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Background: Since sequencing techniques have become less expensive, larger
sample sizes are applicable for microbiota studies. The aim of this study is to show
how, and to what extent, different diversity metrics and different compositions of the
microbiota influence the needed sample size to observe dissimilar groups. Empirical 16S
rRNA amplicon sequence data obtained from animal experiments, observational human
data, and simulated data were used to perform retrospective power calculations. A wide
variation of alpha diversity and beta diversity metrics were used to compare the different
microbiota datasets and the effect on the sample size.

Results: Our data showed that beta diversity metrics are the most sensitive to
observe differences as compared with alpha diversity metrics. The structure of the
data influenced which alpha metrics are the most sensitive. Regarding beta diversity,
the Bray–Curtis metric is in general the most sensitive to observe differences between
groups, resulting in lower sample size and potential publication bias.

Conclusion: We recommend performing power calculations and to use multiple
diversity metrics as an outcome measure. To improve microbiota studies, awareness
needs to be raised on the sensitivity and bias for microbiota research outcomes created
by the used metrics rather than biological differences. We have seen that different alpha
and beta diversity metrics lead to different study power: because of this, one could
be naturally tempted to try all possible metrics until one or more are found that give
a statistically significant test result, i.e., p-value < α. This way of proceeding is one
of the many forms of the so-called p-value hacking. To this end, in our opinion, the
only way to protect ourselves from (the temptation of) p-hacking would be to publish a
statistical plan before experiments are initiated, describing the outcomes of interest and
the corresponding statistical analyses to be performed.

Keywords: microbiota, power analysis, multivariate analysis, microbiome, sample size

Abbreviations: Anosim, analysis of similarities; Asv, amplicon sequence variant; Bc, Bray–Curtis index; Hmp, Human
Microbiome Project; J, Jaccard distance; Mcfa, medium-chain fatty acids; Otu, operational taxonomic unit; Permanova,
permutational multivariate Anova; Pd, phylogenetic diversity; Uf, UniFrac.
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INTRODUCTION

For a few decades now, researchers have left culture-based
methods and used molecular technologies, and more recently
mostly sequencing-based approaches, to characterize microbial
communities within a certain environment, referred to as the
microbiome. In humans and animals, the microbiome has an
important role in health and disease. For example, animals
raised without or fewer microbes showed an underdeveloped
immune system and are more susceptible to diseases (Inman
et al., 2010; Mulder et al., 2011; Williams, 2014). Microbiome
studies have as goal to investigate, characterize, and understand
the compositional and functional variability of microbiomes. The
question “What is different between different groups of interest?”
can be translated into a hypothesis-testing procedure.

Hypothesis testing rests on the definition and choice of four
parameters: (i) the effect size, i.e., the quantification of the
outcome of interest (in the simple case, the difference between
two groups); (ii) the sample size n, i.e., the number of samples
(to be) collected; (iii) the power of tests 1 - β, i.e., the probability
of the test of rejecting the null hypothesis when actually false; and
(iv) the confidence level α, i.e., the probability of rejecting the null
hypothesis when actually true.

It is necessary to perform power analysis before performing
experiments. This is well acknowledged in all fields of research;
however, microbiome studies are challenged with conflicting
results (Knight et al., 2018). Underpowering and the failure to
correct for false positives are among the causes underlying the
lack of reproducibility of many biological findings (Begley and
Ioannidis, 2015; Casals-Pascual et al., 2020).

The power of a test is linked to the probability β of accepting
the null hypothesis when actually false (false-negative error or
Type II error), and α describes the false-positive error or Type
I error. Once acceptable error rates α (usually 0.05 or 0.01) and
β (usually 0.2, although context-dependent) and the effect that
one is interested to assess statistically are chosen, it is possible,
at least in principle, to determine the optimal sample size, i.e.,
the number of samples that one needs to collect/analyze to
obtain, with probability 1−β, a statistically significant result with
confidence α.

Given the nature of microbiome data, it is possible to
quantify differences between groups at two levels: the alpha
(within-sample) and beta (between-sample) diversity (Figure 1).
Alpha diversity metrics summarize the structure of a microbial
community with respect to its richness (number of taxonomic
groups), evenness (distribution of abundances of the groups),
or both (Willis, 2019). Commonly used alpha metrics are
phylogenetic diversity (PD) (Faith, 2006), observed number of
amplicon sequence variants (ASVs) (Callahan et al., 2017), Chao1
(Chao, 1984), Simpson’s (Simpson, 1949; Lemos et al., 2011),
and Shannon’s indices (Lemos et al., 2011; Magurran, 2013).
Beta diversity metrics summarize which samples differ from one
another by considering sequence abundances or considering only
the presence–absence of sequences. Commonly used beta metrics
are the Bray–Curtis (BC) dissimilarity (Bray and Curtis, 1957),
Jaccard (Jaccard, 1912), unweighted UniFrac (UF) (Lozupone
and Knight, 2005), and weighted UniFrac (Lozupone et al., 2007).

The choice of the diversity metrics affects the subsequent
statistical testing and, as a result, how, and to which extent, power
analysis can be performed.

With the use of an alpha diversity metric, a single diversity
value is obtained for each sample containing measurements of
m taxa; thus, the problem of assessing differences between two
(or more) groups can be addressed with a univariate test, like
t-test, ANOVA, or a nonparametric test. The use of a beta
diversity metric implies that all samples are to be considered
simultaneously, and several methods to compare groups of
samples measured on m > 1 have been proposed like analysis
of similarities (ANOSIM) (Clarke, 1993) and permutational
multivariate ANOVA (PERMANOVA) (Anderson, 2001) to
replace classical multivariate tests like the Hotelling T2 or
multivariate ANOVA, which are in general not applicable.
This happens because basic assumptions are not met, such as
independence of the sample units, the multivariate normality
of errors, homogeneity of variance–covariance matrices among
the groups, or because the number of variables is larger than
the number of samples, making it impossible to apply the test
(Hanson and Weinstock, 2016; Gloor et al., 2017; Li et al., 2017;
Weiss et al., 2017; Casals-Pascual et al., 2020).

While sample size and Type I and Type II errors are
well-defined concepts, the definition of effect size depends on
the outcome quantity of interest and how this quantity is
mathematically defined. A fundamental step when performing
power analysis is then to define the effect size: for a simple
two-sample t-test, the effect size can be expressed as Cohen’s δ

(Cohen, 2013).

δ =
|µ1 − µ2|

σ
(1)

where µ1 and µ2 are the population means of the two
groups to be compared and σ2 is the pooled variance. Since
µ1 and µ2 are population parameters that are inaccessible
and on which we want to perform inference, an a priori
estimation, or educated guess, is necessary. This can be
accomplished by taking the sample means m1 and m2 and
pooled variance s2 from a pilot study or existing data to
obtain estimates of the population parameters. A critical aspect
that is not sufficiently acknowledged is that the effect size
from Equation (1) is sensitive to the particular diversity
metric used to the point that sample size calculations can be
severely affected.

The aim of this study is to show how, and to what extent,
different diversity metrics influence the sample size needed
to assess the statistical significance of dissimilarities between
different microbial communities. Both simulated and empirical
16S rRNA gene amplicon sequence datasets are used to perform
retrospective calculations of the empirical power for microbiota
studies. A broad selection of alpha and beta diversity metrics was
used to compare the different microbiota datasets.

