verties in the graph that are assoiated with the maps.Orienting proedures. Intuitively, an orienting proedure for a graph G leads the robot aroundthe graph and ultimately leaves the robot at a vertex it \reognizes". The robot reognizes thisvertex by observing the output produed by the proedure. More preisely, if the robot sees thesame output when exeuting the proedure from two di�erent initial verties, then both times itends up at the same vertex.3 The notion of orienting proedures is analogous to the notion of(adaptive) homing sequenes in automata theory [28℄, and it is losely related to the notion oftwo-robot homing sequenes introdued by Bender and Slonim [10℄. In the ontext of learning,homing sequenes were �rst applied by Rivest and Shapire [35, 34℄; they were used for learningenvironments modeled by �nite automata.We argue that every graph has a polynomial-time 1-pebble orienting proedure. (Later, wededue from our mapping algorithm that there is atually a polynomial-time universal 1-pebbleorienting proedure that works for all graphs of a given size.) We show that given an orientingproedure, the robot an build maps of subgraphs ontaining eah of the possible ending vertiesof the proedure. Sine the robot is not provided with an orienting proedure, it builds maps usinga partially-onstruted orienting proedure, whih it gradually improves. Eah map is assoiatedwith a di�erent output of the proedure. There is a diÆulty, however, in using a partial orientingproedure. Namely, the underlying graph may look di�erent from what the map assoiated withthe proedure's output suggests. As a result, the robot ould beome disoriented and lose thepebble.A entral idea in our algorithms is how to avoid losing the pebble while using misleadinginformation about the graph. The algorithms employ a two-tiered struture of the yling tehniquementioned above. At the lower level, the robot uses the yling tehnique to verify safely whetherthe underlying graph is onsistent with its map. If veri�ation fails the robot is able to improvethe partial orienting proedure. At the higher level, the robot uses a generalization of the ylingtehnique to arbitrary deterministi proedures (instead of edge-label patterns). This generalizedyling tehnique allows the robot to �nd losed paths that visit inreasingly large portions of G,until all of G is visited and mapped.Related work. The model we onsider is essentially the direted-graph analogue of the oneintrodued by Dudek, Jenkins, Milios and Wilkes [23℄. Their problem involves a robot with a singlepebble mapping an undireted graph with unlabeled verties. Their modeling of edge labels di�ersslightly from ours, in that the labeling of edges leaving a vertex an depend on the previous vertexvisited (whereas our edge labelings are absolute). However, they impose an additional ondition onthe edge labelings whih permits baktraking. Hene they are able to solve the mapping problemby repeatedly marking verties and baktraking. Furthermore, we present an extension of ouralgorithm (in Subsetion 3.6) that works in direted graphs when the labels of edges emanatingfrom a vertex may depend on the previous vertex visited. Thus, we solve a problem that is stritlymore general than the one treated by Dudek et al.3Atually, the robot may be at verties equivalent under automorphism, but we avoid this issue in the introdution.5



Subsequent work in the model of Dudek et al. inludes mapping algorithms that perform wellfrom the perspetive of ompetitive analysis [21℄, and eÆient solutions to related problems suhas \self-loation" [24℄ and \map veri�ation" [20℄.Our work is very losely related to the work of Bender and Slonim [10℄. Bender and Slonimshow that two ooperating robots an explore and map unknown direted graphs with unlabeledverties in polynomial time. The robots do not require any prior knowledge of the size of the graph.Bender and Slonim demonstrate that two robots are stritly more powerful than one robot withO(1) pebbles; they prove that one robot with a onstant number of pebbles annot (eÆiently)learn arbitrary direted graphs without knowing an upper bound on the number n of verties.They onjeture that the same holds when n is known; our results disprove this onjeture. OurO(log logn)-pebble algorithm (for unknown n) an be simulated by two robots. This yields adeterministi alternative to Bender and Slonim's randomized two-robot algorithm.4Most early work on graph exploration assumed that the robot is a �nite automaton. Rabin [32℄�rst proposed the idea of providing the automaton with pebbles to help it explore. This led to a bodyof work examining the number of pebbles needed to explore various environments [38, 16, 15, 5, 33℄.For a survey on automata exploring labyrinths, see [29℄. Deng and Papadimitriou [22℄ propose andstudy the problem of exploring an unknown direted graph having labeled verties. Albers andHenzinger [2℄ give improved algorithms for this problem. These works study exploration from theperspetive of ompetitive analysis. The results are stated in terms of the de�ieny of the graph(i.e., the minimum number of edges to be added to make the graph Eulerian). Betke, Rivest, andSingh [12℄ and together with Awerbuh [6℄ study the problem of pieemeal learning undiretedlabeled graphs. In the pieemeal learning problem the robot is required to return to its startingposition periodially.Rivest and Shapire [35, 34℄ study the problem of learning environments modeled by �niteautomata. Here, an environment is represented by a direted graph, in whih eah vertex hasone of two (or any onstant number of) possible labelings. The robot has learned the environment(automaton) when it an predit the label of any vertex (state) reahed on an arbitrary walk. Hene,if the automaton is irreduible, then the robot atually learns the topology of the underlying graph.Their algorithms (with the exeption of one, for permutation automata) rely on a teaher, andbuild on the work of Angluin [3℄. The teaher supplies ounterexamples to the robot's hypotheses.Variants of this problem that do not rely on a teaher are studied in [17, 26, 36, 25℄. We note thatDean et al. [17℄ apply a yling tehnique related to ours, but for di�erent purposes. For a surveyovering some of the results mentioned above among others, see [18℄.Exploring and navigating in geometri environments is studied extensively. A sample of papersinludes [7, 31, 19, 14, 8, 13, 11, 27, 4℄.Appliations. As mentioned earlier, algorithms for exploring and mapping unknown environ-ments have a variety of appliations. Examples are obtaining maps of existing networks (e.g.,omputer networks, sewage systems, unexplored aves) for whih there are no maps or the existingmaps are outdated (e.g., after some links have gone down on a omputer network). Another type ofappliation is obtaining maps of hanging environments, like the Internet or the World Wide Web.Due to the dynami and distributed nature of these systems, it is often infeasible to maintain aompletely updated map of them. However, obtaining aurate maps of small parts of the networkis still useful. Another example of a hanging environment omes from ad ho mobile wireless net-works [37℄. These are networks in whih the routers are mobile devies, and the topology depends4In light of our results and those of Bender and Slonim, we see that a friend is only worth log log n pebbles.6



