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Abstract.  We propose and analyze a distribution learning algorithm for variable memory length Markov
processes. These processes can be described by a subclass of probabilistic finite automata which we name
Probabilistic Suffix AutomatéPSA. Though hardness results are known for learning distributions generated by
general probabilistic automata, we prove that the algorithm we present can efficiently learn distributions generated
by PSAs. In particular, we show that for any target PSA, the KL-divergence between the distribution generated by
the target and the distribution generated by the hypothesis the learning algorithm outputs, can be made small with
high confidence in polynomial time and sample complexity. The learning algorithm is motivated by applications

in human-machine interaction. Here we present two applications of the algorithm. In the first one we apply the
algorithm in order to construct a model of the English language, and use this model to correct corrupted text. In
the second application we construct a simple stochastic modeldoli BNA.
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1. Introduction

Statistical modeling of complex sequences is a fundamental goal of machine learning due to
its wide variety of natural applications. The most noticeable examples of such applications
are statistical models in human communication such as natural language, handwriting and
speech (Jelinek, 1985, Nadas, 1984), and statistical models of biological sequences such as
DNA and proteins (Krogh, Mian & Haussler, 1993).

These kinds of complex sequences clearly do not have any simple underlying statistical
source since they are generated by natural sources. However, they typically exhibit the
following statistical property, which we refer to as tekort memoryproperty. If we
consider the (empirical) probability distribution on the next symbol given the preceding
subsequence of some given length, then there exists a |én@tie memory lengthsuch
that the conditional probability distribution does not change substantially if we condition it
on preceding subsequences of length greater than

This observation lead Shannon, in his seminal paper (Shannon, 1951), to suggest modeling
such sequences by Markov chains of order 1, where the order is the memory length
of the model. Alternatively, such sequences may be modeled by Hidden Markov Models
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(HMMs) which are more complex distribution generators and hence may capture additional
properties of natural sequences. These statistical models define rich families of sequence
distributions and moreover, they give efficient procedures both for generating sequences
and for computing their probabilities. However, both models have severe drawbacks. The
size of Markov chains grows exponentially with their order, and hence only very low order
Markov chains can be considered in practical applications. Such low order Markov chains
might be very poor approximators of the relevant sequences. In the case of HMMs, there
are known hardness results concerning their learnability which we discuss in Section 1.1.

In this paper we propose a simple stochastic model and describe its learning algorithm.
It has been observed that in many natural sequences, the memory length depends on the
context and imot fixed The model we suggest is hence a variant of ofditarkov chains,
in which the order, or equivalently, the memory, is variable. We describe this model using
a subclass of Probabilistic Finite Automata (PFA), which we ndrababilistic Suffix
Automata(PSA).

Each state in a PSA is labeled by a string over an alph8befhe transition function
between the states is defined based on these string labels, so that a walk on the underlying
graph of the automaton, related to a given sequence, always ends in a state labeled by
a suffix of the sequence. The lengths of the strings labeling the states are bounded by
some upper bound, but different states may be labeled by strings of different length,
and are viewed as havingarying memory length. When a PSA generates a sequence,
the probability distribution on the next symbol generated is completely defined given the
previously generated subsequence of length at thogtlence, as mentioned above, the
probability distributions these automata generate can be equivalently generated by Markov
chains of ordel, but the description using a PSA may be much more succinct. Since the
size of order, markov chains is exponential iy their estimation requires data length and
time exponential inL.

In our learning model we assume that the learning algorithm is given a sample (consisting
either of several sample sequences or of a single sample sequence) generated by an unknown
target PSAM of some bounded size. The algorithm is required to output a hypothesis
machineM, which is not necessarily a PSA but which has the following properfiésan
be used both to efficiently generate a distribution which is similar to the one generated by
M, and given any sequeneeit can efficiently compute the probability assignedstby
this distribution.

Several measures of the quality of a hypothesis can be considered. Since we are mainly
interested in models for statistical classification and pattern recognition, the most natural
measure is the Kullback-Leibler (KL) divergence. Our results hold equally well for the
variation (L) distance and other norms, which are upper bounded by the KL-divergence.
Since the KL-divergence between Markov sources grows linearly with the length of the
sequence, the appropriate measure is the KL-divergence per symbol. Therefore, we define
ane-good hypothesis to be an hypothesis which has at mi&tdivergence per symbol
to the target source.

In particular, the hypothesis our algorithm outputs, belongs to a class of probabilistic
machines named Probabilistic Suffix Trees (PST). The learning algorithm grows such a
suffix tree starting from a single root node, and adaptively adds nodes (strings) for which
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there is strong evidence in the sample that they significantly affect the prediction properties
of the tree.

We show that every distribution generated by a PSA can equivalently be generated by
a PST which is not much larger. The converse is not true in general. We can however
characterize the family of PSTs for which the converse claim holds, and in general, it is
always the case that for every PST there exists a not much larger PFA that generates an
equivalent distribution. There are some contexts in which PSAs are preferable, and some
in which PSTs are preferable, and therefore we use both representation in the paper. For
example, PSAs are more efficient generators of distributions, and since they are probabilistic
automata, their well defined state space and transition function can be exploited by dynamic
programming algorithms which are used for solving many practical problems. In addition,
there is a natural notion of thetationary distributionon the states of a PSA which PSTs
lack. On the other hand, PSTs sometimes have more succinct representations than the
equivalent PSAs, and there is a natural notion of growing them.

Stated formally, our main theoretical result is the following. If both a bodindn
the memory length of the target PSA, and a bounan the number of states the target
PSA has, are known, then for every given< ¢ < 1 and0 < § < 1, our learning
algorithm outputs ae-good hypothesis PST, with confidente- 6, in time polynomial in
L,n, |X|, % and%. Furthermore, such a hypothesis can be obtained fremglesample
sequence if the sequence length is also polynomial in a parameter related to the rate in
which the target machine converges to its stationary distribution. Despite an intractability
result concerning the learnability of distributions generated by Probabilistic Finite Automata
(Kearns, et al., 1994), that is described in Section 1.1, our restricted model can be learned
in a PAC-like sense efficiently. This has not been shown so far for any of the more popular
sequence modeling algorithms.

We present two applications of the learning algorithm. In the first application we apply
the algorithm in order to construct a model of the English language, and use this model to
correct corrupted text. In the second application we construct a simple stochastic model for
E.coli DNA. Combined with a learning algorithm for a different subclass of probabilistic
automata (Ron, Singer & Tishby, 1995), the algorithm presented here is part of a complete
cursive handwriting recognition system (Singer & Tishby, 1995).

1.1. Related Work

The most powerful (and perhaps most popular) model used in modeling natural sequences is
the Hidden Markov Model (HMM). A detailed tutorial on the theory of HMMs as well as se-
lected applications in speech recognition is given by Rabiner (Rabiner, 1989). A commonly
used procedure for learning an HMM from a given sample is a maximum likelihood param-
eter estimation procedure that is based onBaem-Welchmethod (Baume, et al., 1970,
Baume, 1972) (which is a special case of the EM (Expectation-Maximization) algorithm
(Dempster, Laired & Rubin, 1977)). However, this algorithm is guaranteed to converge
only to alocal maximum, and thus we are not assured that the hypothesis it outputs can
serve as a good approximation for the target distribution. One might hope that the problem
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can be overcome by improving the algorithm used or by finding a new approach. Unfortu-
nately, there is strong evidence that the problem cannot be solved efficiently.

Abe and Warmuth (Abe & Warmuth, 1992) study the problentraining HMMs. The
HMM training problem is the problem of approximating an arbitrary, unknown source
distribution by distributions generated by HMMs. They prove that HMMsragrain-
able in time polynomial in the alphabet size, unldé® = NP. Gillman and Sipser
(Gillman & Sipser, 1994) study the problemefactly inferringan (ergodic) HMM over a
binary alphabet when the inference algorithm can quessohability oraclefor the long-
term probability of any binary string. They prove that inference is hard: any algorithm
for inference must make exponentially many oracle calls. Their method is information
theoretic and does not depend on separation assumptions for any complexity classes.

Natural simpler alternatives, which are often used as well, are drddarkov chains
(Shannon, 1951, Good, 1969), also knowmagram models. As noted earlier, the size
of an order, Markov chain is exponential i, and hence, if we want to capture more
than very short term memory dependencies in the sequences, of substantial length in the
sequences, then these models are clearly not practical.

Hoffgen (Hoffgen, 1993) studies families of distributions related to the ones studied in
this paper, but his algorithms depend exponentially and not polynomially on the order, or
memory length, of the distributions. Freuetl al. (Freund, et al., 1993) point out that
their result for learnindypical deterministic finite automata from random walks without
membership queries, can be extended to leartipgal PFAs. Unfortunately, there is
strong evidence indicating that the problem of learrgegeralPFAs is hard. Kearnet.
al. (Kearns, et al., 1994) show that PFAs are not efficiently learnable under the assumption
that there is no efficient algorithm for learning noisy parity functions in the PAC model.