This study generated insight into the sensitivity and bias
of certain statistical methods used in microbial ecology
on microbiota research outcomes. We conclude with some
recommendations for the reporting of power analysis and sample
size calculations for microbiome studies.
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FIGURE 1 | Differences between group 1 (data matrix X1 − n1 samples × m1 variables/microbial features) and group 2 in microbiome data can be assessed using
either alpha (within-sample diversity) or beta (between-sample diversity) metrics. The use of alpha metrics allows the use of classical univariate testing, either
parametric or nonparametric. The use of beta metrics leads to the use of permutation-based testing approaches like permutational multivariate ANOVA
(PERMANOVA) (see section “Materials and Methods”).

MATERIALS AND METHODS

Literature Search
To support the choice of alpha and beta diversity metrics to
consider in our comparison, we performed a literature search
on PubMed1 with a query: (microbiota [Title] OR microbiome
[Title]) NOT Review [Publication Type] 2020/01:2020/02 [Date
of Publication]). This strategy aimed to include a broad scope of
microbiota studies. We limited our search to studies published in
English with free full text.

Alpha Diversity Metrics
Richness
Richness is the number of taxa, most often defined as an
operational taxonomic unit (OTU) or ASVs observed (Callahan
et al., 2017), where s is the number of observed taxa, calculated as
(Colwell, 2009)

Srich =
∑
s>0

1s (2)

Phylogenetic Diversity
PD is a phylogenetically weighted measure of richness. Although
the name suggests diversity, it does not take into account the
abundance of taxa. The PD is defined as the sum of the lengths
of all those branches on the tree that span the members of the set,

1https://pubmed.ncbi.nlm.nih.gov/

given the phylogenetic tree spanning s taxa (Faith, 2006):

PD =
∑

i

bi, (3)

where s is the number of observed taxa and bi is the length of the
ith branch in the tree. Index i runs on all branches.

Chao1
The Chao1 index is an abundance-based nonparametric
estimator of taxa richness (Chao, 1984). It is defined as

Chao1 = s+
F1(F1 − 1)

2(F2 − 1)
, (4)

where s is the number of observed taxa, and F1 and F2 are the
number of OTU/ASV with only one sequence (i.e., “singletons”)
and two sequences (i.e., “doubletons”). This metric assumes the
number of organisms identified for a taxon to follow a Poisson
distribution. The definition rests on the concept that rare taxa
bring most information about the number of missing taxa. This
index gives more weight to the low-abundance taxa, and only the
singletons and doubletons are used to estimate the number of
missing taxa (Chao, 1984). This index is particularly useful for
datasets skewed toward low-abundance taxa (Hughes et al., 2001;
Kim et al., 2017). However, singletons and doubletons are often
removed from 16S rRNA amplicon sequence datasets because of
the difficulty in robustly differentiating singleton errors from real
singleton sequences (Allen et al., 2016; Callahan et al., 2016).
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Shannon’s Index
Shannon’s index H is an estimator of taxa diversity, combining
richness and evenness) (Lemos et al., 2011; Magurran, 2013). It is
defined as

H = −
s∑

i=1

pilog(pi), (5)

where s is the number of OTU/ASV and pi is the proportion of
the community represented by the ith OTU/ASV. Basically, this
index is the entropy associated with a given sample and quantifies
the uncertainty in predicting the taxa identity of an individual
selected at random from the sample. Shannon’s index uses the
relative abundances of different taxa; thus, diversity depends
on both taxa richness and evenness with which organisms are
distributed among the different taxa. This index places a greater
weight on taxa richness (Kim et al., 2017).

Simpson’s Index
Simpson’s index D is an estimator of taxa diversity, combining
richness and evenness (Simpson, 1949; Lemos et al., 2011). It is
defined as

D =
1∑s

i=1 p2
i
, (6)

where s is the number of OTU/ASV and pi is the proportion
of the community represented by the ith OTU/ASV. This
index considers taxa evenness more than taxa richness in its
measurement (Kim et al., 2017); it indicates the taxa dominance
and gives the probability of two individuals that belong to the
same taxa being randomly chosen. It varies from 0 to 1, and the
index increases as the diversity decreases (Kim et al., 2017).

Metrics for Beta Diversity
Bray–Curtis Dissimilarity
The BC index (Bray and Curtis, 1957) measures the
compositional dissimilarity between the microbial communities
of two samples i and j based on counts on each sample. It is
defined as

BC = 1−
2Cij

Si + Sj
, (7)

where Cij is the sum of the smallest values for only those taxa
in common between the sample i and j, and Si and Sj are the
total number of taxa counted in sample i and j, respectively. This
index ranges between 0 (the two samples share all taxa) and 1
(the two samples do not share any taxa). It gives more weight
to common taxa (Borcard et al., 2018). The BC dissimilarity is
computed pairwise between all samples.

Jaccard Distance
The Jaccard distance J between two samples i and j is defined as
J = 1 - J(i, j), where J(i, j) is the Jaccard index, which is defined as

J(i, j) =
|i ∩ j|
|i ∪ j|

, (8)

which is the ratio between the number of members that
are common between the two samples and the number of

members that are distinct; it is a measure of similarity for the
two communities and ranges between 0 (the communities are
different) and 1 (the two communities are identical).

UniFrac Distances
UF and weighted UniFrac distances between two samples
take into account the phylogenetic tree and thus phylogenetic
distances between community members (Lozupone et al., 2007).
In UF, the distance is calculated as the fraction of the branch
length, and in weighted UniFrac, branch lengths are weighted by
the relative abundance of sequences. The sum of unshared branch
lengths is divided by the sum of all tree branch lengths, which
results in the fraction of total unshared branch lengths that is
defined as

n∑
i

bi ×

[
Ai

AT
−

Bi

BT

]
. (9)

Lozupone et al. (2007) defined n as the total number of branches
in the tree; bi as the length of branch i; Ai and Bi as the numbers
of sequences that descend from branch i in communities A and
B, respectively; and AT and BT as the total numbers of sequences
in communities A and B, respectively. In order to control for
unequal sampling effort, Ai and Bi are divided by AT and BT
(Lozupone et al., 2007).

Experimental Datasets
Chickdata Dataset
This dataset contains 16S rRNA gene amplicon sequence data
obtained from a broiler chicken experiment. The dataset is
described in detail in Kers et al. (2019); briefly, chickens were
raised under three different housing conditions with the same
medium-chain fatty acid (MCFA) feed intervention. Between
those housing conditions, bird management was kept as similar
as possible. At the hatchery, the chicks were randomly allocated
to three different experimental facilities. Dataset A contains 70
broilers from a grow-out feed trial facility, dataset B contains 70
broilers raised at a floor stable, and dataset C contains 70 broilers
raised in isolators. A feed intervention was used as a tool to create
differences in cecal microbiota between broilers within the same
housing condition.

Human Microbiome Project Dataset
This dataset was obtained from the Human Microbiome Project
(HMP) phase I (Huttenhower et al., 2012). It contains 16S rRNA
gene amplicon sequence data of 169 stool samples, 150 oral
samples, 86 vaginal samples, and 69 skin samples. The bodyside
microbiomes are all diverse in terms of community membership
(Huttenhower et al., 2012).

