

Machine Learning, 25, 117–149 (1996)
c© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

The Power of Amnesia: Learning Probabilistic
Automata with Variable Memory Length

DANA RON danar@theory.lcs.mit.edu
Laboratory for Computer Science, MIT, Cambridge, MA 02139

YORAM SINGER singer@research.att.com
AT&T Labs, 600 Mountain Avenue, Murray Hill, NJ 07974

NAFTALI TISHBY tishby@cs.huji.ac.il
Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel

Editor: Thomas Hancock

Abstract. We propose and analyze a distribution learning algorithm for variable memory length Markov
processes. These processes can be described by a subclass of probabilistic finite automata which we name
Probabilistic Suffix Automata(PSA). Though hardness results are known for learning distributions generated by
general probabilistic automata, we prove that the algorithm we present can efficiently learn distributions generated
by PSAs. In particular, we show that for any target PSA, the KL-divergence between the distribution generated by
the target and the distribution generated by the hypothesis the learning algorithm outputs, can be made small with
high confidence in polynomial time and sample complexity. The learning algorithm is motivated by applications
in human-machine interaction. Here we present two applications of the algorithm. In the first one we apply the
algorithm in order to construct a model of the English language, and use this model to correct corrupted text. In
the second application we construct a simple stochastic model for E.coli DNA.

Keywords: Learning distributions, probabilistic automata, Markov models, suffix trees, text correction

1. Introduction

Statistical modeling of complex sequences is a fundamental goal of machine learning due to
its wide variety of natural applications. The most noticeable examples of such applications
are statistical models in human communication such as natural language, handwriting and
speech (Jelinek, 1985, Nadas, 1984), and statistical models of biological sequences such as
DNA and proteins (Krogh, Mian & Haussler, 1993).

These kinds of complex sequences clearly do not have any simple underlying statistical
source since they are generated by natural sources. However, they typically exhibit the
following statistical property, which we refer to as theshort memoryproperty. If we
consider the (empirical) probability distribution on the next symbol given the preceding
subsequence of some given length, then there exists a lengthL (thememory length) such
that the conditional probability distribution does not change substantially if we condition it
on preceding subsequences of length greater thanL.

This observation lead Shannon, in his seminal paper (Shannon, 1951), to suggest modeling
such sequences by Markov chains of orderL > 1, where the order is the memory length
of the model. Alternatively, such sequences may be modeled by Hidden Markov Models

118 D. RON, Y. SINGER AND N. TISHBY

(HMMs) which are more complex distribution generators and hence may capture additional
properties of natural sequences. These statistical models define rich families of sequence
distributions and moreover, they give efficient procedures both for generating sequences
and for computing their probabilities. However, both models have severe drawbacks. The
size of Markov chains grows exponentially with their order, and hence only very low order
Markov chains can be considered in practical applications. Such low order Markov chains
might be very poor approximators of the relevant sequences. In the case of HMMs, there
are known hardness results concerning their learnability which we discuss in Section 1.1.

In this paper we propose a simple stochastic model and describe its learning algorithm.
It has been observed that in many natural sequences, the memory length depends on the
context and isnot fixed. The model we suggest is hence a variant of orderLMarkov chains,
in which the order, or equivalently, the memory, is variable. We describe this model using
a subclass of Probabilistic Finite Automata (PFA), which we nameProbabilistic Suffix
Automata(PSA).

Each state in a PSA is labeled by a string over an alphabetΣ. The transition function
between the states is defined based on these string labels, so that a walk on the underlying
graph of the automaton, related to a given sequence, always ends in a state labeled by
a suffix of the sequence. The lengths of the strings labeling the states are bounded by
some upper boundL, but different states may be labeled by strings of different length,
and are viewed as havingvarying memory length. When a PSA generates a sequence,
the probability distribution on the next symbol generated is completely defined given the
previously generated subsequence of length at mostL. Hence, as mentioned above, the
probability distributions these automata generate can be equivalently generated by Markov
chains of orderL, but the description using a PSA may be much more succinct. Since the
size of orderLmarkov chains is exponential inL, their estimation requires data length and
time exponential inL.

In our learning model we assume that the learning algorithm is given a sample (consisting
either of several sample sequences or of a single sample sequence) generated by an unknown
target PSAM of some bounded size. The algorithm is required to output a hypothesis
machineM̂ , which is not necessarily a PSA but which has the following properties.M̂ can
be used both to efficiently generate a distribution which is similar to the one generated by
M , and given any sequences, it can efficiently compute the probability assigned tos by
this distribution.

Several measures of the quality of a hypothesis can be considered. Since we are mainly
interested in models for statistical classification and pattern recognition, the most natural
measure is the Kullback-Leibler (KL) divergence. Our results hold equally well for the
variation (L1) distance and other norms, which are upper bounded by the KL-divergence.
Since the KL-divergence between Markov sources grows linearly with the length of the
sequence, the appropriate measure is the KL-divergence per symbol. Therefore, we define
anε-good hypothesis to be an hypothesis which has at mostε KL-divergence per symbol
to the target source.

In particular, the hypothesis our algorithm outputs, belongs to a class of probabilistic
machines named Probabilistic Suffix Trees (PST). The learning algorithm grows such a
suffix tree starting from a single root node, and adaptively adds nodes (strings) for which

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 119

there is strong evidence in the sample that they significantly affect the prediction properties
of the tree.

We show that every distribution generated by a PSA can equivalently be generated by
a PST which is not much larger. The converse is not true in general. We can however
characterize the family of PSTs for which the converse claim holds, and in general, it is
always the case that for every PST there exists a not much larger PFA that generates an
equivalent distribution. There are some contexts in which PSAs are preferable, and some
in which PSTs are preferable, and therefore we use both representation in the paper. For
example, PSAs are more efficient generators of distributions, and since they are probabilistic
automata, their well defined state space and transition function can be exploited by dynamic
programming algorithms which are used for solving many practical problems. In addition,
there is a natural notion of thestationary distributionon the states of a PSA which PSTs
lack. On the other hand, PSTs sometimes have more succinct representations than the
equivalent PSAs, and there is a natural notion of growing them.

Stated formally, our main theoretical result is the following. If both a boundL, on
the memory length of the target PSA, and a boundn, on the number of states the target
PSA has, are known, then for every given0 < ε < 1 and 0 < δ < 1, our learning
algorithm outputs anε-good hypothesis PST, with confidence1− δ, in time polynomial in
L, n, |Σ|, 1

ε and 1
δ . Furthermore, such a hypothesis can be obtained from asinglesample

sequence if the sequence length is also polynomial in a parameter related to the rate in
which the target machine converges to its stationary distribution. Despite an intractability
result concerning the learnability of distributions generated by Probabilistic Finite Automata
(Kearns, et al., 1994), that is described in Section 1.1, our restricted model can be learned
in a PAC-like sense efficiently. This has not been shown so far for any of the more popular
sequence modeling algorithms.

We present two applications of the learning algorithm. In the first application we apply
the algorithm in order to construct a model of the English language, and use this model to
correct corrupted text. In the second application we construct a simple stochastic model for
E.coli DNA. Combined with a learning algorithm for a different subclass of probabilistic
automata (Ron, Singer & Tishby, 1995), the algorithm presented here is part of a complete
cursive handwriting recognition system (Singer & Tishby, 1995).

1.1. Related Work

The most powerful (and perhaps most popular) model used in modeling natural sequences is
the Hidden Markov Model (HMM). A detailed tutorial on the theory of HMMs as well as se-
lected applications in speech recognition is given by Rabiner (Rabiner, 1989). A commonly
used procedure for learning an HMM from a given sample is a maximum likelihood param-
eter estimation procedure that is based on theBaum-Welchmethod (Baume, et al., 1970,
Baume, 1972) (which is a special case of the EM (Expectation-Maximization) algorithm
(Dempster, Laired & Rubin, 1977)). However, this algorithm is guaranteed to converge
only to a local maximum, and thus we are not assured that the hypothesis it outputs can
serve as a good approximation for the target distribution. One might hope that the problem

120 D. RON, Y. SINGER AND N. TISHBY

can be overcome by improving the algorithm used or by finding a new approach. Unfortu-
nately, there is strong evidence that the problem cannot be solved efficiently.

Abe and Warmuth (Abe & Warmuth, 1992) study the problem oftraining HMMs. The
HMM training problem is the problem of approximating an arbitrary, unknown source
distribution by distributions generated by HMMs. They prove that HMMs arenot train-
able in time polynomial in the alphabet size, unlessRP = NP. Gillman and Sipser
(Gillman & Sipser, 1994) study the problem ofexactly inferringan (ergodic) HMM over a
binary alphabet when the inference algorithm can query aprobability oraclefor the long-
term probability of any binary string. They prove that inference is hard: any algorithm
for inference must make exponentially many oracle calls. Their method is information
theoretic and does not depend on separation assumptions for any complexity classes.

Natural simpler alternatives, which are often used as well, are orderL Markov chains
(Shannon, 1951, Good, 1969), also known asn-gram models. As noted earlier, the size
of an orderL Markov chain is exponential inL and hence, if we want to capture more
than very short term memory dependencies in the sequences, of substantial length in the
sequences, then these models are clearly not practical.

Höffgen (Höffgen, 1993) studies families of distributions related to the ones studied in
this paper, but his algorithms depend exponentially and not polynomially on the order, or
memory length, of the distributions. Freundet. al. (Freund, et al., 1993) point out that
their result for learningtypical deterministic finite automata from random walks without
membership queries, can be extended to learningtypical PFAs. Unfortunately, there is
strong evidence indicating that the problem of learninggeneralPFAs is hard. Kearnset.
al. (Kearns, et al., 1994) show that PFAs are not efficiently learnable under the assumption
that there is no efficient algorithm for learning noisy parity functions in the PAC model.

The machines used as our hypothesis representation, namely Probabilistic Suffix Trees
(PSTs), were introduced (in a slightly different form) in (Rissanen, 1983) and have been
used for other tasks such as universal data compression (Rissanen, 1983, Rissanen, 1986,
Weinberger, Lempel & Ziv, 1982, Willems, Shtarkov & Tjalkens, 1993). Perhaps the
strongest among these results (which has been brought to our attention after the completion
of this work) and which is most tightly related to our result is (Willems, Shtarkov & Tjalkens,
1993). This paper describes an efficient sequential procedure for universal data compres-
sion for PSTs by using a larger model class. This algorithm can be viewed as a distribution
learning algorithm but the hypothesis it produces is not a PST or a PSA and hence cannot
be used for many applications. Willemset. al. show that their algorithm can be modified
to give the minimum description length PST. However, in case the source generating the
examples is a PST, they are able to show that this PST convergence onlyin the limit of
infinite sequence length to that source.