The machines used as our hypothesis representation, namely Probabilistic Suffix Trees
(PSTs), were introduced (in a slightly different form) in (Rissanen, 1983) and have been
used for other tasks such as universal data compression (Rissanen, 1983, Rissanen, 1986,
Weinberger, Lempel & Ziv, 1982, Willems, Shtarkov & Tjalkens, 1993).  Perhaps the
strongest among these results (which has been brought to our attention after the completion
of this work) and which is most tightly related to our resultis (Willems, Shtarkov & Tjalkens,
1993). This paper describes an efficient sequential procedure for universal data compres-
sion for PSTs by using a larger model class. This algorithm can be viewed as a distribution
learning algorithm but the hypothesis it produces is not a PST or a PSA and hence cannot
be used for many applications. Willeras al. show that their algorithm can be modified
to give the minimum description length PST. However, in case the source generating the
examples is a PST, they are able to show that this PST convergenca ahéy limit of
infinite sequence length to that source.

Vitter and Krishnan (Vitter & Krishnan, 1991, Krishnan & Vitter, 1993) adapt a version of
the Ziv-Lempel data compression algorithm (Ziv & Lempel, 1978) to get a page prefetching
algorithm, where the sequence of page accesses is assumed to be generated by a PFA. They
show that the page fault rate of their algorithm converges to the page fault rate of the
best algorithm that has full knowledge of the source. This is true for almost all page
access sequences (in the limit of the sequence length). Laird and Saul (Laird & Saul, 1994)
describe a prediction algorithm which is similar in spirit to our algorithm and is based
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on the Markov treeor Directed Acyclic Word Graplapproach which is used for data
compression (Blumer, 1990). They do not analyze the correctnes of the algorithm formally,
but present several applications of the algorithm.

1.2. Overview of the Paper

The paper is organized as follows. In Section 2 we give basic definitions and notation and
describe the families of distributions studied in this paper, namely those generated by PSAs
and those generated by PSTs. In Section 4 we discuss the relation between the above two
families of distributions. In Section 5 the learning algorithm is described. Some of the
proofs regarding the correctness of the learning algorithm are given in Section 6. Finally,
we demonstrate the applicability of the algorithm by two illustrative examples in Section 7.

In the first example we use our algorithm to learn the structure of natural English text, and
use the resulting hypothesis for correcting corrupted text. In the second example we use
our algorithm to build a simple stochastic model foc&i DNA. The detailed proofs of the
claims presented in Section 4 concerning the relation between PSAs and PSTs are provided
in Appendices A and B. The more technical proofs and lemmas regarding the correctness
of the learning algorithm are given in Appendix C.

2. Preliminaries
2.1. Basic Definitions and Notations

Let X be a finite alphabet. B¥* we denote the set of all possible strings o¥er~or any
integerN, £~ denotes all strings of lengtN, and= =" denotes the set of all strings with
lengthat mostN. The empty string is denoted ley For any strings = s; ..., 8; € %,
we use the following notations:

e The longest prefix of different froms is denoted byrefiz(s) def $182...8/_1.
e The longest suffix of different froms is denoted byuffiz(s) def S2...8/_15].

e The set of all suffixes of is denoted by Suffiz*(s) Lef {si...s1|1<i<i}uU{e}.
A string s’ is aproper suffix of s, if it a suffix of s but is nots itself.

e Lets! ands? be two strings irs*. If s! is a suffix ofs? then we shall say that is a
suffix extensioof s'.

e Asetof stringsS is called asuffix freeset if Vs € S, Suffiz*(s) NS = {s}.
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2.2. Probabilistic Finite Automata and Prediction Suffix Trees
2.2.1. Probabilistic Finite Automata

A Probabilistic Finite Automaton (PFA)/ is a5-tuple (Q, X, 7,~, 7), whereQ is a finite
set ofstates Y is a finitealphabet 7 : @ x ¥ — Q is thetransition functiony : Q x ¥ —
[0, 1] is thenext symbol probability functigrand= : @ — [0, 1] is theinitial probability
distribution over the starting states. The functiopsand = must satisfy the following
conditions: for every; € @, >, s v(¢q,0) = 1,and}_ ., m(q) = 1. We assume that
the transition functiorr is defined on all stateg and symbolsr for which v(q,o) > 0,
and on no other state-symbol pairscan be extended to be defined@nx ¥* as follows:
7(q, 8182 ...81) =71(7(q, 81 ... 81-1), 81) = 7(7(q, prefix(s)), s1).

A PFA M generates strings of infinite length, but we shall always discuss probability
distributions induced on prefixes of these strings which have some specified finite length.
If Py is the probability distributionl/ defines on infinitely long strings, the®.y, for any
N > 0, will denote the probability induced on strings of length We shall sometimes
drop the superscrigV, assuming that it is understood from the context. The probability
that M/ generates a string= 7, ...7x in 3V is

N
Pu(r) =Y m(@) ], 1)

q°€Q i=1

whereq'*! = 7(¢t, ;).

2.2.2. Probabilistic Suffix Automata

We are interested in learning a subclass of PFAs which we rienotabilistic Suffix Au-
tomata(PSA). These automata have the following property. Each state in al?S#
labeled by a string of finite length ii*. The set of strings labeling the states is suffix free.
For every two stateg!, ¢> € Q and for every symbor € %, if 7(¢!,0) = ¢® andg is
labeled by a string!, theng? is labeled by a string? which is a suffix ofs'-¢. In order
thatr be well defined on a given set of strin§snot only must the set be sulffix free, but it
must also have the following property. For every string S labeling some state, and
every symbob for which~(gq, o) > 0, there exists a string i§ which is a suffix ofsc.
For our convenience, from this point ongifs a state inQ theng will also denote the string
labeling that state.

We assume that the underlying graphéf defined byQ andr (-, -), isstrongly connected
i.e., for every pair of stategandq’ there is a directed path fromto ¢’. Note that in our
definition of PFAs we assumed that the probability associated with each transition (edge in
the underlying graph) is non-zero, and hence strong connectivity implies that every state
can be reached from every other state with non-zero probability. For simplicity we assume
M is aperiodig i.e., that the greatest common divisor of the lengths of the cycles in its
underlying graph id. These two assumptions ensure us thais ergodic. Namely, there



LEARNING PROBABILISTIC AUTOMATA WITH VARIABLE MEMORY LENGTH 123

exists a distributiothl ,; on the states such that for every state we may start at, the probability
distribution on the state reached after titnast grows to infinity, converges ttl,,;. The
probability distributionlI,, is the unique distribution satisfying

Mu(g)= Y.  Tu(@)d,0), (2)

q’' s.t. 7(q',0)=q

and is named thetationary distributionof M. We ask that for every statgin @, the

initial probability of ¢, 7(q), be the stationary probability @f I15,(¢). It should be noted

that the assumptions above are needed only when learning from a single sample string and
not when learning from many sample strings. However, for sake of brevity we make these
requirements in both cases.

For any given > 0, the subclass of PSAs in which each state is labeled by a string of
length at mosL is denoted by -PSA. An exampl@-PSA is depicted in Figure 1. A special
case of these automata is the case in wigicimcludesall strings inx”. An example of
such &-PSA is depicted in Figure 1 as well. These automata can be descriMatlesy
chains of orderL. The states of the Markov chain are the symbols of the alphapabd
the next state transition probability depends on thellastites (symbols) traversed. Since
every L-PSA can be extended to a (possibly much larger) equivdldP8A whose states
are labeled by all strings iR’ it can always be described as a Markov chain of odder
Alternatively, since the states of &RPSA might be labeled by only a small subsebEsf,
and many of the suffixes labeling the states may be much shortef thiacan be viewed
as a Markov chain witlvariable order or variable memory

Learning Markov chains of ordek, i.e., L-PSAs whose states are labeleddlly »*
strings, is straightforward (though it takes time exponentidl)n Since the ‘identity’ of
the states (i.e., the strings labeling the states) is known, and since the transition function
7 is uniquely defined, learning such automata reduces to approximating the next symbol
probability functiorry. For the more general casefPSAs in which the states are labeled
by strings of variable length, the task of an efficient learning algorithm is much more
involved since it must reveal the identity of the states as well.

2.2.3. Prediction Suffix Trees

Though we are interested in learning PSAs, we choose as our hypothesis class the class
of prediction suffix tree§PST) defined in this section. We later show (Section 4) that for
every PSA there exists an equivalent PST of roughly the same size.

A PSTT, over an alphabét, is a tree of degref:|. Each edge in the tree is labeled by
a single symbol irt2, such that from every internal node there is exactly one edge labeled
by each symbol. The nodes of the tree are labeled by pairs) wheres is the string
associated with the walk starting from that node and ending in the root of the tree, and
vs : 2 — [0, 1] is thenext symbol probability functiorelated withs. We require that for
every strings labeling a node in the treg,, .. v:(0) = 1.

