
The Power of Gene-Based Rare Variant Methods 

to Detect Disease-Associated Variation and Test 

Hypotheses About Complex Disease

Citation
Moutsianas, L., V. Agarwala, C. Fuchsberger, J. Flannick, M. A. Rivas, K. J. Gaulton, P. K. Albers, 
et al. 2015. “The Power of Gene-Based Rare Variant Methods to Detect Disease-Associated 
Variation and Test Hypotheses About Complex Disease.” PLoS Genetics 11 (4): e1005165. 
doi:10.1371/journal.pgen.1005165. http://dx.doi.org/10.1371/journal.pgen.1005165.

Published Version
doi:10.1371/journal.pgen.1005165

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:16120853

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:16120853
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=The%20Power%20of%20Gene-Based%20Rare%20Variant%20Methods%20to%20Detect%20Disease-Associated%20Variation%20and%20Test%20Hypotheses%20About%20Complex%20Disease&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=1fdb12d540688c9eff310012d121b41e&department
https://dash.harvard.edu/pages/accessibility


RESEARCH ARTICLE

The Power of Gene-Based Rare Variant

Methods to Detect Disease-Associated

Variation and Test Hypotheses About

Complex Disease

Loukas Moutsianas1☯*, Vineeta Agarwala2,3☯, Christian Fuchsberger4, Jason Flannick3,5,

Manuel A. Rivas1, Kyle J. Gaulton1, Patrick K. Albers1, GoT2D Consortium¶, Gil McVean1,

Michael Boehnke4, David Altshuler3,5,6,7, Mark I. McCarthy1,8*

1 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 2 Program in

Biophysics, Harvard University, Cambridge, Massachusetts, United States of America, 3 Program in Medical
and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of
America, 4 Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor,

Michigan, United States of America, 5 Center for Human Genetic Research, Massachusetts General
Hospital, Boston, Massachusetts, United States of America, 6 Department of Genetics, Harvard Medical

School, Boston, Massachusetts, United States of America, 7 Department of Biology, Massachusetts Institute
of Technology, Cambridge, Massachusetts, United States of America, 8 Oxford Centre for Diabetes,
Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom

☯ These authors contributed equally to this work.

¶ A full list of GoT2D Consortiummembers and affiliations appears in S1 Text.
* moutsian@well.ox.ac.uk (LM); mark.mccarthy@drl.ox.ac.uk (MIM)

Abstract

Genome and exome sequencing in large cohorts enables characterization of the role of

rare variation in complex diseases. Success in this endeavor, however, requires investi-

gators to test a diverse array of genetic hypotheses which differ in the number, frequency

and effect sizes of underlying causal variants. In this study, we evaluated the power of

gene-based association methods to interrogate such hypotheses, and examined the impli-

cations for study design. We developed a flexible simulation approach, using 1000 Ge-

nomes data, to (a) generate sequence variation at human genes in up to 10K case-control

samples, and (b) quantify the statistical power of a panel of widely used gene-based asso-

ciation tests under a variety of allelic architectures, locus effect sizes, and significance

thresholds. For loci explaining ~1% of phenotypic variance underlying a common dichoto-

mous trait, we find that all methods have low absolute power to achieve exome-wide sig-

nificance (~5-20% power at α=2.5×10-6) in 3K individuals; even in 10K samples, power is

modest (~60%). The combined application of multiple methods increases sensitivity, but

does so at the expense of a higher false positive rate. MiST, SKAT-O, and KBAC have the

highest individual mean power across simulated datasets, but we observe wide architec-

ture-dependent variability in the individual loci detected by each test, suggesting that infer-

ences about disease architecture from analysis of sequencing studies can differ

depending on which methods are used. Our results imply that tens of thousands of
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individuals, extensive functional annotation, or highly targeted hypothesis testing will be

required to confidently detect or exclude rare variant signals at complex disease loci.

Author Summary

Re-sequencing technologies allow for a more complete interrogation of the role of human

variation in complex disease. The inadequate power of single variant methods to assess the

role of less common variation has led to the development of numerous statistical methods

for testing aggregate groups of variants for association with disease. Such endeavors pose

substantial analytical challenges, however, due to the diverse array of genetic hypotheses

that need to be considered. In this work, we systematically quantify and compare the per-

formance of a panel of commonly used gene-based association methods under a range of

allelic architectures, significance thresholds, locus effect sizes, sample sizes, and filters for

neutral variation. We find that MiST, SKAT-O, and KBAC have the highest mean power

across simulated datasets. Across all methods, however, the power to detect even loci of

relatively large effect is very low at exome-wide significance thresholds for sample sizes

comparable with those of ongoing sequencing studies; as such, the absence of signal in

studies of a few thousand individuals does not exclude a role for rare variation in complex

traits. Finally, we directly compare the results reported by different gene-based methods in

order to identify their comparative advantages and disadvantages under distinct locus ar-

chitectures. Our findings have implications for meaningful interpretation of both positive

and negative findings in ongoing and future sequencing studies.

Introduction

To assess whether a single variant at a locus contributes to disease risk, the statistical analysis

framework is relatively straightforward: compare the frequencies of alleles or genotypes at the

site in relation to phenotype. To assess whether multiple variants in the same gene contribute

to disease, a much larger array of potential genetic models must be considered. If the causal al-

leles are rare (defined here as MAF<1%), then power to detect each variant’s effect individually

is limited. For example, power to detect a variant with MAF = 0.5% and relative risk (RR) = 3

in 3K case-control samples (1.5K cases and 1.5K controls) at α = 5×10-8 is ~5% [1]. Variants

that are private to individuals, as some deleterious mutations are hypothesized to be, present

greater challenges yet. As a result, numerous statistical methods have been developed in recent

years to test aggregate groups of rare variants for association to disease [2–4].

Re-sequencing experiments have identified a handful of rare variants which modulate risk

for common, complex diseases. Examples include variants in NOD2 for Crohn’s disease (4 vari-

ants with MAF 0.1–0.8%, ORs 1.4–4.0, detected by single variant association)[5], PCSK9 for

coronary heart disease (2 variants with MAF 0.8 and 1.8%, OR ~0.1, detected by single variant

association)[6], LPL for hypertriglyceridemia (154 missense variants with MAF<1%, present

in cases, detected using the T1 gene-based association method)[7], andMTNR1B for type 2 di-

abetes (13 functionally-screened variants with MAF<0.1%, collective OR ~5.5, detected using

the KBAC gene-based method)[8]. Each of these disease loci is characterized by different num-

bers, frequencies, and effect sizes of rare variants, but in each of these examples, the estimated

proportion of phenotypic variance explained per locus is ~0.5–1.5%.
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As large-scale (e.g. genome-wide or exome-wide) studies are now being conducted in hun-

dreds and thousands of individuals, several questions emerge. If loci similar to LPL orMTNR1B

exist undiscovered across the genome, what is the power of different gene-based methods to de-

tect them?What effect sizes are studies of a given sample size well-powered to detect? To what

extent does power depend on the underlying architecture of causal allelic variation, and how

should researchers navigate through the ensemble of available gene-based tests? To interpret the

results of gene-based association methods in sequencing studies, it is critical to quantify the

power of each method to detect signals under a range of hypothesized locus architectures.

Although the introduction of each novel gene-based association test has typically been ac-

companied by evaluation of the test’s performance alongside alternatives, each such analysis

has compared different subsets of tests, made different assumptions about locus architecture

and study design, and employed different simulation approaches. Comparative studies on the

relative power of different methods [9–11], while informative, have used small sample sizes,

simulated limited locus architectures (e.g., with fixed numbers of causal variants) that may not

be representative of complex diseases, and considered only nominal levels of significance

(α>0.01). Thus, further work is required to determine how different gene-based tests perform

under different genetic models of complex disease.

