The Power of Events

An Introduction to Complex Event Processing in Distributed Enterprise Systems

David Luckham

✦Addison-Wesley

Boston • San Francisco • New York • Toronto • Montreal London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City

ŗ

p

Contents

٩

Preface	xv
Acknowledgments	xix
PART I A Simple Introduction to Complex	
Event Processing	1
1 The Global Information Society and the Need	
for New Technology	3
1.1 Distributed Information Systems Everywhere	4
1.2 The Global Communication Spaghetti Pot	7
1.2.1 Event Causality	10
1.3 Electronic Archeology: Layers upon Layers	10
1.3.1 A Layered Enterprise System	11
1.3.2 Vertical Causality: Tracking Events up and	
down the Layers	15
1.3.3 Event Aggregation: Making High-Level Sense out of Low-Level Events	16
1.4 The Gathering Storm of New Activities on the Web	10
1.5 Global Electronic Trade	18
1.6 Agile Systems	10 21
· · · · · · · · · · · · · · · · · · ·	· 23
1.7 Cyber Warfare and the Open Electronic Society	
1.8 Summary: Staying ahead of Chaos	26
2 Managing the Electronic Enterprise in the Global	
Event Cloud	27
2.1 How the Global Event Cloud Forms	28
2.1.1 The Open Enterprise	28
2.1.2 The Global Event Cloud	28
2.1.3 The Electronic Enterprise	29
2.2 Operating in the Global Event Cloud	30
2.3 Going Beyond Workflow	33
2.4 Parallel and Asynchronous Processes	35
2.5 On-the-Fly Process Evolution	37

2

ø

P

t

ŕ

vii

	2.6 Exceptions Must Be First-Class Citizens	
	in Process Design	39
	2.7 Summary: Managing the Electronic Enterprise	41
3	Viewing the Electronic Enterprise—Keeping	
th	e Human in Control	43
	3.1 Today's Event Monitoring Is Too Primitive	44
	3.1.1 System Monitoring Focuses on the Network	
	Layer	44
	3.1.2 Network-Level Monitoring Doesn't Even Solve Network Problems	45
	3.2 An Example of Causal Tracking	40 46
	3.3 Information Gaps	40 49
	3.3.1 Examples of Information Gaps	49 50
	3.4 Problem-Relevant Information	51
	3.5 Viewing Enterprise Systems	53
	3.6 Creating and Coordinating Multiple Views	55
	3.7 Hierarchical Viewing	56
	3.7.1 An Example of Hierarchical Viewing	57
	3.8 Summary: Viewing the Electronic Enterprise	59
4	Designing the Electronic Enterprise	61
	4.1 Process Architectures	62
	4.2 Roles of Architecture in the Process Lifecycle	63
	4.3 Constituents of Process Architectures	67
	4.3.1 Annotations	67
	4.3.2 Architectural Structure	68 68
•	4.3.3 Interface Communication Architectures 4.3.4 Architecture Diagrams	68 70
	4.3.5 Behavior Specification	72
	4.3.6 Design Constraints	74
	4.4 Examples of Informal Annotations	74
	4.5 Dynamic Process Architectures	78
	4.5.1 Diagrams for Dynamic Architectures?	81
	4.6 Layered Architectures and Plug-and-Play 4.6.1 Abstraction Principle	$\frac{81}{83}$
	4.7 Summary: Technology to Support Process Architecture	84
5	Events, Timing, and Causality	87
3	-	
	5.2 How Events Are Created	90
5 ک	5.1 What Events Are	88

٨

ŕ

,

1

2

Contents

	5.3 Time, Causality, and Aggregation	94
	5.3.1 The Cause-Time Axiom •	96
	5.4 Genetic Parameters in Events	96
	5.4.1 Timestamps	96
	5.4.2 Causal Vectors	97
	5.5 Time	97
	5.6 Causality and Posets	100
	5.7 Causal Event Executions—Real-Time Posets	102
	5.8 Orderly Observation	109
	5.9 Observation and Uncertainty	110
	5.10 Summary	111
6	Event Patterns, Rules, and Constraints	113
	6.1 Common Kinds of Pattern Searching	113
	6.2 Event Patterns	114
	6.3 A Strawman Pattern Language	116
	6.3.1 Pattern Matching	117
	6.3.2 Writing Patterns in STRAW-EPL	117
	6.4 Event Pattern Rules	119
	6.5 Constraints	124
	6.6 Summary	126
7	Complex Events and Event Hierarchies	127
	7.1 Aggregation and Complex Events	127
	7.2 Creating Complex Events	129
	7.3 Event Abstraction Hierarchies	131
	7.3.1 Viewing a Fabrication Line	132
	7.4 Building Personalized Concept Abstraction	
	Hierarchies	133
	7.4.1 Viewing Network Activity	134
	7.4.2 Viewing Stock-Trading Activity	138
	7.5 Summary	141
P/	ART II Building Solutions with CEP	143
8	The RAPIDE Pattern Language	145
	8.1 Event Pattern Languages—Basic Requirements	146
	8.2 Features of RAPIDE	147
	8.3 Types	148
	8.3.1 Predefined Types	149
	8.3.2 Structured Types	150
	J.	