on whih devies are within range of eah other. If the network does not hange too rapidly, a fastexploring algorithm ould be used to obtain oasional snapshots of the network. We emphasizethat no exat implementation of our algorithms will satisfy these appliations. Even for a modestnumber of nodes, our algorithms are too time onsuming to be immediately pratial. However,the underlying ideas of our algorithms ould prove useful in these appliations when the nodes arenot perfetly distinguishable and some of the links are unidiretional.We also note that the problem solved in this paper is a generalization of the \twisty little pas-sageways, all alike" problem made famous in the 1970's omputer game \Colossal Cave Adventure"by Crowthers and Woods (f., [1℄).2 PreliminariesLet G = (V;E) be the unknown direted graph the robot has to explore and map. Suppose thatthe graph is strongly onneted and that all the verties of G are unlabeled and have (the same)outdegree d. Let the edges emanating from eah vertex be labeled by distint indies in f1; : : : ; dgand denote an edge from u to v with label � by hu; �; vi. (In Setion 3.6, we treat a more generalmodel in whih the edge labeling an depend on the previous vertex visited.) Let n = jVj and letn̂ be an upper bound on n.The exploring robot starts at an arbitrary vertex of G. The robot has a single pebble.5 Ateah time step, the robot may traverse any outgoing edge from the vertex it is at. In addition, therobot may drop the pebble at the vertex or pik up the pebble that it has previously dropped at thevertex.We often use the term map to refer to a graph M = (VM;EM) in whih eah vertex has outdegreeat most d and the edges leaving eah vertex are labeled by distint indies i1; : : : ; ideg(v) 2 f1; : : : ; dg.We say a map M = (VM;EM) is isomorphi to G (denoted, M �= G) if there exists an isomorphismbetween the two graphs that preserves edge labels. Namely, there exists a one-to-one and ontomapping f : VM ! V, suh that the following holds: For every two verties w and z in VM, thereis an edge labeled � from w to z in M, if and only if there is an edge labeled � from f(w) tof(z) in G. Let w0 and v0 be distinguished verties in M and G, respetively. We use the notation(M; w0) �= (G; v0) to say that there exists an isomorphism f between M and G suh that f(w0) = v0.We say that map (M; w0) is onsistent with (G; v0) if there exists a subgraph G0 of G ontainingv0, suh that (M; w0) �= (G0; v0).We say that the robot at vertex v in G has learned the graph G when it outputs a graph bGtogether with a vertex v̂ in bG suh that (bG; v̂) �= (G; v). Sine in eah time step the robot traversesa single edge, the running time of the algorithm is the number of moves the robot makes. Thoughomputation time is ignored in this de�nition, we note that the total omputation time of ouralgorithms is polynomial in the upper bound n̂ on the size of the graph.3 Learning with a Single PebbleIn this setion we present our algorithm for eÆiently learning any graph using a single pebble andknowledge of n̂. We start (in Setion 3.1) by desribing an important subroutine of our algorithm,whih we all path ompression. The robot exeutes this subroutine (using the pebble) to mapsubgraphs of G that are visited by losed paths known to the robot. In Setion 3.2 we show that5In Setion 4 we onsider a robot having a soure of pebbles.7



the robot an learn G if we assume the robot has aess to a return-path orale for G. The robot anquery this orale from any vertex in the graph and reeive a sequene of edges that leads it bak toits start vertex. In the following setions we progressively weaken this assumption. In Setion 3.3we formally de�ne an orienting proedure and desribe how to devise suh a proedure based onproedures for distinguishing between verties. In Setion 3.4 we replae the assumption that therobot has aess to a return-path orale with the assumption that it knows an orienting proedurefor G. Finally, in Setion 3.5 we show how the robot an use knowledge of n̂ to explore and learnthe graph while building an orienting proedure on its own. Our algorithm and the subroutines ituses are desribed in pseudoode in Figures 4, 5, 6 and 7 at the end of this setion.3.1 Compressing Closed PathsHere we present an essential building blok of our algorithms. Let the robot be at vertex v in G,and assume the robot knows a losed path in G that starts (and ends) at v. The path visits asubgraph Gpath of G. Namely, Gpath onsists of all verties and edges traversed along the path.Sine the path may visit the same verties several times, Gpath is not neessarily a simple yle.In the path ompression proedure the robot uses the pebble to identify repeated verties on thepath and onstrut a graph M isomorphi to Gpath.More preisely, let path = �1; : : : ; �k be a sequene of edge labels orresponding to a losedpath starting (and ending) at v. Let u0; u1; : : : ; uk be the verties in G visited along the path,where u0 = uk = v. The robot maintains a list of length k + 1 where ultimately the i-th entryin the list will identify the i-th vertex ourring on the path in G (where i ranges from 0 to k).Initially, the list is (w0;�; : : : ;�; w0), where � means \unidenti�ed." The goal of the robot is toreplae all \unidenti�ed" entries with vertex names.The algorithm proeeds in at most n stages, eah starting and ending with the robot and thepebble at v. In the 0-th stage, the robot drops the pebble at vertex v and follows the entire losedpath; for eah i suh that the robot observes the pebble after i steps (i.e., at the vertex reahed bytraversing �1; : : : ; �i), the robot replaes the i-th entry in the list with w0. In the j-th stage (forj = 0; 1; : : :), let t be the smallest index suh that the t-th entry in the list is �. The robot traverses�1; : : : ; �t, and after the t-th step drops the pebble at the vertex reahed. Then it replaes the t-thentry with wj (i.e., a new vertex name). As in the �rst stage, it traverses the rest of the losedpath (and returns to v). For eah i suh that the robot observes the pebble after i steps (ountingsteps from when it left v), the robot replaes the i-th entry in the list (whih must be a �) withwj . After returning to v, the robot follows path one more to pik up the pebble.The algorithm maintains the property that the same label wj appears in plaes k and k0 in thelist if and only if the k-th and k0-th verties on the losed path in G are the same. When the list isompleted, the robot onstruts a map M in aordane with the list and the edge labels in path.Namely, the verties of M are the verties fwjg in the list, and if wj and wj0 appear in plaes i andi + 1 in the list, then there is an edge hwj ; �i+1; wj0i in M. Pseudoode for this path ompressionproedure is given in Figure 4.Lemma 1 Let v be a vertex in G and path be a sequene of edge labels that orresponds to alosed path in G starting and ending at v. Let Gpath be the subgraph of G visited by path. Thepath ompression proedure runs in time O(n � jpathj) and outputs a graph M suh that (M; w0) �=(Gpath; v). 8



3.2 Learning with a Return-Path OraleIn this setion, we assume that the robot is given aess to a return-path orale. Namely, at anytime step it an query the orale and reeive a sequene of edge labels that returns the robot to apartiular vertex v0.We show how the robot an learn G by querying the orale and using repeated appliations ofthe path ompression proedure. The return-path algorithm proeeds in at most n�d = jEj stages.In eah stage the robot learns at least one new edge in G. In the i-th stage, the robot onstrutsa strongly onneted map Mi having a designated vertex w0. The initial map, M0, onsists onlyof the vertex w0 (and no edges). The �nal map is the output, bG, of the algorithm. The algorithmmaintains the invariant that (Mi; w0) is onsistent with (G; v0) (where onsisteny is de�ned inSetion 2). The algorithm assoiates a losed path path(Mi) with eah map Mi. This path startsand ends at w0 and passes through all verties and edges in Mi. Sine Mi is strongly onneted,the robot an easily ompute suh a path of length O(n2d).We say that a vertex w in a map Mi is �nished if it has d outgoing edges in Mi. Otherwise it isun�nished . In the (i+1)-th stage the algorithm augments the map Mi with a new edge emanatingfrom an un�nished vertex in Mi and perhaps other verties and edges. This is done as follows. Letw be an un�nished vertex in Mi and let � be the label of a missing edge from w. Let explore(Mi)be a sequene of edge labels onneting w0 to w, onatenated with �. The robot performs thewalk orresponding to explore(Mi) in G starting from v0. It then queries the return-path orale.Let the return path that the orale provides be alled reti. The robot returns to v0 using the pathreti. Then it ompresses the losed path pathi+1 = path(Mi)Æexplore(Mi)Æreti. The algorithmlets Mi+1 be the resulting map. By Lemma 1, we know that (Mi+1; w0) �= (Gpathi+1 ; v0). Sinepathi+1 ontains path(Mi), Mi+1 ontains Mi as a subgraph; by the hoie of w and �, Mi+1 alsoontains at least one new edge (the edge labeled � going out of w).Note that the time omplexity of this algorithm an be improved. However, the above formu-lation serves as a basis for subsequent algorithms (that do not rely on a return-path orale). Fromall the above, we obtain the following lemma.Lemma 2 Let ` be the length of the longest return path provided by the orale. The return-pathalgorithm runs in time O(n2d � (n2d+ `)) and outputs a map bG isomorphi to G.3.3 Orienting ProeduresIntuitively, an orienting proedure for a graph G guides the robot around the graph and ultimatelyleaves the robot at a vertex it \reognizes." An orienting proedure need not lead the robot bak to apartiular vertex, so assuming an orienting proedure is weaker than assuming a return-path orale.Before we de�ne an orienting proedure formally, we explain the notion of equivalene betweenverties. We say that two verties u and v in G are equivalent, denoted u � v, if (G; u) �= (G; v),i.e., there exists an automorphism of G mapping u to v.De�nition 1 An orienting proedure op for a graph G has the following properties.1. It determines the robot's ations (i.e., what edge labels it traverses and when it drops and piksup the pebble).2. The robot starts and ends with the pebble, regardless of the starting vertex.3. The proedure is deterministi. 9