In this study, we systematically explore the power of eleven currently available and widely-

used gene-based association methods to detect rare variant signals drawn from a range of

principled genetic architectures of disease, in sample sizes consistent with those of ongoing re-

sequencing studies. We assess the impact of locus architecture, effect size, and functional vari-

ant filters on the power of each method at stringent levels of significance. By evaluating all tests

together at loci simulated under a range of continuous frequency-effect size distributions, we

characterize each method’s success and failure modes, and describe genetic hypotheses for

which particular methods may be better powered than others.

Results

We first developed a simulation approach to evaluate the power of each gene-based method.

We assumed two key requirements for simulations to be informative: 1) simulated genetic vari-

ation must approximate the site frequency spectrum (SFS) and haplotype structure of empirical

data, and 2) the distribution of relative risks by frequency class should correspond to hypothe-

ses about the genetic architecture of disease that are compatible with observation.

To achieve these objectives, we employed the program HAPGEN2 [12] to simulate variation

across the full SFS in thousands of individuals and build a phased reference panel with more in-

dividuals than are publicly available at present for a single ethnic group. We started with phased

haplotypes from 379 European individuals (1000G Project Phase 1, release 3) [13]. To expand

this reference panel to a larger number of individuals, we applied a staged, iterative approach

which preserves linkage disequilibrium structure between relatively common variants while in-

troducing new low-frequency variants upon the original haplotypes to match the empirical SFS

observed at exonic regions of 202 genes in a study of>12K individuals of European ancestry

[14] (S1 Text and Figs 1B, 1C, 1D and S1 and S2). All simulations were performed on 24 human

genes of average coding length on chromosome 10 (Fig 1A and S1 Table). While gene coding

length does likely contribute to the power to detect association signals, the selection of genes

with average length in this study enabled us to conduct controlled characterization of the effects

of locus architecture on power.

We modeled the complex disease type 2 diabetes (T2D, assuming prevalence 8%), and

introduced phenotypic effects (relative risk per variant, assuming additive effects) by sampling

up to 35 exonic causal variants per locus (variant cap imposed due to software limitations,

Power and Performance of Gene-Based Association Methods
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see Methods) from six different joint distributions of causal variant frequencies and effect sizes

(S3 and S4 Figs and Tables 1 and S2). These distributions were obtained from forward simula-

tions of global genetic architecture under different disease models that are consistent with

properties of empirical sequence variation and the observed prevalence and heritability of

T2D [15]. The three main architectures assume strong (AR1), moderate (AR2), or weak (AR3)

purifying selection against causal alleles. Broadly, AR1 results in a sharp inverse correlation be-

tween variant frequency and effect size, AR2 produces modest correlation, and AR3 is charac-

terized by rare and common alleles that have similar additive effects on phenotype. AR4 and

AR5 are variations of AR1 and AR2, respectively, in which only rare (MAF<1%) variants at a

locus contribute to disease. AR6 assumes a frequency-effect size map identical to AR2, but as-

signs a 50%-50% mixture of risk and protective effects; this represents the hypothesis that

Fig 1. Generation of simulated genotype data at human gene loci in large sample sizes with HAPGEN2. Haplotypes were simulated at ‘average’
human protein-coding genes drawn from the center of the distribution of RefSeq gene total exon length (A). Vertical dotted lines in red and green indicate the
median and mean values of exon length, respectively. Black bar represents the 24 genes selected for simulation. (B,C) Site frequency spectrum of simulated
data, as compared to observed human data. Data were simulated via staged expansion of 1000 Genomes Project haplotypes using the HAPGEN2 software;
the mutation parameter was fit to match the site frequency spectrum of protein-coding variation observed in exome sequencing studies, e.g. as reported
Nelson et al 2012. Raw simulated data from HAPGEN2 in large sample sizes produced an excess of rare sites; these were down-sampled to match observed
data. The grey area in (B) represents the [5%, 95%] interval across all simulated genes, obtained using bootstrapping. The site frequency spectrum of
simulated data in a smaller sample size (N = 2.7K) also matched an independent set of observed exome sequencing data from the GoT2D consortium (C).
Haplotype structure, as measured by linkage disequilibrium between variants, was also preserved in the simulated data after sample expansion (D). The
inset shows a representative example of simulations at the GATA3 gene locus.

doi:10.1371/journal.pgen.1005165.g001
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some variants in a gene increase disease risk, while other variants in the same gene have

protective effects.

We evaluated a set of eleven gene-based association methods (CMC [16], VT [17],

FRQWGT [18], WILCOX-WSS [19], KBAC [20], BURDEN [18], UNIQ [18], C-ALPHA [21],

SKAT [22], SKAT-O [23], and MiST [24]; see Table 2) on these simulated datasets. The tests

we applied can be broadly categorized as unidirectional ‘burden’ tests, bidirectional variance-

component tests (SKAT, C-ALPHA), and linear combinations of these two classes (SKAT-O,

MiST). The unidirectional tests can be further sub-divided into collapsing regression methods

(CMC), weighted sum methods (FRQWGT, KBAC, WILCOX-WSS, VT), and permutation-

based summary count methods (BURDEN, UNIQ). We selected this set of tests because they

Table 2. Published gene-based rare variant association methods evaluated.

Method name Citation Software Description

Unidirectional rare variant gene-based tests

Collapsing methods

Combined Multivariate and
Collapsing (CMC)

Liu & Leal, PLoS Comp.
Bio. 2008

EPACTS All rare variants collapsed into a single variant; individual dosage for the
collapsed ‘variant’ is regressed against phenotype.

Weighted and un-weighted sum methods

Variable threshold (VT) Price et al, AJHG. 2010 PLINK-Seq Sum of rare allele count in cases vs. controls; allele frequency threshold for
inclusion is varied to maximize test statistic.

Weighted Sum Statistic
(FRQWGT)

Madsen & Browning,
PLoS Gen. 2009

PLINK-Seq Permutation-based test comparing inverse-frequency-weighted rare variant
counts per individual in cases vs. controls.

Weighted Sum Method
(WILCOX-WSS)

Madsen & Browning,
PLoS Gen. 2009

EPACTS Wilcoxon Rank Sum test between phenotypes and inverse frequency-
weighted rare variant scores.

Kernel-Based Adaptive
Cluster (KBAC)

Liu & Leal, PLoS Gen.
2010

PLINK-Seq Variant weights are determined adaptively, and are based on observed
effect sizes; individuals scored by weighted sum of allele counts.

Summary case:control count methods

BURDEN method Purcell (PLINK-Seq) PLINK-Seq Permutation-based test comparing raw allele counts in cases vs. controls.

UNIQ test Purcell (PLINK-Seq) PLINK-Seq Simple count of total case-unique rare alleles; permutations to assess
significance.

Bi-directional variance-component gene-based tests

C-ALPHA Neale et al, PLoS Gen.
2011

PLINK-Seq Detects deviation of observed case:control variant counts from expected
binomial distribution.

Sequence Kernel Association
Test (SKAT)

Wu et al, AJHG 2011 EPACTS Generalized form of C-ALPHA with variants weighted by allele frequency.

Linear combination of unidirectional and variance-component tests

SKAT-O (‘Optimal’ SKAT) Lee et al, AJHG. 2012 EPACTS Adaptive linear combination of unidirectional burden test and variance-
component SKAT test.