As in the case of PFAs, a PSTgenerates strings of infinite length, but we consider the
probability distributions induced on finite length prefixes of these strings. The probability
thatT generates a string= rry...ry in 2V is
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PIJ“V(T) = Hi\ilrys'“l(ri) ) (3)

wheres® = e, and forl < j < N — 1, s/ is the string labeling the deepest node reached
by taking the walk corresponding t¢r;_; ...r; starting at the root of". For example,
using the PST depicted in Figure 1, the probability of generating the sifingl, is

0.5 x 0.5 x 0.25 x 0.5 x 0.75, and the labels of the nodes that are used for the prediction
ares’ =e, s' =0, s2 =00, s® =1, s* = 10. In view of this definition, the requirement
that every internal node haexactly|3| sons may be loosened, by allowing the omission
of nodes labeled by substrings which are generated by the tree with probability 0.

PSTs therefore generate probability distributions in a similar fashion to PSAs. As in the
case of PSAs, symbols are generated sequentially and the probability of generating a symbol
depends only on the previously generated substring of some bounded length. In both cases
there is a simple procedure for determining this substring, as well as for determining the
probability distribution on the next symbol conditioned on the substring. However, there
are two (related) differences between PSAs and PSTs. The first is that PSAs generate each
symbol simply by traversing a single edge from the current state to the next state, while for
each symbol generated by a PST, one must walk down from the root of the tree, possibly
traversingL edges. This implies that PSAs are more efficient generators. The second
difference is that while in PSAs for each substring (state) and symbol, the next state is
well defined, in PSTs this property does not necessarily hold. Namely, given the current
generating node of a PST, and the next symbol generated, the next node is not necessarily
uniquely defined, but might depend on previously generated symbols which are notincluded
in the string associated with the current node. For example, assume we have a tree whose
leaves are1,00,010,110  (see Figure B.1 in Appendix B). If is the current generating
leaf and it generates, then the next generating leaf is eitleao or 110 depending on the
symbol generated just prior fio

PSTs, like PSAs, can always be described as Markov chains of (fixed) finite order, but as
in the case of PSAs this description might be exponentially large.

We shall sometimes want to discuss only the structure of a PST and ignore its prediction
property. In other words, we will be interested only in the string labels of the nodes and not
in the values ofy,(-). We refer to such trees asiffix trees We now introduce two more
notations. The set of leaves of a suffix tfBés denoted by (7T'), and for a given string
labeling a node in T', T'(s) denotes the subtree rootedvat

3. The Learning Model

The learning model described in this paper is motivated by the PAC model for learn-
ing boolean concepts from labeled examples and is similar in spirit to that introduced in
(Kearns, et al., 1994). We start by defining @good hypothesis PST with respect to a
given PSA.

Definition. Let M be a PSA and leT” be a PST. LefP,; and Pr be the two probability
distributions they generate respectively. We sayThigtane-goodhypothesis with respect
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0.75
1(10)=0.25 Y1(00)=0.25 7(10)=0.25 T00)=0.25

Figure 1. Left: A 2-PSA. The strings labeling the states are the suffixes corresponding to them. Bold edges
denote transitions with the symbol ‘1’, and dashed edges denote transitions with ‘0’. The transition probabilities
are depicted on the edges. Middle: 24PSA whose states are labeled &y strings in{0,1}2. The strings

labeling the states are the last two observed symbols before the state was reached, and hence it can be viewed as
a representation of a Markov chain of or@erRight: A prediction suffix tree. The prediction probabilities of the
symbols ‘0’ and ‘1’, respectively, are depicted beside the nodes, in parentheses. The three models are equivalent
in the sense that they induce the same probability distribution on strings{fipir} *.

to M, if for every N > 0,

1

NDKL[PJ\ZYI”PJZ“V] <e
where

Pyy(r)
Py (r)

def
Di[PYIIPY] = Y Phy(r)log
rexnN

is theKullback-Leiblerdivergence between the two distributions.

In this definition we chose thKullback-Leibler(KL) divergence as a distance measure
between distributions. Similar definitions can be considered for other distance measures
such as the variation and the quadratic distances. Note that the KL-divergence bounds the
variation distance as follows (Cover & Thomas, 199Dk . [P1||P2] > $[|P1 — P2||f.
Since theL; norm bounds thd., norm, the last bound holds for the quadratic distance
as well. Note that the KL-divergence between distributions, generated by finite order
markov chains, is proportional to the length of the strings over which the divergence is
computed, when this length is longer than the order of the model. Hence, to obtain a
measure independent of that length it is necessary to divide the KL-divergence by the
length of the stringsiV.

A learning algorithm for PSAs is given the maximum lendilof the strings labeling
the states of the target PSK, and an upper bouna on the number of states iW. The
algorithm is also given a confidence (security) parameteré < 1 and an approximation
parametel0 < ¢ < 1. We analyze the following two learning scenarios. In the first
scenario the algorithm has access to a source of sample strings of minimal lergth
independently generated by . In the second scenario it is given onlysangle (long)
sample string generated By. In both cases we require that it output a hypothesis PST
which with probability at least — ¢ is ane-good hypothesis with respect id.

The only drawback to having a PST as our hypothesis instead of a PSA (or more generally
a PFA), is that the prediction procedure using a tree is somewhat less efficient (by at most
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a factor of L). Since no transition function is defined, in order to predict/generate each
symbol, we must walk from the root until a leaf is reached. As mentioned earlier, we show
in Appendix B that every PST can be transformed into an equivalent PFA which is not much
larger. This PFA differs from a PSA only in the way it generates the firsymbols. We

also show that if the PST has a certain property (defined in Appendix B), then it can be
transformed into an equivalent PSA.

In order to measure the efficiency of the learning algorithm, we separate the case in which
the algorithm is given a sample consisting of independently generated sample strings, from
the case in which it is given a single sample string. In the first case we say that the learning
algorithm isefficientif it runs in time polynomial inZ, n, |X|, % and%. In order to define
efficiency in the latter case we need to take into account an additional property of the model
— its mixing or convergence rate. To do this we next discuss another parameter of PSAs
(actually, of PFAs in general).

For a given PSAM, let R, denote then x n stochastic transition matrix defined by
7(-,-) and~(-,-) when ignoring the transition labels. That issifands’ are states i/
and the last symbol ig/ is o, thenRy, (s*, s7) isy(s?, o) if 7(s%, o) = s/, and0 otherwise.
Hence,R), is the transition matrix of an ergodic Markov chain.

Let R, denote the¢ime reversabf R,;. Thatis,

~ i q HA{ Sj RM Sj,Si
(e ) = DR ()

wherell,, is the stationary probability vector dt,; as defined in Equation (2). Define
themultiplicative reversiblizatio/,; of M by Uy, = Ry Rys. Denote the second largest
eigenvalue ol/; by Ay (Upy).

If the learning algorithm receives a single sample string, we allow the length of the string
(and hence the running time of the algorithm) to be polynomial not only,in, |%|, %
and ¢, but also in1/(1 — Az(Uys)). The rationale behind this is roughly the following.

In order to succeed in learning a given PSA, we must observe each state whose stationary
probability is non-negligible enough times so that the algorithm can identify that the state
is significant, and so that the algorithm can compute (approximately) the next symbol
probability function. When given several independently generated sample strings, we can
easily bound the size of the sample needed by a polynomig) in ||, £, and 3, using
Chernoff bounds. When given one sample string, the given string must be long enough so as
to ensure convergence of the probability of visiting a state to the stationary probability. We
show that this convergence rate can be bounded using algebraic propetfigs mamely,

its second largest eigenvalue (Fill, 1991).

4. Emulation of PSAs by PSTs

In this section we show that for every PSA there exists an equivalent PST which is not
much larger. This allows us to consider the PST equivalent to our target PSA, whenever it
is convenient.
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THEOREM 1 Forevery L-PSAM = (Q, X, 7, v, ), there exists an equivalent PFT,,
of maximal deptH. and at most - |Q| nodes.

Proof: (Sketch) We describe below the construction needed to prove the claim. The
complete proof is provided in Appendix A.

Let T, be the tree whose leaves correspond to the stringg. ifror each leak, and
for every symbob, lety,(c) = (s, o). This ensures that for every given stringvhich
is a suffix extension of a leaf ifi,;, and for every symbab, Py (o|s) = Pry, (ols). It
remains to define the next symbol probability functions for the internal nodEg offhese
functions must be defined so tHat; generates all strings related to its nodes with the same
probability asi .

def

For each nodes in the tree, let theweight of s, denoted byw,, be w, =
2seq, sesuffiz+ (s T(s'). In other words, the weight of a leaf ifiy; is the stationary
probability of the corresponding state Ad; and the weight of an internal node labeled by
a strings, equals the sum of the stationary probabilities over all states of whigch suffix
(which also equals the sum of the weights of the leaves in the subtree rooted at the node).
Using the weights of the nodes we assign values tg flseof the internal nodesin the tree
in the following manner. For every symbolets(0) = 32, co e sugios (s) w7V (8" 0)-

The probabilityys (o), of generating a symbel following a strings, shorterthan any state

in M, is thus a weighted average ¢fs’, o) taken over all states' which correspond to
suffix extensions ok. The weight related with each state in this average, corresponds to
its stationary probability. As an example, the probability distribution over the first sym-
bol generated b{,, is ZSQQ 7(s)7y(s, ). This probability distribution is equivalent, by
definition, to the probability distribution over the first symbol generatedfy

Finally, if for some internal node if,, its next symbol probability function is equivalent
to the next symbol probability functions afl of its descendants, then we remove all its
descendants from the tree.0

An example of the construction described in the proof of Theorem 1 is illustrated in
Figure 1. The PST on the right was constructed based on the PSA on the left, and is
equivalent to it. Note that the next symbol probabilities related with the leaves and the
internal nodes of the tree are as defined in the proof of the theorem.