\$

,

1

1

ł,

İx

	8.3.3 Event-Types	. 151
	8.3.4 Execution Types	153
	8.3.5 Subtyping of Executions	155
	8.4 Attributes of Events	155
	8.5 Basic Event Patterns	157
	8.6 Placeholders and Pattern Matching	158
	8.6.1 Matching Basic Event Patterns	159
	8.6.2 Placeholder Bindings	159
	8.6.3 Notation to Aid in Writing Patterns	161
	8.7 Relational Operators and Complex Patterns	163
	8.7.1 Relational Operators	165
	8.8 Guarded Patterns	167
	8.8.1 Content-Based Pattern Matching	167
	8.8.2 Context-Based Pattern Matching	168
	8.8.3 Temporal Operators	169
	8.9 Repetitive Patterns	169
	8.10 Pattern Macros	172
	8.11 Summary	174
9	CEP Rules and Agents	175
	9.1 Overview	176
	9.2 Event Pattern Rules	177
	9.2.1 Definition of Event Pattern Rules	178
	9.2.2 Rule Bodies	178
	9.2.3 Context and Visibility Laws	179
	9.2.4 Semantics of Event Pattern Rules	180
	9.2.5 Examples of Rules	182
	9.3 Event Processing Agents	184
	9.3.1 Definition of EPAs	184
	9.3.2 Semantics of EPAs	185
	9.4 Event Pattern Filters	187
	9.4.1 Definition of Filters	187
	9.4.2 Semantics of Filters	188
	9.4.3 Action Name Filters	190
	9.4.4 Content Filters	191
	9.4.5 Context Filters	191
	9.5 Event Pattern Maps	192
	9.5.1 Definition of Maps	193
	9.5.2 Semantics of Maps	193
	9.6 Event Pattern Constraints	195
	9.6.1 Definition of Constraints	195

٦

Ý

. 🏚

,

Þ

Þ

	9.6.2 Semantics of Constraints	195
	9.6.3 Examples of Constraints	199
9	9.7 Other Classes of EPAs	204
!	9.8 Summary	205
10	Event Processing Networks	207
	10.1 Common Structures of EPNs	208
	10.1.1 Flexibility of Event Processing Networks	211
	10.2 Connecting Event Processing Agents	212
	10.2.1 Basic Connections	212
	10.2.2 Guarded Connections	214
	10.2.3 Multiple Basic Connections	215
	10.3 Dynamic Event Processing Networks	216
	10.3.1 Class Connections 10.3.2 Creation and Termination Rules	$\frac{216}{217}$
	10.3.3 Connection Generators	217 218
	10.4 Architectures and Event Processing Networks	210 221
	10.4.1 Architecture Classes	222
	10.4.2 Semantics of Architecture Classes	222
	10.5 Examples of EPNs and Architectures	224
	10.6 Case Study: EPNs for Network Viewing	230
	10.6.1 Visual Tools for Constructing EPNs	234
	10.6.2 Security	235
	10.6.3 Scalability	235
	10.7 Summary	235
11	Causal Models and Causal Maps	239
	11.1 Causality between Events, Revisited	240
	11.2 Why We Need Causal Models	242
	11.3 What Causal Models Are	243
•	11.4 Defining a Causal Model and a Causal Map	244
	11.5 Using Pattern Pairs to Specify Causal Models	246
	11.5.1 Using Causal Rules	247
	11.5.2 Resolving Ambiguities	248
	11.6 Causal Maps	250
	11.6.1 A Small Example of a Causal Map	252
	^{11.6.2} A Second Example of a Causal Map	253
	11.7 Developing Accurate Causal Models	258
	11.8 Summary	260

.

, ^

3

3

л**"**

xi

ŀ

<u>xii</u>	· ·	Content
12	Case Study: Viewing Collaboration between	
	iness Processes	- 261
	12.1 A Collaborative Business Agreement	262
	12.2 An Interface Communication Architecture	264
	12.3, Causal Model	265
	12.4 Causal Map	26
	12.5 Examples of Causal Rules	267
	12.6 Examples of Constraints	269
	12.7 Analysis of Examples of Posets	269
	12.8 Constraint Checking Becomes Part	
	of the Collaboration	274
13	Implementing Event Abstraction Hierarchies	27
	13.1 The Accessible Information Gap	27
	13.2 Event Abstraction Hierarchies, Revisited	28
	13.2.1 Induced Causality	28
	13.2.2 Abstraction Effect on Constraints	28:
	13.2.3 Modifiability	28
	13.3 Bridging the Information Gaps	28
	13.4 Steps to Apply a Hierarchy to a Target System	280
	13.5 A Hierarchy for a Fabrication Process	28'
	13.5.1 Personal Views	28
	13.5.2 Implementation	290
	13.5.3 Diagnostics	290
14	Case Study: Viewing a Financial Trading System	293
	14.1 A Small Stock-Trading System	29
	14.2 The Information Gap for STS	29
	14.3 An Event Abstraction Hierarchy for STS	293
	14.4 Building the Event Abstraction Hierarchy	29
	14.4.1 Level 1	30
	14.4.2 Level 2	30
	14.4.3 Level 3	31
	14.5 Implementing Hierarchical Viewing for STS	316
	14.6 Three Steps toward Human Control	31
	/14.6.1 Drill-Down Diagnostics	32
	14.6.2 Detecting Constraint Violations	32-
	14.6.3 The Abstraction Effect	320
	14.7 Summary	32'

ſ

÷*

4

,

Z

1

15	Infrastructure for Complex Event Processing	329
	15.1 Examples of Forms of Observed Events •	330
	15.2 Interfacing CEP Infrastructure to Target	•
	Systems	335
	15.3 CEP Adapters	336
	15.4 CEP Runtime Infrastructure	339
	15.5 Infrastructure Interfaces and Components	340
	15.5.1 Functionality of the Interface	341
	15.6 Off-the-Shelf Infrastructure	343
	15.7 Event Pattern Languages	346
	15.8 Complex Event Pattern Matchers	348
	15.8.1 Quest for Scalability	348
	15.8.2 The Naive View of Pattern Matchers	348
	15.8.3 What Pattern Matchers Really Do	348
	15.8.4 Design Structure	349
	15.9 Rules Management	351
	15.10 Analysis Tools	353
	15.11 Summary	356
	Bibliography	357
	Index	359

.