In all datasets, ASVs were defined as unique sequences.
All data were analyzed using NG-Tax (Ramiro-Garcia et al.,
2016). Taxonomy was assigned using the SILVA 128 16S rRNA
gene reference (Quast et al., 2013). An overview of dataset
characteristics (sample size, the number of ASVs, and mean
values of different alpha and beta diversity metrics) is shown in
Table 1.

Frontiers in Microbiology | www.frontiersin.org 4 March 2022 | Volume 12 | Article 796025

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-796025 February 26, 2022 Time: 15:33 # 5

Kers and Saccenti Power Calculations of Microbiome Studies

TABLE 1 | Overview of dataset characteristics of the different datasets.

A N ASV PD Shannon Chao1 Simpson

Chickdata A Feed1 35 780 28.3 (2.9) 4.1 (0.3) 136.3 (20.8) 0.96 (0.02)

Chickdata A Feed2 35 794 28.2 (2.8) 4.1 (0.3) 137.9 (22.0) 0.96 (0.02)

Chickdata B Feed1 35 537 22.6 (3.7) 3.5 (0.5) 109.6 (21.3) 0.90 (0.08)

Chickdata B Feed2 35 588 26.9 (2.7) 4.0 (0.3) 139.5 (20.2) 0.95 (0.02)

Chickdata C Feed1 35 466 17.4 (3.1) 3.2 (0.5) 79.0 (17.7) 0.90 (0.06)

Chickdata C Feed2 35 518 20.2 (2.3) 3.7 (0.3) 98.1 (14.4) 0.95 (0.02)

HMP gut 168 1,996 17.3 (3.7) 3.2 (0.6) 70.1 (21.7) 0.9 (0.1)

HMP oral 150 1,740 22.6 (4.6) 3.4 (0.5) 82.6 (21.2) 0.9 (0.1)

HMP skin 69 899 12.2 (6.3) 1.7 (0.6) 41.4 (20.7) 0.7 (0.1)

HMP vaginal 86 678 8.6 (3.7) 1.1 (0.6) 31.8 (10.2) 0.4 (0.2)

B N ASV BC Jaccard UF WUF

Chickdata A Feed1 35 780 0.74 (0.09) 0.84 (0.06) 0.40 (0.05) 0.30 (0.08)

Chickdata A Feed2 35 794 0.71 (0.09) 0.83 (0.06) 0.39 (0.05) 0.30 (0.07)

Chickdata B Feed1 35 537 0.59 (0.13) 0.74 (0.10) 0.41 (0.12) 0.27 (0.10)

Chickdata B Feed2 35 588 0.63 (0.12) 0.77 (0.09) 0.35 (0.06) 0.28 (0.09)

Chickdata C Feed1 35 466 0.72 (0.15) 0.83 (0.12) 0.45 (0.12) 0.33 (0.09)

Chickdata C Feed2 35 518 0.69 (0.11) 0.81 (0.08) 0.36 (0.07) 0.29 (0.06)

HMP gut 168 1,996 0.80 (0.10) 0.89 (0.07) 0.54 (0.08) 0.39 (0.13)

HMP oral 150 1,740 0.70 (0.13) 0.82 (0.09) 0.49 (0.11) 0.33 (0.12)

HMP skin 69 899 0.59 (0.20) 0.72 (0.16) 0.66 (0.10) 0.29 (0.17)

HMP vaginal 86 678 0.71 (0.29) 0.79 (0.24) 0.70 (0.11) 0.21 (0.15)

C n ASV BC Jaccard UF WUF

Chickdata A Feed1 35 780 0.51 (0.06) 0.59 (0.04) 0.28 (0.04) 0.21 (0.06)

Chickdata A Feed2 35 794 0.50 (0.05) 0.58 (0.04) 0.27 (0.03) 0.21 (0.05)

Chickdata B Feed1 35 537 0.41 (0.09) 0.51 (0.07) 0.28 (0.09) 0.19 (0.08)

Chickdata B Feed2 35 588 0.44 (0.07) 0.54 (0.05) 0.24 (0.04) 0.20 (0.06)

Chickdata C Feed1 35 466 0.51 (0.07) 0.58 (0.05) 0.32 (0.08) 0.24 (0.05)

Chickdata C Feed2 35 518 0.48 (0.07) 0.57 (0.05) 0.25 (0.05) 0.20 (0.04)

HMP gut 168 1,996 0.57 (0.07) 0.63 (0.04) 0.38 (0.06) 0.27 (0.09)

HMP oral 150 1,740 0.49 (0.09) 0.58 (0.06) 0.33 (0.09) 0.23 (0.08)

HMP skin 69 899 0.40 (0.15) 0.50 (0.12) 0.46 (0.06) 0.20 (0.13)

HMP vaginal 86 678 0.51 (0.23) 0.56 (0.18) 0.49 (0.05) 0.14 (0.12)

The mean alpha and beta diversity, and associated standard deviation (between brackets) (A, B). The mean of the beta diversities is also calculated as the mean distance
of groups members to the group centroid (C). N = sample size. Feed1 is the intervention without the same medium-chain fatty acid. PD, the phylogenetic diversity; ASV,
amplicon sequence variant; HMP, Human Microbiome Project; BC, Bray–Curtis dissimilarity; UF, unweighted UniFrac; WUF, weighted UniFrac.

Simulated Datasets
We simulated two different scenarios described by Simulated
datasets 1 and 2. An overview of the characteristics of the
simulated datasets is shown in Table 2.

Simulated dataset 1 is built starting from 1,995 microbial
features observed in 169 stool samples from the HMP, indicated
as X1 in the following. Datasets (named X2 for the sake
of simplicity) were created where 2, 5, 10, 25, 50, and 75%
of bacterial features were randomly removed. This simulation
generates data under an exist–non-exist binary scenario where
bacterial features are either present or absent in X1 and X2.

Simulated dataset 2 is a case–control scenario (X1 controls
and X2 cases, with 1,995 features and 169 samples each) where
one-fourth of bacterial features in X2 are 1, 2, 5, 10, 15, and
20% more abundant than in X1. Both simulated datasets have the
same phylogenetic structure as the HMP dataset. This simulation

thus generates data under a differential abundant scenario where
bacterial features are present in the different compositions in X1
and X2.

Statistical Tests for Group Differences
Univariate Statistical Analysis
Differences between groups using alpha diversity as determined
by using PD, richness (defined as observed), Chao1, Simpson, and
Shannon were assessed using the Kruskal–Wallis test (Kruskal
and Wallis, 1952). A significance threshold α = 0.01 was used in
all calculations.

Permutational Multivariate ANOVA
The differences between groups using beta diversity as
determined by using the BC, Jaccard, UF, and weighted
UniFrac were assessed using the PERMANOVA (Anderson,
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TABLE 2 | Overview of dataset characteristics of the simulated datasets.