Vitter and Krishnan (Vitter & Krishnan, 1991, Krishnan & Vitter, 1993) adapt a version of
the Ziv-Lempel data compression algorithm (Ziv & Lempel, 1978) to get a page prefetching
algorithm, where the sequence of page accesses is assumed to be generated by a PFA. They
show that the page fault rate of their algorithm converges to the page fault rate of the
best algorithm that has full knowledge of the source. This is true for almost all page
access sequences (in the limit of the sequence length). Laird and Saul (Laird & Saul, 1994)
describe a prediction algorithm which is similar in spirit to our algorithm and is based

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 121

on theMarkov treeor Directed Acyclic Word Graphapproach which is used for data
compression (Blumer, 1990). They do not analyze the correctnes of the algorithm formally,
but present several applications of the algorithm.

1.2. Overview of the Paper

The paper is organized as follows. In Section 2 we give basic definitions and notation and
describe the families of distributions studied in this paper, namely those generated by PSAs
and those generated by PSTs. In Section 4 we discuss the relation between the above two
families of distributions. In Section 5 the learning algorithm is described. Some of the
proofs regarding the correctness of the learning algorithm are given in Section 6. Finally,
we demonstrate the applicability of the algorithm by two illustrative examples in Section 7.
In the first example we use our algorithm to learn the structure of natural English text, and
use the resulting hypothesis for correcting corrupted text. In the second example we use
our algorithm to build a simple stochastic model for E.coli DNA. The detailed proofs of the
claims presented in Section 4 concerning the relation between PSAs and PSTs are provided
in Appendices A and B. The more technical proofs and lemmas regarding the correctness
of the learning algorithm are given in Appendix C.

2. Preliminaries

2.1. Basic Definitions and Notations

Let Σ be a finite alphabet. ByΣ∗ we denote the set of all possible strings overΣ. For any
integerN , ΣN denotes all strings of lengthN , andΣ≤N denotes the set of all strings with
lengthat mostN . The empty string is denoted bye. For any strings = s1 . . . sl, si ∈ Σ,
we use the following notations:

• The longest prefix ofs different froms is denoted byprefix (s) def= s1s2 . . . sl−1.

• The longest suffix ofs different froms is denoted bysuffix (s) def= s2 . . . sl−1sl.

• The set of all suffixes ofs is denoted bySuffix∗(s) def= {si . . . sl | 1 ≤ i ≤ l} ∪ {e}.
A strings′ is apropersuffix of s, if it a suffix of s but is nots itself.

• Let s1 ands2 be two strings inΣ∗. If s1 is a suffix ofs2 then we shall say thats2 is a
suffix extensionof s1.

• A set of stringsS is called asuffix freeset if ∀s ∈ S, Suffix∗(s) ∩ S = {s}.

122 D. RON, Y. SINGER AND N. TISHBY

2.2. Probabilistic Finite Automata and Prediction Suffix Trees

2.2.1. Probabilistic Finite Automata

A Probabilistic Finite Automaton (PFA)M is a5-tuple(Q,Σ, τ, γ, π), whereQ is a finite
set ofstates, Σ is a finitealphabet, τ : Q×Σ→ Q is thetransition function, γ : Q×Σ→
[0, 1] is thenext symbol probability function, andπ : Q → [0, 1] is the initial probability
distribution over the starting states. The functionsγ andπ must satisfy the following
conditions: for everyq ∈ Q,

∑
σ∈Σ γ(q, σ) = 1, and

∑
q∈Q π(q) = 1. We assume that

the transition functionτ is defined on all statesq and symbolsσ for which γ(q, σ) > 0,
and on no other state-symbol pairs.τ can be extended to be defined onQ×Σ∗ as follows:
τ(q, s1s2 . . . sl) = τ(τ(q, s1 . . . sl−1), sl) = τ(τ(q, prefix (s)), sl).

A PFA M generates strings of infinite length, but we shall always discuss probability
distributions induced on prefixes of these strings which have some specified finite length.
If PM is the probability distributionM defines on infinitely long strings, thenPNM , for any
N ≥ 0, will denote the probability induced on strings of lengthN . We shall sometimes
drop the superscriptN , assuming that it is understood from the context. The probability
thatM generates a stringr = r1r2 . . . rN in ΣN is

PNM (r) =
∑
q0∈Q

π(q0)
N∏
i=1

γ(qi−1, ri) , (1)

whereqi+1 = τ(qi, ri).

2.2.2. Probabilistic Suffix Automata

We are interested in learning a subclass of PFAs which we nameProbabilistic Suffix Au-
tomata(PSA). These automata have the following property. Each state in a PSAM is
labeled by a string of finite length inΣ∗. The set of strings labeling the states is suffix free.
For every two statesq1, q2 ∈ Q and for every symbolσ ∈ Σ, if τ(q1, σ) = q2 andq1 is
labeled by a strings1, thenq2 is labeled by a strings2 which is a suffix ofs1 ·σ. In order
thatτ be well defined on a given set of stringsS, not only must the set be suffix free, but it
must also have the following property. For every strings in S labeling some stateq, and
every symbolσ for which γ(q, σ) > 0, there exists a string inS which is a suffix ofsσ.
For our convenience, from this point on, ifq is a state inQ thenq will also denote the string
labeling that state.

We assume that the underlying graph ofM , defined byQandτ(·, ·), isstrongly connected,
i.e., for every pair of statesq andq′ there is a directed path fromq to q′. Note that in our
definition of PFAs we assumed that the probability associated with each transition (edge in
the underlying graph) is non-zero, and hence strong connectivity implies that every state
can be reached from every other state with non-zero probability. For simplicity we assume
M is aperiodic, i.e., that the greatest common divisor of the lengths of the cycles in its
underlying graph is1. These two assumptions ensure us thatM is ergodic. Namely, there

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 123

exists a distributionΠM on the states such that for every state we may start at, the probability
distribution on the state reached after timet ast grows to infinity, converges toΠM . The
probability distributionΠM is the unique distribution satisfying

ΠM (q) =
∑

q′ s.t. τ(q′,σ)=q

ΠM (q′)γ(q′, σ) , (2)

and is named thestationary distributionof M . We ask that for every stateq in Q, the
initial probability of q, π(q), be the stationary probability ofq, ΠM (q). It should be noted
that the assumptions above are needed only when learning from a single sample string and
not when learning from many sample strings. However, for sake of brevity we make these
requirements in both cases.

For any givenL ≥ 0, the subclass of PSAs in which each state is labeled by a string of
length at mostL is denoted byL-PSA. An example2-PSA is depicted in Figure 1. A special
case of these automata is the case in whichQ includesall strings inΣL. An example of
such a2-PSA is depicted in Figure 1 as well. These automata can be described asMarkov
chains of orderL. The states of the Markov chain are the symbols of the alphabetΣ, and
the next state transition probability depends on the lastL states (symbols) traversed. Since
everyL-PSA can be extended to a (possibly much larger) equivalentL-PSA whose states
are labeled by all strings inΣL, it can always be described as a Markov chain of orderL.
Alternatively, since the states of anL-PSA might be labeled by only a small subset ofΣ≤L,
and many of the suffixes labeling the states may be much shorter thanL, it can be viewed
as a Markov chain withvariable order, or variable memory.

Learning Markov chains of orderL, i.e., L-PSAs whose states are labeled byall ΣL

strings, is straightforward (though it takes time exponential inL). Since the ‘identity’ of
the states (i.e., the strings labeling the states) is known, and since the transition function
τ is uniquely defined, learning such automata reduces to approximating the next symbol
probability functionγ. For the more general case ofL-PSAs in which the states are labeled
by strings of variable length, the task of an efficient learning algorithm is much more
involved since it must reveal the identity of the states as well.

2.2.3. Prediction Suffix Trees

Though we are interested in learning PSAs, we choose as our hypothesis class the class
of prediction suffix trees(PST) defined in this section. We later show (Section 4) that for
every PSA there exists an equivalent PST of roughly the same size.

A PSTT , over an alphabetΣ, is a tree of degree|Σ|. Each edge in the tree is labeled by
a single symbol inΣ, such that from every internal node there is exactly one edge labeled
by each symbol. The nodes of the tree are labeled by pairs(s, γs) wheres is the string
associated with the walk starting from that node and ending in the root of the tree, and
γs : Σ → [0, 1] is thenext symbol probability functionrelated withs. We require that for
every strings labeling a node in the tree,

∑
σ∈Σ γs(σ) = 1.

As in the case of PFAs, a PSTT generates strings of infinite length, but we consider the
probability distributions induced on finite length prefixes of these strings. The probability
thatT generates a stringr = r1r2 . . . rN in ΣN is

124 D. RON, Y. SINGER AND N. TISHBY

PNT (r) = ΠN
i=1γsi−1(ri) , (3)

wheres0 = e, and for1 ≤ j ≤ N − 1, sj is the string labeling the deepest node reached
by taking the walk corresponding toriri−1 . . . r1 starting at the root ofT . For example,
using the PST depicted in Figure 1, the probability of generating the string00101, is
0.5× 0.5× 0.25× 0.5× 0.75, and the labels of the nodes that are used for the prediction
ares0 = e, s1 = 0, s2 = 00, s3 = 1, s4 = 10. In view of this definition, the requirement
that every internal node haveexactly|Σ| sons may be loosened, by allowing the omission
of nodes labeled by substrings which are generated by the tree with probability 0.

PSTs therefore generate probability distributions in a similar fashion to PSAs. As in the
case of PSAs, symbols are generated sequentially and the probability of generating a symbol
depends only on the previously generated substring of some bounded length. In both cases
there is a simple procedure for determining this substring, as well as for determining the
probability distribution on the next symbol conditioned on the substring. However, there
are two (related) differences between PSAs and PSTs. The first is that PSAs generate each
symbol simply by traversing a single edge from the current state to the next state, while for
each symbol generated by a PST, one must walk down from the root of the tree, possibly
traversingL edges. This implies that PSAs are more efficient generators. The second
difference is that while in PSAs for each substring (state) and symbol, the next state is
well defined, in PSTs this property does not necessarily hold. Namely, given the current
generating node of a PST, and the next symbol generated, the next node is not necessarily
uniquely defined, but might depend on previously generated symbols which are not included
in the string associated with the current node. For example, assume we have a tree whose
leaves are:1,00,010,110 (see Figure B.1 in Appendix B). If1 is the current generating
leaf and it generates0, then the next generating leaf is either010 or 110 depending on the
symbol generated just prior to1.

PSTs, like PSAs, can always be described as Markov chains of (fixed) finite order, but as
in the case of PSAs this description might be exponentially large.

We shall sometimes want to discuss only the structure of a PST and ignore its prediction
property. In other words, we will be interested only in the string labels of the nodes and not
in the values ofγs(·). We refer to such trees assuffix trees. We now introduce two more
notations. The set of leaves of a suffix treeT is denoted byL(T), and for a given strings
labeling a nodev in T , T (s) denotes the subtree rooted atv.

3. The Learning Model

The learning model described in this paper is motivated by the PAC model for learn-
ing boolean concepts from labeled examples and is similar in spirit to that introduced in
(Kearns, et al., 1994). We start by defining anε-goodhypothesis PST with respect to a
given PSA.