Mixed Effects Score Test
(MiST)

Sun et al, Genetic Epi.
2013

Public R
package

Hierarchical regression model combining two independent test statistics
which quantify variant effect sizes and ‘heterogeneity’.

doi:10.1371/journal.pgen.1005165.t002

Table 1. Locus architectures modeled at simulated loci.

Simulated architecture Direction of effects Causal variant frequencies Selection on causal alleles

AR1 All deleterious Across full SFS Strong

AR2 All deleterious Across full SFS Moderate

AR3 All deleterious Across full SFS Weak

AR4 All deleterious MAF <1% Strong

AR5 All deleterious MAF <1% Moderate

AR6 50% deleterious, 50% protective Across full SFS Moderate

doi:10.1371/journal.pgen.1005165.t001
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represent a broad range of analytical approaches, most of which are readily available in the

widely-used software packages PLINK/Seq [18] and EPACTS [25]. Before further evaluation,

we confirmed that all tests were well-calibrated, at α = 0.05 and 10-4, in (null) datasets where

no variants were assigned any causal effects (S5 Fig).

Relative and absolute power of gene-based association methods under
different locus architectures

A key question for re-sequencing studies is: what is the power of gene-based association meth-

ods to detect causal loci at stringent levels of significance? To address this, we ran each gene-

based test at simulated loci explaining 1% of the variance in T2D liability [26, 27] (see Methods)

in 1500 cases and 1500 controls (sample size comparable to several recent or ongoing complex

trait sequencing studies [28, 29]). Each gene-based test was run on all exonic variants (causal

and non-causal) with MAF<1%, unless otherwise stated. The power of each test is shown as a

function of significance threshold (α) and architecture in Figs 2, S6, and S7.

In the context of an exome-wide sequencing study, where an appropriate threshold may be

α = 2.5×10-6 (α = 0.05, after Bonferroni correction for ~20K genes), we found that power is

very low (<20%) across all architectures and tests considered. At a less stringent threshold of

α = 10-4, which might be used to nominate loci for follow-up (under the null, only ~2 such

genes would be expected exome-wide), power of the best performing tests across AR1-AR5

remained low (10–50%). This was true irrespective of the allele frequency threshold used for

variant inclusion; results for a MAF threshold of 0.5% and 5% are shown in S8 Fig.

We noted that at a nominal level of significance (α = 0.05), many methods had high power

(~75%-95%) to detect loci at which deleterious variants (AR1-AR5) explain ~1% of phenotypic

variance (Figs 2 and S7). KBAC was consistently the most sensitive method to detect deleteri-

ous effects at less stringent levels of significance (up to 95% power at α = 0.05, under AR4).

This high sensitivity could be useful in identifying putative signals when only a small number

of hypotheses are being tested (e.g. sequencing across only a few targeted loci), or to exclude

rare variant models at candidate loci.

Next, we asked whether any of the gene-based methods appear to be uniformly more power-

ful than others, across the various locus architectures we considered. Under simulated architec-

tures where causal variants all have unidirectional (deleterious) effects (Fig 2A, 2B, 2C, 2D, and

2E), we found that MiST, SKAT-O, and KBAC consistently achieve highest power, while

UNIQ is least-powered. However, we did observe differential behavior of these tests depending

on the significance threshold: MiST and SKAT-O retained greater power than unidirectional

alternatives at stringent thresholds (α<10-5), while at less conservative thresholds (α>10-3),

KBAC was more sensitive (Figs 2A, 2B, 2C, 2D, 2E, 2F and S7).

We next sought to understand how power is influenced by locus architecture. Unsurprising-

ly, we found that power is higher when the majority of the locus’ total phenotypic effect is due

to rare variants included in the association test (e.g. those with MAF<1%). This is evidenced by

the gain in power under models with a greater contribution of rare variants: the power of MiST,

for example, increased from AR3 (10% at α = 10-4 in 3K individuals) to AR2 (23%) to AR1

(36%). Power was higher still under architectures where variants with MAF<1% (i.e. those vari-

ants tested) contributed all of the locus’ effect (AR4 and AR5): here, the power of MiST was

~50% at α = 10-4. Power also depends on the direction of causal effects at a locus: under AR6

(where both risk and protective effects are present), the variance-component tests (SKAT and

C-ALPHA) and combined tests (MiST and SKAT-O) were least affected (by design) [21–24]

and outperformed all the other methods, retaining ~10% power at α = 10-4, while that of

Power and Performance of Gene-Based Association Methods
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Fig 2. Power of different gene-based rare variant association methods at simulated disease loci. At each gene locus, one hundred independent
simulations of phenotypic effects were generated in a sample size of 3K individuals (1.5K cases / 1.5K controls). Variant effects were drawn from varied
models of genetic architecture (A-F), hypothesizing different degrees of purifying selection against disease alleles (see Methods). Under models with strong
selection, there is a strong inverse correlation between variant frequency and effect size; under weak selection rare variant effects are less skewed. At all loci,
genetic variants together contribute 1% of the phenotypic variance underlying a trait with common prevalence (8%; modeled as type 2 diabetes). Power is

Power and Performance of Gene-Based Association Methods
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unidirectional tests was reduced to<5% (Figs 2F and S7). Finally, we find that power is inverse-

ly related to the degree of linkage disequilibrium between causal variants at a locus (S9 Fig).

We next queried the overlap between signals detected by gene-based methods versus those

detected by single variant association. In direct contrast to gene-based methods, the power of

single variant association decreased as the contribution of rare variants increased: power at a ge-

nome-wide threshold of α = 5×10-8 for single variants was ~20%, ~10%, and ~7% under AR3,

AR2, and AR1, respectively (blue bars in Fig 3A, 3C, and 3E). However, in all cases, the com-

bined application of gene-based and single variant methods yielded greater sensitivity than sin-

gle variant association alone (yellow bars in Figs 3A, 3C, 3E, and S10). This occurred because

the association tests detect distinct subsets of loci: gene-based methods uniquely identified loci

where the signal was driven by groups of rare variants for which single variant association test

statistics were not individually significant (pink loci in Fig 3B, 3D, and 3F).

As expected, the comparative advantage of gene-based tests was most evident under archi-

tectures where there is strong purifying selection against causal alleles (under AR4, for exam-

ple, the power of single-variant tests at α = 5×10-8 was<5%, while gene-based tests achieved

~50% power at α = 10-4, and ~20% power even at α = 2.5×10-6; S10A and S10B Fig). Under

both AR2 and AR3 (where limited purifying selection made causal alleles more common), the

power of single variant association (~20% at α = 5×10-8 under AR3) exceeded that of the best

gene-based test (<5% at α = 2.5×10-6 under AR3), though each method detected unique loci.

These results confirm that single variant and gene-based association methods should be jointly

employed for maximal power across divergent locus architectures.

To characterize the impact of locus effect size on the power of gene-based tests, we simulated

loci where the phenotypic variance explained (VE) by genetic variants is 0.5%, 1% (as in Figs 2

and 3), and 2% (all under AR2). At loci where VE = 2%, power increased to nearly 40% (at α =

10-4), as compared to ~23% when VE = 1% (Figs 4A, S11A, and S11B). When VE = 0.5%, power

was extremely low (<8% at α = 10-4 in 3K individuals), indicating that exome-wide sequencing

studies of this size are substantially under-powered to interrogate genes for weaker effects

(S11A Fig).

Impact of sample size and neutral variation on power of gene-based
association

The relatively modest power of gene-based tests at stringent levels of significance across the ar-

chitectures considered here presents challenges to investigators seeking to discover novel disease-

associated loci in studies of this size. Thus, we next investigated the extent to which power could

be improved by a) increasing sample size, or b) excluding neutral variation at a locus.