5. The Learning Algorithm

We start with an overview of the algorithm. L&f = (Q, X, 7,v, w) be the target L-PSA
we would like to learn, and I8f)| < n. According to Theorem 1, there exists a PB;Tof
size bounded by - |Q|, which is equivalent td//. We use the sample statistics to define
theempirical probability functionﬁ(-), and usingP, we construct a suffix tred;, which
with high probability is a subtree af. We define our hypothesis PSTT, based o and

P,

The construction of is done as follows. We start with a tree consisting of a single node
(labeled by the empty string) and add nodes which we have reason to believe should
be in the tree. A node labeled by a string is added as a leaf t@ if the following
holds. The empirical probability of, P(s), is non-negligble, and for some symhnlthe
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empirical probability of observing following s, namelyP(o|s), differs substantially from
the empirical probability of observingfollowing suffiz(s), namelyP(o|suffiz(s)). Note

that suffiz(s) is the string labeling the parent node«wof Our decision rule for adding,

is thus dependent on the ratio betweefv|s) and P(c|suffiz(s)). We add a given node
only when this ratio is substantiallyreaterthan1. This suffices for our analysis (due to
properties of the KL-divergence), and we need not add a node if the ratio is smallér than

Thus, we would like to grow the tree level by level, adding the sons of a given leaf in the
tree, only if they exhibit such a behavior in the sample, and stop growing the tree when the
above is not true for any leaf. The problem is that the node might belong to the tree even
though its next symbol probability function is equivalent to that of its parent node. The
leaves of a PST must differ from their parents (or they are redundant) but internal nodes
might not have this property. The PST depicted in Figure 1 illustrates this phenomena. In
this exampleno(-) = ve(:), but bothvyyo(-) and~o(-) differ from vo(-). Therefore, we
must continue testing further potential descendants of the leaves in the tree up té depth

As mentioned before, we do not test strings which belong to branches whose em-
pirical count in the sample is small. This way we avoid exponential grow-up in the
number of strings tested. A similar type bfanch-and-boundechnique (with vari-
ous bounding criteria) is applied in many algorithms which use trees as data structures
(cf. (Kushilevitz & Mansour, 1993)). The set of strings tested at each step, denoted by
can be viewed as a kind of potentiaintier of the growing tred”, which is of bounded size.

After the construction of is completed, we definé by adding nodes so that all internal
nodes have full degree, and defining the next symbol probability function for each node
based orP. These probability functions are defined so that for every stringhe tree and

for every symbob, v,(o) is bounded from below by,,.;,, which is a parameter that is set
subsequently. This is done by using a conventional smoothing technique. Such a bound on
vs(0) is needed in order to bound the KL-divergence between the target distribution and
the distribution our hypothesis generates.

The above scheme followgap-downapproach since we start with a tree consisting of a
single root node and a frontier consisting only of its children, and incrementally grow the
suffix treeT” and the frontierS. Alternatively, abottom-upprocedure can be devised. In
a bottom-up procedure we start by puttingJrall strings of length at most which have
significant counts, and settiri to be the tree whose nodes correspond to the strings in
S. We then trimT starting from its leaves and proceeding up the tree by comparing the
prediction probabilities of each node to its parent node as done in the top-down procedure.
The two schemes are equivalent and yield the same prediction suffix tree. However, we find
the incremental top-down approach somewhat more intuitive, and simpler to implement.
Moreover, our top-down procedure can be easily adapted to an online setting which is useful
in some practical applications.

Let P denote the probability distribution generated by We now formally define the
empirical probability function”, based on a given sample generated\by For a given
strings, P(s) is roughly the relative number of timesappears in the sample, and for any

symbolo, P(o|s) is roughly the relative number of timesappears aftet. We give a more
precise definition below.
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If the sample consists of one sample stringf lengthm, then for any string: of length
at mostL, definey;(s) to bel if 7;_|54+1...7; = s and0 otherwise. Let

P(s) = >~ () | @

and for any symbab, let

-1
ZT:L Xj+1(s0)

P(ols) = == (5)
S xi(s)

If the sample consists of,’ sample strings?, ..., ™, each of lengtld > L + 1, then for
any strings of length at most, definex’ (s) to bel if T;—ISHI ...T5 = s, and0 otherwise.
Let

~ 1 m’ -1

P(s) = ——— i

0= =1 2 LX) ©)

and for any symbat, let

m’ -1 ) o
Plols) = Dict Ej:L Xj+1(s0) ' 7)

S S xG(s)

For simplicity we assume that all the sample strings have the same length and that this
length is polynomial im, L, andX. The case in which the sample strings are of different
lengths can be treated similarly, and if the strings are too long then we can ignore parts of
them.

In the course of the algorithm and in its analysis we refer to several parameters which are
all simple functions ot, n, L and|X|, and are set as follows:

€

48L

€9 €

Ymin = E—m»
€

€y —

€

0= 2nL1og(1/Ymin) - 2nLlog(48LIX|/e) ’
€2 Llog(48L|%|/€)|3
€1 — = .
8NEY Ymin 4e

The size of the sample is set in the analysis of the algorithm.
A pseudo code describing the learning algorithm is given in Figure 2 and an illustrative
run of the algorithm is depicted in Figure 3.
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Algorithm Learn-PSA

1. LnitializeT andS: let T consist of a single root node (correspondingejpand let
S—{o|oceXandP(c) > (1 —€1)e}-

2. While S # ), pick anys € S and do:

(A) Removes from S;
(B) If there exists a symbat € ¥ such that

P(o|s) > (14 €2)Ymin and P(c|s)/P(o|suffiz(s)) > 1+ 3¢ ,

then add tdl” the node corresponding toand all the nodes on the path from the
deepest node ifi’ that is a suffix ofs, to s;

(C) If |s| < L then for every’ € %, if P(0”-5) > (1 — €1 )€, then addr’-st0 S.
3. |Initialize 7" to beT.
4. Extendl’ by adding all missing sons of internal nodes.

5. For eachs labeling a node iff’, let

45(0) = P(c]s") (1 = |Z[Ymin) + Ymin

wheres’ is the longest suffix of in 7.

Figure 2. Algorithm Learn-PSA

6. Analysis of the Learning Algorithm

In this section we state and prove our main theorem regarding the correctness and efficiency
of the learning algorithnhearn-PSAdescribed in Section 5.

THEOREM 2 For every target PSA/, and for every given security parametex 6 < 1,
and approximation paramet@r< e < 1, AlgorithmLearn-PSA outputs a hypothesis PST,
T, such that with probability at least— 6:

1. T is ane-good hypothesis with respect1d.
2. The number of nodes ihis at mostX| - L times the number of states M.
If the algorithm has access to a source of independently generated sample strings, then

its running time is polynomial i, n, |X|, % and % If the algorithm has access to only
one sample string, then its running time is polynomial in the same parameters and in

1/(1 = A2(Unr))-
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0 (06,0.4) 1 (0.4,0.6) (0.4,0.6)

rooox
(0.6,0.4) 00 01 (0.6,0.4)

rooA yoox rooa yoooA

00 10 01 11 (0.6,0.4) 00 10 01 1
(0.6,04) (0.6,04) (0.40.6) (0.4,0.6) (0.6,0.4) (0.406) (0.4,0.6)
14
000 (0.8,0.2)

11 (0.6,0.4)

(0.6,04) (0.4,0.6) (0.4,0.6)

(0.6,0.4)

0802 (030.7)

4 (0.8,0.2)‘ (0.8,0.2)
0000 1000

Figure 3. An illustrative run of the learning algorithm. The prediction suffix trees created along the run of the
algorithm are depicted from left to right and top to bottom. At each stage of the run, the nodég &anplotted

in dark grey while the nodes froi are plotted in light grey. The alphabet is binary and the predictions of the next

bit are depicted in parenthesis beside each node. The final tree is plotted on the bottom right part and was built by
adding toT" (bottom left) all missing children. Note that the node labeled &y was added to the final tree but

is not part of any of the intermediate trees. This can happen when the probability of thelgtrilsgsmall.
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Inorder to prove the theorem above we first show that with probability, a large enough
sample generated accordingltd is typicalto M, wheretypical is defined subsequently.
We then assume that our algorithm in fact receives a typical sample and prove Theorem 2
based on this assumption. Roughly speaking, a sample is typical if for every substring
generated with non-negligible probability By, the empirical counts of this substring and
of the next symbol given this substring, are not far from the corresponding probabilities
defined byM.