Definition. Let M be a PSA and letT be a PST. LetPM andPT be the two probability
distributions they generate respectively. We say thatT is anε-goodhypothesis with respect

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 125

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

00

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

1

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

10

0.5

0.5

0.75

0.75
0.25

0.25

π(1)=0.5

π(00)=0.25π(10)=0.25

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

00

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

π(00)=0.25π(10)=0.25

0.5

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

10

11 010.5

0.5
0.5

0.25

0.25
0.750.75

π(11)=0.25 π(01)=0.25

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

e

0 1

00 10

(0.5,0.5)

(0.5,0.5)(0.5,0.5)

(0.25,0.75)(0.75,0.25)

Figure 1. Left: A 2-PSA. The strings labeling the states are the suffixes corresponding to them. Bold edges
denote transitions with the symbol ‘1’, and dashed edges denote transitions with ‘0’. The transition probabilities
are depicted on the edges. Middle: A2-PSA whose states are labeled byall strings in{0, 1}2. The strings
labeling the states are the last two observed symbols before the state was reached, and hence it can be viewed as
a representation of a Markov chain of order2. Right: A prediction suffix tree. The prediction probabilities of the
symbols ‘0’ and ‘1’, respectively, are depicted beside the nodes, in parentheses. The three models are equivalent
in the sense that they induce the same probability distribution on strings from{0, 1}?.

toM , if for everyN > 0,
1
N
DKL[PNM ||PNT] ≤ ε ,

where

DKL[PNM ||PNT] def=
∑
r∈ΣN

PNM (r) log
PNM (r)
PNT (r)

is theKullback-Leiblerdivergence between the two distributions.

In this definition we chose theKullback-Leibler(KL) divergence as a distance measure
between distributions. Similar definitions can be considered for other distance measures
such as the variation and the quadratic distances. Note that the KL-divergence bounds the
variation distance as follows (Cover & Thomas, 1991):DKL[P1||P2] ≥ 1

2 ||P1 − P2||21.
Since theL1 norm bounds theL2 norm, the last bound holds for the quadratic distance
as well. Note that the KL-divergence between distributions, generated by finite order
markov chains, is proportional to the length of the strings over which the divergence is
computed, when this length is longer than the order of the model. Hence, to obtain a
measure independent of that length it is necessary to divide the KL-divergence by the
length of the strings,N .

A learning algorithm for PSAs is given the maximum lengthL of the strings labeling
the states of the target PSAM , and an upper boundn on the number of states inM . The
algorithm is also given a confidence (security) parameter0 < δ < 1 and an approximation
parameter0 < ε < 1. We analyze the following two learning scenarios. In the first
scenario the algorithm has access to a source of sample strings of minimal lengthL + 1,
independently generated byM . In the second scenario it is given only asingle (long)
sample string generated byM . In both cases we require that it output a hypothesis PSTT̂ ,
which with probability at least1− δ is anε-good hypothesis with respect toM .

The only drawback to having a PST as our hypothesis instead of a PSA (or more generally
a PFA), is that the prediction procedure using a tree is somewhat less efficient (by at most

126 D. RON, Y. SINGER AND N. TISHBY

a factor ofL). Since no transition function is defined, in order to predict/generate each
symbol, we must walk from the root until a leaf is reached. As mentioned earlier, we show
in Appendix B that every PST can be transformed into an equivalent PFA which is not much
larger. This PFA differs from a PSA only in the way it generates the firstL symbols. We
also show that if the PST has a certain property (defined in Appendix B), then it can be
transformed into an equivalent PSA.

In order to measure the efficiency of the learning algorithm, we separate the case in which
the algorithm is given a sample consisting of independently generated sample strings, from
the case in which it is given a single sample string. In the first case we say that the learning
algorithm isefficientif it runs in time polynomial inL, n, |Σ|, 1

ε and 1
δ . In order to define

efficiency in the latter case we need to take into account an additional property of the model
– its mixing or convergence rate. To do this we next discuss another parameter of PSAs
(actually, of PFAs in general).

For a given PSA,M , let RM denote then × n stochastic transition matrix defined by
τ(·, ·) andγ(·, ·) when ignoring the transition labels. That is, ifsi andsj are states inM
and the last symbol insj isσ, thenRM (si, sj) isγ(si, σ) if τ(si, σ) = sj , and0 otherwise.
Hence,RM is the transition matrix of an ergodic Markov chain.

Let R̃M denote thetime reversalof RM . That is,

R̃M (si, sj) =
ΠM (sj)RM (sj , si)

ΠM (si)
,

whereΠM is the stationary probability vector ofRM as defined in Equation (2). Define
themultiplicative reversiblizationUM ofM byUM = RM R̃M . Denote the second largest
eigenvalue ofUM by λ2(UM).

If the learning algorithm receives a single sample string, we allow the length of the string
(and hence the running time of the algorithm) to be polynomial not only inL, n, |Σ|, 1

ε ,
and 1

δ , but also in1/(1 − λ2(UM)). The rationale behind this is roughly the following.
In order to succeed in learning a given PSA, we must observe each state whose stationary
probability is non-negligible enough times so that the algorithm can identify that the state
is significant, and so that the algorithm can compute (approximately) the next symbol
probability function. When given several independently generated sample strings, we can
easily bound the size of the sample needed by a polynomial inL, n, |Σ|, 1

ε , and 1
δ , using

Chernoff bounds. When given one sample string, the given string must be long enough so as
to ensure convergence of the probability of visiting a state to the stationary probability. We
show that this convergence rate can be bounded using algebraic properties ofUM , namely,
its second largest eigenvalue (Fill, 1991).

4. Emulation of PSAs by PSTs

In this section we show that for every PSA there exists an equivalent PST which is not
much larger. This allows us to consider the PST equivalent to our target PSA, whenever it
is convenient.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 127

Theorem 1 For every L-PSA,M = (Q,Σ, τ, γ, π), there exists an equivalent PSTTM ,
of maximal depthL and at mostL · |Q| nodes.

Proof: (Sketch) We describe below the construction needed to prove the claim. The
complete proof is provided in Appendix A.

Let TM be the tree whose leaves correspond to the strings inQ. For each leafs, and
for every symbolσ, let γs(σ) = γ(s, σ). This ensures that for every given strings which
is a suffix extension of a leaf inTM , and for every symbolσ, PM (σ|s) = PTM (σ|s). It
remains to define the next symbol probability functions for the internal nodes ofTM . These
functions must be defined so thatTM generates all strings related to its nodes with the same
probability asM .

For each nodes in the tree, let theweight of s, denoted byws, be ws
def=∑

s′∈Q, s∈Suffix∗(s′) π(s′). In other words, the weight of a leaf inTM is the stationary
probability of the corresponding state inM ; and the weight of an internal node labeled by
a strings, equals the sum of the stationary probabilities over all states of whichs is a suffix
(which also equals the sum of the weights of the leaves in the subtree rooted at the node).
Using the weights of the nodes we assign values to theγs’s of the internal nodess in the tree
in the following manner. For every symbolσ let γs(σ) =

∑
s′∈Q, s∈Suffix∗(s′)

ws′
ws
γ(s′, σ).

The probabilityγs(σ), of generating a symbolσ following a strings, shorterthan any state
in M , is thus a weighted average ofγ(s′, σ) taken over all statess′ which correspond to
suffix extensions ofs. The weight related with each state in this average, corresponds to
its stationary probability. As an example, the probability distribution over the first sym-
bol generated byTM , is

∑
s∈Q π(s)γ(s, ·). This probability distribution is equivalent, by

definition, to the probability distribution over the first symbol generated byM .
Finally, if for some internal node inTM , its next symbol probability function is equivalent

to the next symbol probability functions ofall of its descendants, then we remove all its
descendants from the tree.2

An example of the construction described in the proof of Theorem 1 is illustrated in
Figure 1. The PST on the right was constructed based on the PSA on the left, and is
equivalent to it. Note that the next symbol probabilities related with the leaves and the
internal nodes of the tree are as defined in the proof of the theorem.

5. The Learning Algorithm

We start with an overview of the algorithm. LetM = (Q,Σ, τ, γ, π) be the target L-PSA
we would like to learn, and let|Q| ≤ n. According to Theorem 1, there exists a PSTT , of
size bounded byL · |Q|, which is equivalent toM . We use the sample statistics to define
theempirical probability function, P̃ (·), and usingP̃ , we construct a suffix tree,̄T , which
with high probability is a subtree ofT . We define our hypothesis PST,T̂ , based on̄T and
P̃ ,

The construction of̄T is done as follows. We start with a tree consisting of a single node
(labeled by the empty stringe) and add nodes which we have reason to believe should
be in the tree. A nodev labeled by a strings is added as a leaf tōT if the following
holds. The empirical probability ofs, P̃ (s), is non-negligble, and for some symbolσ, the

128 D. RON, Y. SINGER AND N. TISHBY

empirical probability of observingσ following s, namelyP̃ (σ|s), differs substantially from
the empirical probability of observingσ following suffix (s), namelyP̃ (σ|suffix (s)). Note
that suffix (s) is the string labeling the parent node ofv. Our decision rule for addingv,
is thus dependent on the ratio betweenP̃ (σ|s) andP̃ (σ|suffix (s)). We add a given node
only when this ratio is substantiallygreaterthan1. This suffices for our analysis (due to
properties of the KL-divergence), and we need not add a node if the ratio is smaller than1.

Thus, we would like to grow the tree level by level, adding the sons of a given leaf in the
tree, only if they exhibit such a behavior in the sample, and stop growing the tree when the
above is not true for any leaf. The problem is that the node might belong to the tree even
though its next symbol probability function is equivalent to that of its parent node. The
leaves of a PST must differ from their parents (or they are redundant) but internal nodes
might not have this property. The PST depicted in Figure 1 illustrates this phenomena. In
this example,γ0(·) ≡ γe(·), but bothγ00(·) andγ10(·) differ from γ0(·). Therefore, we
must continue testing further potential descendants of the leaves in the tree up to depthL.

As mentioned before, we do not test strings which belong to branches whose em-
pirical count in the sample is small. This way we avoid exponential grow-up in the
number of strings tested. A similar type ofbranch-and-boundtechnique (with vari-
ous bounding criteria) is applied in many algorithms which use trees as data structures
(cf. (Kushilevitz & Mansour, 1993)). The set of strings tested at each step, denoted byS̄,
can be viewed as a kind of potentialfrontier of the growing treēT , which is of bounded size.
After the construction of̄T is completed, we definêT by adding nodes so that all internal
nodes have full degree, and defining the next symbol probability function for each node
based oñP . These probability functions are defined so that for every strings in the tree and
for every symbolσ, γs(σ) is bounded from below byγmin which is a parameter that is set
subsequently. This is done by using a conventional smoothing technique. Such a bound on
γs(σ) is needed in order to bound the KL-divergence between the target distribution and
the distribution our hypothesis generates.

The above scheme follows atop-downapproach since we start with a tree consisting of a
single root node and a frontier consisting only of its children, and incrementally grow the
suffix treeT̄ and the frontierS̄. Alternatively, abottom-upprocedure can be devised. In
a bottom-up procedure we start by putting inS̄ all strings of length at mostL which have
significant counts, and settinḡT to be the tree whose nodes correspond to the strings in
S̄. We then trimT̄ starting from its leaves and proceeding up the tree by comparing the
prediction probabilities of each node to its parent node as done in the top-down procedure.
The two schemes are equivalent and yield the same prediction suffix tree. However, we find
the incremental top-down approach somewhat more intuitive, and simpler to implement.
Moreover, our top-down procedure can be easily adapted to an online setting which is useful
in some practical applications.