We found that gene-based methods exhibit differential gains in power as sample size in-

creases from 3K to 10K individuals (Fig 4B). The median power of MiST, for example, in-

creased from ~23% to ~60% (at α = 10-4, under AR2) in 10K samples and was largely retained

(~50%) even at α = 2.5×10-6 (S11C Fig). However, the increase in power was not uniform

across methods. This occurred, in part, because (unlike for single variant tests) the relationship

between sample size and power is not straightforward for gene-based tests: as sample size in-

creases, causal alleles are observed more times, but the number of (rare) non-causal alleles also

measured as the fraction out of 100 simulations of each gene in which a gene-based test reported a p-value lower than the significance threshold. In (A-C),
causal variants span the full frequency spectrum (including common alleles), and thus rare alleles account for only a fraction of the locus heritability; in (D-E),
all causal variants are rare (MAF<1%). In (F), causal variants have bi-directional effects (some increase risk of disease, while others reduce risk).

doi:10.1371/journal.pgen.1005165.g002
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Fig 3. Power of best-performing gene-based rare variant method as compared to single variant association. Power is measured across one hundred
simulations of phenotypic effects at each of 24 human gene loci in N = 3K samples (as in Fig 2). Under each architecture (AR1, AR2, AR3), the power of the
best-performing gene-based test at alpha = 2.5e-06 (SKAT-O) is compared to single variant association (Fisher’s exact) at alpha = 5e-08 (panels A, C, E). No
MAF threshold was applied to the single variant association tests; gene-based tests included only variants with MAF<1%. Blue boxplot shows range of power
for single variant association across genes simulated; pink shows power of the gene-based test alone; green shows the fraction of loci detected only by gene-
based test (and not single variant association); yellow shows the combined power of both gene-based and single variant association. Next to each boxplot
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grows sharply. Thus, methods that up-weight all rare alleles regardless of their observed effect

(e.g., FRQWGT) may benefit least from increases in sample size (S11–S13 Fig).

As the number of observations of rare alleles increases with sample size, the performance of

single variant association tests will certainly improve, but our analysis suggests that gene-based

tests will still uniquely identify loci at which the aggregate signal is driven by variants too rare to

be individually detected. When the top single variant in our simulated datasets had MAF< =

0.4%, the locus was rarely detected by single variant association in a sample of 3K individuals

(Fig 3B, 3D, and 3F). Single variant tests would have<80% power to detect an effect at a variant

of that frequency (at α = 5×10-8) even in 10K samples, unless the RR of that variant was over 3.

Moreover, as sample sizes increase, the threshold required to assess significance for gene-based

methods will remain the same (as the number of independent tests performed will not change),

while that for single variant association tests will need to becomemore stringent as more novel

variants are discovered. Hence, we expect the joint application of single variant and gene-based

methods to remain beneficial even as sample sizes increase.

Our study also confirmed that gene-based tests are highly sensitive to the fraction of neutral

variation at a locus (Figs 4C and S13), as has been previously described [10, 11, 23]. We addi-

tionally found that unidirectional burden tests exhibit the sharpest increases in power as the

fraction of neutral variation decreases. Under AR2 in 3K individuals, KBAC power at α = 10-4

exceeded 50% when only disease-causing variants were included (increasing from ~22% prior

to variant filtering). These tests may therefore be most powerful for testing targeted hypotheses

at loci where rich functional annotation enables exclusion of a subset of neutral variants. Con-

versely, variance-component tests (C-ALPHA, SKAT) as well as combined methods (MiST,

SKAT-O) are characterized by a relative immunity to neutral variation. This latter group of

methods, then, are attractive options for jointly testing large numbers of less strictly filtered

variants (e.g. in a pathway-based analysis).

Concordance between the results of different gene-based association
methods

We next investigated the degree of overlap between signals detected by each gene-based meth-

od. For each pair of association methods, we computed Pearson’s correlation coefficients be-

tween their reported p-values on a logarithmic scale (Figs 5A, 5B, and S14). We found that

tests with similar design characteristics (e.g., SKAT and C-ALPHA, R2 = 0.99) exhibit very

high correlation, as expected (Fig 5C). Some methods were highly correlated, but there was var-

iability in the p-values reported (e.g., MiST and SKAT-O, R2 = 0.92), while others were much

less related or even uncorrelated (e.g., SKAT-O and UNIQ, R2 = 0.02). While in this latter case

low correlation was driven by the lower mean power of UNIQ relative to SKAT-O, it is worth

noting that there did exist a set of true causal loci (where many case-private singletons segre-

gate) at which UNIQ reported p<10-4, but SKAT-O reported p>0.01 (Fig 5C).

Other methods, such as SKAT and SKAT-O, showed asymmetric concordance (R2 = 0.78):

SKAT-O detected a set of causal loci entirely undetected by SKAT, but was more conservative

on the whole, reporting p-values up to an order of magnitude higher than those reported by

SKAT at the majority of loci tested. These correlations were also architecture-dependent:

(panels B, D, F) are scatterplots on which each simulated locus (under AR1, AR2, and AR3, respectively) is represented as a point based on the minor allele
frequency (x-axis) and association p-value (y-axis) of the single most-associated variant (the top individual signal) across the locus. Single variant
association detects loci plotted above the upper dotted line (at 5e-08), while gene-based association identifies a distinct subset of loci (those highlighted in
pink, where the SKAT-O p-value is <2.5e-06). This latter group of loci are those where the top single variant is preferentially rare (and no common variant
association signal exists); right-most scatterplots zoom into this portion of the x-axis (MAF<1%). Similar plots for AR4, AR5, and AR6 are shown in S10 Fig.

doi:10.1371/journal.pgen.1005165.g003
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Fig 4. Power of gene-basedmethods as a function of sample size, locus effect size, and neutral variation. Power was measured across one hundred
simulations at each of 24 gene loci (as in Figs 2 and 3). Across all panels above, variant effects were drawn from the architecture model AR2 (assuming
moderate selection against causal variants, and thus modest inverse correlation between variant frequency and effect size). In (A), variant effects were
sampled at each locus such that the total fraction of phenotypic variance explained by the locus was ~0.5%, 1% (as in Figs 2 and 3) or 2%. In (B), loci were
simulated to explain 1% of phenotypic variance in sample sizes of 1.5K cases/1.5K controls (as in Figs 2 and 3) and 5K cases/5K controls. In both (A) and
(B), all exonic variants with MAF < 1%were included in the burden test (both causal and non-causal variants, resulting in a fewer than 50% of all tested
variants being causal). In (C), non-causal (neutral) variants were selectively removed such that the ratio of causal variants to total variants tested ranged from
0.25 to 1 (only causal variants tested). The gene-based methods each have varied performance under different locus effect sizes, sample sizes, and causal
variant filtering scenarios.

doi:10.1371/journal.pgen.1005165.g004
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Fig 5. Concordance between results of different gene-basedmethods. Pairwise correlation coefficients (R2) between the p-values reported by different
gene-based association methods under AR2 (moderate selection; shown in (A) and under AR6 (moderate selection and bi-directional phenotypic effects,
shown in (B)). P-values above 0.1 are excluded in computation of the correlation. In (C), scatter plots show the results (-log10 of the p-values) reported by a
pair of gene-based tests under AR2; p-values below 5e-06 are plotted at 5e-06. Each point represents an individual locus at which both gene-based methods
were applied (2400 total points); points of the same color represent different simulations at the same gene loci (e.g. same gene and haplotype structure, but
different variant phenotypic effects). Dotted lines mark p = 0.01, such that points above the horizontal line or to the right of the vertical line represent loci at
which nominally significant results are reported by the gene-based method. All data above generated in 3K samples (1.5K cases, 1.5K controls).

doi:10.1371/journal.pgen.1005165.g005
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under AR2 (where there are only deleterious effects), for example, SKAT-O exhibited high con-

cordance with KBAC (R2 = 0.86), while under AR6 (where bidirectional effects are present),

SKAT-O was most concordant with C-ALPHA and SKAT (R2 = 0.93). MiST shared this behav-

ior, reflecting the ‘unified’ design of these tests as combinations of a unidirectional burden test

and a bidirectional variance-based method [23, 24].