Definition. A sample generated accordingléis typical if for every strings € =% the
following two properties hold:

1. If s € Q then|P(s) — n(s)| < e1€q;

2. 1f P(s) > (1 — €1)eo then for everys € %, |P(als) — P(c|s)| < €2Ymin;
Whereey, €1, €2, andy,,,;, were defined in Section 5.

LEMMA 1

1. There exists a polynomiab{, in L, n, ||, 1, and ¢, such that the probability that a
sample ofm’ > m{(L,n,|%|, 1, 1) strings each of length at leadt + 1 generated
according toM is typical is at leastl — 6.

2. There exists a polynomiak in L, n, [S[, 1, 4, and1/(1 — A\2(Un)), such that
the probability that a single sample string of length > mq (L, n, |3, 1, +,1/(1 —
X2(Uypr))) generated according td/ is typical is at least — é.

The proof of Lemma 1 is provided in Appendix C.

Let T be the PST equivalent to the target P34 as defined in Theorem 1. In the next
lemma we prove two claims. In the first claim we show that the prediction properties of
our hypothesis PST', and ofT", are similar. We use this in the proof of the first claim in
Theorem 2, when showing that the KL-divergence per symbol bet@esrd M/ is small.

In the second claim we give a bound on the siz& d@f terms ofT", which implies a similar
relation betweef” and M (second claim in Theorem 2).

LEMMA 2 If Learn-PSA is given a typical sample then:

¥s(o)
Nsr (U)

1. Forevery stringsin T, if P(s) > ¢, then <1+ ¢€/2 ,wheres'is the longest

suffix ofs corresponding to a node ify.
2. |71 < (IZ]-1)-|T].
Proof: (Sketch, the complete proofs of both claims are provided in Appendix C.)
In order to prove the first claim, we argue that if the sample is typical, then there cannot

exist such strings ands’ which falsify the claim. We prove this by assuming that there
exists such a pair, and reaching contradiction. Based on our setting of the parameters
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and v,,,;», we show that for such a paig, and s/, the ratio betweeny;(c) and~y (o)
must be bounded from below by+ ¢/4. If s = s/, then we have already reached a
contradiction. Ifs # s’, then we can show that the algorithm must add some longer suffix
of s to T, contradicting the assumption theltis the longest suffix ok corresponding
to a node inZ". In order to bound the size &f, we show thatl' is a subtree off".
This suffices to prove the second claim, since when transforffirigto 7', we add at
most all |X| — 1 siblings of every node i". We prove thatl’ is a subtree ofl’, by
arguing that in its construction, we did not add any string which does not correspond to
a node inT. This follows from the decision rule according to which we add nodég.to

]

Proof of Theorem 2: According to Lemma 1, with probability at lealst- § our algorithm
receives a typical sample. Thus according to the second claim in Lemiha 2, (|%] —
1)-|T| and sincdT| < L-|Q|, then|T| < || L-|Q| and the second claim in the theorem
is valid.
Letr = riry...7Nn, Wherer; € X, and for any prefix(?) of r, wherer(®) = r .. .r;,
let s[r(?)] and 5[~(Y)] denote the strings corresponding to the deepest nodes reached upon
taking the walkr; ...r; onT and7" respectively. In particulag[r(®)] = 5[r(V)] = e. Let
P denote the probab|I|ty distribution generated®yThen

1 P(r)

N@N P(r)log P - (8a)
- 5 I o e
= % TEZEN P(r) - ilog m (8c)

N N )
P(srt-1]) <eo
+ Z P(r) - log % ] . (8d)

resN st

P(s[rti=D])>eo
For everyl < i < N, the first term in the parenthesis in Equation (8d) can be bounded as
follows. For each string, the worst possible ratio betweety, -1, (r4) and9; (-1 (rs),
is 1/vmin. The total weight of all strings in the first term equals the total weight of all
the nodes irl” whose weight is at most), which is at mostiLey. The first term is thus
bounded bynLeg log(1/vmin). Based on Lemma 2, the ratio betweesr[]r(i_l)](ri) and
Ysira-ni(r;) for every stringr in the second term in the parenthesis, is at moste/2.
Since the total weight of all these strings is bounded jthe second term is bounded by
log(1 + €¢/2). Combining the above with the value af (that was set in Section 5 to be
e/ (2nLlog(1/vmin)) ), we get that,
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1 . 1
NDKL[PNHPN] < 5 Nnlelog -

+ log(1+¢/2)] < €. 9)

Using a straightforward implementation of the algorithm, we can get a (very rough) upper
bound on the running time of the algorithm which is of the order of the square of the size
of the sample timeg. In this implementation, each time we add a string S or to T,
we perform a complete pass over the given sample to count the number of occurrences
of s in the sample and its next symbol statistics. According to Lemma 1, this bound is
polynomial in the relevant parameters, as required in the theorem statement. Using the
following more time-efficient, but less space-efficient implementation, we can bound the
running time of the algorithm by the size of the sample tilhesor each string irb, and
each leaf inT” we keep a set of pointers to all the occurrences of the string in the sample.
For such a string, if we want to test which of its extensionss should we add te& or
to T', we need only consider all occurrencessah the sample (and then distribute them
accordingly among the strings added). For each symbol in the sample there is a single
pointer, and each pointer corresponds to a single string of lenfgtheveryl < i < L.

Thus the running time of the algorithm is of the order of the size of the sample fines
]

7. Applications

A slightly modified version of our learning algorithm was applied and tested on various prob-
lems such as: correcting corrupted text, predicting DNA bases (Ron, Singer & Tishby, 1993),
and part-of-speech disambiguation resolving (8zé & Singer, 1994). We are still explor-

ing other possible applications of the algorithm. Here we demonstrate how the algorithm
can be used to correct corrupted text and how to build a simple model for DNA strands.

7.1. Correcting Corrupted Text

In many machine recognition systems such as speech or handwriting recognizers, the recog-
nition scheme is divided into two almost independent stages. In the first stage a low-level
model is used to perform a (stochastic) mapping from the observed data (e.g., the acoustic
signal in speech recognition applications) into a high level alphabet. If the mapping is
accurate then we get a correct sequence over the high level alphabet, which we assume
belongs to a corresponding high level language. However, it is very common that errors
in the mapping occur, and sequences in the high level language are corrupted. Much of
the effort in building recognition systems is devoted to correct the corrupted sequences. In
particular, in many optical and handwriting character recognition systems, the last stage
employs natural-language analysis techniques to correct the corrupted sequences. This can
be done after a good model of the high level language is learned from uncorrupted examples
of sequences in the language. We now show how to use PSAs in order to perform such a
task.

We applied the learning algorithm to the bible. The alphabet was the english letters and
the blank character. We removed Jenesis and it served as a test set. The algorithm was
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applied to the rest of the books with = 30, and the accuracy parametets) (were of
orderO(v/N), whereN is the length of the training data. This resulted in a PST having
less tharB000 nodes. This PST was transformed into a PSA in order to apply an efficient
text correction scheme which is described subsequently. The final automaton constitutes
both of states that are of length 2, liker and‘xe’ , and of states which are 8 and 9
symbolslong, likeshall be’  andthere was’ . Thisindicatesthatthe algorithm really
captures the notion of variable memory that is needed in order to have accurate predictions.
Building a Markov chain of ordeL in this case is clearly not practical since it requires
o)L = 279 = 7625597484987 states!

Let7 = (r1,re,...,r:) be the observed (corrupted) text. If an estimation of the cor-
rupting noise probability is given, then we can calculate for each state seg@ence
(90,91,92,---,q:), ¢ € Q, the probability that” was created by a walk over the PSA
which constitutes of the statgs For0 < i < ¢, let X; be a random variable ové}, where
X, = g denotes the event that thit state passed was For1l < i < tletY; be a random
variable oveX, whereY; = o denotes the event that tlih symbol observed was. For
g € Q! let X = ¢ denote the joint event that; = ¢; for every0 < i < t, and for
7 € X, letY = 7 denote the joint event thaf, = r; for everyl < i < t. If we assume
that the corrupting noise is i.i.d and is independent of the states that constitute the walk,
then the most likely state sequenggsr,, is

ML = P(X=qy =7)= P(Y =7|X =q) P(X = q) (10a
qur = arg max P (X =gV =) =arg max P (Y =r|X =q) P(X =) (10a)

argqreréat>+(1 { <HP (Yi =X = q)) X

i=1

(W(CIO) HP (Xs =qi| Xio1 = %1)) } (10b)

i=1

t
= argmax {Zlog (P (Y; =ri|Xi = i) + log(m(q0)) +
i=1

Zlog (P(Xi = qi|Xio1 = qz‘—l))} ; (10c)
=1

where for deriving the last Equality (10c) we used the monotonicity ofithefunction
and the fact that the corruption noise is independent of the states. Let the string labeling
gi besy,...,s;. ThenP(Y; = r;|X; = ¢;) is the probability that; is an uncorrupted
symbol ifr; = s;, and is the probability that the noise process flippet ber; otherwise.
Note that the sum (10c) can be computed efficiently in a recursive manner. Moreover, the
maximization of Equation (10a) can be performed efficiently by usidgreamic program-
ming(DP) scheme (Bellman, 1957). This scheme requirg§)| x t) operations. IfQ| is
large, then approximation schemes to the optimal DP, such asatiedecodinglgorithm
(Jelinek, 1969) can be employed. Using similar methods it is also possible to correct errors
when insertions and deletions of symbols occur as well.