Let P denote the probability distribution generated byM . We now formally define the
empirical probability functionP̃ , based on a given sample generated byM . For a given
strings, P̃ (s) is roughly the relative number of timess appears in the sample, and for any
symbolσ, P̃ (σ|s) is roughly the relative number of timesσ appears afters. We give a more
precise definition below.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 129

If the sample consists of one sample stringr of lengthm, then for any strings of length
at mostL, defineχj(s) to be1 if rj−|s|+1 . . . rj = s and0 otherwise. Let

P̃ (s) =
1

m− L

m−1∑
j=L

χj(s) , (4)

and for any symbolσ, let

P̃ (σ|s) =

∑m−1
j=L χj+1(sσ)∑m−1
j=L χj(s)

. (5)

If the sample consists ofm′ sample stringsr1, . . . , rm
′
, each of length̀ ≥ L+ 1, then for

any strings of length at mostL, defineχij(s) to be1 if rij−|s|+1 . . . r
i
j = s, and0 otherwise.

Let

P̃ (s) =
1

m′(`− L)

m′∑
i=1

`−1∑
j=L

χij(s) , (6)

and for any symbolσ, let

P̃ (σ|s) =

∑m′

i=1

∑l−1
j=L χj+1(sσ)∑m′

i=1

∑l−1
j=L χj(s)

. (7)

For simplicity we assume that all the sample strings have the same length and that this
length is polynomial inn, L, andΣ. The case in which the sample strings are of different
lengths can be treated similarly, and if the strings are too long then we can ignore parts of
them.

In the course of the algorithm and in its analysis we refer to several parameters which are
all simple functions ofε, n, L and|Σ|, and are set as follows:

ε2 =
ε

48L
,

γmin =
ε2
|Σ| =

ε

48L|Σ| ,

ε0 =
ε

2nL log(1/γmin)
=

ε

2nL log(48L|Σ|/ε) ,

ε1 =
ε2

8nε0γmin
=
L log(48L|Σ|/ε)|Σ|

4ε
.

The size of the sample is set in the analysis of the algorithm.
A pseudo code describing the learning algorithm is given in Figure 2 and an illustrative

run of the algorithm is depicted in Figure 3.

130 D. RON, Y. SINGER AND N. TISHBY

Algorithm Learn-PSA

1. Initialize T̄ and S̄: let T̄ consist of a single root node (corresponding toe), and let
S̄ ← {σ | σ ∈ Σ andP̃ (σ) ≥ (1− ε1)ε0}.

2. While S̄ 6= ∅, pick anys ∈ S̄ and do:

(A) Removes from S̄;

(B) If there exists a symbolσ ∈ Σ such that

P̃ (σ|s) ≥ (1 + ε2)γmin and P̃ (σ|s)/P̃ (σ|suffix (s)) > 1 + 3ε2 ,

then add toT̄ the node corresponding tos and all the nodes on the path from the
deepest node in̄T that is a suffix ofs, to s;

(C) If |s| < L then for everyσ′ ∈ Σ, if P̃ (σ′ ·s) ≥ (1− ε1)ε0, then addσ′ ·s to S̄.

3. Initialize T̂ to beT̄ .

4. ExtendT̂ by adding all missing sons of internal nodes.

5. For eachs labeling a node in̂T , let

γ̂s(σ) = P̃ (σ|s′)(1− |Σ|γmin) + γmin ,

wheres′ is the longest suffix ofs in T̄ .

Figure 2. Algorithm Learn-PSA

6. Analysis of the Learning Algorithm

In this section we state and prove our main theorem regarding the correctness and efficiency
of the learning algorithmLearn-PSA, described in Section 5.

Theorem 2 For every target PSAM , and for every given security parameter0 < δ < 1,
and approximation parameter0 < ε < 1, AlgorithmLearn-PSA outputs a hypothesis PST,
T̂ , such that with probability at least1− δ:

1. T̂ is anε-good hypothesis with respect toM .

2. The number of nodes in̂T is at most|Σ| · L times the number of states inM .

If the algorithm has access to a source of independently generated sample strings, then
its running time is polynomial inL, n, |Σ|, 1

ε and 1
δ . If the algorithm has access to only

one sample string, then its running time is polynomial in the same parameters and in
1/(1− λ2(UM)).

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 131

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

e

0 1

(0.5,0.5)

(0.6,0.4) (0.4,0.6)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

e

0 1

(0.5,0.5)

(0.4,0.6)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

00 01

(0.6,0.4)

(0.6,0.4)(0.6,0.4)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

e

0 1

(0.5,0.5)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

(0.6,0.4)

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

00

(0.6,0.4) CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

(0.6,0.4)

(0.4,0.6)

(0.4,0.6) (0.4,0.6)

10 01 11

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

e

0 1

(0.5,0.5)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

(0.6,0.4)

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

(0.4,0.6)

(0.4,0.6) (0.4,0.6)

01 11

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

00(0.6,0.4)

(0.6,0.4)

10

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

000 (0.8,0.2)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

e

0 1

(0.5,0.5)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

(0.6,0.4)

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

(0.4,0.6)

(0.4,0.6)

11

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

00(0.6,0.4)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

000 (0.8,0.2)

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

(0.6,0.4)

10

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

1000

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

(0.4,0.6)

01

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

(0.8,0.2)(0.8,0.2)
0000

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

e

0 1

(0.5,0.5)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

(0.6,0.4) (0.4,0.6)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

00(0.6,0.4)

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

000

(0.8,0.2)

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

(0.6,0.4)

10

@@@@@@
@@@@@@
@@@@@@
@@@@@@
@@@@@@

(0.3,0.7)

100

Figure 3. An illustrative run of the learning algorithm. The prediction suffix trees created along the run of the
algorithm are depicted from left to right and top to bottom. At each stage of the run, the nodes fromT̄ are plotted
in dark grey while the nodes from̄S are plotted in light grey. The alphabet is binary and the predictions of the next
bit are depicted in parenthesis beside each node. The final tree is plotted on the bottom right part and was built by
adding toT̄ (bottom left) all missing children. Note that the node labeled by100 was added to the final tree but
is not part of any of the intermediate trees. This can happen when the probability of the string100 is small.

132 D. RON, Y. SINGER AND N. TISHBY

In order to prove the theorem above we first show that with probability1−δ, a large enough
sample generated according toM is typical to M , wheretypical is defined subsequently.
We then assume that our algorithm in fact receives a typical sample and prove Theorem 2
based on this assumption. Roughly speaking, a sample is typical if for every substring
generated with non-negligible probability byM , the empirical counts of this substring and
of the next symbol given this substring, are not far from the corresponding probabilities
defined byM .

Definition. A sample generated according toM is typical if for every strings ∈ Σ≤L the
following two properties hold:

1. If s ∈ Q then|P̃ (s)− π(s)| ≤ ε1ε0;

2. If P̃ (s) ≥ (1− ε1)ε0 then for everyσ ∈ Σ, |P̃ (σ|s)− P (σ|s)| ≤ ε2γmin;

Whereε0, ε1, ε2, andγmin were defined in Section 5.

Lemma 1

1. There exists a polynomialm′0 in L, n, |Σ|, 1
ε , and 1

δ , such that the probability that a
sample ofm′ ≥ m′0(L, n, |Σ|, 1

ε ,
1
δ) strings each of length at leastL + 1 generated

according toM is typical is at least1− δ.

2. There exists a polynomialm0 in L, n, |Σ|, 1
ε , 1

δ , and 1/(1 − λ2(UM)), such that
the probability that a single sample string of lengthm ≥ m0(L, n, |Σ|, 1

ε ,
1
δ , 1/(1 −

λ2(UM))) generated according toM is typical is at least1− δ.

The proof of Lemma 1 is provided in Appendix C.

Let T be the PST equivalent to the target PSAM , as defined in Theorem 1. In the next
lemma we prove two claims. In the first claim we show that the prediction properties of
our hypothesis PST̂T , and ofT , are similar. We use this in the proof of the first claim in
Theorem 2, when showing that the KL-divergence per symbol betweenT̂ andM is small.
In the second claim we give a bound on the size ofT̂ in terms ofT , which implies a similar
relation between̂T andM (second claim in Theorem 2).

Lemma 2 If Learn-PSA is given a typical sample then:

1. For every strings in T , if P (s) ≥ ε0 then
γs(σ)
γ̂s′(σ)

≤ 1 + ε/2 , wheres′ is the longest

suffix ofs corresponding to a node in̂T .

2. |T̂ | ≤ (|Σ| − 1) · |T |.

Proof: (Sketch, the complete proofs of both claims are provided in Appendix C.)
In order to prove the first claim, we argue that if the sample is typical, then there cannot

exist such stringss ands′ which falsify the claim. We prove this by assuming that there
exists such a pair, and reaching contradiction. Based on our setting of the parametersε2

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 133

and γmin, we show that for such a pair,s and s′, the ratio betweenγs(σ) and γs′(σ)
must be bounded from below by1 + ε/4. If s = s′, then we have already reached a
contradiction. Ifs 6= s′, then we can show that the algorithm must add some longer suffix
of s to T̄ , contradicting the assumption thats′ is the longest suffix ofs corresponding
to a node inT̂ . In order to bound the size of̂T , we show thatT̄ is a subtree ofT .
This suffices to prove the second claim, since when transformingT̄ into T̂ , we add at
most all |Σ| − 1 siblings of every node in̄T . We prove thatT̄ is a subtree ofT , by
arguing that in its construction, we did not add any string which does not correspond to
a node inT . This follows from the decision rule according to which we add nodes toT̄ .

Proof of Theorem 2: According to Lemma 1, with probability at least1−δ our algorithm
receives a typical sample. Thus according to the second claim in Lemma 2,|T̂ | ≤ (|Σ| −
1) · |T | and since|T | ≤ L · |Q|, then|T̂ | ≤ |Σ| ·L · |Q| and the second claim in the theorem
is valid.

Let r = r1r2 . . . rN , whereri ∈ Σ, and for any prefixr(i) of r, wherer(i) = r1 . . . ri,
let s[r(i)] and ŝ[r(i)] denote the strings corresponding to the deepest nodes reached upon
taking the walkri . . . r1 onT andT̂ respectively. In particular,s[r(0)] = ŝ[r(0)] = e. Let
P̂ denote the probability distribution generated byT̂ . Then

1
N

∑
r∈ΣN

P (r) log
P (r)
P̂ (r)

= (8a)

=
1
N

∑
r∈ΣN

P (r) · log

∏N
i=1 γs[r(i−1)](ri)∏N
i=1 γ̂ŝ[r(i−1)](ri)

(8b)

=
1
N

∑
r∈ΣN

P (r) ·
N∑
i=1

log
γs[r(i−1)](ri)
γ̂ŝ[r(i−1)](ri)

(8c)

=
1
N

N∑
i=1

[
∑

r∈ΣN s.t.