To understand the drivers of such differences and identify scenarios where certain tests may

be more powerful than others, we conducted pairwise comparisons between KBAC (one of the

highest performing methods at α = 10-4 across AR1-AR5) and the other gene-based methods.

We focused here on loci where VE = 1%, simulated under AR2. For each comparison, we char-

acterized the properties of loci at which KBAC (but not the other method) reports p<0.01, and

vice-versa. In the comparison between KBAC and C-ALPHA (Fig 6A), we found that loci at

which only KBAC detected signal were characterized by a higher aggregate skew in case to con-

trol counts (often driven by singletons, which do not contribute to the variance component

tests’ dispersion statistic). Loci at which only C-ALPHA detected signal, on the other hand,

were characterized by a relatively common single variant of large effect (in the background of

many variants with balanced case to control counts).

For loci where the ratio of aggregate case to control counts is high, but no individual

variants/genotypes show any substantial skew, the BURDEN test may be more powerful than

KBAC (Fig 6B). This makes sense: KBAC adaptively weights multi-site genotype counts by

their observed case-bias, and if all variants have low weights, the maximum achievable KBAC

statistic is low, whereas BURDEN quantifies the significance of the observed signal in aggre-

gate. Finally, UNIQ (unsurprisingly) more readily detected loci at which signal is driven by ei-

ther many rare variants private to cases, or by a single relatively frequent case-unique (or

control-unique) variant (Fig 6C). Taken together, these data indicate that although a given

method may exhibit highmean power across divergent architectures, it may not be optimal for

testing specific genetic hypotheses.

Given the observation that different methods capture different signals, we wondered wheth-

er a strategy in which subsets of methods are collectively applied to a locus might be informa-

tive in an exome-wide setting (e.g., to test multiple hypotheses about locus architecture at

once). To test this, we employed a stepwise forward selection approach, starting with each of

the three best-performing gene-based methods across architectures (MiST, SKAT-O and

KBAC) and using the degree of difference (in orders of magnitude) between additional meth-

ods’ reported p-values as the inclusion criterion (see Methods, S1 Text).

In 3K individuals, under AR2 (where MiST power is ~23% at α = 10-4), we found that par-

ticular combinations of tests (e.g., KBAC+MiST+VT+UNIQ+FRQWGT) could jointly achieve

~31% sensitivity at α = 10-4 (using the single minimum p-value reported across all three tests).

However, this gain came at the cost of a higher false positive rate (FPR): after adjusting the

p-value significance threshold to correct for the increase in FPR, we found negligible gains in

power compared to the application of a single test (S3 Table). Joint application of gene-based

tests may still be useful, however, in settings where a higher FPR is tolerable, e.g., to increase

sensitivity in a ‘discovery’ exome-wide sequencing scan which precedes large-scale targeted

follow-up.

Discussion

Given the wide array of aggregate rare variant association methods now available for applica-

tion in re-sequencing or genotyping studies of complex traits [30], it is critical to characterize

and quantify the statistical power of each method to test heterogeneous genetic hypotheses. In

this study, we conducted a comparative analysis of a panel of commonly used gene-based rare
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Fig 6. Properties of loci at which gene-based methods report discordant results.Characteristics of causal loci at which KBAC (the method with highest
mean power at nominal levels of significance) produces discordant results as compared to another gene-based method. Results are shown above for the
simulated architecture AR2 in 3K samples. KBAC is compared to the (A) C-ALPHA, (B) BURDEN, and (C) UNIQ gene-based methods. In each comparison,
loci are identified at which KBAC (but not the other method) reports a p-value < 0.01, or at which the other method (but not KBAC) reports a p-value < 0.01.
For each group of loci, leftmost vioplot shows the distribution of aggregate case:control counts (number of minor alleles observed in cases divided by number
of minor alleles observed in controls, for variants with MAF<1%). Middle vioplot shows distribution of case-unique counts (number of observations of alleles
that are only present in cases and absent from controls). Rightmost vioplot shows distribution of the top single variant p-value observed for an exonic variant
at the locus (log10 scale). Line plots at right show the distribution of variants (MAF < 1%) at representative simulated loci where the methods are discordant.
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variant association tests under a broad range of realistic allelic architectures, significance

thresholds, locus effect sizes, sample sizes, and filters for neutral variation.

In sample sizes comparable to those of many contemporary sequencing studies (3K case-

control individuals), we find that while gene-based association methods augment the power of

single variant tests by preferentially detecting loci at which rare variants drive the causal architec-

ture, their absolute power is low. All gene-based methods evaluated in this study have limited

power, even to detect loci explaining as much as 1% of the variance in phenotypic liability under-

lying a common trait such as type 2 diabetes (mean power across architectures is ~5–20% at α =

2.5×10-6). Even in 10K case-control samples, power remains modest (~60% at α = 2.5×10-6).

Based on estimates of variance explained by known rare and common variant signals (the stron-

gest single common variant association for T2D, mapping near TCF7L2, explains ~1% of pheno-

typic variance), it seems probable that for any given complex trait, at best a handful of loci will

have effects on this scale. The full potential of exome sequencing to provide biological insights

into disease, then, will depend largely on the detection of loci of smaller aggregate effects, and

will require far larger sample sizes than these.

The low mean power to detect disease-associated loci prompted the question of whether

some methods are better powered than others to discover novel signals under specific hypothe-

sized locus architectures. We find that at more stringent significance thresholds (α<10-4),

MiST and SKAT-O have the highest power across architectures simulated here, especially

when rare variants have bidirectional effects on disease. Thus, for investigators looking to dis-

cover signals across thousands of loci (e.g., in exome-wide scans), these tests are likely to

maximize sensitivity.

Weighted sum methods (and KBAC in particular), on the other hand, are consistently best-

powered to detect rare variants of deleterious effect at less stringent levels of significance, and

also show the greatest gains in power when neutral variation can be filtered out. These attri-

butes may be useful in various scenarios: to test a small number of biological hypotheses (e.g. at

only a few loci, especially if functional annotations are available), to prioritize signals for fur-

ther follow-up from a discovery scan, or to place bounds (e.g., after an exome-wide sequencing

study) on the total number of genes harboring rare variants of a given effect size that are likely

to exist.

In addition to MiST, SKAT-O and KBAC, we find that other methods may have individual

strengths under particular scenarios (e.g., UNIQ to test whether a gene harbors an excess of

highly penetrant rare variants, or BURDEN to detect a collection of variants each of very weak

effect); these methods may be optimal for testing such specific genetic hypotheses. Finally, in

larger sample sizes (n = 10K case-control individuals), our simulations demonstrate that the in-

creasing number of neutral (non-causal) rare variants may limit gains in the power of some

methods (e.g. FRQWGT). Here, MiST is best-powered at stringent significance thresholds.

Taken together, these results suggest that the interpretation of novel signal discovery (or the

lack thereof) in sequencing studies may vary based on the specific gene-based methods that

are used.