We tested the algorithm by taking a text from Jenesis and corrupting it in two ways. First,
we altered every letter (including blanks) with probabilitg. In the second test we altered
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every letter with probability).1 and we also changed each blank character, in order to test
whether the resulting model is powerful enough to cope with non-uniform noise. The result
of the correction algorithm for both cases as well as the original and corrupted texts are
depicted in Figure 4.

Original Text:
and god called the dry land earth and the gathering together of the waters called he seas and
god saw that it was good and god said let the earth bring forth grass the herb yielding seed

and the fruit tree yielding fruit after his kind

Corrupted text (1):
and god cavsed the drxjland earth ibd shg gathervng together oj the waters cflled|re seas
aed god saw thctpit was good ann god said let tae earth bring forth gjasb tse hemb yielpinl

peed and thesfruit tree sielxing fzuitnafter his kind

Corrected text (1):
and god caused the dry land earth and she gathering together of the waters called he sees
and god saw that it was good and god said let the earth bring forth grass the memb yielding

peed and the fruit tree fielding fruit after his kind

Corrupted text (2):
andhgodpcilledjthesdryjlandbeasthcandmthelgatceringhlogetherjfytrezaatersoczlle
xherseasaknddgodbsawwthathitgwasoqoohanwzgodcsaidhletdtheuejrthriringmfort
hbgrasstthexherbyieldingzseedmazdctcybfruitttreeayieldinglfruztbafherihiskind

o O

Corrected text (2):
and god called the dry land earth and the gathering together of the altars called he seasaked
god saw that it was took and god said let the earthriring forth grass the herb yielding seed

and thy fruit treescielding fruit after his kind

Figure 4. Correcting corrupted text.

We compared the performance of the PSA we constructed to the performance of Markov
chains of ordef —3. The performance is measured by the negative log-likelihood obtained
by the various models on the (uncorrupted) test data, normalized per observation symbol.
The negative log-likelihood measures the amount of ‘statistical surprise’ induced by the
model. The results are summarized in Table 1. The first four entries correspond to the
Markov chains of ordef) — 3, and the last entry corresponds to the PSA. The order of
the PSA is defined to bbg|z‘(|Q|). These empirical results imply that using a PSA of
reasonable size, we get a better model of the data than if we had used a much larger full
order Markov chain.
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Table 1. Comparison of full order Markov chains versus a PSA (a Markov
model with variable memory).

Fixed Order Markov PSA
Model Order 0 1 2 3 1.84
Number of States 1 27 729 19683| 432
Negative Log-Likelihood | 0.853 0.681 0.560 0.555 0.456

7.2. Building A Simple Model for Ecoli DNA

The DNA alphabet is composed of four nucleotides denoted\y,T,G . DNA strands are
composed of sequences of protein coding genes and fillers between those regions named
intergenic regions. Locating the coding genes is necessary, prior to any further DNA
analysis. Using manually segmented data ofdi (Rudd, 1993) we built two different
PSAs, one for the coding regions and one for the intergenic regions. We disregarded the
internal (triplet) structure of the coding genes and the existence of start and stop codons
at the beginning and the end of those regions. The models were constructed based on
250 different DNA strands from each type, their lengths ranging from 20 bases to several
thousands. The PSAs built are rather small compared to the HMM model described in
(Krogh, Mian & Haussler, 1993): the PSA that models the coding regions has 65 states and
the PSA that models the intergenic regions has 81 states.

We tested the performance of the models by calculating the log-likelihood of the two
models obtained on test data drawn from intergenic regions. In 90% of the cases the
log-likelihood obtained by the PSA trained on intergenic regions was higher than the log-
likelihood of the PSA trained on the coding regions. Misclassifications (when the log-
likelihood obtained by the second model was higher) occurred only for sequences shorter
than 100 bases. Moreover, the log-likelihood difference between the models scales linearly
with the sequence length where the slope is close to the KL-divergence between the Markov
models (which can be computed from the parameters of the two PSASs), as depicted in
Figure 5. The main advantage of PSA models is in their simplicity. Moreover, the log-
likelihood of a set of substrings of a given strand can be computed in time linear in the
number of substrings. The latter property combined with the results mentioned above
indicate that the PSA model might be used when performing tasks such as DNA gene
locating. However, we should stress that we have done only a preliminary step in this
direction and the results obtained in (Krogh, Mian & Haussler, 1993) as part of a complete
parsing system are better.
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90% of the cases the likelihood of the first PSA was higher.
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Appendix A
Proof of Theorem 1

Theorem 1 For every L-PSAV = (Q, X, 7, v, ), there exists an equivalent PST,;, of
maximal depth. and at most - |Q| nodes.

Proof: Let Ty, be the tree whose leaves correspond to the strings(the states of\/).
For each lea, and for every symbat, letvs(c) = (s, o). This ensures that for every
string which is a suffix extension of some leafih,, both A/ andT},; generate the next
symbol with the same probability. The remainder of this proof is hence dedicated to defining
the next symbol probability functions for the internal node§'gf. These functions must
be defined so th&f,,; generates all strings related to node®ii, with the same probability
asM.

For each node in the tree, let theveightof s, denoted byw, be defined as follows

w, & Z m(s") (A.1)

s'€Q sts€Suffiz* (s')

In other words, the weight of a leaf ifiy, is the stationary probability of the corresponding
state inM; and the weight of an internal node labeled by a steingquals the sum of the
stationary probabilities over all states of whiglis a suffix. Note that the weight of any
internal node is the sum of the weights of all the leaves in its subtree, and in particular
we = 1. Using the weights of the nodes we assign values toyftseof the internal nodes

s in the tree in the following manner. For every symbdet

Yolo) = 3 O (o) (A2)

s’€Q st.s€Suffiz*(s’) 8
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According to the definition of the weights of the nodes, it is clear that for every pode
vs(+) is in fact a probability function on the next output symbol as required in the definition
of prediction suffix trees.

Whatis the probability that/ generates a stringwhich is a node i, (a suffix of a state
in Q)? By definition of the transition function &ff, for everys® € Q, if s’ = 7(s, s), then
s" must be a suffix extension ef ThusPy,(s) is the sum over all sucHi of the probability
of reachings’, whens® is chosen according to the initial distributiari-) on the starting
states. But if the initial distribution is stationary then at any point the probability of being
at states’ is just(s’), and

Py(s) = Z 7(s) = ws . (A.3)

s'€Q st.seSuffiz*(s’)

We next prove thatPr,, (s) equalsw, as well. We do this by showing that for every
s = s1...sinthe tree, whergs| > 1, wy = Wprefin(s) Vprefin(s)(51). Sincewe = 1, it
follows from a simple inductive argument th8f,, (s) = ws.

By our definition of PSAsx(+) is such that for every € Q, s = s1 ... s,

m(s) = Z (s )y(s', s1) - (A.49)

s’ stT(s',81)=s

Hence, ifs is a leaf inT}, then

—~

ws = 7(s) & Z WerYs (S1)

s'€L(Th) sts€Suffix*(s's;)

= Z W' Ys! (Sl)

s'€L(Tn (prefiz(s)))

=

—~
=

(2 wpreﬁx(s)’ypreﬁz(s)(sl) ) (A5)
where (a) follows by substituting: for (s") and~, (s;) for y(s’, s;) in Equation (A.4),
and by the definition of (-, -); (b) follows from our definition of the structure of prediction
suffix trees; and (c) follows from our definition of the weights of internal nodes. Hence, if
sisaleafw, = wyrefiz(s) Yprefiz(s) (51) @S required.

If sis an internal node then using the result above and Equation (A.2) we get that

Ws = E Wy

s'€L(Ta(s))
= Z Wprefia(s') Vprefia(s') (S1)
s’ €L(Tm(s))
= Wprefi(s) Vprefie(s)(S1) - (A.6)
It is left to show that the resulting tree is not bigger thatimes the number of states

in M. The number of leaves ifiy; equals the number of statesid, i.e. |£(T)| = |Q|.
If every internal node iril’,; is of full degree (i.e. the probability’,, generates any
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string labeling a leaf in the tree is strictly greater tHgnthen the number of internal
nodes is bounded bj| and the total number of nodes is at magh|. In particular,
the above is true when for every statén M, and every symbob, ~(s,0) > 0. If
this is not the case then we can simply bound the total number of nodés: ).

[ |

Appendix B
Emulation of PSTs by PFAs

In this section we show that for every PST there exists an equivalent PFA which is not much
larger and which is a slight variant of a PSA. Furthermore, if the PST has a certain property,
defined below and denoted by Propertthen it can be emulated by a PSA.