P (s[r(i−1)])<ε0

P (r) · log
γs[r(i−1)](ri)
γ̂ŝ[r(i−1)](ri)

+
∑

r∈ΣN s.t.

P (s[r(i−1)])≥ε0

P (r) · log
γs[r(i−1)](ri)
γ̂ŝ[r(i−1)](ri)

] . (8d)

For every1 ≤ i ≤ N , the first term in the parenthesis in Equation (8d) can be bounded as
follows. For each stringr, the worst possible ratio betweenγs[r(i−1)](ri) andγ̂ŝ[r(i−1)](ri),
is 1/γmin. The total weight of all strings in the first term equals the total weight of all
the nodes inT whose weight is at mostε0, which is at mostnLε0. The first term is thus
bounded bynLε0 log(1/γmin). Based on Lemma 2, the ratio betweenγs[r(i−1)](ri) and
γ̂ŝ[r(i−1)](ri) for every stringr in the second term in the parenthesis, is at most1 + ε/2.
Since the total weight of all these strings is bounded by1, the second term is bounded by
log(1 + ε/2). Combining the above with the value ofε0 (that was set in Section 5 to be
ε/ (2nL log(1/γmin))), we get that,

134 D. RON, Y. SINGER AND N. TISHBY

1
N
DKL[PN ||P̂N] ≤ 1

N
·N [nL ε0 log

1
γmin

+ log(1 + ε/2)] ≤ ε . (9)

Using a straightforward implementation of the algorithm, we can get a (very rough) upper
bound on the running time of the algorithm which is of the order of the square of the size
of the sample timesL. In this implementation, each time we add a strings to S̄ or to T̄ ,
we perform a complete pass over the given sample to count the number of occurrences
of s in the sample and its next symbol statistics. According to Lemma 1, this bound is
polynomial in the relevant parameters, as required in the theorem statement. Using the
following more time-efficient, but less space-efficient implementation, we can bound the
running time of the algorithm by the size of the sample timesL. For each string in̄S, and
each leaf inT̄ we keep a set of pointers to all the occurrences of the string in the sample.
For such a strings, if we want to test which of its extensions,σs should we add tōS or
to T̄ , we need only consider all occurrences ofs in the sample (and then distribute them
accordingly among the strings added). For each symbol in the sample there is a single
pointer, and each pointer corresponds to a single string of lengthi for every1 ≤ i ≤ L.
Thus the running time of the algorithm is of the order of the size of the sample timesL.

7. Applications

A slightly modified version of our learning algorithm was applied and tested on various prob-
lems such as: correcting corrupted text, predicting DNA bases (Ron, Singer & Tishby, 1993),
and part-of-speech disambiguation resolving (Sch¨utze & Singer, 1994). We are still explor-
ing other possible applications of the algorithm. Here we demonstrate how the algorithm
can be used to correct corrupted text and how to build a simple model for DNA strands.

7.1. Correcting Corrupted Text

In many machine recognition systems such as speech or handwriting recognizers, the recog-
nition scheme is divided into two almost independent stages. In the first stage a low-level
model is used to perform a (stochastic) mapping from the observed data (e.g., the acoustic
signal in speech recognition applications) into a high level alphabet. If the mapping is
accurate then we get a correct sequence over the high level alphabet, which we assume
belongs to a corresponding high level language. However, it is very common that errors
in the mapping occur, and sequences in the high level language are corrupted. Much of
the effort in building recognition systems is devoted to correct the corrupted sequences. In
particular, in many optical and handwriting character recognition systems, the last stage
employs natural-language analysis techniques to correct the corrupted sequences. This can
be done after a good model of the high level language is learned from uncorrupted examples
of sequences in the language. We now show how to use PSAs in order to perform such a
task.

We applied the learning algorithm to the bible. The alphabet was the english letters and
the blank character. We removed Jenesis and it served as a test set. The algorithm was

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 135

applied to the rest of the books withL = 30, and the accuracy parameters (εi) were of
orderO(

√
N), whereN is the length of the training data. This resulted in a PST having

less than3000 nodes. This PST was transformed into a PSA in order to apply an efficient
text correction scheme which is described subsequently. The final automaton constitutes
both of states that are of length 2, like‘qu’ and ‘xe’ , and of states which are 8 and 9
symbols long, like‘shall be’ and‘there was’ . This indicates that the algorithm really
captures the notion of variable memory that is needed in order to have accurate predictions.
Building a Markov chain of orderL in this case is clearly not practical since it requires
|Σ|L = 279 = 7625597484987 states!

Let r̄ = (r1, r2, . . . , rt) be the observed (corrupted) text. If an estimation of the cor-
rupting noise probability is given, then we can calculate for each state sequenceq̄ =
(q0, q1, q2, . . . , qt), qi ∈ Q, the probability that̄r was created by a walk over the PSA
which constitutes of the statesq̄. For0 ≤ i ≤ t, letXi be a random variable overQ, where
Xi = q denotes the event that theith state passed wasq. For1 ≤ i ≤ t let Yi be a random
variable overΣ, whereYi = σ denotes the event that theith symbol observed wasσ. For
q̄ ∈ Qt+1, let X̄ = q̄ denote the joint event thatXi = qi for every0 ≤ i ≤ t, and for
r̄ ∈ Σt, let Ȳ = r̄ denote the joint event thatYi = ri for every1 ≤ i ≤ t. If we assume
that the corrupting noise is i.i.d and is independent of the states that constitute the walk,
then the most likely state sequence,q̄ML, is

q̄ML = arg max
q̄∈Qt+1

P
(
X̄ = q̄|Ȳ = r̄

)
= arg max

q̄∈Qt+1
P

(
Ȳ = r̄|X̄ = q̄

)
P (X̄ = q̄) (10a)

= arg max
q̄∈Qt+1

{(
t∏
i=1

P
(
Yi = ri|X̄ = q̄

))
×(

π(q0)
t∏
i=1

P (Xi = qi|Xi−1 = qi−1)

)}
(10b)

= arg max
q̄∈Qt

{
t∑
i=1

log (P (Yi = ri|Xi = qi) + log(π(q0)) +

t∑
i=1

log (P (Xi = qi|Xi−1 = qi−1))

}
, (10c)

where for deriving the last Equality (10c) we used the monotonicity of thelog function
and the fact that the corruption noise is independent of the states. Let the string labeling
qi be s1, . . . , sl. ThenP (Yi = ri|Xi = qi) is the probability thatri is an uncorrupted
symbol ifri = sl, and is the probability that the noise process flippedsl to beri otherwise.
Note that the sum (10c) can be computed efficiently in a recursive manner. Moreover, the
maximization of Equation (10a) can be performed efficiently by using adynamic program-
ming(DP) scheme (Bellman, 1957). This scheme requiresO(|Q| × t) operations. If|Q| is
large, then approximation schemes to the optimal DP, such as thestack decodingalgorithm
(Jelinek, 1969) can be employed. Using similar methods it is also possible to correct errors
when insertions and deletions of symbols occur as well.

We tested the algorithm by taking a text from Jenesis and corrupting it in two ways. First,
we altered every letter (including blanks) with probability0.2. In the second test we altered

136 D. RON, Y. SINGER AND N. TISHBY

every letter with probability0.1 and we also changed each blank character, in order to test
whether the resulting model is powerful enough to cope with non-uniform noise. The result
of the correction algorithm for both cases as well as the original and corrupted texts are
depicted in Figure 4.

Original Text:
and god called the dry land earth and the gathering together of the waters called he seas and
god saw that it was good and god said let the earth bring forth grass the herb yielding seed
and the fruit tree yielding fruit after his kind

Corrupted text (1):
and god cavsed the drxjland earth ibd shg gathervng together oj the waters cflled re seas
aed god saw thctpit was good ann god said let tae earth bring forth gjasb tse hemb yielpinl
peed and thesfruit tree sielxing fzuitnafter his kind

Corrected text (1):
and god caused the dry land earth and she gathering together of the waters called he sees
and god saw that it was good and god said let the earth bring forth grass the memb yielding
peed and the fruit tree fielding fruit after his kind

Corrupted text (2):
andhgodpcilledjthesdryjlandbeasthcandmthelgatceringhlogetherjfytrezaatersoczlled
xherseasaknddgodbsawwthathitqwasoqoohanwzgodcsaidhletdtheuejrthriringmforth
hbgrasstthexherbyieldingzseedmazdctcybfruitttreeayieldinglfruztbafherihiskind

Corrected text (2):
and god called the dry land earth and the gathering together of the altars called he seasaked
god saw that it was took and god said let the earthriring forth grass the herb yielding seed
and thy fruit treescielding fruit after his kind

Figure 4. Correcting corrupted text.

We compared the performance of the PSA we constructed to the performance of Markov
chains of order0 –3. The performance is measured by the negative log-likelihood obtained
by the various models on the (uncorrupted) test data, normalized per observation symbol.
The negative log-likelihood measures the amount of ‘statistical surprise’ induced by the
model. The results are summarized in Table 1. The first four entries correspond to the
Markov chains of order0 – 3, and the last entry corresponds to the PSA. The order of
the PSA is defined to belog|Σ|(|Q|). These empirical results imply that using a PSA of
reasonable size, we get a better model of the data than if we had used a much larger full
order Markov chain.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 137

Table 1. Comparison of full order Markov chains versus a PSA (a Markov
model with variable memory).

Fixed Order Markov PSA
Model Order 0 1 2 3 1.84
Number of States 1 27 729 19683 432
Negative Log-Likelihood 0.853 0.681 0.560 0.555 0.456

7.2. Building A Simple Model for E.coli DNA

The DNA alphabet is composed of four nucleotides denoted by:A,C,T,G . DNA strands are
composed of sequences of protein coding genes and fillers between those regions named
intergenic regions. Locating the coding genes is necessary, prior to any further DNA
analysis. Using manually segmented data of E.coli (Rudd, 1993) we built two different
PSAs, one for the coding regions and one for the intergenic regions. We disregarded the
internal (triplet) structure of the coding genes and the existence of start and stop codons
at the beginning and the end of those regions. The models were constructed based on
250 different DNA strands from each type, their lengths ranging from 20 bases to several
thousands. The PSAs built are rather small compared to the HMM model described in
(Krogh, Mian & Haussler, 1993): the PSA that models the coding regions has 65 states and
the PSA that models the intergenic regions has 81 states.

We tested the performance of the models by calculating the log-likelihood of the two
models obtained on test data drawn from intergenic regions. In 90% of the cases the
log-likelihood obtained by the PSA trained on intergenic regions was higher than the log-
likelihood of the PSA trained on the coding regions. Misclassifications (when the log-
likelihood obtained by the second model was higher) occurred only for sequences shorter
than 100 bases. Moreover, the log-likelihood difference between the models scales linearly
with the sequence length where the slope is close to the KL-divergence between the Markov
models (which can be computed from the parameters of the two PSAs), as depicted in
Figure 5. The main advantage of PSA models is in their simplicity. Moreover, the log-
likelihood of a set of substrings of a given strand can be computed in time linear in the
number of substrings. The latter property combined with the results mentioned above
indicate that the PSA model might be used when performing tasks such as DNA gene
locating. However, we should stress that we have done only a preliminary step in this
direction and the results obtained in (Krogh, Mian & Haussler, 1993) as part of a complete
parsing system are better.