This study has a number of limitations. It is based on simulated data (albeit data consistent

with available empirical information on genetic variation and disease epidemiology [15]). It

does not explore the effects of properties such as demographic history, gene size, mutation rate,

haplotype length, or degree of linkage disequilibrium between causal variants on the power of

Each line represents a variant; height above line measures the variant’s case counts, while height below measures control counts. Red lines highlight
variants which drive the difference in test performance.

doi:10.1371/journal.pgen.1005165.g006
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gene-based association methods. Moreover, it does not characterize the performance of these

methods at non-coding regions, where causal variant frequencies and effect sizes may be differ-

ent, and where there is likely a higher proportion of neutral variation. This simulation ap-

proach, however, enabled us to undertake a controlled, quantitative characterization of the

performance of gene-based association methods under a range of scenarios. Future work

should characterize these methods in study populations of different ethnicities, where different

site frequency spectra and linkage disequilibrium patterns between causal variants may alter

power (S9 Fig). Architectures we simulated assumed a common binary trait; power to detect

loci explaining phenotypic variance for less prevalent traits is likely higher, but we did not

study this relationship. The tools available on our website (http://mccarthy.well.ox.ac.uk/

publications/2014/moutsianas_simulations/) allow the investigation of this question for any

complex trait by generating simulated data using a custom, user-specified RR-by-allele fre-

quency heat-map and disease prevalence.

In summary, we find that specific gene-based association methods are best deployed in the

setting of particular experimental study designs, and when testing for particular genetic models

of disease. Such an approach will likely enable meaningful interpretation of both positive and

negative findings in ongoing sequencing studies, and is bound to remain important even as

sample sizes increase and new statistical methods for aggregate testing of rare variants

are developed.

Methods

Generation of simulated reference panels

Simulated datasets were generated using HAPGEN2 [12]. HAPGEN2 generates case-control

data using a haplotype reshuffling approach based on the Li & Stephens model [31]. Under this

model, simulated (unobserved) haplotypes are assumed to be an imperfect mosaic of actual

(observed) haplotypes and are simulated using a Hidden Markov Model with recombination

and mutation rates as parameters. Case and control samples are generated by over-sampling

haplotype segments which contain alleles at which phenotypic effects are introduced (based on

the relative risks assigned to them). A phased reference panel of haplotypes from 379 European

(98 TSI, 89 GBR, 85 CEU, 14 IBS, and 93 FIN) individuals from the 1000 Genomes Project

(1000G Project Phase 1, release 3) [13] was augmented to 12,514 individuals by iteratively sim-

ulating haplotypes (with no phenotypic effects) and adding them to the original reference

panel, in increments of 300 individuals per iteration.

An excess of rare variation was introduced to the data using an empirically selected value of

θ = 0.08 for the mutation parameter in HAPGEN2, so as to match the singleton count observed

in empirical re-sequencing data in a sample of this size. We used the SFS reported by Nelson

et al [14], which was based on sequencing 351kb of coding sequence in 12,514 samples of Euro-

pean descent. The resulting dataset was subsequently thinned using a rejection sampling ap-

proach, to match the full site frequency spectrum observed in real data. This two-step

approach (matching for singletons, and then thinning the dataset) was necessary to model the

excess in rarer variation observed in whole exome sequencing datasets while preserving the LD

structure of the reference panel. In order to validate that this approach led to a realistic SFS

when sub-sampled to smaller sizes, we compared the SFS observed in the simulated, thinned

panel, in subsets of 2,738 individuals, to that of empirical exome-wide sequencing data on the

same number of individuals, from the GoT2D project (dark and light blue lines, Fig 1).
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Forward simulation of population-scale data to model genetic
architecture

Forward population genetic simulations of global complex disease architecture (specifically, for

type 2 diabetes, a disease of prevalence 8% and heritability ~45%) were conducted across a

range of disease models varying in mutational target size and coupling to purifying selection

[15]. By varying only these two parameters, a wide range of continuous joint frequency and ef-

fect size distributions were generated; under models with strong coupling to selection, rare var-

iants explain the bulk of heritability and have large effects, while under models with weak

coupling to selection, common variants explain the bulk of heritability and rare variants have

weaker effects. For the HAPGEN2 simulations conducted here, we sampled variant effect sizes

from the distributions observed in the forward simulated datasets at loci explaining ~1% of

phenotypic variance underlying T2D (S3 Fig).

Assignment of variant phenotypic effects within HAPGEN2 simulations

Variant effects were selected from the frequency-effect size distributions described above. We

simulated these effects at randomly selected exonic variants across each gene. We used variant

frequencies measured in the augmented reference panel of 12,514 individuals. In unidirectional

architectures, all rare variants were assumed to increase risk of disease (RR>1). In bidirectional

architectures, protective effects were sampled in the same way, but the relative risks were in-

verted. Variant effects were sampled until the cumulative variance explained (VE) on the liabil-

ity scale by each locus reached the desired threshold (e.g. VE = 0.5%, 1%, or 2%). The following

procedure was followed for introducing variation at each locus:

i. Pick an exonic variant at random

ii. Introduce an effect by sampling from the frequency-RR distribution of the

respective architecture

iii. If the cumulative variance explained (on the liability scale, %VE) by variants at the locus is

below of the specified threshold, go to step (i) and repeat

iv. If the variance is above the specified threshold, remove one of the introduced effects (at ran-

dom) and go to step (i)

v. If the cumulative variance explained is close enough to the specified threshold

(0.95�VE,1.05�VE), then

a. If the number of introduced variants is over 35, quit and restart, else:

b. Accept the sampling and simulate data using the variants and effect sizes chosen, using

HAPGEN2.

The upper bound of 35 on the total number of causal variants introduced per locus was im-

posed due to instability in HAPGEN2 behavior above this threshold; this limit was rarely reached

in 3K samples, but it did restrict architectures simulated in 10K samples (S11C and S12 Figs).

The calculation of variance explained at each locus was conducted using the method described

by So et al., which is available online as an R script [26]. This calculation requires three parame-

ters as input (per variant): the prevalence of the trait (in this case assumed to be 8%, to model

type 2 diabetes), the population frequency of the risk allele, and the genotype relative risk. We as-

sumed independence between risk variants at a given locus, and thus estimated the total percent-

age of variance explained as the sum of the variance explained by each individual variant.
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Running gene-based tests of association on simulated data

The latest releases of the PLINK/SEQ (v0.09) [18] and EPACTS (v3.2.3) [25] software packages

were used to run ten of the gene-based methods evaluated in this study. MiST was run using a

publicly available R package (http://cran.r-project.org/web/packages/MiST/index.html) [24].

All exonic variants (causal and non-causal) below varying minor allele frequency thresholds

(1% for all analyses discussed in the main text, unless otherwise stated) were included in the

tests, except when the fraction of neutral variation was varied. In this case, the proportion of

causal variants included in the test was fixed to 0.25, 0.50, 0.75, or 1 (Fig 4C).

Selecting a subset of tests for joint application to the data

The subsets of tests chosen for inclusion into composite tests were selected using a stepwise for-

ward selection approach. Starting with a single test (three runs per architecture, each starting

with one of the top three performing tests across architectures, MiST, SKAT-O and KBAC),

the next test to be included at each step was the one which reported the greatest number of

novel signals, i.e. not previously detected by the tests already included. Novel signals were de-

fined as loci for which the p-value reported by the candidate test for inclusion was lower by a

specified multiplicative “margin” (factor) than the lowest p-value reported by tests already in-

cluded in the composite test. Three margins were used (100, 10, and 1); a margin of 100, for ex-

ample, implies that for signals to be considered novel, they p-value of the candidate test needs

to be two orders of magnitude lower than the lowest of the ones already included in the

composite test.