Property« For every strings labeling a node in the treé,,

Pr(s) = Z Pr(os) .

oEX

Before we state our theorem, we observe that Propémiplies that foreverystringr,

Pr(r) =" Pr(or) (B.1)

cEX

This is true for the following simple reasoning.rfis a node inl", then Equality (B.1) is
equivalent to Property Otherwise let- = r1r5, wherer; is the longest prefix of which
is a leaf inT".

Pr(r) = Pr(r1) - Pr(ra|r) (B.2a)
= ZPT(UT1)'PT(T2|T1) (B.2b)
= > Pr(or) - Pr(ralom) (B.2¢)
=Y Pr(or) | (B.2d)

where Equality (B.2c) follows from the definition of PST's.

THEOREM 3 Forevery PST[, of depthl overX. there exists an equivalent PEA, with
atmostL - |£(T')| states. Furthermore, if Propertyholds forT’, then it has an equivalent
PSA.

Proof: Inthe proof of Theorem 1, we were given a P8Aand we defined the equivalent
suffix treeT), to be the tree whose leaves correspond to the states of the automaton. Thus,
given a suffix tre€l’, the natural dual procedure would be to construct a B&Awhose
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states correspond to the leavesiof The first problem with this construction is that we
might not be able to define the transition functioan all pairs of states and symbols. That
is, there might exist a stateand a symbob such that there is no statéwhich is a suffix

of so. The solution is to extend to a larger tred” (of which T is a subtree) such thatis

well defined on the leaves @ . It can easily be verified that the following is an equivalent
requirement or7”: for each symbot, and for every leaf in 77, so is either a leaf in the
subtreel” (o) rooted ato, or is a suffix extension of a leaf Ii’(o). In this case we shall
say thatT” coverseach of its children’s subtrees. Viewing this in another way, for every
leaf s, the longesprefixof s must be either a leaf or an internal node€fih We thus obtain

T’ by adding nodes t@ until the above property holds.

The next symbol probability functions of the nodegtrare defined as follows. For every
nodes in T'NT" and for every € ¥, letv. (o) = (o). For each new nod¢ = s ... s
inT" — T, letv.,(c) = vs(o), wheres is the longest suffix o§’ in T (i.e. the deepest
ancestor ofs’ in T'). The probability distribution generated iy is hence equivalent to
that generated by'. From Equality (B.1) it directly follows that if Propertyholds forT’,
then it holds forT” as well.

Based onl” we now defineM; = (Q, X, 7,v, ). If Property holds forT', then we
defineM as follows. Letthe states af - be the leaves df’ and let the transition function
be defined as usual for PSAs (i.e. for every staad symbob, 7(s, o) is the unique suffix
of so.) Note that the number of statesiifi; is at mostZ times the number of leaves i,
as required. This is true since for each original leaf in the Treat mostL — 1 prefixes
might be added t@”. For eachs € @ and for everyr € 3, letv(s,0) = v.(0), and let
m(s) = Pr(s). It should be noted that/r is not necessarily ergodic. It follows from this
construction that for every stringwhich is a suffix extension of a leaf ifi’, and every
symbolo, Py, (c|r) = Pr(o|r). It remains to show that for every strimgvhich is a node
inT", Pr, (1) = Pro(r) (= Pr(r)). Forastate € Q, let P;, _(r) denote the probability
thatr is generated assuming we start at stat€hen,

Pup(r) = Y w(s)Pip, (r) (B.3a)
s€Q
= > w(s)Prrp(r]s) (B.3b)
SEQ
= > Pr(s)Ppr(rls) (B.3c)
sEL(T")
= > Pp(sr) (B.3d)
SEL(T")
= Pr(r) , (B.3e)

where Equality (B.3b) follows from the definition of PSAs, Equality (B.3c) follows from our

definition ofr (-), and Equality (B.3e) follows from a series of applications of Equality (B.1).
If T'does not have Propertythen we may not be able to define aninitial distribution on the

states of the PSA/r such that for every stringwhich is a node ifT”, Py (1) = Pr/ (r).

We thus define a slight variant 8f ;- as follows. Let the states @f/ be the leaves df”

andall their prefixes and letr(-, -) be defined as follows: for every statend symbob,
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7(s,0) is thelongestsuffix of so. Thus, My has the structure of prefixtree combined
with a PSA. If we definey(-, -) as above, and let the empty strirg be the single starting
state (i.e.sr(e) = 1), then, by definition)M is equivalent tdl".

An illustration of the constructions described above is given in Figure B.1. ]

(0.2,0.8‘ (0.8,0.2]

Figure B.1. Left: A Prediction suffix tree. The prediction probabilities of the symbols ‘0’ and ‘1’, respectively,

are depicted beside the nodes, in parentheses. Right: The PFA that is equivalent to the PST on the left. Bold edges
denote transitions with the symbol ‘1’ and dashed edges denote transitions with ‘0’. Since Prbpédtyfor the

PST, then it actually has an equivalent PSA which is defined by the circled part of the PFA. The initial probability
distribution of this PSA iszr(01) = 3/11, 7(00) = 2/11, w(11) = 3/11, (010) = 3/22, n(110) = 3/22.

Note that statesi1’ and ‘01’ in the PSA replaced the node”in the tree.

Appendix C
Proofs of Lemma 1 and Lemma 2

Lemmal

1. There exists a polynomiab(, in L, n, |X|, % and ¢, such that the probability that a
sample ofin’ > my(L,n,|%|, L, 1) strings each of length at leadt + 1 generated
according toM is typical is at least — 6.

2. There exists a polynomiah in L, n, [S[, 1, , and1/(1 — A\2(Un)), such that
the probability that a single sample string of length > mq (L, n, |3, 1, +,1/(1 -

X2(Uypr))) generated according td/ is typical is at least — é.

Proof: Before proving the lemma we would like to recall that the parametgrs,, e,
andy,,:», are all polynomial functions df/¢, n, L, and|X|, and were defined in Section 5.
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Several sample strings We start with obtaining a lower bound fet’, so that the first
property of a typical sample holds. Since the sample strings are generated independently,
we may viewP(s), for a given states, as the average value of’ independent random
variables. Each of these variables is in the rgoge] and its expected valueigs). Using
Hoeffding’s inequality we get that i’ > ﬁ In 47”, then with probability at least— %

|P(s) — 7(s)| < e1e0. The probability that this inequality holds for every state is hence at
leastl — 2.

We would like to point out that since our only assumptions on the sample strings are that
they are generated independently, and that their length is atlleast, we use only the
independence between the different strings when bounding our error. We do not assume
anything about the random variables related?i(@) when restricted to any one sample
string, other than that their expected valuer(s). If the strings are known to be longer,
then a more careful analysis can be applied as described subsequently for the case of a
single sample string.

We now show that for an appropriate’ the second property holds with probability at
leastl — £ as well. Lets be a string inS=Z. In the following lines, when we refer to
appearancesf s in the sample we mean in the sense definedPbyThat is, we count
only appearances of which end at thel.th or greater symbol of a sample string. For
the ith appearance of in the sample and for every symbe)| let X;(o|s) be a random
variable which isl if o appears after thah appearance ofand0 otherwise. Ifs is either
a state or a suffix extension of a state, then for evethe random variablegX;(c|s)} are
independend/1 random variables with expected valBéo|s). Let N, be the total number

of times s appears in the sample, and I%,;,, = =3— In 2= 1f N, > N,,;,,, then
with probability at least — 2, for every symbob, |P(a|s) — P(os)| < S€2Vmin- If
is a suffix of several states, .. ., s*, then for every symbat,
h (st }

P(ols) = ; PEs) P(o|s"), (C.1)
(whereP(s) = Y | m(s%)) and

_ *P(st) -

P(o|s) = —~" " P(o|s’) . C.2

(o]s) ;P(s)u) (C2)

Recall thate; = (eg'ymm)/(Sneo). If:

(1) for every states’, |P(s') — m(s")| < eeo;

(2) for eachs’ satisfyingr(s’) > 2e;eq, |P(c]s’) — P(o|s?)| < eaymin for everyo;
then|P(o|s) — P(0]s)| < €2Ymin, as required.

If the sample has the first property required of a typical sample {ises Q, |P(s) —
P(s)| < e1e0), and for every state such thatP(s) > ejeg, Ny > Nyin, then with
probability at least — g the second property of a typical sample holds for all strings which
are either states or suffixes of states. If for every stsimdnich is a suffix extension a state
such thatP(s) > (1 — €1)eo, Ny > Nyin, then for all such strings the second property
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holds with probability at least — g as well. Putting together all the bounds above, if

m > ﬁ In 22 + Nin/ (e1€0), then with probability at least— ¢ the sample is typical.