Acknowledgments

We would like to thank Anders Krogh and David Haussler for letting us use theirE. coli
DNA data and for helpful discussions. Special thanks to Kenn Rudd for supplying the E.
coli sequences used in the DNA experiments. We also would like to thank Ronitt Rubinfeld
and Yoav Freund for their helpful comments. Thanks to Lee Giles for providing us with the
software for plotting finite state machines. This research has been supported in part by a
grant from the Israeli Ministry of Science and Arts and by the Bruno Goldberg endowment

138 D. RON, Y. SINGER AND N. TISHBY

0

5

10

15

20

25

0 100 200 300 400 500 600

Lo
g-

Li
ke

lih
oo

d
Di

ffe
re

nc
e

Sequence Length

Figure 5. The difference between the log-likelihood induced by a PSA trained on data taken from intergenic
regions and a PSA trained on data taken from coding regions. The test data was taken from intergenic regions. In
90% of the cases the likelihood of the first PSA was higher.

fund. Dana Ron would like to thank the support of the Eshkol fellowship. Yoram Singer
would like to thank the Clore Foundation for its support.

Appendix A

Proof of Theorem 1

Theorem 1 For every L-PSAM = (Q,Σ, τ, γ, π), there exists an equivalent PSTTM , of
maximal depthL and at mostL · |Q| nodes.

Proof: Let TM be the tree whose leaves correspond to the strings inQ (the states ofM).
For each leafs, and for every symbolσ, let γs(σ) = γ(s, σ). This ensures that for every
string which is a suffix extension of some leaf inTM , bothM andTM generate the next
symbol with the same probability. The remainder of this proof is hence dedicated to defining
the next symbol probability functions for the internal nodes ofTM . These functions must
be defined so thatTM generates all strings related to nodes inTM , with the same probability
asM .

For each nodes in the tree, let theweightof s, denoted byws, be defined as follows

ws
def=

∑
s′∈Q s.t.s∈Suffix∗(s′)

π(s′) (A.1)

In other words, the weight of a leaf inTM is the stationary probability of the corresponding
state inM ; and the weight of an internal node labeled by a strings, equals the sum of the
stationary probabilities over all states of whichs is a suffix. Note that the weight of any
internal node is the sum of the weights of all the leaves in its subtree, and in particular
we = 1. Using the weights of the nodes we assign values to theγs’s of the internal nodes
s in the tree in the following manner. For every symbolσ let

γs(σ) =
∑

s′∈Q s.t.s∈Suffix∗(s′)

ws′

ws
γ(s′, σ) . (A.2)

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 139

According to the definition of the weights of the nodes, it is clear that for every nodes,
γs(·) is in fact a probability function on the next output symbol as required in the definition
of prediction suffix trees.

What is the probability thatM generates a stringswhich is a node inTM (a suffix of a state
inQ)? By definition of the transition function ofM , for everys0 ∈ Q, if s′ = τ(s0, s), then
s′ must be a suffix extension ofs. ThusPM (s) is the sum over all suchs′ of the probability
of reachings′, whens0 is chosen according to the initial distributionπ(·) on the starting
states. But if the initial distribution is stationary then at any point the probability of being
at states′ is justπ(s′), and

PM (s) =
∑

s′∈Q s.t.s∈Suffix∗(s′)

π(s′) = ws . (A.3)

We next prove thatPTM (s) equalsws as well. We do this by showing that for every
s = s1 . . . sl in the tree, where|s| ≥ 1, ws = wprefix(s)γprefix(s)(sl). Sincewe = 1, it
follows from a simple inductive argument thatPTM (s) = ws.

By our definition of PSAs,π(·) is such that for everys ∈ Q, s = s1 . . . sl,

π(s) =
∑

s′ s.t.τ(s′,sl)=s

π(s′)γ(s′, sl) . (A.4)

Hence, ifs is a leaf inTM then

ws = π(s)
(a)
=

∑
s′∈L(TM) s.t.s∈Suffix∗(s′sl)

ws′γs′(sl)

(b)
=

∑
s′∈L(TM (prefix(s)))

ws′γs′(sl)

(c)
= wprefix(s)γprefix(s)(sl) , (A.5)

where (a) follows by substitutingws′ for π(s′) andγs′(sl) for γ(s′, sl) in Equation (A.4),
and by the definition ofτ(·, ·); (b) follows from our definition of the structure of prediction
suffix trees; and (c) follows from our definition of the weights of internal nodes. Hence, if
s is a leaf,ws = wprefix(s)γprefix(s)(sl) as required.

If s is an internal node then using the result above and Equation (A.2) we get that

ws =
∑

s′∈L(TM (s))

ws′

=
∑

s′∈L(TM (s))

wprefix(s′)γprefix(s′)(sl)

= wprefix(s)γprefix(s)(sl) . (A.6)

It is left to show that the resulting tree is not bigger thanL times the number of states
in M . The number of leaves inTM equals the number of states inM , i.e. |L(T)| = |Q|.
If every internal node inTM is of full degree (i.e. the probabilityTM generates any

140 D. RON, Y. SINGER AND N. TISHBY

string labeling a leaf in the tree is strictly greater than0) then the number of internal
nodes is bounded by|Q| and the total number of nodes is at most2|Q|. In particular,
the above is true when for every states in M , and every symbolσ, γ(s, σ) > 0. If
this is not the case then we can simply bound the total number of nodes byL · |Q|.

Appendix B

Emulation of PSTs by PFAs

In this section we show that for every PST there exists an equivalent PFA which is not much
larger and which is a slight variant of a PSA. Furthermore, if the PST has a certain property,
defined below and denoted by Property∗, then it can be emulated by a PSA.

Property∗ For every strings labeling a node in the tree,T ,

PT (s) =
∑
σ∈Σ

PT (σs) .

Before we state our theorem, we observe that Property∗ implies that foreverystringr,

PT (r) =
∑
σ∈Σ

PT (σr) (B.1)

This is true for the following simple reasoning. Ifr is a node inT , then Equality (B.1) is
equivalent to Property∗. Otherwise letr = r1r2, wherer1 is the longest prefix ofr which
is a leaf inT .

PT (r) = PT (r1) · PT (r2|r1) (B.2a)

=
∑
σ

PT (σr1) · PT (r2|r1) (B.2b)

=
∑
σ

PT (σr1) · PT (r2|σr1) (B.2c)

=
∑
σ

PT (σr) , (B.2d)

where Equality (B.2c) follows from the definition of PST’s.

Theorem 3 For every PST,T , of depthLoverΣ there exists an equivalent PFA,MT , with
at mostL · |L(T)| states. Furthermore, if Property∗ holds forT , then it has an equivalent
PSA.

Proof: In the proof of Theorem 1, we were given a PSAM and we defined the equivalent
suffix treeTM to be the tree whose leaves correspond to the states of the automaton. Thus,
given a suffix treeT , the natural dual procedure would be to construct a PSAMT whose

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 141

states correspond to the leaves ofT . The first problem with this construction is that we
might not be able to define the transition functionτ on all pairs of states and symbols. That
is, there might exist a states and a symbolσ such that there is no states′ which is a suffix
of sσ. The solution is to extendT to a larger treeT ′ (of whichT is a subtree) such thatτ is
well defined on the leaves ofT ′. It can easily be verified that the following is an equivalent
requirement onT ′: for each symbolσ, and for every leafs in T ′, sσ is either a leaf in the
subtreeT ′(σ) rooted atσ, or is a suffix extension of a leaf inT ′(σ). In this case we shall
say thatT ′ coverseach of its children’s subtrees. Viewing this in another way, for every
leafs, the longestprefixof smust be either a leaf or an internal node inT ′. We thus obtain
T ′ by adding nodes toT until the above property holds.

The next symbol probability functions of the nodes inT ′ are defined as follows. For every
nodes in T ∩T ′ and for everyσ ∈ Σ, letγ′s(σ) = γs(σ). For each new nodes′ = s′1 . . . s

′
l

in T ′ − T , let γ′s′(σ) = γs(σ), wheres is the longest suffix ofs′ in T (i.e. the deepest
ancestor ofs′ in T). The probability distribution generated byT ′ is hence equivalent to
that generated byT . From Equality (B.1) it directly follows that if Property∗ holds forT ,
then it holds forT ′ as well.

Based onT ′ we now defineMT = (Q,Σ, τ, γ, π). If Property∗ holds forT , then we
defineMT as follows. Let the states ofMT be the leaves ofT ′ and let the transition function
be defined as usual for PSAs (i.e. for every states and symbolσ, τ(s, σ) is the unique suffix
of sσ.) Note that the number of states inMT is at mostL times the number of leaves inT ,
as required. This is true since for each original leaf in the treeT , at mostL − 1 prefixes
might be added toT ′. For eachs ∈ Q and for everyσ ∈ Σ, let γ(s, σ) = γ′s(σ), and let
π(s) = PT (s). It should be noted thatMT is not necessarily ergodic. It follows from this
construction that for every stringr which is a suffix extension of a leaf inT ′, and every
symbolσ,PMT

(σ|r) = PT (σ|r). It remains to show that for every stringr which is a node
in T ′, PMT

(r) = PT ′(r) (= PT (r)). For a states ∈ Q, letP sMT
(r) denote the probability

thatr is generated assuming we start at states. Then,

PMT
(r) =

∑
s∈Q

π(s)P sMT
(r) (B.3a)

=
∑
s∈Q

π(s)PMT
(r|s) (B.3b)

=
∑

s∈L(T ′)

PT ′(s)PT ′(r|s) (B.3c)

=
∑

s∈L(T ′)

PT ′(sr) (B.3d)

= PT ′(r) , (B.3e)

where Equality (B.3b) follows from the definition of PSAs, Equality (B.3c) follows from our
definition ofπ(·), and Equality (B.3e) follows from a series of applications of Equality (B.1).

If T does not have Property∗, then we may not be able to define an initial distribution on the
states of the PSAMT such that for every stringr which is a node inT ′, PMT

(r) = PT ′(r).
We thus define a slight variant ofMT as follows. Let the states ofMT be the leaves ofT ′

andall their prefixes, and letτ(·, ·) be defined as follows: for every states and symbolσ,

142 D. RON, Y. SINGER AND N. TISHBY

τ(s, σ) is the longestsuffix of sσ. Thus,MT has the structure of aprefix tree combined
with a PSA. If we defineγ(·, ·) as above, and let the empty string,e, be the single starting
state (i.e.,π(e) = 1), then, by definition,MT is equivalent toT .

An illustration of the constructions described above is given in Figure B.1.