A N ASV PD Shannon Observed/Chao1 Simpson

Simulation 1—2% 169 1,955 17.2 (3.7) 3.1 (0.6) 69.2 (21.4) 69.2 (0.1)

Simulation 1—5% 169 1,895 17.0 (3.6) 3.1 (0.6) 66.2 (20.8) 66.2 (0.1)

Simulation 1—10% 169 1,795 16.7 (3.6) 3.0 (0.6) 62.7 (19.8) 62.7 (0.1)

Simulation 1—25% 169 1,496 15.7 (3.4) 2.9 (0.5) 55.3 (17.0) 55.3 (0.1)

Simulation 1—50% 169 997 12.8 (2.8) 2.5 (0.5) 35.5 (10.7) 35.5 (0.1)

Simulation 1—75% 169 498 8.8 (2.2) 2.1 (0.4) 16.4 (6.1) 16.4 (0.1)

Simulation 2—1% 169 1,995 106.9 (1.2) 7.1 (0.0) 1,385.5 (19.9) 1,385.5 (0.0)

Simulation 2—2% 169 1,995 107.0 (1.2) 7.1 (0.0) 1,393.4 (19.2) 1,393.4 (0.0)

Simulation 2—5% 169 1,995 107.7 (1.1) 7.1 (0.0) 1,411.5 (18.3) 1,411.5 (0.0)

Simulation 2—10% 169 1,995 108.3 (1.2) 7.1 (0.0) 1,439.5 (19.6) 1,439.5 (0.0)

Simulation 2—15% 169 1,995 109.4 (1.1) 7.1 (0.0) 1,472.2 (19.4) 1,472.2 (0.0)

Simulation 2—20% 169 1,995 110.3 (1.2) 7.1 (0.0) 1,502.8 (17.0) 1,502.8 (0.0)

B N ASV BC Jaccard UF WUF

0.89 (0.07)

Simulation 1—2% 169 1,955 0.80 (0.10) 0.89 (0.07) 0.53 (0.08) 0.39 (0.14)

Simulation 1—5% 169 1,895 0.81 (0.10) 0.89 (0.07) 0.54 (0.08) 0.39 (0.14)

Simulation 1—10% 169 1,795 0.80 (0.10) 0.88 (0.07) 0.53 (0.08) 0.39 (0.14)

Simulation 1—25% 169 1,496 0.79 (0.11) 0.86 (0.07) 0.53 (0.08) 0.39 (0.14)

Simulation 1—50% 169 997 0.77 (0.13) 0.91 (0.09) 0.53 (0.08) 0.40 (0.15)

Simulation 1—75% 169 498 0.84 (0.12) 0.67 (0.08) 0.59 (0.10) 0.50 (0.16)

Simulation 2—1% 169 1,995 0.50 (0.01) 0.66 (0.01) 0.24 (0.01) 0.06 (0.01)

Simulation 2—2% 169 1,995 0.49 (0.01) 0.64 (0.01) 0.24 (0.01) 0.06 (0.01)

Simulation 2—5% 169 1,995 0.47 (0.01) 0.61 (0.01) 0.23 (0.01) 0.05 (0.01)

Simulation 2—10% 169 1,995 0.43 (0.01) 0.58 (0.01) 0.22 (0.01) 0.05 (0.00)

Simulation 2—15% 169 1,995 0.40 (0.01) 0.55 (0.01) 0.21 (0.01) 0.05 (0.00)

Simulation 2—20% 169 1,995 0.38 (0.01) 0.20 (0.01) 0.04 (0.01)

The mean alpha and beta diversity, and associated standard deviation (between brackets) (A, B). N = sample size. PD, phylogenetic diversity; BC, Bray–Curtis dissimilarity;
ASV, amplicon sequence variant; UF, unweighted UniFrac; WUF, weighted UniFrac.

2001). PERMANOVA is a robust approach to compare groups
of samples measured on m > 1 variables. It constructs ANOVA-
like test statistics from a matrix of resemblances (distances,
dissimilarities, or similarities) calculated among the sample
units and assesses the significance of the observed differences
using random permutations of observations among the groups
(Anderson and Walsh, 2013). The null hypothesis H0 tested by
PERMANOVA is that the centroids of the groups (in the space
of the chosen resemblance measure) are the same for all groups.
This test assumes that samples are exchangeable under the
null hypothesis, are independent, and have similar multivariate
dispersion. The PERMANOVA test statistic is a pseudo ANOVA
F-ratio:

F =
SSB\(g − 1)

SSW\(n− g)
(10)

where SSB is the total sum of squares of the (diss)similarities
between groups, SSW is the total sum of squares of the
(diss)similarities within groups, g is the number of groups, and
n is the total number of samples.

The significance of the F-statistics is calculated by means of
permutations (k = 9,999). The distribution of F under the null
hypothesis is generated by permuting g times the sample group
labels and recalculating F on the permuted data. Significance is

expressed as a p-value calculated as the fraction of permuted F-
statistics, which are equal to or greater than the pseudo F-ratio
observed on the original data.

Data Subsampling
The experimental and simulated data were used to generate
K random datasets of different sizes to take into account
both data generation variability and the calculation of the
empirical power. More specifically, from N1 × m and
N2 × m data matrices X1 and X2 (either experimental
or from Simulations 1 and 2), we randomly sampled with
replacements K = 1,000 n1 × m and n2 × m datasets for
different sample sizes n1 and n2. For the sake of simplicity,
we consider n1 = n2 = n, and we varied n between 5 and
50 or 100 in steps of 5. We used K = 1,000 for the analysis
of univariate analysis (alpha) and K = 100 for the analysis of
multivariate analysis (beta), both simulated and experimental
data. In total, more than 40,000 randomly generated datasets
were analyzed.

Calculation of the Empirical Power
A statistical test to assess the difference between X1 and X2 (as
quantified by any of the alpha and beta metrics) at significance
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level α = 0.01 under the assumption of the null hypothesis being
false was applied on the K randomly generated datasets for
different sample sizes n. The empirical power of the test is defined
as the empirical probability EPr of H0 being rejected, calculated
as

EPr =
#( H0 rejected|H0 false)

K
(11)

where #() indicates the number of times that H0 is rejected.

Software
All statistical analyses were performed in R version 4.0.2 (R
Foundation for Statistical Computing, Austria; R Core Team,
2008), using the following packages: Phyloseq, Microbiome, and
Vegan (Oksanen et al., 2020; McMurdie and Holmes, 2013;
Lahti and Shetty, 2017). PERMANOVA was performed using the
adonis function for the Vegan package. Other power calculations
were performed using the G∗power software (Faul et al., 2007)
using the “Means: Difference between two independent means
(two groups)” as Statistical test and “a priori” and “post hoc”
option for the Type of Power analysis. Differentially abundant
microbiota profiles were simulated with the microbiomeDASim
R package (Williams et al., 2019) using the gen_norm_microbiome
function. The R scripts can be found on the Github page: https:
//github.com/mibwurrepo/KersSaccenti-Power.

RESULTS

Motivation Example
We begin with a motivational example to show how the choice
of the diversity metrics affects the power of a microbiome
study and how the same study may be underpowered if a
different metric is used.

Let us suppose we want to plan an experiment to assess
whether gut and oral microbial communities are different. A very
simple and basic study design would be to collect n1 = n2 gut
and oral samples and compare the alpha diversity between the
two conditions (gut vs. oral) using a two-sample Kruskal–Wallis
t-test.

We can base our estimation d of a very similar effect size δ on
data from HMP (Table 1). Using four different alpha metrics and
Equation (1), we obtained d = 1.27 (PD), d = 0.3621 (Shannon),
d = 0.58 (Chao1), and d = 0 (Simpson). These values are markedly
different: fixing the power to 0.8 (β = 0.2) and confidence α = 0.05
will lead to dramatically different required total sample size
(Figure 2A). This clearly indicates that microbiome studies may
be severely underpowered depending on which alpha metric was
used to compare two (or more) groups.