4. The proedure returns an output. The output is determined by the steps at whih the robot seesthe pebble.(Notie that beause the proedure is deterministi, every time the robot exeutes the orientingproedure starting from any �xed vertex v in G, it returns the same output and �nishes at thesame �nal vertex. Thus, an orienting proedure has at most n outputs.)5. Let output(op; v) be the output of the proedure op when started at vertex v, and letfinal(op; v) be the �nal vertex reahed. An orienting proedure guarantees that for every uand v in G output(op; u) = output(op; v) =) final(op; u) � final(op; v).(Note that the onverse is not guaranteed. Namely, the proedure may end at the same vertexwith two di�erent outputs.)We show how to build an orienting proedure using distinguishing proedures for inequivalent ver-ties in G.De�nition 2 Let u and v be two inequivalent verties in G. A distinguishing proedure dpu;v foru and v has the following properties.1{4. As in De�nition 1.5. output(dpu;v; u) 6= output(dpu;v; v).Notie that a distinguishing proedure di�erentiates between starting verties whereas an orientingproedure di�erentiates between ending verties. In addition, a distinguishing proedure di�eren-tiates between a single pair of starting verties whereas an orienting proedure di�erentiates amongall possible ending verties.Every orienting proedure op that we onsider an be viewed as a tree Top in the followingsense: Eah leaf in Top orresponds to a di�erent output of op. The internal nodes of Top aredistinguishing proedures. The branhes emitting from a node are labeled by the possible outputsof the distinguishing proedure. Leaves are labeled by the sequene of outputs on the branhesleading from the root to the leaf. For an illustration, see Figure 3. Consider all verties in G thatthe robot may end at when op terminates with output A at a leaf �A; denote this set of vertiesby reah(A). Property 5 ditates that all verties in reah(A) are equivalent.We an build an orienting proedure of the above type in stages, extending the tree in eah stage.Initially we let our andidate orienting proedure op be the empty proedure, i.e. the robot makesno ations, and the tree Top has a single leaf. Assume indutively that op preserves properties1{4 and has k possible outputs (so that Top has k leaves). If op is not yet a omplete orientingproedure, then for some output A orresponding to leaf �A there exist inequivalent verties u andv in reah(A). Let dpu;v be a distinguishing proedure for u and v. We replae the leaf �A withdpu;v. Sine output(dpu;v; u) 6= output(dpu;v; v), the new tree has at least k+1 leaves. Therefore,the modi�ed op has at least k + 1 outputs. Sine an orienting proedure has at most n di�erentoutputs, we obtain an orienting proedure after at most n � 1 stages.6 It an be shown that forevery pair of inequivalent verties there exists a distinguishing proedure with running time O(n3d).Hene, every graph has an orienting proedure with running time O(n4d). In Setion 3.5, we exhibitan algorithm in whih the robot devises distinguishing proedures and builds an orienting proedurewhile exploring the graph.76For the purposes of this onstrution, it atually suÆes to relax the de�nition of a distinguishing proedure toallow either output(dpu;v; u) 6= output(dpu;v; v) or �nal(dpu;v; u) � �nal(dpu;v; v).7However, our algorithm may terminate (orretly) before the orienting proedure is omplete.10
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Figure 3: An illustration of Top assuming distinguishing proedures have two possible outputs (whih isnot neessarily true but is the ase in our usage). Eah dp denotes a distinguishing proedure, and out1 andout2 are the two possible outputs. The orienting proedure begins with an exeution of dp1. Dependingon the output (out1 or out2) either dp2 or dp3 is next exeuted. Eah leaf orresponds to the sequeneof outputs labeling the edges on the path from the root to the leaf. The leaf l1 for example orresponds tothe output out1 : : : out1. Sine op is an orienting proedure, no matter where it is started, if the sequeneof distinguishing proedures on the path from the root to l1 is exeuted and the outputs out1 : : : out1 areobserved, then the verties reahed are equivalent.3.4 Learning with an Orienting ProedureIn this setion we assume that the robot is provided with an orienting proedure op for the graphG. For ease of presentation, we assume throughout this setion that the graph has no nontrivialautomorphisms (and hene no verties are equivalent). This assumption an easily be removed hereand is not used in later setions.By the above assumption, for eah possible output A, the set reah(A) (de�ned in Setion 3.3)ontains a single vertex, whih we denote vA. With eah output A, the algorithm assoiates a mapM(A), whih is onstruted as the algorithm proeeds. The map M(A) ontains a designated vertexw0(A). The algorithm ensures that eah M(A) is strongly onneted and maintains the followinginvariant:Invariant 1 (orienting proedure): For every output A of op, (M(A); w0(A)) is onsistent with(G; vA).Learning proeeds in at most n2d phases. In eah phase, some map M(A) is augmented withat least one new edge. We say that a map is �nished if all its verties are �nished (as de�ned inSetion 3.2). The algorithm terminates when some map M(A) is �nished, in whih ase it outputs11