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

e

0 1

00 10

010 110

(5/11,6/11)

(0.5,0.5)(0.4,0.6)

(0.25,0.75) (0.5,0.5)

(0.8,0.2)(0.2,0.8)

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC
CCCCCCCC

01 00 11

010 110

0.2
0.8 0.2 0.8

0.25

0.75

0.5

0.5

0.5

0.5

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

10

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

0
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

1

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

e

5/11 6/11

0.5

0.5

0.4

0.6

0.5

0.5

Figure B.1. Left: A Prediction suffix tree. The prediction probabilities of the symbols ‘0’ and ‘1’, respectively,
are depicted beside the nodes, in parentheses. Right: The PFA that is equivalent to the PST on the left. Bold edges
denote transitions with the symbol ‘1’ and dashed edges denote transitions with ‘0’. Since Property∗ holds for the
PST, then it actually has an equivalent PSA which is defined by the circled part of the PFA. The initial probability
distribution of this PSA is:π(01) = 3/11, π(00) = 2/11, π(11) = 3/11, π(010) = 3/22, π(110) = 3/22.
Note that states ‘11 ’ and ‘01 ’ in the PSA replaced the node ’1’ in the tree.

Appendix C

Proofs of Lemma 1 and Lemma 2

Lemma 1

1. There exists a polynomialm′0 in L, n, |Σ|, 1
ε , and 1

δ , such that the probability that a
sample ofm′ ≥ m′0(L, n, |Σ|, 1

ε ,
1
δ) strings each of length at leastL + 1 generated

according toM is typical is at least1− δ.

2. There exists a polynomialm0 in L, n, |Σ|, 1
ε , 1

δ , and 1/(1 − λ2(UM)), such that
the probability that a single sample string of lengthm ≥ m0(L, n, |Σ|, 1

ε ,
1
δ , 1/(1 −

λ2(UM))) generated according toM is typical is at least1− δ.

Proof: Before proving the lemma we would like to recall that the parametersε0, ε1, ε2,
andγmin, are all polynomial functions of1/ε, n,L, and|Σ|, and were defined in Section 5.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 143

Several sample strings We start with obtaining a lower bound form′, so that the first
property of a typical sample holds. Since the sample strings are generated independently,
we may viewP̃ (s), for a given states, as the average value ofm′ independent random
variables. Each of these variables is in the range[0, 1] and its expected value isπ(s). Using
Hoeffding’s inequality we get that ifm′ ≥ 1

2ε21ε
2
0

ln 4n
δ , then with probability at least1− δ

2n ,

|P̃ (s)− π(s)| ≤ ε1ε0. The probability that this inequality holds for every state is hence at
least1− δ

2 .
We would like to point out that since our only assumptions on the sample strings are that

they are generated independently, and that their length is at leastL + 1, we use only the
independence between the different strings when bounding our error. We do not assume
anything about the random variables related toP̃ (s) when restricted to any one sample
string, other than that their expected value isπ(s). If the strings are known to be longer,
then a more careful analysis can be applied as described subsequently for the case of a
single sample string.

We now show that for an appropriatem′ the second property holds with probability at
least1 − δ

2 as well. Lets be a string inΣ≤L. In the following lines, when we refer to
appearancesof s in the sample we mean in the sense defined byP̃ . That is, we count
only appearances ofs which end at theLth or greater symbol of a sample string. For
the ith appearance ofs in the sample and for every symbolσ, let Xi(σ|s) be a random
variable which is1 if σ appears after theith appearance ofs and0 otherwise. Ifs is either
a state or a suffix extension of a state, then for everyσ, the random variables{Xi(σ|s)} are
independent0/1 random variables with expected valueP (σ|s). LetNs be the total number
of timess appears in the sample, and letNmin = 2

ε22γ
2
min

ln 4|Σ|n
ε0δ

. If Ns ≥ Nmin, then

with probability at least1− δε0
2n , for every symbolσ, |P̃ (σ|s)− P (σ|s)| ≤ 1

2ε2γmin. If s
is a suffix of several statess1, . . . , sk, then for every symbolσ,

P (σ|s) =
k∑
i=1

π(si)
P (s)

P (σ|si) , (C.1)

(whereP (s) =
∑k
i=1 π(si)) and

P̃ (σ|s) =
k∑
i=1

P̃ (si)
P̃ (s)

P̃ (σ|si) . (C.2)

Recall thatε1 = (ε2γmin)/(8nε0). If:
(1) for every statesi, |P̃ (si)− π(si)| ≤ ε1ε0;
(2) for eachsi satisfyingπ(si) ≥ 2ε1ε0, |P̃ (σ|si)− P (σ|si)| ≤ 1

2ε2γmin for everyσ;
then|P̃ (σ|s)− P (σ|s)| ≤ ε2γmin, as required.

If the sample has the first property required of a typical sample (i.e.,∀s ∈ Q, |P̃ (s) −
P (s)| ≤ ε1ε0), and for every states such thatP̃ (s) ≥ ε1ε0, Ns ≥ Nmin, then with
probability at least1− δ

4 the second property of a typical sample holds for all strings which
are either states or suffixes of states. If for every strings which is a suffix extension a state
such thatP̃ (s) ≥ (1 − ε1)ε0, Ns ≥ Nmin, then for all such strings the second property

144 D. RON, Y. SINGER AND N. TISHBY

holds with probability at least1 − δ
4 as well. Putting together all the bounds above, if

m′ ≥ 1
2ε21ε

2
0

ln 4n
δ +Nmin/(ε1ε0), then with probability at least1− δ the sample is typical.

A single sample string In this case the analysis is somewhat more involved. We view our
sample string generated according toM as a walk on the markov chain described byRM
(defined in Subsection 3). We may assume that the starting state is visible as well since its
contribution toP̃ (·) is negligible. We shall need the following theorem from (Fill, 1991)
which gives bounds on the convergence rate to the stationary distribution of general ergodic
Markov chains. This theorem is partially based on a work by Mihail (Mihail, 1989), who
gives bounds on the convergence in terms of combinatorial properties of the chain.

Markov Chain Convergence Theorem (Fill, 1991) For any states0 in the Markov chain
RM , letRtM (s0, ·) denote the probability distribution over the states inRM , after taking a
walk of lengtht starting from states0. Then∑

s∈Q
|RtM (s0, s)− π(s)|

2

≤ (λ2(UM))t

π(s0)
.

First note that by simply applying Markov’s inequality, we get that with probability at
least1 − δ

2n , |P̃ (s) − π(s)| ≤ ε1ε0, for each states such thatπ(s) < (δε1ε0)/(2n). It
thus remains to obtain a lower bound onm, so that the same is true for eachs such that
π(s) ≥ (δε1ε0)/(2n). We do this by bounding the variance of the random variable related
with P̃ (s), and applying Chebishev’s Inequality.

Let

t0 =
ln

(
n3/ 32δ3ε50ε

5
1

)
ln (1/λ2(UM))

. (C.3)

We next show that for everys satisfyingπ(s) ≥ (δε1ε0)/(2n) , |Rt0M (s, s) − π(s)| ≤
δ
4nε

2
1ε

2
0. By the theorem above and our assumption onπ(s),

(
Rt0M (s, s)− π(s)

)2 ≤

 ∑
s′∈Q
|Rt0M (s, s′)− π(s′)|

2

(C.4a)

≤ (λ2(UM))t0

π(s)
(C.4b)

≤ 2n
δε0ε1

(λ2(UM))t0 (C.4c)

=
2n
δε0ε1

e−t0 ln(1/λ2(UM)) (C.4d)

=
δ2ε41ε

4
0

16n2
. (C.4e)

Therefore,|RtM (s, s)− π(s)| ≤ δ
4nε

2
1ε

2
0.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 145

Intuitively, this means that for every two integers,t > t0, andi ≤ t− t0, the event thats
is the(i+ t0)th state passed on a walk of lengtht, is ‘almost independent’ of the event that
s is theith state passed on the same walk.

For a given states, satisfyingπ(s) ≥ (δε1ε0)/(2n), let Xi be a0/1 random variable
which is1 iff s is theith state on a walk of lengtht, andY =

∑t
i=1Xi. By our definition

of P̃ , in the case of a single sample string,P̃ (s) = Y/t, wheret = m − L − 1. Clearly
E(Y/t) = π(s), and for everyi, V ar(Xi) = π(s)− π2(s). We next boundV ar(Y/t).

V ar

(
Y

t

)
=

1
t2
V ar

(
t∑
i=1

Xi

)
(C.5a)

=
1
t2

∑
i,j

E(XiXj)−
∑
i,j

E(Xi)E(Xj)

 (C.5b)

=
1
t2

 ∑
i,j s.t. |i−j|<t0

E(XiXj) +
∑

i,j s.t. |i−j|≥t0

E(XiXj)

 − π2(s) (C.5c)

≤ 2t0
t
π(s) +

δ

4n
ε21ε

2
0π(s) − π2(s) . (C.5d)

If we pick t to be greater than(4nt0)/(δε21ε
2
0), thenV ar(Y/t) < δ

2nε
2
1ε

2
0, and using

Chebishev’s InequalityPr[|Y/t − π(s)| > ε1ε0] < δ
2n . The probability the above holds

for anys is at mostδ2 . The analysis of the second property required of a typical sample is
identical to that described in the case of a sample consisting of many strings.

Lemma 2 If Learn-PSA is given a typical sample then:

1. For every strings in T , if P (s) ≥ ε0 then
γs(σ)
γ̂s′(σ)

≤ 1 + ε/2 , wheres′ is the longest

suffix ofs corresponding to a node in̂T .

2. |T̂ | ≤ (|Σ| − 1) · |T |.

Proof:
1st Claim Assume contrary to the claim that there exists a string labeling a nodes in T
such thatP (s) ≥ ε0 and for someσ ∈ Σ

γs(σ)
γ̂s′(σ)

> 1 + ε/2, (C.6)

wheres′ is the longest suffix ofs in T̂ . For simplicity of the presentation, let us assume
that there is a node labeled bys′ in T̄ . If this is not the case (suffix (s′) is an internal node
in T̄ , whose sons′ is missing), the analysis is very similar. Ifs ≡ s′ then we easily show
below that our counter assumption is false. Ifs′ is a proper suffix ofs then we prove the
following. If the counter assumption is true, then we added toT̄ a (not necessarily proper)

146 D. RON, Y. SINGER AND N. TISHBY

suffix of s which is longer thans′. This contradicts the fact thats′ is the longest suffix ofs
in T̂ .