We also explored the achievable power by fixing the sample
size (n = n1 + n2 = 50+ 50 = 100) and using different effect sizes
(Figure 2B). Consistently with what is observed in Figure 2A,
results vary strongly, providing a clear indication of the risk of
underpowering when Shannon’s diversity is used.

Note that with the use of beta diversity metrics, performing
a priori power analysis becomes much more complicated. The
classical tools for power analysis cannot be applied since the
statistical tools are not parametric: solutions have been proposed

in the literature; see, for instance (La Rosa et al., 2012; Kelly et al.,
2015; Xia et al., 2018).

Literature Search
Our literature search returned 632 papers matching the search
criteria. We selected randomly 100 papers, and of those, the
materials and methods or full text were investigated to obtain
an overview of the most frequently used alpha and beta diversity
metrics and the sample sizes used. Of the 100 full-text papers,
92% of the papers contained alpha metrics, and 83% of the papers
contained beta metrics.

In 58% of the papers, more than one alpha metric was used.
In 21% of the papers, more than one beta metric was used. An
overview of the frequency of the different metrics showed that
Shannon’s index and the BC dissimilarity are the most common
metrics (Table 3). There was a wide variance in the used sample
size, defined as the smallest number per group: 46% of the papers
had a sample size of ≤ 10 samples, 34% of the papers used
between 11 and 50 samples, 7% of the papers used between 51
and 100 samples, 10% of the papers used between 101 and 1,000
samples, and three papers used > 1,000 samples.

This (small) literature offers an indication of what the
most used alpha and beta metrics are for the analysis of
microbiome data. The results are not surprising and agree
with the author’s experience. We can note that none of
the papers screened mentioned the use of Hill’s numbers
(Hill, 1973), a mathematically unified family of diversity
indices (differing among themselves only by a parameter) that
incorporate species richness and species relative abundances
(Chao et al., 2016). The use of Hill’s number has found
consensus in ecology (Jost, 2007; Ellison, 2010), and they
have also been used for the analysis of microbiome data
(Haegeman et al., 2013; Ma, 2018; Ma and Li, 2018). However,
their use seems to be not widespread, and their utility is not
fully acknowledged: in this study, we will focus on the more
commonly used metrics.

The Power of Microbiome Studies
As shown in the motivational example, the choice of a particular
alpha (and beta) diversity metric determines the number of
samples required to achieve a predetermined power. Based on
this observation, we examined two simulated datasets using both
alpha and beta diversity metrics to understand the relationship
between the sample size, the observed power, and the diversity
metrics, together with two experimental datasets (chicken
and HMP datasets).

As representatives of testing procedures using alpha and
beta diversity measures to compare two groups, the Kruskal–
Wallis test (for alpha metrics) and PERMANOVA (for beta
metrics), respectively, were selected. The Kruskal–Wallis test is
the nonparametric choice for comparing two groups when the
normality assumption does not hold. When comparing two (or
more) groups using beta diversity metrics, PERMANOVA and
ANOSIM (Clarke, 1993) are popular choices. The two approaches
are equally popular (359 hits on PubMed for PERMANOVA
and 341 for ANOSIM); however, Anderson and Walsh (2013)
showed that while both approaches are sensitive to unbalanced
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FIGURE 2 | (A) Total sample size (n) required to assess the statistical significance of a given effect d using a two-sample Kruskal–Wallis test with a power equal to
0.8 and confidence α = 0.01 when using different alpha metrics (phylogenetic diversity (PD), Shannon’s, Chao1, and Simpson’s indices). (B) Achievable power
attainable by a Kruskal–Wallis test using a total sample size n = n1+ n2 = 50 + 50 = 100 using different alpha metrics (same as A). Note that for a null effect (d = 0),
the achievable power coincides with α. Effect sizes are calculated from the Human Microbiome Project (HMP) data (comparison of skin and vaginal microbiome)
reported in Table 1.

TABLE 3 | The frequency of the different alpha and beta metrics in published
papers with microbiome or microbiota in the title and published between January
2020 and February 2020 (n = 100, multiple metrics per paper were often used).

Alpha metrics n Beta metrics n

Shannon index 78 Bray–Curtis 41

Chao1 39 Weighted UniFrac 35

Observed OTU/ASV 32 Unweighted UniFrac 21

(Inverse) Simpson 29 Jaccard 4

Phylogenetic 7 Euclidean 3

ACE 5 Jackknifed 2

Coverage 3 Yue and Clayton 2

Pielou 3 Sorensen 1

Sobs 2 Jensen–Shannon 1

Gini–Simpson 1

Shannon–Wiener 1

OTU, operational taxonomic unit; ASV, amplicon sequence variant.

designs and differences in variance within groups, PERMANOVA
is a more robust approach: on this ground, we based our
choice for PERMANOVA.

While in this study we focus only on inferential approaches
for the analysis of microbiome data, as carried on using univariate
and multivariate tests, we should comment that sample size is also
relevant for exploratory approaches like principal component
analysis (PCA), principal coordinate analysis (PCoA), and
multidimensional scaling (MDS). These approaches are not
inferential (as long one does not consider the inferential setting
for dimension assessment; Saccenti and Timmerman, 2016,
2017), but the number of samples affects the reliability and
stability of loadings and stability; thus, asking what the (minimal)
sample size is to obtain stable and reproducible component
loading estimations is relevant. Very little is known on the topic
in classical PCA (Saccenti and Timmerman, 2016) and factor
analysis setting (MacCallum et al., 1999) from a theoretical

point of view, which cannot be directly extended to PCoA
and MDS, which are the most commonly used approaches in
microbiome analysis.

Power Analysis of Simulated Datasets
For the simulated datasets, the effect size is known a priori, and it
is expressed as the % of differentially abundant or present/absent
microbial features (ASV) (Figure 3). The achievable power
for Simulated dataset 1 is shown as a function of the sample
size (n) for different percentages of present/absent ASV. If
2%, 5% of the ASVs are deleted from the dataset, none of
the alpha diversity metrics was able to capture the difference
between datasets X1 and X2, irrespective of the sample size
used (Figures 3A,B). When more than 10% of ASVs were
removed from dataset X2 (Figures 3C–E), all measures were
somehow able to capture the difference, but the resulting actual
power was very different. Overall, Chao1 and observed diversity
allowed higher power with the lower sample size (are more
sensitive to observe differences), especially in the medium range
of differences (10–25%, Figures 3C,D), whereas differences are
minimal for > 25%. Note that in contrast with the motivation
example, here, the PD was not the metric resulting in the
smallest sample size.

The same approach was used across different beta diversity
metrics (Figure 4). The Jaccard diversity metric was the most
sensitive and the weighted UniFrac was the least sensitive to
observe the differences in the presence/absence between the
datasets (Figures 4B–F). When more than 10% of ASVs were
removed from dataset X2, no difference between datasets was
observed by the UniFrac metric (Figure 4C), while with 25%
removed, the BC and UF showed a comparable power and sample
size (Figure 4D). In this simulated dataset, the weighted UniFrac
distance needed the highest sample size to observe the difference
(Figures 4D–F).