M(A). We use the shorthand path(A) to represent path(M(A)) and explore(A) to representexplore(M(A)), where path(�) and explore(�) were de�ned in Setion 3.2. Let Gpath(A) be thesubgraph of G visited by path(A) when starting from vA. In eah phase the algorithm uses theorienting proedure to �nd a losed path satisfying the following:1. For some output A, the path starts and ends at vA.2. The path visits all of Gpath(A) and at least one additional edge.The robot ompresses this losed path and replaes M(A) with the resulting map.To �nd a losed path satisfying the above properties the robot does the following. Startingfrom its urrent vertex, it exeutes the orienting proedure, observes its output A1, and followspath(A1) Æ explore(A1). It then exeutes the orienting proedure again, observes its output A2,and follows path(A2) Æ explore(A2). The robot repeats the above until it observes an output Ajthat it has previously seen (i.e., Aj = Ai for some i < j). Note that some output must reappearafter at most n + 1 repetitions (though the robot need not know n). At this point the robothas disovered a losed path that starts and ends at vAj . Furthermore, this losed path startswith path(Ai) Æ explore(Ai), and hene visits all of Gpath(Ai) and at least one additional edge.Informally, sine the robot does not know to whih vertex it will return, it \prepares" all vertiesvAi for the possibility. It does so by following path(Ai) Æ explore(Ai) from eah vAi .Let T(op) be the running time of op. Sine for every map M(A), jpath(A)j =O(n2d), and jexplore(A)j � n, the length of the losed path found is O(n � (T(op) + n2d)). ByLemma 1, the losed path an be ompressed in time O(n2 �(T(op)+n2d)). We obtain the followinglemma.Lemma 3 A robot with a single pebble an learn any strongly onneted graph G using an orientingproedure op for G in time O(n4d � (T(op) + n2d)).3.5 Learning the Graph while Building an Orienting ProedureIn this setion we show that a robot having a single pebble an eÆiently explore and map anystrongly-onneted direted graph if it knows an upper bound n̂ on the size of the graph. Reallthat if the robot does not know n̂ then this task is impossible. The struture of the algorithmpresented here is similar to the struture of the algorithm desribed in Setion 3.4. Sine the robotdoes not have a real orienting proedure it uses a andidate orienting proedure op. In eah phase,for some output A of op the algorithm either (1) replaes M(A) with a new, larger M(A) or (2)disovers a distinguishing proedure dpu;v for some inequivalent verties u and v in reah(A).In the latter ase it improves op using dpu;v (as desribed in Setion 3.3). Sine the improvedop will never again output A, the algorithm disards M(A). The algorithm terminates whensome M(A) is �nished, in whih ase it outputs M(A). We show that the algorithm maintains thefollowing invariant, whih is a relaxation of Invariant 1.Invariant 2 (andidate orienting proedure): For every output A of op there exists a vertexu 2 reah(A) suh that (M(A); w0(A)) is onsistent with (G; u).In partiular this invariant ensures that the �nished map is isomorphi to G.In Setion 3.4 we had the property that reah(A) onsisted of a single vertex vA. This provideda method for the robot to identify losed paths that start and end at some vA. Here, this methoddoes not work sine reah(A) may ontain several verties (equivalent or inequivalent). Therefore,12



the robot ould observe output A twie without being on a losed path. The robot's knowledge ofn̂ ombined with the following observation suggests a remedy for this problem | that is, how to�nd a losed path that starts and ends at a vertex u in some reah(A).Observation 1 Let f : V ! V be any deterministi funtion. Then for every vertex v 2 V, thesequene v; f(v); f(f(v)); : : : beomes yli within the �rst n appliations of f .Suppose the robot repeats the following: it exeutes op, observes its output A, and followspath(A) Æ explore(A). Then after at most n̂ repetitions it has entered a yle. We later showhow after another 2n̂ repetitions it an �nd a losed path that starts and ends at a vertex u inreah(A), for some output A.Suppose the robot runs the algorithm from the previous setion with the enhanement above.The robot an now �nd losed paths, but the algorithm still has a serious aw. Consider a mapM(A) that results from ompressing a losed path that starts and ends at u 2 reah(A). Assumethat in a subsequent stage in the algorithm, the robot obtains a new M(A) by ompressing a losedpath that starts and ends at u0 2 reah(A). If u0 � u then the argument that the new M(A) islarger than the old M(A) holds as before. However, if u0 6� u then we an laim nothing about thesize or struture of the new M(A). This is beause (old M(A); w0(A)) may not be onsistent with(G; u0). Hene, the argument that the new M(A) is bigger than the old M(A) is no longer valid.This motivates the need for a map veri�ation proedure.Map Veri�ation. Suppose the robot is at a vertex v in some reah(A). We would like aproedure to verify that (M(A); w0(A)) is onsistent with (G; v). This is not diÆult if we allowthe robot to lose its pebble. In partiular the robot hypothesizes that path(A) orresponds to alosed path in G starting at v. Then the robot attempts to ompress path(A). If path(A) is nota losed path starting from v and the robot loses the pebble, then learly (M(A); w0(A)) is notonsistent with (G; v). Otherwise, the robot ompares M(A) to the map resulting from ompressingthe losed path.Sine we annot allow the robot to lose the pebble (or else it will not be able to learn thegraph), we must modify the above proedure. The new proedure, desribed below, performs aweaker form of veri�ation. We later show that it nonetheless meets the needs of the algorithm.1. The robot starts from v and follows path(A) n̂ times.Clearly, if (M(A); w0(A)) is onsistent with (G; v), then the robot ends at v. However, even if(M(A); w0(A)) is not onsistent with (G; v) then by Observation 1 we know that the robot hasentered a yle.2. Next the robot drops the pebble at its urrent vertex v0 and follows path(A) one.� If the pebble is not at the vertex reahed, then veri�ation fails. To retrieve the pebble, therobot ontinues repeating path(A) until it �nds the pebble.� Otherwise, the robot ompresses path(A), whih it has now identi�ed as a losed path,starting from v0. If the resulting map di�ers from M(A) then veri�ation fails. Otherwiseveri�ation passes.We refer to this proedure as ver(A). Pseudoode for ver(�) an be found in Figure 6.Note 2 There are two situations in whih ver(A) passes:13



1. (M(A); w0(A)) is onsistent with (G; v), or2. (M(A); w0(A)) is not onsistent with (G; v), but (M(A); w0(A)) is onsistent with (G; v0).If veri�ation fails, then beause of Invariant 2 ver(A) is a distinguishing proedure. This pro-edure distinguishes between v and the vertex u in reah(A) suh that (M(A); w0(A)) is onsistentwith (G; u). Sine for every map M(A), the length of path(M(A)) is O(n2d), the running time ofver(A) is O(n̂ � n2d).We note that the map veri�ation problem is also onsidered in [24, 20℄. However, those worksinvolve undireted graphs, so the problem of losing the pebble does not arise. We are now ready todesribe the �nal mapping algorithm.The Algorithm. The algorithm proeeds in at most 2n2d phases. Initially, its andidate orientingproedure op is the empty proedure (as desribed in Setion 3.3). Eah phase onsists of at most4 stages:1. To enter a losed path, the robot repeats the following n̂ times.(�) The robot exeutes op and obtains an output A. If this is the �rst appearane of output Athen the algorithm reates a new map M(A) onsisting of a single vertex w0(A). Next therobot exeutes ver(A) to verify the map M(A).� If ver(A) fails, then ver(A) is a distinguishing proedure between a pair of verties inreah(A). The robot uses this distinguishing proedure, whih outputs pass or fail, toimprove op (as desribed in Setion 3.3). Thus, the output of op is in fpass; failg�.Beause of the extension to op, op will never again output A, so the robot disardsM(A). The robot stops repeating (�), skips Stages 2{4 (desribed below), and goes tothe next phase with the improved op.� Otherwise (i.e., if ver(A) passes), the robot follows explore(A). Note that by de�nitionof ver(A), the robot follows explore(A) starting from a vertex u suh that (M(A); w0(A))is onsistent with (G; u).The subroutine (�) an be viewed as a funtion taking the vertex at whih the robot starts tothe vertex at whih it �nishes. By Observation 1, we know that after n̂ repetitions of (�), therobot enters a losed path onsisting of some number of exeutions of (�).2. The aim of this stage is to determine the losed path the robot has entered.8 To determinethis losed path, the robot repeats (�) another 2n̂ times. For i = 1; : : : ; 2n̂, let Ai be theoutput observed in the i'th repetition of (�) and let Li be the sequene of edge labels traversed.The robot �nds the smallest p suh that the sequene of pairs (A1;L1); : : : ; (A2n̂;L2n̂) onsistsentirely of periodi repetitions of its last p entries. More preisely, for all i, (A2n̂�i;L2n̂�i) =(A2n̂�(i mod p);L2n̂�(i mod p)). Let seq = (L2n̂�p+1; : : : ;L2n̂) be the sequene of edge labels inthese last p entries. By the minimality of p, the losed path onsists of one or more repetitionsof seq. To determine the losed path, the robot drops the pebble and repeatedly traverses sequntil it �nds the pebble at the end of one of its traversals of seq. It then retrieves the pebblefor future use.8Note that the robot annot simply drop the pebble and repeat (�) until it sees the pebble again beause therobot needs the pebble to exeute (�). 14