We first achieve a lower bound on the ratio between the two true next symbol probabilities,
γs(σ) andγs′(σ). According to our definition of̂γs′(·),

γ̂s′(σ) ≥ (1− |Σ|γmin)P̃ (σ|s′) . (C.7)

We analyze separately the case in whichγs′(σ) ≥ γmin, and the case in whichγs′(σ) <
γmin. Recall thatγmin = ε2/|Σ|. If γs′(σ) ≥ γmin, then

γs(σ)
γs′(σ)

≥ γs(σ)
P̃ (σ|s′)

· (1− ε2) (C.8a)

≥ γs(σ)
γ̂s′(σ)

· (1− ε2)(1− |Σ|γmin) (C.8b)

> (1 +
ε

2
)(1− ε2)2 , (C.8c)

where Inequality (C.8a) follows from our assumption that the sample is typical, Inequal-
ity (C.8b) follows from our definition of̂γs′(σ), and Inequality (C.8c) follows from the
counter assumption (C.6), and our choice ofγmin. Sinceε2 < ε/12, andε < 1 then we get
that

γs(σ)
γs′(σ)

> 1 +
ε

4
. (C.9)

If γs′(σ) < γmin, then γ̂s′(σ) ≥ γs′(σ), since γ̂s′(σ) is defined to be at leastγmin.
Therefore,

γs(σ)
γs′(σ)

≥ γs(σ)
γ̂s′(σ)

> 1 +
ε

2
> 1 +

ε

4
(C.10)

as well. If s ≡ s′ then the counter assumption (C.6) is evidently false, and we must only
address the case in whichs 6= s′, i.e.,s′ is a proper suffix ofs.

Let s = s1s2 . . . sl, and lets′ besi . . . sl, for some2 ≤ i ≤ l. We now show that if the
counter assumption (C.6) is true, then there exists an index1 ≤ j < i such thatsj . . . sl
was added tōT . Let 2 ≤ r ≤ i be the first index for whichγsr...sl(σ) < (1 + 7ε2)γmin.
If there is no such index then letr = i. The reason we need to deal with the prior case is
clarified subsequently. In either case, sinceε2 < ε/48, andε < 1, then

γs(σ)
γsr...sl(σ)

> 1 +
ε

4
. (C.11)

In other words

γs(σ)
γs2...sl(σ)

· γs2...sl(σ)
γs3...sl(σ)

· . . . ·
γsr−1...sl(σ)
γsr...sl(σ)

> 1 +
ε

4
. (C.12)

This last inequality implies that there must exist an index1 ≤ j ≤ i− 1, for which

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 147

γsj ...sl(σ)
γsj+1...sl(σ)

> 1 +
ε

8L
. (C.13)

We next show that Inequality (C.13) implies thatsj . . . sl was added tōT . We do this by
showing thatsj . . . sl was added tōS, that we compared̃P (σ|sj . . . sl) to P̃ (σ|sj+1 . . . sl),
and that the ratio between these two values is at least(1 + 3ε2). SinceP (s) ≥ ε0 then
necessarily

P̃ (sj . . . sl) ≥ (1− ε1)ε0 , (C.14)

andsj . . . sl must have been added tōS. Based on our choice of the indexr, and since
j < r,

γsj ...sl(σ) ≥ (1 + 7ε2)γmin. (C.15)

Since we assume that the sample is typical,

P̃ (σ|sj . . . sl) ≥ (1 + 6ε2)γmin > (1 + ε2)γmin , (C.16)

which means that we must have comparedP̃ (σ|sj . . . sl) to P̃ (σ|sj+1 . . . sl).
We now separate the case in whichγsj+1...sl(σ) < γmin, from the case in which

γsj+1...sl(σ) ≥ γmin. If γsj+1...sl(σ) < γmin then

P̃ (σ|sj+1 . . . sl) ≤ (1 + ε2)γmin . (C.17)

Therefore,

P̃ (σ|sj . . . sl)
P̃ (σ|sj+1 . . . sl)

≥ (1 + 6ε2)γmin
(1 + ε2)γmin

≥ (1 + 3ε2) , (C.18)

andsj . . . sl would have been added tōT . On the other hand, ifγsj+1...sl(σ) ≥ γmin, the
same would hold since

P̃ (σ|sj . . . sl)
P̃ (σ|sj+1 . . . sl)

≥
(1− ε2)γsj ...sl(σ)

(1 + ε2)γsj+1...sl(σ)
(C.19a)

>
(1− ε2)(1 + ε

8L)
(1 + ε2)

(C.19b)

≥ (1− ε2)(1 + 6ε2)
(1− ε2)

(C.19c)

> 1 + 3ε2 , (C.19d)

where Inequality C.19c follows from our choice ofε2 (ε2 = ε
48L). This contradicts our

initial assumption thats′ is the longest suffix ofs added toT̄ .

2nd Claim: We prove below that̄T is a subtree ofT . The claim then follows directly,
since when transforminḡT into T̂ , we add at most all|Σ| − 1 siblings of every node in̄T .

148 D. RON, Y. SINGER AND N. TISHBY

Therefore it suffices to show that we did not add toT̄ any node which is not inT . Assume
to the contrary that we add tōT a nodes which is not inT . According to the algorithm,
the reason we adds to T̄ , is that there exists a symbolσ such thatP̃ (σ|s) ≥ (1 + ε2)γmin,
andP̃ (σ|s)/P̃ (σ|suffix (s)) > 1 + 3ε2, while bothP̃ (s) andP̃ (suffix (s)) are greater than
(1− ε1)ε0. If the sample string is typical then

P (σ|s) ≥ γmin , P̃ (σ|s) ≤ P (σ|s) + ε2γmin ≤ (1 + ε2)P (σ|s) , (C.20)

and

P̃ (σ|suffix (s)) ≥ P (σ|suffix (s))− ε2γmin . (C.21)

If P (σ|suffix (s)) ≥ γmin thenP̃ (σ|suffix (s)) ≥ (1− ε2)P (σ|suffix (s)), and thus

P (σ|s)
P (σ|suffix (s))

≥ (1− ε2)
(1 + ε2)

(1 + 3ε2) , (C.22)

which is greater than1 sinceε2 < 1/3. If P (σ|suffix (s)) < γmin , sinceP (σ|s) ≥ γmin ,
thenP (σ|s)/P (σ|suffix (s)) > 1 as well. In both cases this ratio cannot be greater than1
if s is not in the tree, contradicting our assumption.

References

Abe, N. & Warmuth, M. (1992). On the computational complexity of approximating distributions by probabilistic
automata.Machine Learning, 9:205–260.

Baum, L.E. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic
functions of markov chains.Inequalities, 3:1–8.

Baum, L.E., Petrie, T., Soules, G. & Weiss, N. (1970). A maximization technique occuring in the statistical
analysis of probabilistic functions of markov chains.Annals of Mathematical Statistics, 41(1):164–171.

Bellman, R. (1957).Dynamic Programming. Princeton University Press, 1957.
Blumer, A. (1990). Applications of DAWGs to data compression. In A. Capocelli, editor,Sequences: Combina-

torics, compression, security, and transmition, pages 303–311. Springer-Verlag.
Cover, T. & Thomas, J. (1991).Elements of Information Theory. Wiley.
Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977). Maximum-likelihood from incomplete data via the EM

algorithm. J. Royal Stat. Soc., B39:1–38.
Fill, J.A. (1991). Eigenvalue bounds on convergence to stationary for nonreversible Markov chains, with an

application to exclusion process.Annals of Applied Probability, 1:62–87.
Freund, Y., Kearns, M., Ron, D., Rubinfeld, R., Schapire, R.E. & Sellie, L. (1993). Efficient learning of

typical finite automata from random walks. InProceedings of the 24th Annual ACM Symposium on Theory of
Computing, pages 315–324.

Gillman, D. & Sipser, M. (1994). inference and minimization of hidden markov chains. InProceedings of the
Seventh Annual Workshop on Computational Learning Theory, pages 147–158.

Good, G.I. (1969). Statistics of language: Introduction. In A. R. Meetham and R.A. Hudson, editors,Encyclopedia
of Linguistics, Information and Control, pages 567–581. Pergamon Press, Oxford, England.

Höffgen, K.-U. (1993). Learning and robust learning of product distributions. InProceedings of the Sixth Annual
Workshop on Computational Learning Theory, pages 97–106.

Jelinek, F. (1969). A fast sequential decoding algorithm using a stack.IBM J. Res. Develop., 13:675–685.
Jelinek, F. (1985). Self-organized language modeling for speech recognition. Technical report, IBM T.J. Watson

Research Center.

LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 149

Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R.E. & Sellie, L. (1994). On the learnability of
discrete distributions. InThe 25th Annual ACM Symposium on Theory of Computing.

Krishnan, P. & Vitter, J. S. (1993). Optimal prediction for prefetching in the worst case. Technical Report
CS-1993-26, Duke University.

Krogh, A., Mian, S.I. & Haussler, D. (1993). A hidden markov model that finds genes in E. coli DNA. Technical
Report UCSC-CRL-93-16, University of California at Santa-Cruz.

Kushilevitz, E. & Mansour, Y. (1993). Learning decision trees using the Fourier spectrum.SIAM Journal on
Computing, 22(6):1331–1348.

Laird, P. & Saul, R. (1994). Discrete sequence prediction and its applications.Machine Learning, 15:43–68.
Mihail, M. (1989). Conductance and convergence of Markov chains - A combinatorial treatment of expanders.

In Proceedings 30th Annual Conference on Foundations of Computer Science.
Nadas, A. (1984). Estimation of probabilities in the language model of the IBM speech recognition system.IEEE

Trans. on ASSP, 32(4):859–861.
Rabiner, L.R. (1989). A tutorial on hidden markov models and selected applications in speech recognition.

Proceedings of the IEEE.
Rissanen, J. (1983). A universal data compression system.IEEE Trans. Inform. Theory, 29(5):656–664.
Rissanen, J. (1986). Complexity of strings in the class of Markov sources.IEEE Trans. Inform. Theory,

32(4):526–532.
Ron, D., Singer, Y. & Tishby, N. (1993). The power of amnesia. InAdvances in Neural Information Processing

Systems, volume 6. Morgan Kaufmann.
Ron, D., Singer, Y. & Tishby, N. (1995). On the learnability and usage of acyclic probabilistic finite automata.

In Proc. of the 8th Annual Conf. on Computational Learning Theory.
Rudd, K.E. (1993). Maps, genes, sequences, and computers: An Escherichia coli case study.ASM News,

59:335–341.
Schütze, H. & Singer, Y. (1994). Part-of-Speech tagging using a variable memory Markov model. InProceedings

of ACL 32’nd.
Shannon, C.E. (1951). Prediction and entropy of printed english.Bell Sys. Tech. Jour., 30(1):50–64.
Singer, Y. & Tishby, N. (1995). An adaptive cursive handwriting recognition system. Technical Report CS-TR-22,

Hebrew University.
Vitter, J.S. & Krishnan, P. (1991). Optimal prefetching via data compression. InProceedings of the Thirty-Second

Annual Symposium on Foundations of Computer Science, pages 121–130.
Weinberger, M.J., Lempel, A. & Ziv, J. (1982). A sequential algorithm for the universal coding of finite-memory

sources.IEEE Trans. Inform. Theory, 38:1002–1014.
Willems, F.M.J., Shtarkov, Y.M. & Tjalkens, T.J. (1993). The context tree weighting method: Basic properties.

IEEE Trans. Inform. Theory. Submitted for publication.
Ziv, J. & Lempel, A. (1978). Compression of individual sequences via variable-rate coding.IEEE Trans. Inform.

Theory, 24:530–536.

Received September 7, 1994
Accepted May 11, 1995
Final Manuscript August 24, 1995