Frontiers in Microbiology | www.frontiersin.org 8 March 2022 | Volume 12 | Article 796025

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-796025 February 26, 2022 Time: 15:33 # 9

Kers and Saccenti Power Calculations of Microbiome Studies

FIGURE 3 | Empirical power of a two-sample Kruskal–Wallis test for the univariate comparison of two simulated microbiome datasets X1 and X2 [Simulated dataset
1: this simulation generates data under an exist–non-exist binary scenario where bacterial features are either present or absent in X1 and X2. The data have the
same phylogenetic structure of the Human Microbiome Project (HMP) Gut data described in Table 1] using different alpha diversity metrics (phylogenetic, Chao1,
Shannon’s, and Simpson’s indices; see Equations 3–6 in section “Materials and Methods”). The empirical power is calculated using Equation (11) as a function of the
sample size n1 of group 1 (with n2 = n1 and total sample size n = n1 + n2) using K = 1,000 replications. (A–F) The analysis of data simulations in which 2, 5, 10, 25,
50, and 75% of bacterial features are not present in dataset X2 with respect to X1, respectively.

The achievable power for Simulated dataset 2 is also shown
as a function of the sample size for different percentages
of differentially abundant ASVs (Figure 5). If ≤ 5% of the
ASVs were differentially abundant in dataset X2 as compared
with X1, Simpson’s metric needed the lowest sample size
(is most sensitive) to observe differences between the data
(Figures 5A–C). However, if 10% of the ASVs were differentially
abundant, the PD and Chao1 were more sensitive and Simpson’s
and Shannon’s metrics less sensitive (Figure 5D). With 15% of the
ASVs differentially abundant, no differences were observed with
Simpson’s metrics (Figure 5E).

The same approach was used across different beta diversity
metrics (Figure 6). The BC distance was the most sensitive to
observe differences, whereas UF needed the largest sample size.
If 2% of the ASVs were differentially abundant, the power of
the beta metrics was totally different; for example, a sample
size of 15 would result in the power of 100 for the BC, 50 for

weighted UniFrac, 40 for the Jaccard distance, and just 10 for
UF (Figure 6B). However, if 10% of the ASVs were differentially
abundant, all metrics would result in a power higher than 0.80
(Figures 6D–F).

Power Analysis of Experimental
Datasets: Chicken Dataset
Shannon’s index was the most sensitive alpha metric and Chao1
and PD were the less sensitive metrics to observe a difference
between the groups in dataset B (Figure 7A). In dataset B,
Shannon’s index was also the most sensitive alpha metric, but
Simpson’s index was the least sensitive metric (Figure 7B). UF
distance was the most sensitive beta diversity metric to observe
a difference between groups in dataset A (Figure 8A). The
Jaccard distance was the only metric that showed that dataset
C needed the smallest sample size, indicating that in dataset
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FIGURE 4 | Empirical power of a permutational multivariate ANOVA (PERMANOVA) test for the multivariate comparison of two simulated microbiome datasets X1

and X2 [Simulated dataset 1: this simulation generates data under an exist–non-exist binary scenario where bacterial features are either present or absent in X1 and
X2. The data have the same phylogenetic structure of the Human Microbiome Project (HMP) Gut data described in Table 1] using different beta diversity metrics
[Bray–Curtis dissimilarity (B), Jaccard (J), unweighted UniFrac (UF), and weighted UniFrac (WUF) distances; see Equations (7)–(9), and (6) in section “Materials and
Methods”]. The empirical power is calculated using Equation (11) as a function of the sample size n1 of group 1 (with n2 = n1 and total sample size n = n1 + n2) using
K = 100 replications. (A–F) The analysis of data simulations in which 2, 5, 10, 25, 50, and 75% of bacterial features are not present in dataset X2 with respect to X1,
respectively.

C, specific ASVs are differentially present between the groups
(Figure 8). Weighted UniFrac was more sensitive than UF to
observe a difference between the groups based on their microbial
communities (Figure 8). In general, the alpha diversity measures
were less sensitive to observe differences between the broilers
than the beta diversity (Figures 7A,B, 8).

Although no difference in alpha diversity was observed
between broilers fed with or without MCFAs raised in housing
condition 1, the average daily gain and the average daily
feed intake were lower in MCFA broilers (Kers et al., 2019).
Therefore, the difference only observed based on the beta
diversity might already be biologically relevant and hence
sufficient to draw conclusions in this case. For this dataset,
we observed that Shannon is the most sensitive alpha diversity
metric to observe differences between groups, resulting in the
lowest needed sample size. The sensitivity of the beta diversity,
however, was different per dataset. Based on this retrospective
power calculation, two conclusions can be drawn on this study
design. First, not enough chickens were sampled to observe a

difference in the alpha diversity between broilers fed with or
without MCFA raised in dataset A. Second, 15 chicken samples
instead of 35 samples per group would have resulted in the
same conclusion.

Power Analysis of Experimental Data:
Human Microbiome Project Dataset
The samples in this dataset were collected from different
body sites and are known to have a very distinct origin and
therefore expected to be different in microbial composition. The
comparison between different body sites showed a wide variation
in sample size across different alpha diversities (Figures 7C–F).
The difference in sample size was small in the comparison
between skin and oral microbiome samples, a total of 10 samples
(threshold power 80, 1-β) (Figure 7C). In the skin vs. gut
microbiome samples, Simpson’s and Shannon’s alpha diversities
did not differ, and the PD was the most sensitive to observe
differences (Figure 7D). In contrast, when comparing the gut
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FIGURE 5 | Empirical power of a two-sample Kruskal–Wallis test for the univariate comparison of two simulated microbiome datasets X1 and X2 [Simulated dataset
2: This simulation thus generates data under a differential abundant scenario where bacterial features are present in the different compositions in X1 and X2. The
data have the same phylogenetic structure of the Human Microbiome Project (HMP) Gut data described in Table 1] using different alpha diversity metrics
[phylogenetic, Chao1, Shannon’s, and Simpson’s indices; see Equations (3)–(5), and (6) in section “Materials and Methods”]. The empirical power is calculated using
Equation (11) as a function of the sample size n1 of group 1 (with n2 = n1 and total sample size n = n1 + n2) using K = 1,000 replications. (A–F) The analysis of data
simulations in which one-fourth of bacterial features in X2 are 1, 2, 5, 10, 15, and 20% more abundant than in X1, respectively.

vs. the oral microbiome, the PD was the least sensitive to
observe differences, whereas Shannon’s and Simpson’s metrics
were different between the gut and oral samples (Figure 7E).
In the skin vs. vaginal microbiome comparison, Simpson’s
and Shannon’s alpha diversities were more sensitive than the
observed/Chao1 and PD (Figure 7F). Based on the different beta
diversity metrics, all comparisons between different body sites
supported significant differences even when just five samples
were compared (data not shown), due to the large difference
between communities (Supplementary Figure 1). Therefore,
the retrospective power calculations were not informative
for this dataset.

Are Microbiome Studies Underpowered?
Figure 9A shows the distribution of the sample size (n1) of the
datasets that were analyzed, using the Chao1 diversity measure
in 28 of the 100 papers considered in the literature review.
The distribution is highly skewed toward 0 with a median of
39 samples per group and a mode of 8 samples. Removing

the two outlying studies with > 300 samples resulted in a
median of 23 samples.

Even considering that Chao1 was one of the best-performing
measures in both simulated and experimental datasets, these
numbers appear to be worryingly low: on experimental data,
which have a complicated structure that is impossible to replicate
in simulations, it is rarely possible to attain a power of 80% with
less than 40 samples per group. Similar considerations hold when
PERMANOVA is applied (see Figure 9B), with a median group
size of 22 and mode 3.