3. The robot proeeds along the losed path found above until it reahes the end of any exeutionof op, say with output A. The robot then ompresses the losed path and replaes M(A) withthe resulting map.4. If the new M(A) is �nished then the algorithm outputs (the new) M(A) and terminates.Pseudoode for this algorithm and subroutines used by the robot are provided in Figures 4, 5, 6and 7. We now proeed to analyze the algorithm. As noted above, if ver ever fails in Stage 1,the robot an improve op. If all veri�ations pass, by Lemma 1 we know that in eah phase(new M(A); w0(A)) is onsistent with (G; u) for some u 2 reah(A), and thus Invariant 2 ispreserved. Beause ver(A) is part of the losed path and by Note 2, the new M(A) ontains theold M(A) as a subgraph. Beause explore(A) is part of the losed path (and is followed from u)the new M(A) also ontains at least one new edge.The algorithm terminates after at most 2n2d phases beause in eah phase the algorithm aneither improve the andidate orienting proedure or enlarge a map. More preisely, sine theandidate orienting proedure an be improved at most n � 1 times, at most n � 1 maps aredisarded. At any time the algorithm maintains at most n maps, and so the algorithm builds atmost 2n� 1 maps. Sine eah map ontains at most n�d edges, the bound on the number of phasesfollows. Note that the algorithm may terminate before ompleting the orienting proedure.The running time of eah phase is the sum of (1) the time to �nd a losed path, and (2) therunning time of the ompression proedure. Item (1) is O(n̂) times the sum of (a) the runningtime of the andidate orienting proedure, (b) the running time of the veri�ation proedure, and() the length of the exploration sequene (whih is at most n). Reall that the running timeof the veri�ation proedure is O(n̂n2d). Also reall that veri�ation proedures (that fail) aredistinguishing proedures for improving the andidate orienting proedure. Therefore, we anbound the running time of any andidate orienting proedure by n � O(n̂n2d) = O(n̂n3d). Thus,Item (1) amounts to n̂ �O(n̂n3d) = O(n̂2n3d). By Lemma 1, Item (2) is bounded by n �O(n̂2n3d) =O(n̂2n4d). Sine there are at most 2n2d phases, we obtain the following Theorem.Theorem 1 A robot having a single pebble an learn any strongly onneted graph given an upperbound n̂ on the size of the graph in time O(n̂2n6d2).Note that the fat that the running time is stated as a funtion of n (and not only n̂) does notontradit the fat that the algorithm does not know n. The algorithm terminates when it has aomplete map, and only the analysis ensures the time bound as a funtion of n (as well as n̂ andd). We observe that although our mapping algorithm may terminate before the orienting proedureit devises is ompleted, the algorithm as a whole an be viewed as an orienting proedure thatoutputs a ompleted map and a designated vertex. Thus, we have:Corollary 4 There is a universal one-pebble orienting proedure that works for all graphs of out-degree d with at most n̂ verties and runs in time poly(n̂; d).Using additional knowledge. As noted in the introdution, we have tried to make as fewassumptions on the graph as possible. In partiular, we have not assumed that the verties arelabeled in any way, while we have assumed the outdegrees of all verties are the same, and thatthe indegrees are not observed. In ase any additional distinguishing information is provided, the15



robot an use it to its bene�t. For example, suppose the outdegrees of the verties vary, where theoutdegree of eah vertex an be obtained at the vertex. Then this information an be inorporatedinto the orienting proedure. In partiular, when there is no distinguishing information, then theoutput of the proedure is determined only by the step(s) in the proedure in whih the pebble(whih was previously dropped) is observed. If some verties have di�erent outdegrees than others,then the output of the orienting proedure an be determined also by the degrees of the vertiesobserved during its exeution.ompress(�1; : : : ; �k)/* �1; : : : ; �k orresponds to a losed path from the urrent vertex. This proedure outputs amap of the subgraph orresponding to the edges traversed by this path. */1. for i = 0; : : : ; k do: List [i℄ �.2. j  0.3. while 9i s.t. List [i℄ = � do(a) t minf0 � i � k : List [i℄ = �g.(b) traverse �1; : : : ; �t.() drop pebble.(d) List [t℄ wj .(e) for i = t+ 1; : : : ; k doi. traverse �i;ii. if pebble found then List [i℄ wj.(f) follow �1; : : : ; �k and pik up the pebble on the way.(g) j  j + 1.4. return map de�ned by List and �1; : : : ; �k (where w0 is distinguished).Figure 4: Subroutine ompress.explore(M,w0)/* M is a (strongly onneted) map, w0 a distinguished vertex in M. This proedure (determin-istially) traverses an edge that is unmapped in M. */1. traverse a sequene of edge labels that indues a path in M from w0 to some un�nishedvertex w (i.e., w has outdegree smaller than d in M). (It is easy to deterministially �ndsuh a path of length � n.)2. traverse an edge label orresponding to an unmapped edge from w in M.Figure 5: Subroutine explore.3.6 An Extension to Relative Edge LabelsThe graph model treated in the previous setions aptures a mapping problem for a very generallass of environments. However, it does assume that the labels on the edges inident to a vertex are�xed. Although mapping would be impossible without some level of onsisteny in the labeling of16



ver(M,w0)/* M is a (strongly onneted) map, w0 a distinguished vertex in M. This proedure veri�es ifthe robot eventually reahes (or is urrently at) a subgraph isomorphi to (M; w0). */1. let path be a sequene of edge labels that indues a losed path starting and ending atw0 traversing all edges in M. (This an be found using the straightforward deterministiO(n2d) algorithm that simply onatenates paths to and from all edges in M.)2. follow path n̂ times.3. drop pebble.4. follow path one.5. if pebble found at vertex reahed then(a) pik up pebble.(b) (M0; w00) ompress(path).() if (M0; w00) is isomorphi to (M; w0) then return pass.(d) else return fail.6. else(a) repeatedly follow path until pebble is found, and pik up pebble.(b) return fail. Figure 6: Subroutine ver.edges, we an onsider a relaxed model in whih the loal labeling of edges leading out of a vertexan be a funtion of the previous vertex in the robot's path. In this setion, we sketh how ouralgorithm an be adapted to this setting as well.The new model. A map M onsists of a set of verties V, and for eah vertex v, a set of atmost dn triples (u; �;w). Suh a triple indiates the existene of an edge leading from v to w,whose label is � when v is entered using an edge from u. (So w is determined by v, u, and �.)For ease of presentation, we assume that for every v, there are either 0 or d triples of the form(u; �; �) for eah possible u, but, as in the original model, allowing the outdegree to be a funtion ofu and v only makes the problem easier. This model is now a strit generalization of the model ofDudek et al. [23℄, who impose an additional ondition on the graph and edge labelings that enablesbaktraking.9For example, in an environment modeling a ity, the verties might orrespond to intersetionsand the edge labels might be \turn left", \turn right", and \ontinue straight." Clearly, the vertexto whih one of these labels leads depends on the diretion from whih the urrent vertex wasentered.9Dudek et al. desribe their model as allowing the labeling of edges leaving a vertex to depend on the edgefrom whih the vertex is entered. However, they allow at most one edge between every two verties, and hene thedependene on the edge entered translates to a dependene on the previous vertex visited. We allow multiple edgesand hene make the dependene on the previous vertex.
17