A single sample string Inthis case the analysis is somewhat more involved. We view our
sample string generated accordingMbas a walk on the markov chain described®y;
(defined in Subsection 3). We may assume that the starting state is visible as well since its
contribution toP(+) is negligible. We shall need the following theorem from (Fill, 1991)
which gives bounds on the convergence rate to the stationary distribution of general ergodic
Markov chains. This theorem is partially based on a work by Mihail (Mihail, 1989), who
gives bounds on the convergence in terms of combinatorial properties of the chain.

Markov Chain Convergence Theorem (Fill, 1991) For any states, in the Markov chain
Ry, let Y, (so, -) denote the probability distribution over the statesiny, after taking a
walk of lengtht starting from statesy. Then

(ZRRI(SO,S)—w(sﬂ) < (A2(Un))* .

= 7(s0)

First note that by simply applying Markov’s inequality, we get that with probability at
leastl — 2, |P(s) — 7(s)| < 1€, for each state such thatr(s) < (8e1eg)/(2n). It
thus remains to obtain a lower bound on so that the same is true for eaglsuch that
m(s) > (be1€0)/(2n). We do this by bounding the variance of the random variable related
with P(s), and applying Chebishev’s Inequality.
Let
3 3.5.5
o — In (n?/ 326%€3e?) . C3)
In (1/X2(Upr))

We next show that for every satisfyingm(s) > (fere0)/(2n), |RY(s,8) — m(s)| <
2 e3e2. By the theorem above and our assumptionrés),

(Z Ry (s.8") — 7r(S’)I) (C.4a)

(Rl (s,5) — () <
s'€Q
to
< % (C.4b)
2n
< 66061(>\2(UM))t° (C.4c)
2
_ Kneleftoln(l/)\z(UM)) (C.4d)
§52eted
= 16;20. (C.4e)
5 2.2

Therefore|Rf;(s,s) — m(s)| < j=€feg.
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Intuitively, this means that for every two integets; tq, andi < t — tq, the event that
is the(i + to)th state passed on a walk of lengtlis ‘almost independent’ of the event that
s is theith state passed on the same walk.

For a given state, satisfyingn(s) > (6e1€9)/(2n), let X; be a0/1 random variable
which is1 iff s is theith state on a walk of length andY = ZLl X;. By our definition
of P, in the case of a single sample stridbgs) =Y/t, wheret = m — L — 1. Clearly
E(Y/t) = 7(s), and for everyi, Var(X;) = 7(s) — 72(s). We next bound/ar (Y /t).

t
Var (%) = %Var (; Xi> (C.5a)

1
= 5 | 2 EXX;) = D E(X)E(X;) (C.5b)
i, 4,9
1
=5 X Bxx) + Y BXX)| - 7(s)  (C5e)
1,7 st]i—j|<to i, st|i—j|>to
< Mon(e) + L einls) — 7(s) (©50)

If we pick ¢ to be greater thafdnt,)/(6€Z€3), thenVar(Y/t) < L-€e3, and using
Chebishev’s Inequality>r[|Y/t — m(s)| > €1€9] < 5. The probability the above holds

for anys is at mostg. The analysis of the second property required of a typical sample is
identical to that described in the case of a sample consisting of many strings. [ |

Lemma 2 If Learn-PSA is given a typical sample then:

vs(0)
’Ays’(o')

1. Forevery strings in T', if P(s) > ¢ then <1+¢/2 ,wheres'is the longest

suffix ofs corresponding to a node if.
2. [T < () -1)-[T].

Proof:
1st Claim Assume contrary to the claim that there exists a string labeling a fiod&
such thatP(s) > ¢y and for somer € ©

'YS(U)
3 (0) > 1+4¢€/2, (C.6)

wheres’ is the longest suffix of in 7". For simplicity of the presentation, let us assume
that there is a node labeled bYyin T'. If this is not the cases@fiz(s’) is an internal node
in T', whose sory’ is missing), the analysis is very similar. df= s’ then we easily show
below that our counter assumption is falses’lfs a proper suffix ok then we prove the
following. If the counter assumption is true, then we addefl to(not necessarily proper)
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suffix of s which is longer than’. This contradicts the fact that s the longest suffix of
inT.

We first achieve a lower bound on the ratio between the two true next symbol probabilities,
vs(o) andvy (o). According to our definition ofy (-),

’A)/s’ (U) > (1 - |E|'}/min)p(0‘5,) . (C?)

We analyze separately the case in whigh(o) > ymin, and the case in whichy (o) <
Ymin- Recall thaty,,;n, = e2/|X|. If Vs () > Yimin, then

s(0) vs(9)
(o) P(ols) (1-e2) (C.8a)
75(9) ey — ‘
> (1+§)(1f62)2 : (C.8¢)

where Inequality (C.8a) follows from our assumption that the sample is typical, Inequal-
ity (C.8b) follows from our definition ofy, (¢), and Inequality (C.8c) follows from the
counter assumption (C.6), and our choicegf,,. Sincee; < €/12, ande < 1 then we get

that

il Lty (C.9)

If v5(0) < Ymin, thends (o) > ~vs (o), sinced, (o) is defined to be at leasty,,.
Therefore,

Vs (U)
Vs (‘7)

~s(o) € €

>14+->14- c.10
Aoy Ty (€.10)
as well. Ifs = s’ then the counter assumption (C.6) is evidently false, and we must only
address the case in whieh# ¢/, i.e., s’ is a proper suffix of.

Lets = s155...5;, and lets’ bes, ... s;, for some2 < i < [. We now show that if the

counter assumption (C.6) is true, then there exists an iid€xj < ¢ such thats; ...s;
If there is no such index then let= i. The reason we need to deal with the prior case is
clarified subsequently. In either case, siage< ¢/48, ande < 1, then

vis%(j()o) > 1+ i (C.11)

In other words

vs(0) '7824..31(0) 757‘—1---31(0) €
- UL EEUL ORI (C.12)
782...51(0—) 733.,.51(0) ,VST---SZ(O') 4

This last inequality implies that there must exist an intlex ; < 7 — 1, for which
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Vsjos:(0) €
— = > 14+ — . C.13
’YS]‘+1...SZ(O—) 8L ( )

We next show that Inequality (C.13) implies that . . s; was added t@". We do this by
showing thas; . . . s; was added t&, that we compare®(a|s; . .. 5;) to P(co|sj41 .. . 51),

and that the ratio between these two values is at lgast3e5). SinceP(s) > ¢, then
necessarily

P(sj...s1) > (1—e1)eo (C.14)

ands; ...s; must have been added £ Based on our choice of the indexand since
j<r,

’YSj..,sl (J) 2 (]- + 762)7min' (C15)
Since we assume that the sample is typical,
P(U|SJ e Sl) Z (1 + 662)’7min > (1 + 62)’7min ) (C16)

which means that we must have compaf@|s; . .. s;) to P(cs;i1 - .. 51).
We now separate the case in whigh,,,. s, (¢) < Ymin, from the case in which
’Ysj+1...sl(0) Z Ymin- If Vsj+1...sl(0) < Ymin then

P(olsjr - s1) < (14 €2)Ymin - (C.17)
Therefore,
]5(a|sj...sl) (14 6€2)Ymin

Y

> (1+3e2) , (C.18)

I:’(a|sj+1...sl) (1+€2)7min

ands; ... s; would have been added #a On the other hand, ifs,,, ..., (o) > Ymin, the
same would hold since

p(0'|5j . Sl) > (1 - 52)75]'...51 (0)

= C.19
P(O’|Sj+1...sl) - (1+€2)73_j+1...sl(0) ( ! a)
(1-e)d+57)
T (C.19Db)
(1 —€2)(1 4 6ea)
> s (C.19c)
> 143 , (C.19d)

where Inequality C.19c¢ follows from our choice &f (e2 = z57). This contradicts our
initial assumption that’ is the longest suffix of added tdr".

2nd Claim: We prove below EhaT is a subtree of". The claim then follows directly,
since when transformin@ into 7', we add at most a|| — 1 siblings of every node iff".
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Therefore it suffices to show that we did not addtany node which is not ii". Assume
to the contrary that we add B a nodes which is not in7T". According to the algorithm,
the reason we addto 7', is that there exists a symbelsuch thatP(c|s) > (1 + €2)Vmin,
andP(o|s)/P(o|suffiz(s)) > 1+ 3es, while bothP(s) and P(suffiz(s)) are greater than
(1 — €1)ep. If the sample string is typical then

P(0|8) > Ymin , P(o|s) < P(o|s) + e2ymin < (1+ €2)P(0]s) , (C.20)

and
P(o|suffiz(s)) > P(o|suffiz(s)) — €2Vmin - (C.21)
If P(o|suffiz(s)) > Ymin thenP(o|suffiz(s)) > (1 — e3)P(o|suffiz(s)), and thus

Plols) _ (1-e)
P(o|suffiz(s)) — (1+e€)
which is greater thah sincee; < 1/3. If P(o|suffiz(s)) < Ymin ,» SINCE P(0]8) > Yimin

then P(o|s)/P(o|suffiz(s)) > 1 as well. In both cases this ratio cannot be greater than
if sis notin the tree, contradicting our assumption. ]

(14 3€3) , (C.22)
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