Datasets and software

All datasets discussed in this study, together with the scripts used to generate them and results

of both single variant association and gene-based methods across all architectures, are available

on the website http://mccarthy.well.ox.ac.uk/publications/2014/moutsianas_simulations/. The

website also contains the software used for the script generation (a wrapper for HAPGEN2

[12]), which can be used to generate analogous simulated data for the genes we included in the

manuscript under alternative scenarios/architectures.
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S1 Text. List of all supporting tables and figures; supplemental methods (this file).
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S1 Fig. Pairwise linkage disequilibrium between variants in simulated vs. empirical data,

for different minor allele frequency categories.Mean pairwise LD between variants (mea-

sured by r2) as a function of the distance between each pair of variants. The pairwise r is shown

for the empirical 1000 Genomes reference panel used in this study (red lines) and variants in

the simulated panel which was expanded using HAPGEN2 (blue lines; see S1 Text for details

about expansion). Each plot shows variants split by minor allele frequency category; in all

cases, linkage in the simulated data mimic what is seen in empirical data. Data is shown at a

single representative gene locus (GATA3). The mean pairwise LD was calculated and averaged

across 10 different subsets (each containing 379 samples, to match the size of the 1000 Ge-

nomes European reference panel) of data simulated using HAPGEN2 at the GATA3 locus.

(PDF)

S2 Fig. Comparison of site frequency spectrum at 202 genes in Nelson et al vs. all other

REFSEQ genes. All simulations discussed in this manuscript were conducted (in HAPGEN2)
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to match the empirical site frequency spectrum reported across 202 genes in Nelson et al (Sci-

ence, 2012; main text reference 14). This comparator dataset was chosen because of its large

sample size (12K individuals). To confirm that the site frequency spectrum across these 202

genes (‘Nelson et al gene set’) is representative of the distribution across all genes, we compared

the SFS at these genes to that observed for all other genes in REFSEQ across the genome (‘All

other genes’) in a dataset of 2,657 European individuals who were whole-exome sequenced by

the Go-T2D Consortium. These data confirm that the Nelson et al genes are not outliers on the

basis of observed minor allele counts.

(PDF)

S3 Fig. Variant frequency-effect size distributions under each simulated architecture. The

below frequency-RR distributions were learned from population genetic forward simulations of

global genetic architecture (Agarwala et al, Nature Genetics 2013). (A) AR1 assumes strong cou-

pling to purifying selection; that is, variants under selection (more likely rare) have larger effects

on disease. (B) AR2 assumes moderate coupling to selection, and (C) AR3 assumes no coupling

to selection (thus effect sizes are more uniform across the frequency spectrum). Figures on the

right are zoomed-in versions of those on the left (only showing variants with MAF up to 1%).

(PDF)

S4 Fig. Distribution of number of causal variants and total number of simulated variants

tested per locus under different architectures. All results shown below are for loci which

explain 1% of phenotypic variance, simulated in 3K samples (1.5 cases / 1.5K controls). In

(A) and (B) variant counts are shown for the simulated architecture AR2 (moderate selection).

In (A) is shown a histogram of simulated loci, binned by the number of causal variants sampled

per locus in order for the locus to explain 1% of phenotypic variance. In (B) is shown a histo-

gram of simulated loci, binned now by the total number of exonic variants with MAF<1%, e.g.

the total number of variants included in gene-based association testing. In (C), distributions of

variant counts (for both causal variants and the total number of variants tested per locus) are

shown as box plots, under all six simulated architectures (S2 Table).

(PDF)

S5 Fig. Power of gene-based tests under null locus architectures to assess type I error. All

gene-based tests were relatively well-calibrated and had expected type I error rates at both (A)

alpha = 0.05 and (B) alpha = 1e-04. Some tests, such as SKAT, appear to be relatively conserva-

tive (as has been previously described).

(PDF)

S6 Fig. Relative power of gene-based tests using an absolute significance threshold vs. an

empirical threshold corrected for the false positive rate of each test. All results shown below

are for loci which explain 1% of phenotypic variance, simulated in 3K samples (1.5 cases / 1.5K

controls). Results in (A) were simulated under architecture AR2 (moderate selection, unidirec-

tional effects); results in (B) were simulated under AR6 (moderate selection, bidirectional ef-

fects). FPR-corrected power is calculated using an empirically-derived threshold at which the

observed false positive rate is 1e-04; this threshold varies for each gene-based method based on

how conservative each method is (this variability is shown in S8 Fig). The relative power of the

highest-ranked methods is unchanged with corrected vs. uncorrected significance thresholds.

(PDF)

S7 Fig. Power of gene-based tests in 3K samples, as a function of significance threshold,

under each simulated architecture. Causal variants at each simulated gene explain 1% of phe-

notypic variance. In (A), architectures were simulated with causal variants spanning the full

Power and Performance of Gene-Based Association Methods

PLOS Genetics | DOI:10.1371/journal.pgen.1005165 April 23, 2015 19 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005165.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005165.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005165.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005165.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pgen.1005165.s008


frequency spectrum (including common alleles), and all causal alleles increase risk of disease.

Gene-based association testing was performed only on variants with MAF< 1%. In (B), only

variants with MAF<1% are causal (thus rare alleles are responsible for the entire locus contri-

bution to heritability). In (C), variants across the full site frequency spectrum are causal, but

causal alleles are mixed in direction of effect; some increase risk of disease, while others reduce

risk of disease.

(PDF)

S8 Fig. Power of gene-based methods in 3K samples using different minor allele frequency

thresholds for burden testing. Causal variants at each simulated gene explain 1% of phenotyp-

ic variance (contributed by variants across the full frequency spectrum). In Figs 2 and 3 of the

main manuscript, a MAF threshold of 1% is used for inclusion of variants into the gene-based

association test. Shown here are power results using a MAF threshold of 0.5% and 1%. All sim-

ulations below were conducted under AR2 (moderate selection against causal alleles), for loci

explaining 1% of phenotypic variance, and in 3K samples.

(PDF)

S9 Fig. Effect of linkage disequilibrium between causal variants on power of gene-based

tests. Each boxplot below shows the range of p-values reported by each gene-based method for

loci binned by the average pairwise linkage disequilibrium (LD; as measured by r2). Across all

the gene-based tests evaluated here, the mean p-values are lower (i.e., more significant) when

the extent of LD between causal variants at the locus is low.

(PDF)

S10 Fig. Power of gene-based method (SKAT-O) as compared to single variant association

testing under AR4, AR5, and AR6. Power is measured across one hundred simulations of phe-

notypic effects at each of 24 human gene loci in N = 3K samples. Under each architecture (AR4,

AR5, AR6), the power of one of the best-performing gene-based tests (SKAT-O) at alpha = 2.5e-

06 is compared to single variant association (A,C,E). The significance threshold used for the

gene-based test is 2.5e-06; the threshold for single variant association (Fisher’s exact) is 5e-08.

Blue boxplot shows range of power for single variant association across genes simulated; pink

shows power of the gene-based test; green shows the fraction of loci detected only by the gene-

based test (and not single variant association); yellow shows the combined sensitivity of both

gene-based and single variant association. Next to each boxplot (panels B,D,F) are scatterplots

showing the distinct sets of loci detected by single variant association (loci above the upper dot-

ted red line at 5e-08) and by gene-based association (highlighted in orange). Loci are plotted

based on the minor allele frequency (x-axis) and association p-value (y-axis) of the most associat-

ed single variant across the locus. Similar plots for AR1, AR2, and AR3 are shown in Fig 3 of the

main manuscript.