Algorithm Explore-and-Map/* Map graph given one pebble and an upper bound n̂ on number of nodes. */1. op empty proedure.2. set of maps  empty.3. while no map is ompleted do(a) update-op false.(b) repeat n̂ times or until update-op = true:i. exeute op and let A be the output observed.ii. if no map orresponds to output A then reate new map M(A) with single vertexw0(A).iii. if ver(M(A); w0(A)) = pass then explore(M(A); w0(A)).iv. elseA. use ver(M(A); w0(A)) to improve op by replaing leaf of Top that orre-sponds to A with internal node orresponding to ver(M(A); w0(A)).B. remove M(A) from set of maps.C. update-op  true.() if update-op = falsei. for j = 1; : : : ; 2n̂ do /* sine entered yle in Step 3b, will not need to reate newmaps and the veri�ations below always pass */A. exeute op and let Aj be the output observed.B. ver(M(Aj); w0(Aj)).C. explore(M(Aj); w0(Aj)).D. Let Lj be the sequene of edge labels traversed in the above steps A{C.ii. �nd smallest p suh that for all i, (A2n̂�i;L2n̂�i) = (A2n̂�(i mod p);L2n̂�(i mod p)).iii. let seq = (L2n̂�p+1; : : : ;L2n̂).iv. drop pebble and repeat traversing (all of) seq until pebble found and retrieved.let path = �1; : : : ; �k be the losed path found.v. proeed along path until reah end of subsequene of edges orresponding to anexeution of op. let the output orresponding to this exeution be A, and letthe last edge taken be �i.vi. replae (M(A); w0(A)) with ompress(�i+1 : : : �k; �1 : : : �i).4. output ompleted map. Figure 7: The algorithm
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The new algorithm. We de�ne a funtion f taking maps M in our new model to maps f(M)in our previous model, where edge labels are unique. There is a vertex in f(M) orresponding toeah pair of verties (u; v) onneted by some edge in M. Then, for eah triple of the form (u; �;w)assoiated with vertex v in M, there is an edge labeled � from (u; v) to (v; w) in f(M). Clearly,f is eÆiently omputable and injetive. Let G denote the omplete map of the unknown graph;then f(G) has exatly dn nodes. Our objetive now will be to use the algorithm presented in theprevious setion to learn f(G), sine f(G) is in our previous model. However, a diret appliationour mapping algorithm would require dropping the pebble on verties of f(G), whereas the robot isonly allowed to drop the pebble on verties of G. Below, we sketh how, with slight modi�ations,our mapping algorithm an be implemented even with this restrition.We �rst observe that the ompress proedure, if given a sequene of edge labels that induesa losed path in f(G), an be implemented preisely as before. Referring to Figure 4, we see thatList and the sequene of edge labels �1; : : : ; �k ompletely determine a map M suh that f(M) isstrongly onneted. We modify the proedure only slightly, so that instead of returning a singlevertex w0, it returns the pair (List [k � 1℄; w0) as the distinguished vertex of f(M).Now, every path the robot takes in G indues a path in f(G). Sine f(G) has at most dn nodes,we obtain the following adaptation of Observation 1 to this setting:Observation 3 Let p be any deterministi proedure for the robot. Let p(u; v) be the pair ofverties (u0; v0) suh that if the robot begins at node v having entered from node u, then apply-ing p leads it to vertex v0, entering from u0. Then for every vertex (u; v) 2 f(G), the sequene(u; v); p(u; v); p(p(u; v)); : : : beomes yli within the �rst dn appliations of p.Thus, we rede�ne n̂ to be d multiplied by our upper bound on the number of verties. Now, byObservation 3, we an be sure that after n̂ appliations of any deterministi proedure, the robotwill enter a yle not only in G, but in f(G), as well.The only diÆulty that remains in using our original algorithm to map f(G) is that if the robotdrops its pebble, follows some path, and �nds the pebble, we annot onlude the robot has found ayle in f(G) (even though it has found a yle in G). In order to do this, it must hek that somepair (u; v) ours again after following the path. There are two plaes in the original algorithmwhere this might be a problem: one in the ver proedure, and one in the main algorithm. Wedisuss the remedy for eah ase now.In the ver proedure, given in Figure 6, on input a map M and distinguished vertex (a; b) inf(M), the robot follows a partiular sequene of edge labels alled path n̂ times. (With our newde�nition of n̂, we know the robot is in a yle in f(G) after this.) Now, the robot must �rst hekto see if (a single exeution of) path indeed spei�es a yle in f(G) from its urrent loation. Wenow desribe a proedure to do this. The proedure assumes that there exists some m � n̂ suhthat pathm is a yle in f(G) from the urrent loation of the robot (where pathm denotes pathonatenated with itself m times); this is indeed the beause the robot has just exeuted path n̂times.hek(path): The robot drops its pebble, and does the following: For i = 1 to n̂, the robot traversespath one, and heks to see if the pebble is found. If so, it ontinues the for-loop. If not, thenpath ertainly does not de�ne a yle in f(G), and so the robot traverses path repeatedly untilthe pebble is found (whih is guaranteed sine pathm was a yle from the robot's starting pointin f(G)). It piks up the pebble, and returns fail. If this for-loop ends with the robot always�nding the pebble after eah traversal of path, then by Observation 3, we know that repeated19