Reporting of Power Analysis
One of the studies we examined in the literary review reported
that sample size and power analysis were performed: “Sample
sizes were chosen on the basis of pilot experiments and on our
experience with similar experiments.” This is commendable, but
we believe that the way forward is to employ and report in full
a standardized summary of sample size calculations performed.
The software G∗power (Faul et al., 2007) generates a Protocol
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FIGURE 6 | Empirical power of a permutational multivariate ANOVA (PERMANOVA) test for the multivariate comparison of two simulated microbiome datasets X1

and X2 [Simulated dataset 2: This simulation thus generates data under a differential abundant scenario where bacterial features are present in the different
compositions in X1 and X2. The data have the same phylogenetic structure of the Human Microbiome Project (HMP) Gut data described in Table 1] using different
beta diversity metrics [Bray–Curtis dissimilarity (B), Jaccard (J), unweighted UniFrac (UF), and weighted UniFrac (WUF) distances; see Equations (7)–(9), and (6) in
section “Materials and Methods”]. The empirical power is calculated using Equation (11) as a function of the sample size n1 of group 1 (with n2 = n1 and total sample
size n = n1 + n2) using K = 100 replications. (A–F) The analysis of data simulations in which one-fourth of bacterial features in X2 are 1, 2, 5, 10, 15, and 20% more
abundant than in X1, respectively.

for power analysis. For instance, for a two-group comparison
with a Mann–Whitney/Kruskal–Wallis test, a possible (modified)
reporting is given in Table 4.

Together with this, information should be provided on how
effect size was determined, i.e., which pilot data were used and
how the effect size was calculated.

A similar reporting protocol could be devised if simulations
are used in a PERMANOVA setting (Table 5). Since simulation
and/or pilot data must be used in this case, details on the
simulations or pilot data should be reported. For instance, using
Chicken data 1 as the pilot, one could report the following
protocol, taking 100 resamplings of size 6 to calculate the
achievable power:

DISCUSSION

The aim of this study was to assess how, and to what extent,
different diversity metrics and compositions of the microbiota
influence the needed sample size to observe statistically

significant dissimilar groups. Based on our literature survey, we
observed that Shannon’s and Bray–Curtis metrics are the most
published metrics. This might be because they are often the
most sensitive metrics to observe differences between groups,
resulting in a lower sample size. Our results are in line with
those of a previous literature that showed that the choice of
distance metric may significantly influence the observed results
(Koren et al., 2013).

A well-known phenomenon that can hamper progress in every
research field concerns publication biases in reporting mainly
positive findings (Ioannidis, 2005). In microbiota research,
this might even occur rather unintentionally, by using certain
alpha and beta diversity metrics, but it might also be that
researchers selectively report only results for the metric that
shows significance even when other metrics had been assessed
during the analyses. Our results lead to the speculation that
many microbiome studies may be underpowered or, conversely,
only reporting evidence of very large effects that can be assessed
to be statistically significant also with a small sample size.
However, since effect size and test statistics are not reported, it
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FIGURE 7 | Empirical power of a two-sample Kruskal–Wallis test for the univariate comparison of two experimental microbiome datasets X1 and X2 from the Human
Microbiome Projects (skin, gut, oral, and vaginal microbiome: dataset characteristics are given in Table 1). Differences between any two datasets X1 and X2 is
assessed using different alpha diversity metrics [observed richness, phylogenetic diversity, Chao1, Shannon’s, and Simpson’s indices; see Equations (2)–(5), and (6)
in section “Materials and Methods”]. The empirical power is calculated using Equation (11). Empirical power is calculated as a function of the sample size n1 of group
1 (with n2 = n1 and total sample size n = n1 + n2) using K = 1,000 replications (resampling)/tests for each sample size. (A–F) Different pairwise comparisons [A
(poultry dataset B, feed A vs. B); B (poultry dataset C, feed A vs. B), skin microbiome vs. oral microbiome, skin vs. gut, gut vs. oral, and skin vs. vaginal].

FIGURE 8 | Empirical power of a two-sample Kruskal–Wallis test for the univariate comparison of two experimental microbiome datasets X1 and X2 from the three
chicken datasets illustrated in Table 1. Differences between any two datasets X1 and X2 are assessed using different beta diversity metrics [Bray–Curtis dissimilarity
(B), Jaccard (J), unweighted UniFrac (UF), and weighted UniFrac (WUF) distances; see Equations (7)–(9) and (6) in section “Materials and Methods”]. The empirical
power is calculated using Equation (11) as a function of the sample size n1 of group 1 (with n2 = n1 and total sample size n = n1 + n2) using K = 100 replications.
(A) Analysis of chicken dataset A. (B) Analysis of chicken dataset B. (C) Analysis of chicken dataset C.
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FIGURE 9 | (A) Distribution of the sample size (per compared group) of the datasets that were analyzed, using the Chao1 diversity measure, in 28 of the 100 papers
considered in the literature review. (A,B) Distribution of the sample size (per compared group) of the datasets that were analyzed, using permutational multivariate
ANOVA (PERMANOVA), in 28 of the 100 papers considered in the literature review.

TABLE 4 | Power analysis protocol for a Kruskal–Wallis test using
Shannon’s alpha metric.

Power analysis protocol: univariate case—alpha diversity

t-tests – Means: Wilcoxon–Mann–Whitney test (two groups)

Options: A.R.E. method

Analysis: A priori: compute required sample size

Input: Tail(s) = One

Parent distribution = Normal

Effect size d = 0.5

Alpha metric = Shannon

α err prob = 0.05

Power (1 - β err prob) = 0.8

Allocation ratio N2/N1 = 1

Output: Non-centrality parameter δ = 2.51

Critical t = 1.66

df = 99.2

Sample size group 1 = 53

Sample size group 2 = 53

Total sample size = 106

Actual power = 0.803

This protocol is adapted from the protocol generated by the G∗Power software
(Faul et al., 2007).

is impossible to judge the quality of the results. This also hampers
the use of published studies as pilot studies to perform power
analysis and sample size calculations, as long as data are not de
novo reanalyzed.

None of the 100 microbiome studies that we have considered
reported the effect size. A collaborative project aiming to

TABLE 5 | Power analysis protocol for a PERMANOVA test using the
Bray–Curtis beta metric.

Power analysis protocol: multivariate case—beta diversity

Test – PERMANOVA

Options: 9,999 permutation

100 iterations

Analysis: Compute achievable power

Input: Beta metric = Bray–Curtis

α err prob = 0.05

Number of groups = 2

Number of taxa = 363

Sample size group 1 = 6

Sample size group 2 = 6

Output:

Observed effect size (average) -2 = 0.120682

Min\Max effect size = 0.025922\0.3500687

Observed effect size (average) f = 0.2696886

Min\Max effect size = 0.1319342\ 0.746349

Numerator df = 1

Denominator df = 10

Power (1−β err prob) = 0.97

PERMANOVA, permutational multivariate ANOVA.

investigate the reproducibility of 100 high-profile psychological
studies reported that the average effect size observed in the
replication studies was approximately half the magnitude of those
given in the original studies, leading to a replication success
of only 36% (Open Science Collaboration, 2015). The lack of
reported effects makes it impossible to analyze retrospectively
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microbiome studies and to perform a meta-analysis and, more
importantly, makes it impossible to check the consistency of the
statistical analysis or detect errors.