(PDF)

S11 Fig. Power of gene-based tests as a function of locus effect size and sample size. Power

is shown here under AR2 (moderate coupling to selection) for varying locus effect sizes and

sample sizes. (A) VE = 0.5%, per locus, N = 3K samples, (B) VE = 2%, N = 3K samples,

(C) VE = 1%, 10K samples. In Fig 2 of the main manuscript, data was shown for VE = 1%

and N = 3K individuals, across a range of architectures.

(PDF)

S12 Fig. Effect of increasing sample size on the simulated number of causal and total segre-

gating variants, and effect of cap on number of causal variants in HAPGEN2.We simulated

loci at which the site frequency spectrum (and thus the total number of segregating variants)
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matched empirical datasets (see main manuscript Fig 1). At these loci, causal variants were

sampled from different frequency-effect size distributions; due to technical limitations of

HAPGEN2, a maximum of 35 causal variants were selected to collectively explain 1% of phe-

notypic variance. As this figure demonstrates, this cap did not materially impact simulations

in 3K samples, but in 10K samples, this variant cap does restrict the diversity of locus architec-

tures that we were able to simulate. In 3K samples, the median total number of segregating

variants with MAF<1% per locus is ~38; ~18 of these variants (well below 35) have causal ef-

fects on disease. In 10K samples, the ratio of causal to total variants at simulated loci is sub-

stantially reduced due to the cap on the number of causal variants. (A) The number of total

segregating variants (red) and the number of variants simulated to have causal effects (blue)

per locus. (B) The distribution of number of causal variants per locus in 10K samples with

and without the variant cap. We only simulated loci with fewer than 35 causal variants

(pink distribution).

(PDF)

S13 Fig. Power of gene-based methods in 3K vs. 10K samples, as a function of ratio of caus-

al to total number of variants per locus. All results shown in this figure are for loci that ex-

plain 1% of phenotypic variance; gene-based tests run in 3K samples (1.5 cases / 1.5K controls)

or in 10K samples (5K cases / 5K controls); loci simulated under AR2 (moderate selection).

(A–B) Each point represents a simulated locus (across 24 human genes, 100 replicates per

gene, simulations in both 3K and 10K samples; 4800 points are plotted in each scatterplot).

The x-axis shows the ratio of number of causal variants (variants to which phenotypic effects

are assigned) relative to total number of variants tested across the locus (all variants with

MAF<1%). The y-axis shows p-values reported by the gene-based association method

SKAT-O. All loci simulated in both 3K and 10K samples are shown as grey points in both pan-

els (A) and (B). Red points are loci simulated in 3K samples; blue points are loci simulated in

10K samples. Blue points (loci simulated in 10K samples) are left shifted relative to red points

(loci simulated in 3K samples) because the fraction of neutral variation increases with sample

size in these simulations. Blue points are also shifted up, as p-values in 10K samples are more

significant than those in 3K samples. In both sample sizes, SKAT-O p-values are more signifi-

cant as the ratio of causal to total number of variants increases.

(C–D) Mean p-values reported by two gene-based association methods (SKAT-O and

FRQWGT) as a function of the proportion of causal variation at a locus, in 3K (C) and 10K

(D) samples. In 3K samples, both methods show similar performance, but in 10K samples

SKAT-O significantly outperforms FRQWGT method, regardless of the proportion of causal

variation. While the lower mean power of FRQWGT in 10K samples may be partially attribut-

able to the larger number of neutral variants in this sample size (S12 Fig), panel (D) suggests

that FRQWGT may also be less-powered for other reasons (and is not entirely a result of bias

introduced by the cap on the number of causal variants in HAPGEN2). This underscores the

need to select well-powered gene-based methods for association testing in large sample sizes.

(E) Power of the gene-based method MiST at alpha = 1e-04 in 3K and 10K samples, as a func-

tion of the ratio of causal to total number of variants per locus. Regardless of this ratio, power

of MiST is substantially higher in 10K samples (blue) as compared to 3K samples. Power in

both sample sizes increases as the proportion of causal variation increases, but power in 3K

samples is more sensitive to this property than is power in 10K samples. In 10K samples,

power remains ~60–70%, regardless of the proportion of causal variation. This further suggests

that the causal variant cap in HAPGEN2, while restrictive, does not dramatically affect charac-

terization of gene-based test power in 10K samples.

(PDF)
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S14 Fig. Concordance between p-values reported by different gene-based association meth-

ods under each simulated architecture. All results shown here are for loci which explain 1%

of phenotypic variance; gene-based tests run in 3K samples (1.5 cases / 1.5K controls). Values

represent R2 correlation coefficients between p-values reported by each gene-based association

method. Correlation coefficients are shown under all simulated architectures: (A) AR1, (B)

AR2, (C) AR3, (D) AR4, (E) AR5, and (F) AR6.

(PDF)

S1 Table. List of human gene loci at which HAPGEN2 simulations were performed. 24

genes on chr10 were selected from the center of the distribution of human gene coding length

(Fig 1). Below are the genomic locations of these regions; HAPGEN2 simulations were per-

formed across the full length of each transcript. Causal variants were selected from exonic re-

gions only, and burden testing was also run on variants (causal and non-causal) within the

exonic regions only.

(XLSX)

S2 Table. Locus architectures modeled at simulated loci. The below range of locus architec-

tures were modeled at simulated loci; variant effect sizes were sampled from joint frequency-

effect size distributions learned from forward population genetic simulations (Agarwala et al,

Nature Genetics 2013). The architectures were chosen to reflect a range of different rare vari-

ant contributions and effect sizes. Briefly, the ‘selection parameter’ controls the degree to

which the effect of a variant on evolutionary fitness is coupled to its effect on disease. When

tau = 1, variants that are deleterious for fitness (and thus rarer in the population) have the

largest effects on disease. When tau = 0, all causal variants have comparable additive effects

on disease regardless of their effects on fitness, and thus common causal variants contribute a

greater proportion of total heritability (S1 Text). At each locus, the total number of causal var-

iants depended on the effect sizes sampled, as loci were modeled to explain a fixed proportion

of liability-scale phenotypic variance underlying a complex trait with 8% prevalence (such as

type 2 diabetes).

(PDF)

S3 Table. Power of ‘composite’ groups of gene-based association methods. Test combina-

tions were picked using step-wise forward selection starting from each of the three best-

performing gene-based association methods across architectures (KBAC, SKAT-O, MiST).

First column lists the architecture (see S2 Table and main text for more information). VE re-

fers to total phenotypic variance explained by the locus; D/M describes whether causal effects

are deleterious only (D) or a mix of deleterious and protective (M). The second column con-

tains the ‘starting’ test, and the third column indicates the ‘margin’ of difference in p-values

used in the forward selection algorithm (where 100 is 2 orders of magnitude, 10 is 1 order of

magnitude and 1 is minimum margin; see S1 Text). The fourth column contains the list of

tests picked by the selection algorithm until no other addition offered higher power under

that margin, in the order of selection. Column 5 shows the total sensitivity of the composite

test (when the minimum p-value across all tests in the group is used), using an (un-adjusted)

p-value threshold of 1e-04. Column 6 shows power under the adjusted p-value threshold (to

maintain a false positive rate< = 1e-04). Column 7 shows power of the single best gene-

based test for comparison (at alpha = 1e-04). For each architecture, the best-performing

‘composite’ test is shown in bold.

(PDF)
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