traversals of path indue a yle (u1; v1); (u2; v2); : : : ; (uk; vk) in f(G). However, sine the robotalways sees the pebble after eah traversal of path, this implies v1 = v2 = � � � = vk = v for somevertex v. To on�rm that path itself indues a yle in f(G), we need only test that ui = ui+1 forsome i. Note that if path takes (ui; v) bak to (ui; v) = (ui+1; v) for some i, by our de�nition of(u1; v1); : : : ; (uk; vk), this implies that ui = ui+1 = � � � = uk = u1 = u2 = � � � = ui, and hene pathby itself indues a yle in f(G). In order to test that ui = ui+1, the robot piks up the pebble,and takes all but one step of path, and drops the pebble. The robot must now be at vertex ui forsome i. It then takes the last step of path, and again traverses all but the last step of path. Therobot must now be at vertex ui+1. If the pebble is not there, then path does not de�ne a yle inf(G), so the robot takes the last step of path, and repeatedly traverses path until the pebble isfound along the way. It piks up the pebble and ompletes the traversal of path, and then returnsfail. If the pebble is found, then the robot has on�rmed that following path takes it from somevertex (u; v) bak to (u; v) in f(G), and hene de�nes a losed path in f(G). The robot retrievesthe pebble, takes the last step of path, and returns pass. Note that during this hek proedure,the robot's path is always pathj for some integer j.We replae Steps 3{6 of ver with the following: The robot exeutes hek(path). If the hekfails, the veri�ation fails. If the hek passes, then the robot alls ompress using path, whihreturns M0 and (a0; b0). It then heks to see if (f(M); (a; b)) is isomorphi to (f(M0); (a0; b0)). If so,the veri�ation proedure returns pass, otherwise fail. With these hanges, the new veri�ationproedure satis�es the onditions of Note 2 (with M(A) replaed by f(M(A)) and G replaedby f(G)); these are preisely the properties the mapping algorithm requires from the veri�ationproedure.In the main proedure, given in Figure 7, the situation is a little more ompliated. Here, ifupdate-op is false, we �nd a sequene seq of edge labels suh that we know some number ofrepetitions of seq indues a yle in f(G), but we must �gure out how many in order to have avalid input to supply to ompress later. Similar to above, we must modify Step 3..iv in order todetermine a losed path. Now, we know that at this point, the robot is in a yle in f(G) de�nedby some number of repetitions of seq between 1 and n̂. We simply hek eah of these possibilitiesone by one. For i = 1 to n̂, the robot exeutes hek(seqi). Whenever the hek �rst sueeds,the robot knows that seqi is a losed path in f(G) starting at its urrent vertex. Thus, we letpath = seqi, exit the for-loop, and ontinue with the rest of the algorithm as before.We an see by inspetion that these are the only times in the algorithm where the pebbleis employed, and that the above hanges satisfy the requirements of the algorithm. Hene, thisalgorithm allows the robot to learn a map of f(G) in polynomial time. This map of f(G) an beeasily transformed into a map of G (in the new model).4 Learning without an Upper Bound on nIn this setion we prove our results onerning the number of pebbles needed to learn graphseÆiently if the graph size is unknown. We use the algorithm of Setion 3.5 as a subroutine toshow that for any  > 0, d log log ne pebbles are suÆient. The resulting algorithm is deterministi.In addition, we prove a mathing lower bound demonstrating that 
(log log n) pebbles are neessary.The lower bound applies to any randomized algorithm that uses an expeted polynomial numberof moves. We note that in our upper bound the total omputation time to deide on moves ispolynomial, whereas the lower bound applies even when the robot is omputationally unbounded.20



Furthermore, our upper bound holds even when the pebbles used by the robot are indistinguishablefrom eah other, while the lower bound holds for distinguishable pebbles.We want to study how the number of pebbles needed grows with the size of the unknown graph.We denote the expeted number of pebbles a (probabilisti) robot A uses on graphs of size n, bypA(n). Namely, pA(n) def= maxG2Gn E[# of pebbles that A uses on G℄;where Gn is the set of all graphs on n verties. The expeted running time of A is de�ned analogously.(Reall that in eah time step the robot makes a single move, and hene the running time of thealgorithm is the number of moves the robot makes.)Theorem 2 For every onstant  > 0, there exists a (deterministi) algorithm that learns graphsof size n in polynomial-time using at most d log log ne pebbles, without knowledge of n.Theorem 3 Consider any algorithm A that, with probability greater than 1=2, learns any graph inexpeted polynomial time without knowing the size of the graph. Then pA(n) = 
(log log n).10Throughout the following proofs, all logarithms are have a base 2.Proof (of Theorem 2): We use the algorithm of Setion 3.5 ombined with a variant of thestandard guess-and-double tehnique; instead of doubling, the algorithm takes the k'th power fora suitably hosen k. To be preise, let k = d21=e, let onepeb(n̂) be the one-pebble learningalgorithm of Setion 3.5 whih takes a bound n̂ on the number of verties as input, and supposeq(n̂) is a polynomial bound on its running time. Assume �rst that the pebbles used by the robotare distinguishable. The new algorithm works as follows on a graph of outdegree d: Guess thatthe number of verties in the graph is n1 = 2k, and run onepeb(n1) for q(n1) steps using the �rstpebble. If the algorithm outputs a �nished map, i.e., every vertex has d edges oming out of it,then output this graph and halt. On the other hand, if the algorithm fails to produe a �nishedmap or the robot loses the pebble during the exeution of the algorithm, then the entire proessis repeated using n2 = nk1 = 2k2 instead of n1 and using pebble 2. (If pebble 1 is seen during thisexeution, it is ignored.) If the exeution with n2 fails, we ontinue with n3 = nk2 = 2k3 . We repeatlike this, using n` = nk̀�1 = 2k` at the `'th stage until some exeution is suessful.It is easy to see that if the algorithm onepeb ever outputs a �nished graph, the output is orret,even if the number of verties given to onepeb is inorret. Alternatively, we an simply add anextra map veri�ation proedure as in Setion 3.5 to the end of onepeb to guarantee that the outputis always either orret or fail. Moreover, by Theorem 1, the algorithm onepeb is guaranteed togive a orret output within time q(n̂) as long as it is given a bound n̂ larger than the number ofverties in the graph. Thus, given a graph of n verties, the algorithm above will always sueed bystage `, where ` is the �rst integer suh that 2k` � n, i.e. ` = d(log logn)=(log k)e � d log log ne.Sine n` = nk̀�1 � nk, the running time of this algorithm is at most `q(nk) � nq(nk), whih ispolynomial in n. Lastly, the algorithm uses at most ` � d log log ne pebbles.To deal with indistinguishable pebbles, we add the following modi�ation. Whenever the algo-rithm onepeb assumes the robot is in a yle and is about to drop its pebble, we have the robotwalk one around the yle, piking up all pebbles that are there before proeeding. Consider stage` of the (parent) algorithm, where ` is the �rst integer suh that 2k` � n. Then we are guaranteed10It is easy to see from the proof that the suess probability of 1=2 is arbitrary and an be replaed by anyonstant. 21



(by the properties of algorithm onepeb), that the robot is in fat in a yle whenever it is aboutto drop its pebble. Therefore, if it always piks up all pebbles left on the yle before droppingits urrent pebble, then it will not mistake its pebble with previously dropped pebbles, and willonsequently sueed in learning the graph. To ensure that the parent algorithm does not haltprematurely and output an inorret graph (in a stage ` suh that 2k` < n), we do the following.Before halting and outputting a graph, we have the robot walk around its entire supposed view ofthe graph olleting all pebbles it sees. If the number of pebbles it �nds is the same as the numberof pebbles it has ever dropped (and not piked up), then it runs the map veri�ation proedureand halts if it passes. Otherwise, it ontinues to the next stage.We note that the algorithm given in the above proof an be deterministially simulated bytwo (synhronized or ommuniating) robots. The seond robot an play the role of the pebble;whenever the �rst robot does not �nd the seond robot within the appropriate number of steps(due to an underestimate for n), the seond robot an \ath up" to the �rst robot by following the�rst robot's (deterministi) steps and then they an proeed with a larger guess for n. This givesa deterministi alternative to Bender and Slonim's randomized two-robot mapping algorithm [10℄.Proof (of Theorem 3): In order to prove the theorem, we analyze the behavior of any algorithmon two types of graphs of outdegree 2: yles and ombination loks with tails. Formally, the yleof n nodes is the labeled, direted graph Cn on vertex set fw0; � � � ; wn�1g, where there are twodireted edges labeled 0 and 1 going from wi to w(i+1) mod n. A ombination lok with tail hasthe following struture (see Figure 8). Let � = �1�2 � � ��` 2 f0; 1g` be any string and let m � 0be an integer. The ombination lok with ombination � and tail m is the graph L�;m on vertexset fu1; u2; : : : ; um,v1; : : : ; v`+1g with the following edges: For eah 1 � i � m � 1, there are twoedges labeled 0 and 1 from ui to ui+1; there are two edges labeled 0 and 1 from um to v1; for eah1 � i � `, there is an edge labeled �i from vi to vi+1 and an edge labeled ��i from vi to v1; thereare two edges labeled 0 and 1 from v`+1 to u1. It is important to note that a robot starting atvertex v1 (i.e., the start of the ombination lok) does not reah vertex vk+1 unless it exeutes theonseutive sequene of moves �1 � � ��k at some point. We start by giving the intuition behind theproof.
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Figure 8: A ombination lok with a tail.We analyze any algorithm based on the times it drops pebbles in the ase that it does notsee previously-dropped pebbles. We show that there must be huge gaps in these pebble-droppingtimes or else the algorithm uses 
(log log n) pebbles on suÆiently large yles of length n. Thequantity 
(log log n) is exatly the threshold below whih the gaps between pebble drops beomesuperpolynomial. That is, for any polynomial f there are in�nitely many time steps t suh thatno pebble is dropped between time t and time f(t) with high probability. Then, for one of thesebig gaps, we an onstrut a ombination lok with tail for whih the following holds. With highprobability, the algorithm drops no pebble within the ombination lok and fails to reah the lastfew verties of the lok in its allotted running time. Thus the robot fails to learn the graph. The22