On the basis of this, reporting of effects and test statistics
should be made compulsory in microbiome studies. For the
highly used Kruskal–Wallis test, the H test statistic is given by
(in absence of ties)

H =
12

N(N − 1)

∑
i

niR2
i − 3N + 1 (12)

where N is the total number of samples, ni is the number of
samples in group i, and Ri is the average rank of observations in
the ith group. Note that H (or alternative formulas) obtainable
from most software packages.

For the Kruskal–Wallis, the most common effect is the η2,
which is defined as

η2
=

H − k+ 1
N − k

(13)

where H is the value obtained in the Kruskal–Wallis test and k
is the number of groups. For instance, for the comparison of
the two feedings (Feed A and B; see Table 1) from the chicken
dataset using the observed alpha diversity, one could report the
following:

Feed A (n1 = 35) and Feed B (n2 = 35) samples were compared
with Kruskal–Wallis test using the Chao1 metric: H (df ) = H
(1) = 14.68, p-value 0.0001, η2 = 0.66, δ = 0.58,

where df indicates the degrees of freedom.
Note here that for a two-group comparison, the Kruskal–

Wallis test is equivalent to the Wilcoxon–Mann–Whitney
(WMW) test (Hoffman, 2015; Happ et al., 2019). For the
WMW test, Cohen’s δ effect size definition (Equation 1) also
applies (Lakens, 2013). This greatly simplifies power analysis and
sample size calculations: we advise to also report δ when two
groups are considered.

In addition, performing power analysis for a Kruskal–Wallis
is not a simple matter and requires the use of a rather advanced
statistical machinery (Fan et al., 2011; Fan and Zhang, 2012); for
instance, such calculations are not included in G∗power (Faul
et al., 2007), which is the most complete software for power
analysis. The Kruskal–Wallis is the nonparametric counterpart
of one-way ANOVA and as such is used in situations where there
are more than two groups. However, whereas power analysis and
sample size calculation for a one-way ANOVA with more than
two groups are “easily” accessible within R or other software
packages, this is not the case in the Kruskal–Wallis testing.
We could locate an R package “MultNonParam” (Kolassa and
Jankowski, 2020) that performs power analysis for the Kruskal–
Wallis test with more than two groups; however, it requires the
specification of the offsets for the various populations, under
the alternative hypothesis. Relating such tools to determine
the effect size observed in microbiome data is a matter we
believe to be worthy of exploration and brings us back to the

problem that statistics and effect size are not easily available for
microbiome studies.

The principle of reporting the effect size should also apply
when testing is performed using beta diversity metrics, in which
case the PERMANOVA pseudo F-statistics (see Equation 10) and
the effect size should be reported. Typical effect measures in
ANOVA are Choen’s f 2, η2, and -2:

Feed A (n1 = 35) and Feed B (n2 = 35) samples were compared
with PERMANOVA test using the Unweighted Unifrac metric:
F(dfB, dfW) = F(1, 68) = 6.27, p-value = 0.0001, f 2 = 0.092, 1,000
permutations,

where dfB and dfW indicate the between-groups and within-
groups degrees of freedom, respectively. These notations follow
the guidelines of the American Psychological Association, which
provides standardized formats for the reporting of statistical
analysis for statistical procedures (American Psychological
Association, 1994).

For PERMANOVA, the matter complicates considerably: to
estimate statistical power and calculate sample size, one must
quantify the expected within-group variance and the effect to be
expected when comparing two or more groups. A package like
micropower (Kelly et al., 2015) in principle allows estimation
of PERMANOVA effects quantified by the -2 value (limited
to the UniFrac measure): unfortunately, to the best of our
knowledge, the package seems not to be maintained and lacks a
proper manual. The original paper presents a table with effects
calculated from different studies that could be used as a guide;
however, this metric is not standard. It can be calculated from the
PERMANOVA table as

ω2
=

SSeffect − df effectMSresidual

SSeffect +MSresidual
(14)

For the chicken data, we observed -2 values in the range 0.04–
0.1, depending on the beta metrics, and these are consistent with
those reported in Table 1 from Kelly et al. (2015).

A more common effect measure is Cohen’s f 2-value; i.e., the
between-group to within-group ratio can be easily obtained by
the ANOVA table provided by software like the R package Vegan
by taking the ratio between the Treatment sum of squares and
the Residual sum of squares. The f 2-value is used for power
calculation in the ANOVA setting; however, it should not be used
to perform sample size calculation for PERMANOVA, not even
to obtain a rough indication, since the corresponding F-statistics
do not follow an F distribution. For instance, when comparing
Feed A and B from the first chicken data with PERMANOVA, we
can derive a Cohen’s f 2 = 0.38; if this value is used to perform
power calculation for an ANOVA with two groups with power
80% at α = 0.01, we obtain that 42 samples per group are needed.
However, comparing the results in Figure 8, we see that a 100%
power can be obtained with 25 samples per group, regardless
of which measure is used: this is a clear indication that power
analysis for PERMANOVA can be obtained only by means of
simulations. In this light, Figure 8 can be viewed as a priori power
calculations using pilot data.
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Furthermore, there is a convention, more or less widely
accepted, of classifying Cohen’s δ effect, which we have used in the
power calculation for the Kruskal–Wallis, into trivial (δ < 0.2),
small (δ = 0.2), medium (δ = 0.5), and large (δ > 0.8). However,
this classification is based on what is observed in psychology and
does not apply automatically to other fields of research (Saccenti
and Timmerman, 2016). In microbiome studies, the effects may
be in the same order of magnitude that may be considered large
or very large using the standard convention.

We have seen that different alpha and beta diversity metrics
lead to different study power: on the basis of this observation, one
could be naturally tempted to try all possible metrics until one
or more are found that give a statistically significant test result,
i.e., p-value < α. This way of proceeding is one of the many
forms of the so-called p-value hacking (p-hacking) (Simmons
et al., 2011). p-Hacking (also called data dredging, significance
chasing, significance questing, or selective inference (Wasserstein
and Lazar, 2016)) is the improper use of data (like adding or
removing observations) or statistical procedures (like applying
many different tests) until a configuration is found that produces
a statistically significant result at the desired confidence level
(Smith and Ebrahim, 2002). p-Hacking is an illegitimate practice
that promotes unreproducible results, polluting literature and
adding to publication bias (Ioannidis, 2005; Jager and Leek, 2014;
Raj et al., 2018).

CONCLUSION

To this end, in our opinion, the only way to protect ourselves
from (the temptation of) p-hacking would be to publish, and we
stress here the word publish, a statistical plan before experiments
are initiated: this practice is customary for clinical trials where a
statistical plan describing the endpoints and the corresponding
statistical analyses must be disclosed before the start of the study
and must be adhered to if results are going to be published
(Gamble et al., 2017). This is the only guarantee that data
analysis is not manipulated toward artificially inflated significant
results. We appreciate that clinical trials are inherently different
from microbiome (and other omics) studies, which are often
exploratory in nature, but as far as statistics are concerned,

they are the prey of the same traps and pitfalls. It is obvious
that such a change in the approach to microbiome studies
requires the concerted cooperation of researchers, journal editors,
reviewers, and publishers.
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