idea of using ombination loks with tails to foil a robot omes from Bender and Slonim's argumentthat a onstant number of pebbles is insuÆient [10℄. The novel aspet of our proof is the analysisof pebble-dropping times to determine on whih sizes of ombination loks the algorithm fails.We now turn to the details of the proof. Suppose, in ontradition to the laim in the the-orem, that we have an expeted polynomial-time algorithm A whih sueeds in learning graphswith probability greater than 1=2, but does not use 
(log log n) pebbles. Let q(n) = O(nk) bea polynomial upper bound on the expeted running time of the algorithm. In this proof, we usethe standard tehnique of treating the randomized algorithm A as a distribution on deterministialgorithms Ar, i.e. for every in�nite string r 2 f0; 1gN , Ar is the deterministi algorithm given byA using random oins r. All probabilities and expetations in this proof are taken over the hoieof r.We wish to study how the robot behaves when it doesn't see the pebbles it has dropped pre-viously. To formalize this, we look at the in�nite graph I on vertex set fw1; w2; : : :g where thereare two edges labeled 0 and 1 from wi to wi+1 for every i � 1. Now onsider the behavior of therobot when it is plaed at vertex w1. Notie that when the robot drops a pebble at vertex wi andmoves, it never sees the pebble again. For t � s � 1, let P(s; t) be the probability that the robotdrops at least one pebble between verties ws and wt�1, inlusive, and let E(s; t) be the expetednumber of pebbles dropped by the robot between verties ws and wt�1, so E(s; t) � P(s; t). Notiethat E(1; t) is a lower bound on the expeted number of pebbles the robot uses on a yle Ct of tverties, beause for every r, Ar's behavior in its �rst t � 1 moves is the same in Ct as in I. Wenow use this to show that that there are superpolynomial gaps in the pebble-dropping times.Claim: For every �xed  > 0, there are in�nitely many t suh that P(t; t) < 1=8.Proof of laim: Suppose not, i.e. there is some t0 suh that for all t � t0, P(t; t) �1=8. Then for every ` � 0, E(t0; t`0 ) = X̀j=1 E(tj�10 ; tj0 )� X̀j=1 P(tj�10 ; tj0 )� `=8:For n � t0, let `n def= minf` : n < t`0 g. Then log log n < log log t0 + `n log , so`n = 
(log logn). We also haveE(1; n) � E(t0; n) � E(t0; t`n�10 ) � `n � 18 = 
(log log n):But E(1; n) is a lower bound on the expeted number of pebbles the robot uses ona yle of length n, so we have a ontradition. )(Reall that the expeted running time of A is q(n) = O(nk). Using the above laim with = k + 1, we an �nd a t with the following properties:� P(t; tk+1) < 18 . 23



� 8q(2t+4)2t < 18 .� tk+1 � 8q(2t+ 4).Consider the random variable W whih is a string onsisting of the robot's �rst 8q(2t+4) movesin I. There are less than jWj = 8q(2t + 4) ontiguous subsequenes of length t in W, so there issome string � 2 f0; 1gt whih ours as a ontinguous subsequene of W with probability less than8q(2t + 4)=2t < 1=8. In other words there is a sequene of moves � of length t whih the robotperforms with probability less than 1=8 during its �rst 8q(2t+ 4) steps in I.Let � by any binary string of length 4, and onsider the behavior of the robot when plaed atvertex u1 in the ombination lok G� def= L��;t�1 with tail t � 1 and ombination �� (and vertexset fu1; : : : ; ut�1; v1; : : : ; vt+5g as above). Sine A runs in expeted time q(n) and G� has 2t + 4verties, the probability that A makes more than 8q(2t+ 4) moves in G� is at most 1=8.Let R1 be the set of random oins r for whih Ar would drop a pebble between vertex wt andwtk+1�1 in I. Let R2 be the set of random oins r for whih Ar exeutes the sequene of moves� at some point during its �rst 8q(2t + 4) moves in I. Let R3 be the set of random oins r forwhih Ar makes more than 8q(2t + 4) moves in G�. Let R = R1 [ R2 [ R3. We have shown thatPr [r 2 R℄ < 3=8. Notie that for any r =2 R, the output of Ar on G� is the same as its outputon G for any string  of length 4 beause the robot never sees a pebble that it has dropped andnever reahes vertex vt+1. Let S be the set of r =2 R on whih Ar outputs G when plaed in G(equivalently, G�). Then sine A has overall suess probability at least 1=2, A must sueed on atleast 1/8 of the r =2 R. So Pr [r 2 S℄ > 1=8. But there are 16 sets S and they are disjoint. )(5 Conlusions and Future WorkIn this paper we studied the exploring apabilities of a robot that an drop and pik up pebbles inan unknown environment, modelled as an unknown direted graph with unlabeled and undistin-guishable verties. We showed that, if the robot knows an upper bound n̂ on the number of verties,n, it an deterministially learn the environment in polynomial time, while it needs �(log logn)pebbles to do the same if if does not know suh a bound. The �rst result disproves a onjeture ofBender and Slonim [10℄ while the seond presents a deterministi alternative to their randomizedtwo-robot-based algorithm.Future Researh. The running time of our algorithms, though polynomial in the given param-eters, leaves muh to be desired. In partiular, the algorithm for mapping an unknown graph givenan upper bound n̂ on the number of verties and a single pebble, runs in time O(n̂2n6d2). Thus onenatural question is whether this running time an be signi�antly improved, either for the generalase studied here or for speial ases of interest.Another question is how to adapt the algorithm to deal with unertainty. For instane, whatif the transitions taken by the robot are inorret with some probability? (For example, upontaking an edge labeled i the robot ends at the vertex to whih the edge labeled j goes.) 11 Theorretness of our algorithm learly relies on orret transitions. The question is whether any of11Another standard form of unertainty is with respet to possible observations the robot makes at verties. Ouralgorithm an be viewed as dealing with this type of unertainty by ignoring any suh (possibly unreliable) information.24



our tehniques an be adapted to suh a senario, perhaps while making some assumptions aboutthe graph. See [18℄ for further disussion on unertainty in map learning. Even more generally,perhaps some of our ideas an be used for learning Partially Observable Markov Deision Proesses(using some form of a pebble), in whih for eah ation (edge label) there is a distribution on thenext vertex.
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